

POINTWISE GENERALIZATION IN DEEP NEURAL NETWORKS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We address the fundamental question of why deep neural networks generalize by
 012 establishing a pointwise generalization theory for fully connected networks. For
 013 each trained model, we characterize the hypothesis via a pointwise Riemannian
 014 Dimension, derived from the eigenvalues of the *learned feature representations*
 015 across layers. This approach establishes a principled framework for deriving tight,
 016 hypothesis-dependent generalization bounds that accurately characterize the rich,
 017 nonlinear regime, systematically upgrading over approaches based on model size,
 018 products of norms, and infinite-width linearizations, yielding guarantees that are
 019 orders of magnitude tighter in both theory and experiment. Analytically, we iden-
 020 tify the structural properties and mathematical principles that explain the tractabil-
 021 ity of deep networks. Empirically, the pointwise Riemannian Dimension exhibits
 022 substantial feature compression, decreases with increased over-parameterization,
 023 and captures the implicit bias of optimizers. Taken together, our results indicate
 024 that deep networks are mathematically tractable in practical regimes and that their
 025 generalization is sharply explained by pointwise, spectrum-aware complexity.

1 INTRODUCTION

028 Deep learning has ushered in a new era of AI, delivering striking generalization across scientific
 029 tasks. Yet, a fundamental paradox remains: while classical theory predicts severe overfitting for
 030 massive models, practice exhibits strong generalization. This gap has fueled a prevailing view that
 031 neural networks are opaque “black boxes” resistant to principled explanation (Goodfellow et al.,
 032 2016). We narrow this gap by addressing the generalization problem for the canonical fully con-
 033 nected Deep Neural Network (DNN). We demonstrate that, under minimal and verifiable spectral
 034 conditions on the *learned feature representations*, deep neural networks fall into a tractable regime
 035 with tight generalization guarantees. Methodologically, our characterization leverages a pointwise
 036 generalization paradigm that fundamentally transcends classical uniform-convergence approaches
 037 and pure weight-space compressions, reshaping the theoretical foundation for representation learn-
 038 ing. To our knowledge, this offers one of the first fully rigorous treatments that establishes the
 039 tractability of deep neural networks by contemporary machine-learning standards.

040 We study standard fully connected (feed-forward) networks on a dataset $X = [x_1, \dots, x_n] \in$
 041 $\mathbb{R}^{d_0 \times n}$, where each column is one input example. The network has widths d_1, \dots, d_L , and weight
 042 matrices $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$ for $l = 1, \dots, L$. We define the *feature matrix* at layer l by the recursion

$$F_l(W, X) := \sigma_l(W_l F_{l-1}(W, X)) \in \mathbb{R}^{d_l \times n}, \quad l = 1, \dots, L, \quad (1)$$

043 where $F_0 := X$ and the nonlinear activation σ_l acts columnwise. Each *column* of F_l is the feature
 044 vector of one data point at layer l ; each *row* of F_l is the activation of one neuron across the dataset.

045 Our focus is the *generalization gap*—the difference between test and training loss at the learned
 046 weights W . Informally—up to universal constants, mild logarithmic factors, and reasonable sim-
 047 plification (made precise in Theorem 4 with discussion on the feasibility of this simplification)—we
 048 prove that this gap is controlled by the *effective dimension* of the learned features: uniformly over
 049 every $W \in \mathbb{R}^{\sum_l d_l \cdot d_{l-1}}$,

$$\mathcal{L}_{\text{test}}(W) - \mathcal{L}_{\text{train}}(W) \lesssim \sqrt{\frac{1}{n} \sum_{l=1}^L (d_l + d_{l-1}) \text{d}_{\text{eff}}(F_{l-1}(W, X) F_{l-1}(W, X)^\top)}. \quad (2)$$

054 Here $d_{\text{eff}}(\cdot)$ denotes the (layerwise) *effective dimension*—a smoothed, spectrum-aware notion of
 055 rank—of the feature Gram matrix $F_{l-1}(W, X)F_{l-1}(W, X)^\top$, i.e., the number of meaningful di-
 056 rections the feature data actually occupies at that layer. Intuitively, each layer contributes a term
 057 proportional to its size ($d_l + d_{l-1}$) multiplied by how many directions its features $F_{l-1}(W, X)$ truly
 058 use, d_{eff} . When features are correlated, low rank, or exhibit a rapidly decaying spectrum (a few large
 059 eigenvalues dominating many small ones), d_{eff} is small, so the bound remains tight even for very
 060 wide/deep networks. Such “feature compression” phenomena is widely observed in modern deep
 061 learning (Huh et al., 2021; Wang et al., 2025; Parker et al., 2023). Strikingly, in our experiments,
 062 increasing overparameterization often induces pronounced *feature-rank compression*: the bound (2)
 063 decreases as model size grows (Section 5); for example, in ResNet trained on CIFAR-10, a majority
 064 of layers compress to (near-)zero effective rank.

065 Inequality (2) yields a strong *uniform, hypothesis- and data-dependent* guarantee, which we term
 066 *pointwise generalization*. It tracks how features evolve across layers of the trained model and
 067 explains overparameterization in practice. Under minimal spectral conditions on the learned fea-
 068 ture representations, our theory renders fully connected networks tractable. The spectrum-aware
 069 effective-dimension notion we adopt is standard and minimax-sharp in linear and kernel settings
 070 (Even & Massoulié, 2021). In contrast, existing bounds either (i) rely on infinite-width lineariza-
 071 tions (the NTK line of work, e.g., Jacot et al. (2018)), (ii) blow up exponentially with products of
 072 norms (e.g., Bartlett et al. (2017); Neyshabur et al. (2018)), or (iii) scale with model size (e.g., VC
 073 dimension (Bartlett et al., 2019)). Our bounds avoid these pathologies, delivering tight, pointwise
 074 guarantees via unified principles and systematic methodologies. By directly addressing the nonlin-
 075 ear, feature-learning regime—emphasized in Bartlett et al. (2021); Zhang et al. (2021); Nagarajan &
 076 Kolter (2019); Wilson (2025)—we show that generalization in deep neural networks is mathemati-
 077 cally *tractable*.

078 **Contributions:** The paper is organized into three parts: (i) pointwise generalization framework;
 079 (ii) structural principles of deep networks; and (iii) empirical validation. Related work, further
 080 explanations, discussions and details, and all proofs are deferred to the appendices. We summarize
 081 the main novelties in each part below.

082 **A Tight Pointwise Generalization Framework.** We develop a pointwise framework that analyzes
 083 the *trained* hypothesis and yields generalization bounds with (qualified) matching upper and lower
 084 rates via a finite-scale notion of *pointwise dimension*. This fundamentally upgrades generic chaining
 085 and all covering-number approaches by assigning each hypothesis its *own complexity* that directly
 086 controls its error. The bounds can also be read as an optimally tuned PAC–Bayes objective special-
 087 ized to deterministic predictors. This framework reframes generalization as a study of pointwise
 088 geometry at finite scale, clarifying why nonlinear models generalize without uniform convergence.

089 **Structural Principles and Tight Bounds for Neural Networks.** We develop a *non-perturbative*
 090 approach that uses exact telescoping decompositions (rather than Taylor linearizations) to preserve
 091 the finite-scale geometry of deep networks. This yields our first structural principle: *cross-layer cor-*
 092 *relations factor through the feature matrices and approximately preserve a pointwise linear struc-*
 093 *ture*. We then show that bounding the pointwise dimension reduces to the gold standard of *effective*
 094 *dimension* on local charts, and we extend this to a global statement by constructing an *ellipsoidal*
 095 covering over the set of subspaces (Grassmannian). This extension—novel beyond the classical dif-
 096 ferential-geometric/Lie–algebraic treatments—establishes our second structural principle: *the com-*
 097 *plexity of the global atlas (covering reference eigenspaces) remains commensurate with that of the*
 098 *local charts*. Building on these principles, we introduce *Riemannian Dimension*—a spectrum-aware,
 099 pointwise effective complexity—that governs generalization at the trained model and yields tight,
 100 analyzable bounds. We review each step and argue that the resulting bounds are tight in a qualified
 101 sense; moreover, they *exponentially sharpen* spectral–norm bounds (see Appendix F.5.1).

102 **Empirical Findings and Evidences.** The experiments are designed to systematically examine three
 103 central questions in modern deep learning: (i) why does overparameterization often improve gener-
 104 alization? (ii) how does feature learning evolve during training? and (iii) what implicit regulariza-
 105 tion is encoded by the baseline optimizer? Across the experimental results, we observe that (i) the
 106 overparameterization impressively leads to decreasing Riemannian Dimension; (ii) feature learning
 107 compresses the effective ranks of learned features during the training; and (iii) SGD with momentum
 implicitly regularizes the Riemannian Dimension.

108 **2 A POINTWISE FRAMEWORK OF GENERALIZATION**
109

110 Let \mathcal{F} be a hypothesis class, z be random data drawn from an unknown distribution \mathbb{P} (e.g., input-
111 label pair $z = (x, y)$), and $\ell(f; z)$ be real-valued loss function. Denote by \mathbb{P}_n the empirical distribution
112 supported on an i.i.d. sample $S = \{z_i\}_{i=1}^n \sim \mathbb{P}^n$. Our goal is to control the *generalization gap*
113 $(\mathbb{P} - \mathbb{P}_n)\ell(f; z)$ in the following manner: for $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly
114 over every $f \in \mathcal{F}$,

115
$$(\mathbb{P} - \mathbb{P}_n)\ell(f; z) := \mathbb{E}_{z \sim \mathbb{P}}[\ell(f; z)] - \frac{1}{n} \sum_{i=1}^n \ell(f; z_i) \leq C \sqrt{\frac{d(f) + \log \frac{1}{\delta}}{n}}, \quad (3)$$

116
117

118 where $d(f)$ is a hypothesis-dependent complexity measure that aims to characterize the intrinsic
119 complexity of every *trained* hypothesis f , in contrast to class-wide, uniformly defined complexity
120 measures. Further details are provided in the appendix.

121 In the spirit of (3), we introduce the central notion of this section—the *pointwise dimension*: a finite-
122 scale analogue of ideas from fractal geometry (Falconer, 1997) and a pointwise counterpart distilled
123 from generic chaining (Fernique, 1975). Throughout, “metric” ϱ means a *pseudometric*: all metric
124 axioms hold except that $\varrho(f_1, f_2) = 0$ need not imply $f_1 = f_2$.

125 **Definition 1 (Pointwise Dimension)** *Given a function class \mathcal{F} , a metric ϱ on \mathcal{F} , and a prior π
126 over \mathcal{F} , the local dimension at f with scale ε is defined as the log inverse density of the ε –ball
127 $B_\varrho(f, \varepsilon) = \{f' \in \mathcal{F} : \varrho(f, f') \leq \varepsilon\}$ centered at f :*

128
$$\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}. \quad (4)$$

129
130

131 We define the loss-induced empirical $L_2(\mathbb{P}_n)$ metric $\varrho_{n,\ell}$ as $\varrho_{n,\ell}(f_1, f_2) =$
132 $\sqrt{\frac{1}{n} \sum_{i=1}^n (\ell(f_1; z_i) - \ell(f_2; z_i))^2}$. Equipped with this data-dependent metric, we now state
133 the following unified pointwise dimension generalization upper bound.

134 **Theorem 1 (Pointwise Dimension Generalization Bound)** *Let $\ell(f; z) \in [0, 1]$. There exists an
135 absolute constant $C > 0$ such that for any prior π on \mathcal{F} and any $\delta \in (0, 1)$, with probability at least
136 $1 - \delta$, uniformly over every $f \in \mathcal{F}$*

137
$$(\mathbb{P} - \mathbb{P}_n)\ell(f; z) \leq C \left(\inf_{\alpha > 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right).$$

138
139
140

141 The concept of pointwise dimension and the unified generalization bound in Theorem 1 strengthen
142 several established methodologies such as PAC-Bayesian analysis, Kolmogorov complexity, chaining,
143 and generic chaining. We elaborate on this unified strengthening in the next two paragraphs.

144 **Theorem 1 sharpens best PAC–Bayes optimization.** By the monotonicity of the pointwise di-
145 mension in ε , a direct relaxation of Theorem 1 yields the one-shot bound

146
$$(\mathbb{P} - \mathbb{P}_n)\ell(f; z) \leq C \left(\inf_{\alpha > 0} \left\{ \underbrace{\alpha}_{\text{bias (approximate } f)} + \underbrace{\sqrt{\frac{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \alpha))}}{n}}}_{\text{variance (PAC–Bayes term)}} \right\} + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right). \quad (5)$$

147
148
149
150
151
152

153 Intuitively, the pointwise dimension uses prior mass over a *ball* around f , so it applies to general
154 (uncountable) classes, overcoming limitations of hypothesis–by–hypothesis bounds such as Oc-
155 cam/description–length and Kolmogorov complexity (Lotfi et al., 2022). Additionally, our perspec-
156 tive brings the best possible PAC-Bayesian mechanism: generalization is recasted as a bias–variance
157 tradeoff optimized over a user–chosen posterior, applies to *deterministic* hypotheses, and shows that
158 the pointwise dimension optimally governs the complexity (see Section C.3 for this perspective).
159 This clarifies and strengthens earlier PAC–Bayes approaches that adopt linear-in-parameter Gaus-
160 sian approximations, i.e., they linearize f in the weights and thereby ignore its nonlinearity, to ob-
161 tain computable, non-vacuous generalization bounds (e.g., (Hinton & Van Camp, 1993; Dziugaite &
162 Roy, 2017); see the second part of Section C.1 for details)).

162 **Theorem 1 upgrades generic chaining to a pointwise form.** The theorem extends generic
 163 chaining (notably the majorizing measure integral (Fernique, 1975; Talagrand, 1987)) to *pointwise*
 164 bounds, and is therefore strictly stronger than entropy–integral bounds based on *uniform* covering
 165 numbers (e.g., Dudley’s integral), whose integrand takes a supremum over the entire class \mathcal{F} rather
 166 than localizing at the realized hypothesis; see Section 3 of Block et al. (2021) and Section 4.1 of
 167 Chen et al. (2024). In particular, (34) in Appendix C.4 shows that

$$\inf_{\pi} \sup_{f \in \mathcal{F}} \frac{1}{\pi(B_{\varrho}(f, \varepsilon))} \quad (6)$$

170 is (up to absolute constants) equivalent to the *canonical covering number* of \mathcal{F} with metric ϱ at
 171 scale ε . Consequently, Theorem 1 goes beyond classical covering analyses by (i) recasting covering-
 172 number complexity as the inverse-prior-density objective (6), and (ii) localizing this complexity
 173 *pointwise* in f . We view this “prior-density + localization” perspective as a paradigm shift for future
 174 statistical complexity analysis. The multiscale integral is particularly valuable: it applies to rich
 175 classes where the pointwise dimension can grow as $O(d(f)\varepsilon^{-2})$ yet still yields a $\sqrt{d(f)/n}$ rate; by
 176 contrast, the one-shot relaxation (5) typically requires growth no worse than $O(d(f)\log(1/\varepsilon))$ to
 177 achieve the same rate.

178 Finally, the integral upper bound in Theorem 1 is *tight* in the following qualified worst-case sense:
 179 no uniform improvement valid simultaneously for all hypotheses and all priors is possible. This is
 180 witnessed by a matching lower bound.

182 **Theorem 2 (Worst-Case Lower Bound)** *Let $\ell(f; z) \in [0, 1]$. There exists absolute constants
 183 $c, c' > 0$ so that*

$$\mathbb{E} \left[\sup_{\pi \in \Delta(\mathcal{F}), f \in \mathcal{F}} \left((\mathbb{P} - \mathbb{P}_n) \ell(f; z) - \frac{c}{\sqrt{n \log n}} \int_0^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon \right) + \frac{c' \sup_{\mathcal{F}} \mathbb{E}[\ell(f; z)]}{\sqrt{n \log n}} \right] \geq 0,$$

187 where notation \mathbb{E} means taking expectation over sample.

188 The lower bound certifies the *worst-case tightness* of our pointwise-dimension upper bound in The-
 189 orem 1 (noting that fixing $\alpha = 0$ relative to Theorem 1 only increase the lower bound), analogous
 190 to *minimax optimality* in frequentist statistics (Wald, 1945). This worst-case tightness does not pre-
 191 clude sharper guarantees for a fixed hypothesis f . However, a strictly *pointwise* lower bound—one
 192 that conditions on the realized hypothesis f without the outer $\sup_{f \in \mathcal{F}}$ —is generally unattainable,
 193 because any admissible prior π must be chosen independently of f (a “no free lunch” constraint).

195 3 DEEP NEURAL NETWORKS AND RIEMANNIAN DIMENSION

197 In this section we develop a systematical pointwise dimension analysis for deep neural networks.
 198 Section 3.1 formalizes the standard fully connected architecture and notation. Section 3.2 introduces
 199 a non-perturbative calculus (avoiding infinitesimal Taylor expansions) to analyze finite-scale behav-
 200 ior—the scale at which generalization is actually governed, and which is intrinsically captured by the
 201 pointwise-dimension framework. Section 3.3 introduces a hierarchical covering scheme—our key
 202 technical innovation—that overcomes the well-known linear/kernel bottleneck in classical statistical
 203 learning and enables a principled treatment of genuinely nonlinear models.

204 3.1 NEURAL NETWORK SETUP

206 We consider fully connected (feed-forward) networks that map an input $x \in \mathbb{R}^{d_0}$ to an output
 207 $f_L(W, x) \in \mathbb{R}^{d_L}$. The architecture is specified by widths d_0, \dots, d_L and weight matrices $W =$
 208 $\{W_1, \dots, W_L\}$ with $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$ for $l = 1, \dots, L$. Let $\sigma_1, \dots, \sigma_L$ be nonlinear activations (e.g.,
 209 ReLU), acting componentwise on column vectors, and each $\sigma_l : \mathbb{R}^{d_l} \rightarrow \mathbb{R}^{d_l}$ is assumed 1-Lipschitz.
 210 The network’s forward map is the composition

$$f_L(W, x) := \sigma_L \left(W_L \sigma_{L-1} \left(W_{L-1} \cdots \sigma_1(W_1 x) \right) \right).$$

213 Let $X = [x_1, \dots, x_n] \in \mathbb{R}^{d_0 \times n}$ collect the n training inputs as columns. For each layer $l \in$
 214 $\{1, \dots, L\}$, define the depth- l map and the corresponding *feature matrix*

$$f_l(W, x) := \sigma_l \left(W_l \sigma_{l-1} \left(W_{l-1} \cdots \sigma_1(W_1 x) \right) \right), F_l(W, X) := [f_l(W, x_1) \cdots f_l(W, x_n)] \in \mathbb{R}^{d_l \times n}.$$

216 Equivalently (full, non-recursive form consist with (1)),
 217

$$218 \quad F_l(W, X) = \sigma_l(W_l \sigma_{l-1}(W_{l-1} \cdots \sigma_1(W_1 X))),$$

220 where for a matrix $A = [a_1, \dots, a_n]$ we write $\sigma_l(A) := [\sigma_l(a_1), \dots, \sigma_l(a_n)]$. Thus $F_L(W, X)$
 221 collects the network outputs on the dataset X .

222 We denote $\|\cdot\|_{\mathbf{F}}$ for the Frobenius norm, $\|\cdot\|_{\text{op}}$ for the spectral norm, and $\|\cdot\|_2$ for the Euclidean
 223 norm on vectors. We abbreviate norm balls by $B_{\mathbf{F}}(R)$, $B_{\text{op}}(R)$, and $B_2(R)$ (all centered at 0; radius
 224 being R). The empirical $L_2(\mathbb{P}_n)$ distance between two hypotheses W, W' is (a $1/\sqrt{n}$ scaling is used
 225 to keep consistency with Section 2)

$$227 \quad \varrho_n(W, W') := \sqrt{\|F_L(W, X) - F_L(W', X)\|_{\mathbf{F}}^2/n}.$$

228 The function-level empirical metric and generalization statements in Section 2 for the loss $x \mapsto$
 229 $\ell(f_L(W, x), y)$ at data-label pairs $z = (x, y)$ specialize, on the dataset X , to the metric ϱ_n defined
 230 above. We assume the loss $\ell(\cdot, y)$ is β -Lipschitz in its first argument with respect to $f_L(W, x)$, which
 231 bridges the metric $\varrho_{n,\ell}$ studied in Section 2 to ϱ_n defined on the weight space.
 232

233 3.2 NON-PERTURBATIVE EXPANSION AND LAYER-WISE CORRELATION

235 Throughout, our finite-scale analysis relies on *non-perturbative* expansions. Borrowing terminology
 236 from theoretical physics, “non-perturbative” here means we avoid Taylor/derivative expansions and
 237 instead use exact, telescoping algebraic identities that hold at finite scale. For example,

$$238 \quad W'_2 W'_1 - W_2 W_1 = W'_2 (W'_1 - W_1) + (W'_2 - W_2) W_1, \quad \Sigma'^{-1} - \Sigma^{-1} = \Sigma'^{-1} (\Sigma - \Sigma') \Sigma^{-1},$$

240 with analogous decompositions used throughout. This viewpoint preserves the full finite-scale ge-
 241 ometry of deep networks, rather than linearizing around an infinitesimal neighborhood.

242 To present our non-perturbative expansion for DNN, we define *local Lipschitz constant* $M_{l \rightarrow L}(W, \varepsilon)$,
 243 which characterizes the sensitivity of the layer L output, F_L , to variations in layer l ’s output, within
 244 a neighborhood around F_l . Formally, we assume that for every $W' \in B_{\varrho_n}(W, \varepsilon)$

$$246 \quad \|F_L(F_l(W', X), \{W'_i\}_{i=l+1}^L) - F_L(F_l(W, X), \{W'_i\}_{i=l+1}^L)\|_{\mathbf{F}} \leq M_{l \rightarrow L}(W, \varepsilon) \|F_l(W', X) - F_l(W, X)\|_{\mathbf{F}}.$$

247 Local Lipschitz constants are typically much smaller than products of spectral norms and can be
 248 computed by formal-verification toolchains (Shi et al., 2022). In our bounds these constants appear
 249 only inside *logarithmic factors*, so they do not affect the leading rates. For completeness, we discuss
 250 them carefully in Appendix F.5.1. We propose a telescoping decomposition to replace conventional
 251 Taylor expansion, where in each summand the only difference lie in W'_l and W_l .

$$252 \quad F_L(W', X) - F_L(W, X) \\ 253 \\ 254 \quad = \sum_{l=1}^L \underbrace{[\sigma_L(W'_L \cdots W'_{l+1}) \underbrace{\sigma_l(W'_l F_{l-1}(W, X))}_{\text{learned feature}} - \sigma_L(W_L \cdots W_{l+1}) \underbrace{\sigma_l(W_l F_{l-1}(W, X))}_{\text{learned feature}}]}_{\substack{\text{controlled by } M_{l \rightarrow L} \\ \text{by 1}}}]. \quad (7)$$

257 Note that this is a *non-perturbative* expansion that holds unconditionally and does not rely on in-
 258 infinitesimal approximation, and crucially keeps the *learned* feature $F_{l-1}(W, X)$ at the *trained* weight
 259 W . From this decomposition and applying basic inequalities, we have the following key lemma.

260 **Lemma 1 (Non-Perturbative Feature Expansion)** *For all $W' \in B_{\varrho_n}(W, \varepsilon)$,*

$$262 \quad \|F(W', X) - F(W, X)\|_{\mathbf{F}}^2 \leq \sum_{l=1}^L L \cdot M_{l \rightarrow L}[W, \varepsilon]^2 \cdot \|(W'_l - W_l) F_{l-1}(W, X)\|_{\mathbf{F}}^2. \quad (8)$$

265 The lemma captures the first structural principle of fully connected DNN: cross-layer correlations
 266 mostly pass through the feature matrices, preserving an approximate pointwise linear structure.
 267

268 Since enlarging the metric only shrinks metric balls and hence *increases* the pointwise dimension
 269 (4) we analyze in Section 2 (formalized as Lemma 19; metric domination lemma), it suffices to
 analyze pointwise dimension under the *pointwise ellipsoidal metric* that appears on the right-hand

270 side of Lemma 1. Concretely, $F_{l-1}(W, X) F_{l-1}(W, X)^\top$, the feature Gram matrix from layer $l-1$,
 271 faithfully encodes the spectral information induced by the network–data geometry at layer l . Working
 272 with the corresponding pointwise ellipsoidal metric yields sharp, *pointwise, spectrum-aware*
 273 bounds with the desired properties for deep networks, and underpins our tractability results (with
 274 the structural principles and technical innovations to developed in the next subsection).
 275

276 3.3 HIERARCHICAL COVERING FROM LOCAL CHART TO GLOBAL ATLAS

277 Lemma 1 suggests that the following *pointwise ellipsoidal metric* dominates $n \cdot \varrho_n$ at every W (here,
 278 NP stands for “non-perturbative”):
 279

$$280 G_{\text{NP}}(W) = \text{blockdiag}(\dots, LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}^\top(W, X) \otimes I_{d_l}, \dots) \\ 281 \varrho_{G_{\text{NP}}(W)}(W, W') = \text{vec}(W' - W)^\top G_{\text{NP}}(W) \text{vec}(W' - W). \quad (9)$$

283 We are therefore interested in bounding the enlarged pointwise dimension under the pointwise ellip-
 284 soidal metric $\varrho_{G_{\text{NP}}(W)}$:
 285

$$286 \log \frac{1}{\pi(B_{\varrho_n}(f(W, \cdot), \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_{G_{\text{NP}}(W)}}(W, \sqrt{n}\varepsilon))}.$$

287 This section offers a deep dive past classical effective dimension, shifting to hierarchical covering
 288 and a global geometric analysis.
 289

290 3.3.1 GOLDEN STANDARD: EFFECTIVE DIMENSION

292 Classical studies of static ellipsoidal metrics suggest that if π is chosen to be uniformly constrained
 293 on the top- r eigenspace of a PSD matrix $G(W)$, and the vectorized weights $W \in \mathbb{R}^p$ are restricted
 294 to the Euclidean ball $B_2(R) := \{w \in \mathbb{R}^p : \|w\|_2 \leq R\}$, then one can achieve a tight effective
 295 dimension as follows: define the *effective rank*
 296

$$296 r_{\text{eff}}(G(W), R, \varepsilon) := \max\{k : \lambda_k(G(W))R^2 \geq n\varepsilon^2/2\}, \quad (10)$$

297 where the eigenvalues $\{\lambda_k(G(W))\}$ are ordered nonincreasingly; and define the spectrum-aware
 298 *effective dimension*
 299

$$300 d_{\text{eff}}(G(W), R, \varepsilon) := \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(G(W), R, \varepsilon)} \log \left(\frac{8R^2 \lambda_k(G(W))}{n\varepsilon^2} \right). \quad (11)$$

302 This definition serves as a gold standard for static ellipsoidal metrics and is asymptotically tight,
 303 as established by the covering number of the unit ball with ellipsoids in Dumer et al. (2004). For
 304 brevity, we write r for $r_{\text{eff}}(G(W), R, \varepsilon)$, and denote by $\mathcal{V} \subseteq \mathbb{R}^p$ the r -dimensional subspace corre-
 305 sponding to the top- r_{eff} eigenspace of $G(W)$.
 306

307 3.3.2 KEY CHALLENGE: PRIOR INDEPENDENCE FROM W .

309 However, the main challenge is that the prior π must be chosen independently of the training data.
 310 This means that the construction of π cannot rely on knowledge of the learned weights W , including
 311 their top- r_{eff} eigenspace, yet still capture the underlying geometric structure. The next lemma ex-
 312 tends classical results on static ellipsoidal metrics by showing that a uniform prior over a reference
 313 subspace $\bar{\mathcal{V}}$ suffices to bound the pointwise dimension for all W whose top- r eigenspace of $G(W)$
 314 can be approximated by $\bar{\mathcal{V}}$.
 315

Lemma 2 (Pointwise Dimension via Reference Subspace) *Consider the weight space $B_2(R) \subset \mathbb{R}^p$ for vectorized weights, and a pointwise ellipsoidal metric defined via PSD $G(W)$. Let $\bar{\mathcal{V}} \subseteq \mathbb{R}^p$ be a fixed r -dimensional subspace. Define the prior $\pi_{\bar{\mathcal{V}}} = \text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}})$. Then, uniformly over all (W, ε) such that the top- r eigenspace \mathcal{V} of $G(W)$ can be approximated by $\bar{\mathcal{V}}$ to precision*

$$319 \varrho_{\text{proj}, G(W)}(\mathcal{V}, \bar{\mathcal{V}}) := \|G(W)^{1/2}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}} \leq \frac{\sqrt{n}\varepsilon}{4R}, \quad (12)$$

321 we have

$$322 \log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(G(W), R, \varepsilon)} \log \left(\frac{40R^2 \lambda_k(G(W))}{n\varepsilon^2} \right) = d_{\text{eff}}(G(W), \sqrt{5}R, \varepsilon).$$

In (12), $\mathcal{P}_{\mathcal{V}}$ denotes the orthogonal projector onto the subspace \mathcal{V} , and $\varrho_{\text{proj}, G(W)}$ thus defines an ellipsoidal projection metric between subspaces. Further details are provided in the appendix.

3.3.3 HIERARCHICAL COVERING (MIXTURE PRIOR OVER SUBSPACES).

We introduce a hierarchical covering framework that pushes learning beyond classical linear and kernel paradigms, providing a principled toolkit for genuinely nonlinear models—one of the central innovations of this work. It operates on two levels: a bottom-level local-chart covering that captures spectrum-aware behavior within a fixed subspace, and a top-level global geometric analysis over the Grassmannian. (i) For each reference subspace $\bar{\mathcal{V}}$, placing a uniform prior on $\bar{\mathcal{V}}$ yields a tight pointwise-dimension bound for all “local” weights W whose top- r eigenspace of $G(W)$ is well approximated by $\bar{\mathcal{V}}$ (see Lemma 2). (ii) At the top level, we place a prior over reference subspaces \mathcal{V} and average the local priors, producing a data-independent prior and the final bound.

By combining these two levels of priors, we obtain a pointwise dimension bound using a prior π that is completely blind to the choice of W . To formalize this, we introduce a top-level distribution μ over the Grassmannian

$$\text{Gr}(p, r) := \{r\text{-dimensional linear subspaces of } \mathbb{R}^p\}$$

the collection of all r -dimensional subspaces, and define $\pi(W) = \sum_{\mathcal{V}} \mu(\mathcal{V}) \pi_{\mathcal{V}}(W)$. We refer to this two-stage construction as the hierarchical covering argument. Under the resulting prior π , the following bound holds uniformly over all (vectorized) $W \in B_2(R)$, the pointwise dimension $\log \frac{1}{\pi(B_{\varrho_{\text{proj}, G(W)}}(W, \sqrt{n}\varepsilon))}$ is bounded by two parts:

$$\underbrace{\log \frac{1}{\mu(B_{\varrho_{\text{proj}, G(W)}}(\mathcal{V}, \sqrt{n}\varepsilon/4R))}}_{\text{covering Grassmannian (global atlas)}} + \underbrace{\sup_{\bar{\mathcal{V}} \in B_{\varrho_{\text{proj}, G(W)}}(\mathcal{V}, \sqrt{n}\varepsilon/4R)} \log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{\text{proj}, G(W)}}(W, \sqrt{n}\varepsilon))}}_{\text{covering local charts}}, \quad (13)$$

In differential–geometric terms, our argument has two components.

- *Local (chart) analysis:* fixing a reference subspace $\bar{\mathcal{V}}$, we use effective dimension as the gold standard to determine the metric entropy of the corresponding local chart.
- *Global (atlas) covering:* we cover the Grassmannian by such reference subspaces, i.e., we bound the metric entropy of the global atlas and account for the cost of transitioning across local charts.

Lemma 2 controls the local part, while the following new result (Lemma 3) on the *ellipsoidal* covering of the Grassmannian controls the global part.¹

Lemma 3 (Ellipsoidal Covering of the Grassmannian manifold) *Consider the Grassmannian $\text{Gr}(d, r)$. For uniform prior $\mu = \text{Unif}(\text{Gr}(d, r))$, we have that for every $\mathcal{V} \in \text{Gr}(d, r)$, every $\varepsilon > 0$ and every PSD matrix Σ with eigenvalues $\lambda_1 \geq \dots \geq \lambda_d$, we have the pointwise dimension bound*

$$\log \frac{1}{\mu(B_{\varrho_{\text{proj}, \Sigma}}(\mathcal{V}, \varepsilon))} \leq \frac{d-r}{2} \sum_{k=1}^r \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2} + \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2},$$

where $C > 0$ is an absolute constant.

The result above is mathematically significant in its own right. It extends the classical metric-entropy (covering number) theory for the Grassmannian—where \log covering number $\asymp r(d-r) \log(C/\varepsilon)$ under the *isotropic* projection metric—to an *ellipsoidal* (anisotropic) metric that captures feature-

¹Since the effective rank r of $\bar{\mathcal{V}}$ can take any value in $\{1, \dots, p\}$, the top-level Grassmannian covering must range over all $\text{Gr}(p, r)$. This adds only a negligible $O(\log p)$ overhead to the global-level cost. Accordingly, we construct a data-independent prior in three prior hierarchy: (“global- r ”) choose the rank r (paying the $\log p$ overhead), (“global- $\bar{\mathcal{V}}$ ”) choose a reference subspace $\bar{\mathcal{V}} \in \text{Gr}(p, r)$, and (“local”) sample within $\bar{\mathcal{V}}$ using the local chart prior; see Figure 3 in the Appendix for an illustration. For conceptual clarity, Lemma 3 focuses on the Grassmannian covering cost at a fixed rank r ; and we defer the layer-specific specialization (to each $d_{l-1} \times d_{l-1}$ feature–matrix block) to the calculation in (15).

378 and model-induced geometry. This generalization translates the traditional differential-geometric
 379 and Lie-algebraic treatments (see Appendix E) and, we believe, illustrates a two-way exchange:
 380 deep mathematical structure is essential to understanding generalization in modern neural networks,
 381 and, conversely, generalization theory can motivate new questions and results in pure mathematics.
 382

383 Leveraging the block-decomposable structure in (9), the l -th block is

$$384 G_l(W) = A_l(W) \otimes I_{d_l}, \text{ where } A_l(W) = LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top \in \mathbb{R}^{d_{l-1} \times d_{l-1}}.$$

385 Since the Kronecker factor is I_{d_l} , the spectrum of G_l consists of the eigenvalues of the feature
 386 Gram matrix $F_{l-1} F_{l-1}^\top$ (scaled by $LM_{l \rightarrow L}^2$), each repeated d_l times. Consequently, the *local-chart*
 387 (within-subspace) covering cost at layer l scales as

$$388 d_l \cdot d_{\text{eff}}\left(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top\right), \quad (14)$$

389 while the *atlas* (subspace-selection) cost is the Grassmannian term over $\text{Gr}(d_{l-1}, r_{\text{eff}}[W, l])$, where
 390 $r_{\text{eff}}[W, l]$ is the effective rank of $A_l(W) \in \mathbb{R}^{d_{l-1} \times d_{l-1}}$. By Lemma 3 (and the footnote preceding
 391 it), the *global-atlas* (choosing-subspace) covering cost at layer l scales as

$$394 d_{l-1} \cdot d_{\text{eff}}\left(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top\right) + \log(d_{l-1}). \quad (15)$$

395 Together, (14) and (15) yield a clean layerwise decomposition: the width d_l multiplies the spectral
 396 complexity of incoming features (local charts), whereas the input dimension d_{l-1} governs the
 397 Grassmannian covering (global atlas). This complementary, seemingly magical “duality” underlies
 398 the calculation below.

400 **Theorem 3 (Riemannian Dimension for DNN)** *Consider the weight space $B_{\mathbf{F}}(R)$, and a pointwise ellipsoidal metric defined via the ellipsoidal metric $G_{\text{NP}}(W)$ defined in (9). Define the pointwise Riemannian Dimension*

$$403 d_{\mathbf{R}}(W, \varepsilon) = \sum_{l=1}^L \left(\underbrace{d_l \cdot d_{\text{eff}}(A_l(W))}_{\text{covering local charts}} + \underbrace{d_{l-1} \cdot d_{\text{eff}}(A_l(W))}_{\text{covering global atlas}} + \underbrace{\log(d_{l-1})}_{\text{covering discrete } r_{\text{eff}}} + \log n \right),$$

404 where $A_l(W)$ is the feature matrix $LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}^\top(W, X)$; and $d_{\text{eff}}(A_l(W))$
 405 is abbreviation of $d_{\text{eff}}(A_l(W), C \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon)$ with $C > 0$ an absolute constant. Then we
 406 have the pointwise dimension bound: there exists a prior π such that uniformly over all $W \in B_{\mathbf{F}}(R)$,

$$410 \log \frac{1}{\pi(B_{\varrho_n}(f(W, \cdot), \varepsilon))} \leq d_{\mathbf{R}}(W, \varepsilon).$$

412 This concludes our program for fully connected networks: we establish *Riemannian Dimension* as
 413 a principled complexity measure that explains—and sharply bounds—generalization. We summarize
 414 the *second structural principle of fully connected DNN*: The complexity of the *global atlas*
 415 (covering the space of reference top eigenspaces) remains commensurate with the layerwise,
 416 spectrum-aware complexity of covering the *local charts*. On closer inspection, the effect hinges on the
 417 block-decomposable structure in (9). This structure is intrinsic to layered neural networks and typi-
 418 cally absent in generic nonlinear models, which helps explain why DNN are particularly amenable
 419 to sharp generalization analysis.

4 GENERALIZATION BOUNDS FOR DNN

423 We are now ready to state our generalization bound for fully connected DNN here. Combining
 424 Theorem 3 and Theorem 1, we establish the following theorem.

426 **Theorem 4 (Generalization Bound for DNN)** *Let the loss $\ell(f(W, x), y)$ be bounded in $[0, 1]$ and
 427 β -Lipschitz with respect to $f(W, x)$, for every $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly
 428 over all $W \in B_{\mathbf{F}}(R)$,*

$$429 430 431 (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \leq C_1 \left(\inf_{\alpha > 0} \left\{ \alpha + \frac{\beta}{\sqrt{n}} \int_{\alpha}^1 \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right),$$

432 where the Riemannian Dimension is defined by

$$\begin{aligned}
 434 \quad d_R(W, \varepsilon) = & \sum_{l=1}^L \left((d_l + d_{l-1}) \sum_{k=1}^{r_{\text{eff}}[W, l]} \underbrace{\log \frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top)}{n \varepsilon^2}}_{\text{spectrum of inner layers } 1:l-1} \right. \\
 435 \quad & \left. + (d_l + d_{l-1}) r_{\text{eff}}[W, l] \cdot \underbrace{\log \left(M_{l \rightarrow L}^2(W, \varepsilon) L \max\{||W||_{\mathbf{F}}, R^2/4^n\} \right) + \log(d_{l-1} n)}_{\text{spectrum of outer layers } l+1:L} \right), \quad (16)
 \end{aligned}$$

436 where F_{l-1} is learned feature $F_{l-1}(W, X)$; and the effective rank $r_{\text{eff}}[W, l]$ is the abbreviation
 437 of $r_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) F_{l-1} F_{l-1}^\top, C_2 \max\{||W||_{\mathbf{F}}, R/2^n\}, \varepsilon)$, where $C_1, C_2 > 0$ are absolute
 438 constants.

439 **Interpreting (16) to the informal rate (2).** Although $r_{\text{eff}}[W, l]$ incorporates local Lipschitz factors—specifically, the effective rank is computed for $LM_{l \rightarrow L}^2(W, \varepsilon) F_{l-1} F_{l-1}^\top$ rather than $F_{l-1} F_{l-1}^\top$ alone—when $F_{l-1} F_{l-1}^\top$ exhibits rapidly decaying eigenvalues this dependence is strongly suppressed; it disappears entirely under strict low rank (as also observed in our experiments). Consequently, under mild low-rank or spectral-decay conditions, the bound aligns with the informal rate (2). In (16), the first and second parts correspond to the inner and outer layers, respectively. For each layer. For each layer l , the first (“log-eigenvalues”) term in (16) quantifies the contribution of the inner layers $1:l-1$ via the feature Gram $F_{l-1} F_{l-1}^\top$, while the second (“log-Lipschitz”) term captures the influence of the outer layers $l+1:L$ through $M_{l \rightarrow L}$ —making explicit how the outer layers enter the bound and restoring inner/outer symmetry. Together, these terms provide a complete layerwise account of the effective dimension in the informal rate (2).

440 **Tightness of each step and resulting bounds.** We conclude by reviewing our comprehensive theory
 441 for generalization in fully connected networks and justifying the tightness of the resulting bounds.
 442 **First**, in Section 2 we develop a framework based on *pointwise dimension*. The upper and lower
 443 bounds match in a qualified (non-uniform) sense (see remarks after Theorem 1), and the frame-
 444 work has a profound connection to finite-scale geometry—evidence that this is the right organizing
 445 principle. **Second**, Section 3 introduces a *non-perturbative* expansion. Lemma 1 applies Cauchy–
 446 Schwarz layerwise (treating each layer as a block). While there may be room to improve depth
 447 dependence, the telescoping decomposition (7) is an exact *equality*, so the expansion is generally
 448 sharp (and fully avoid linearization). **Third**, the hierarchical covering argument shows that the re-
 449 sulting *Riemannian Dimension* bound matches the gold standard of *effective dimension*. Thus our
 450 pointwise, spectrum-aware bounds achieve the optimal form dictated by static ellipsoid theory.

451 **Comparison with Norm Bounds, VC, and NTK.** Our framework yields *exponentially* tighter rates
 452 than norm–product bounds, refines VC–type statements into hypothesis– and data–dependent guar-
 453 antees, and replaces infinitesimal linearization with a finite-scale, non-perturbative analysis that
 454 holds simultaneously for every trained hypothesis. For space, we defer further explanations to Ap-
 455 pendix F.1 and the recovery of representative norm bounds and comparisons to Appendix F.5.1.

472 5 EXPERIMENTS

473 We evaluate the proposed Riemannian Dimension (RD) on two standard settings: (i) width sweeps
 474 for fully connected networks (FCNs) on MNIST (LeCun et al., 1998); and (ii) depth sweeps for
 475 ResNets on CIFAR-10 (Krizhevsky, 2009). FCNs use a 9-hidden-layer architecture with shared
 476 hidden width $h \in \{2^6, 2^7, \dots, 2^{12}\}$; ResNets follow the canonical three-stage, basic-block designs
 477 (ResNet-20/32/44/56/74/110) (He et al., 2016). We organize results around three questions: (Q1)
 478 why overparameterization can *improve* generalization; (Q2) how feature learning compresses in-
 479 trinsic dimension over training; and (Q3) whether baseline optimizers exhibit low-RD implicit bias.
 480 Full setup and additional plots are deferred to the appendix.

481 **RD Explains the Blessing of Overparameterization.** We compare RD against classical capacity
 482 surrogates (spectral-norm bounds (Bartlett et al., 2017) and VC-dimension proxies (Bartlett et al.,
 483 2019)). Final-epoch metrics of FCNs on MNIST and ResNets on CIFAR-10 are reported in Table 1
 484 and Table 2, respectively. In these Tables, the train error quickly collapses to zero for sufficiently
 485 large models, confirming their expressive capacity. Consistently, the generalization can continue to

486
 487 Table 1: Final-epoch FCN results on MNIST. “Gen” is test minus train error. Spectral-norm column
 488 reports the spectrally normalized margin bound of Bartlett et al. (2017). VC uses the near-tight
 489 proxy of Bartlett et al. (2019) (reported as $P L \log P$). RD is our Riemannian Dimension.

Model	Train	Gen	Spectral Norm	#Params	VC dim	RD
Width-2 ⁶	0.0002	0.0205	3.146×10^{15}	5.961×10^6	9.299×10^8	6.433×10^7
Width-2 ⁷	0.0002	0.0187	2.695×10^{15}	6.167×10^6	9.641×10^8	6.097×10^7
Width-2 ⁸	0.0000	0.0191	2.093×10^{15}	6.726×10^6	1.057×10^9	5.589×10^7
Width-2 ⁹	0.0000	0.0186	2.401×10^{15}	8.434×10^6	1.345×10^9	5.316×10^7
Width-2 ¹⁰	0.0000	0.0215	4.816×10^{15}	1.421×10^7	2.340×10^9	5.266×10^7
Width-2 ¹¹	0.0000	0.0160	1.001×10^{16}	3.520×10^7	6.116×10^9	4.972×10^7
Width-2 ¹²	0.0000	0.0210	1.466×10^{16}	1.149×10^8	2.133×10^{10}	4.803×10^7

500 Table 2: Final-Epoch Metrics of ResNets on CIFAR-10

Model	Train Error	Gen Gap	# Parameters	VC dimension	R-D
ResNet-20	0.0016	0.0752	2.690×10^5	6.727×10^7	8.801×10^6
ResNet-32	0.0003	0.0695	4.630×10^5	1.933×10^8	9.992×10^6
ResNet-44	0.0001	0.0627	6.570×10^5	3.872×10^8	6.339×10^6
ResNet-56	0.0000	0.0637	8.510×10^5	6.507×10^8	5.200×10^6
ResNet-74	0.0000	0.0615	1.142×10^6	1.179×10^9	3.237×10^6
ResNet-110	0.0000	0.0576	1.724×10^6	2.723×10^9	2.583×10^6

510
 511 be improved as parameters increase, especially on ResNets (Table 2). This phenomenon means the
 512 overfitting does not appear and reflects a paradoxical truth of deep learning: over-parameterization
 513 is not a curse, but can benefit the generalization. However, classical complexity measures—e.g.,
 514 the spectral norm and the VC dimension, often scale exponentially as the parameter count grows.
 515 Notably, the spectral norm is about 10^6 times larger than the VC dimension and seems to be a worse
 516 complexity measure (see Table 1). The two measures therefore struggle to explain the general-
 517 ization of modern overparameterized networks. In contrast, our Riemannian Dimension exhibits a
 518 consistent downward trend as model size grows—both under width scaling (last column of Table 1)
 519 and depth scaling (last column of Table 2), and it is about 10^3 times smaller than the VC dimen-
 520 sion, suggesting that the effective dimension—not raw parameter count—is the true indicator of
 521 generalization in deep learning. In summary, increased parameterization is associated with reduced
 522 effective model complexity, and Riemannian Dimension faithfully characterizes this phenomenon.

523 **Feature Learning Compresses Effective Rank.** We track the effective ranks of layerwise feature
 524 Gram matrices $F_{l-1} F_{l-1}^\top$ (scaled by $L \|W\|_F^2 \prod_{i>l} \|W_i\|_{\text{op}}^2$ per our theory). Across both FCN-width
 525 and ResNet-depth sweeps, effective ranks drop sharply after a brief transient and compress more
 526 with larger width/depth. On the largest FCN, the total effective rank shrinks by up to $\sim 300\times$; for the
 527 deepest ResNets, most layers compress near zero. This progressive, spectrum-aware compression
 528 explains why RD falls with capacity while test error improves. (Appendix: layerwise trajectories
 529 and ablations; we use the conservative spectral-product proxy for local Lipschitz terms.)

530 **SGD Finds Low-RD Solutions.** Finally, we examine optimizer bias. With standard
 531 SGD+momentum, RD consistently *decreases* by orders of magnitude during training (after an early
 532 transient), while VC-style proxies remain essentially unchanged. Thus, beyond driving the loss
 533 to zero, the optimizer preferentially selects low-RD interpolating solutions, aligning optimization
 534 dynamics with our complexity measure. (Appendix: training-time RD curves and robustness to
 535 optimizer hyperparameters.)

536 6 CONCLUSION

537
 538 We establish a principled foundation for generalization in deep neural networks. Key innovations in-
 539 clude a pointwise generalization framework, a non-perturbative calculus, and a hierarchical covering
 theory. Empirical validations confirm our predictions in deep learning practice.

540 REFERENCES
541

542 Pierre Alquier. User-friendly introduction to pac-bayes bounds. *Foundations and Trends® in Ma-*
543 *chine Learning*, 17(2):174–303, 2024.

544 Rayna Andreeva, Benjamin Dupuis, Rik Sarkar, Tolga Birdal, and Umut Simsekli. Topological
545 generalization bounds for discrete-time stochastic optimization algorithms. *Advances in Neural*
546 *Information Processing Systems*, 37:4765–4818, 2024.

547

548 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
549 data representations in deep neural networks. *Advances in Neural Information Processing Sys-*
550 *tems*, 32, 2019.

551 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
552 deep nets via a compression approach. In *International conference on machine learning*, pp.
553 254–263. PMLR, 2018.

554

555 Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
556 exact computation with an infinitely wide neural net. *Advances in neural information processing*
557 *systems*, 32, 2019.

558

559 Amir Asadi, Emmanuel Abbe, and Sergio Verdú. Chaining mutual information and tightening gen-
560 eralization bounds. In *Advances in Neural Information Processing Systems 31*, pp. 7245–7254,
561 2018.

562 Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
563 The silent alignment effect. In *International Conference on Learning Representations*, 2021.

564

565 Jean-Yves Audibert and Olivier Bousquet. Combining pac-bayesian and generic chaining bounds.
566 *Journal of Machine Learning Research*, 8(4), 2007.

567

568 Jean-Yves Audibert and Olivier Bousquet. Pac-bayesian generic chaining. *Advances in neural*
569 *information processing systems*, 16, 2003.

570 Steve Awodey. *Category theory*, volume 52. OUP Oxford, 2010.

571

572 Laura Balzano, Tianjiao Ding, Benjamin D Haeffele, Soo Min Kwon, Qing Qu, Peng Wang,
573 Zhangyang Wang, and Can Yaras. An overview of low-rank structures in the training and adapta-
574 tion of large models. *arXiv preprint arXiv:2503.19859*, 2025.

575

576 Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vin-
577 cent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In *Inter-
578 national Conference on Artificial Intelligence and Statistics*, pp. 2269–2277. PMLR, 2021.

579

580 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
581 structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

582

583 Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. *Annals*
584 *of Statistics*, 33(4):1497–1537, 2005.

585

586 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
587 neural networks. *Advances in neural information processing systems*, 30, 2017.

588

589 Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
590 and pseudodimension bounds for piecewise linear neural networks. *Journal of Machine Learning*
591 *Research*, 20(63):1–17, 2019.

592

593 Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
594 regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.

595

596 Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
597 *Acta numerica*, 30:87–201, 2021.

594 Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to under-
 595 stand kernel learning. In *International Conference on Machine Learning*, pp. 541–549. PMLR,
 596 2018.

597 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
 598 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy
 599 of Sciences*, 116(32):15849–15854, 2019.

600 Thomas Bendokat, Ralf Zimmermann, and P-A Absil. A grassmann manifold handbook: Basic
 601 geometry and computational aspects. *Advances in Computational Mathematics*, 50(1):6, 2024.

602 Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
 603 homology and generalization in neural networks. *Advances in neural information processing
 604 systems*, 34:6776–6789, 2021.

605 Adam Block, Yuval Dagan, and Alexander Rakhlin. Majorizing measures, sequential complexities,
 606 and online learning. In *Conference on Learning Theory*, pp. 587–590. PMLR, 2021.

607 Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. Isotropy in the contextual embedding
 608 space: Clusters and manifolds. In *International conference on learning representations*, 2021.

609 Alexander Camuto, George Deligiannidis, Murat A Erdogdu, Mert Gurbuzbalaban, Umut Simsekli,
 610 and Lingjiong Zhu. Fractal structure and generalization properties of stochastic optimization
 611 algorithms. *Advances in neural information processing systems*, 34:18774–18788, 2021.

612 Olivier Catoni. A pac-bayesian approach to adaptive classification. *preprint*, 840(2):6, 2003.

613 Fan Chen, Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, and Yunbei Xu. Assouad,
 614 fano, and le cam with interaction: A unifying lower bound framework and characterization for
 615 bandit learnability. *Advances in Neural Information Processing Systems*, 37:75585–75641, 2024.

616 Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
 617 parameterized models using optimal transport. *Advances in neural information processing sys-
 618 tems*, 31, 2018.

619 Karel Devriendt, Hannah Friedman, Bernhard Reinke, and Bernd Sturmfels. The two lives of the
 620 grassmannian. *arXiv preprint arXiv:2401.03684*, 2024.

621 Ilya Dumer, Mark S Pinsker, and Vyacheslav V Prelov. On coverings of ellipsoids in euclidean
 622 spaces. *IEEE transactions on information theory*, 50(10):2348–2356, 2004.

623 Benjamin Dupuis, George Deligiannidis, and Umut Simsekli. Generalization bounds using data-
 624 dependent fractal dimensions. In *International Conference on Machine Learning*, pp. 8922–8968.
 625 PMLR, 2023.

626 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
 627 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint
 628 arXiv:1703.11008*, 2017.

629 Mathieu Even and Laurent Massoulié. Concentration of non-isotropic random tensors with ap-
 630 plications to learning and empirical risk minimization. In *Conference on Learning Theory*, pp.
 631 1847–1886. PMLR, 2021.

632 Kenneth J Falconer. *Techniques in fractal geometry*, volume 3. Wiley Chichester, 1997.

633 Alexander R Farhang, Jeremy D Bernstein, Kushal Tirumala, Yang Liu, and Yisong Yue. Investi-
 634 gating generalization by controlling normalized margin. In *International Conference on Machine
 635 Learning*, pp. 6324–6336. PMLR, 2022.

636 Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha. Rank
 637 diminishing in deep neural networks. *Advances in Neural Information Processing Systems*, 35:
 638 33054–33065, 2022.

639 X Fernique. Regularite des trajectoires des fonctions aleatoires gaussiennes. *Ecole d'Eté de Proba-
 640 bilités de Saint-Flour IV—1974*, pp. 1–96, 1975.

648 Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
 649 and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
 650 geometry and the time evolution of the neural tangent kernel. *Advances in Neural Information
 651 Processing Systems*, 33:5850–5861, 2020.

652 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 653 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–
 654 2241. PMLR, 2019.

655 Evarist Giné and Joel Zinn. Some limit theorems for empirical processes. *The Annals of Probability*,
 656 pp. 929–989, 1984.

657 Eugene Golikov, Eduard Pokonechnyy, and Vladimir Korviakov. Neural tangent kernel: A survey.
 658 *arXiv preprint arXiv:2208.13614*, 2022.

659 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
 660 neural networks. *Information and Inference: A Journal of the IMA*, 9(2):473–504, 2020.

661 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

662 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*. MIT press
 663 Cambridge, 2016.

664 Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
 665 terms of optimization geometry. In *Proceedings of the 35th International Conference on Machine
 666 Learning*, volume 80, pp. 1832–1841. PMLR, 2018.

667 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 668 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 669 770–778, 2016.

670 Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
 671 description length of the weights. In *Proceedings of the sixth annual conference on Computational
 672 learning theory*, pp. 5–13, 1993.

673 Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
 674 The low-rank simplicity bias in deep networks. *Transactions on Machine Learning Research*,
 675 2021.

676 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 677 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

678 Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming
 679 Xiong, Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic fisher explosion:
 680 Early phase fisher matrix impacts generalization. In *International Conference on Machine Learn-
 681 ing*, pp. 4772–4784. PMLR, 2021.

682 Jürgen Jost. *Riemannian geometry and geometric analysis*, volume 42005. Springer, 2008.

683 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
 684 deep neural networks: Mean field approach. In *The 22nd International Conference on Artificial
 685 Intelligence and Statistics*, pp. 1032–1041. PMLR, 2019.

686 Boaz Klartag and Shahar Mendelson. Empirical processes and random projections. *Journal of
 687 Functional Analysis*, 225(1):229–245, 2005.

688 Dmitry Kopitkov and Vadim Indelman. Neural spectrum alignment: Empirical study. In *Inter-
 689 national Conference on Artificial Neural Networks*, pp. 168–179. Springer, 2020.

690 Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. *Trans-
 691 actions on Machine Learning Research*, 2022.

692 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
 693 of Toronto, 2009.

702 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 703 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 704

705 Antoine Ledent, Rodrigo Alves, and Yunwen Lei. Generalization bounds for rank-sparse neural
 706 networks. *arXiv preprint arXiv:2510.21945*, 2025.
 707

708 Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha
 709 Sohl-Dickstein. Deep neural networks as gaussian processes. In *International Conference on
 710 Learning Representations*, 2018.
 711

712 Yunwen Lei, Rong Jin, and Yiming Ying. Stability and generalization analysis of gradient methods
 713 for shallow neural networks. *Advances in neural information processing systems*, 35:38557–
 714 38570, 2022.
 715

716 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 717 of objective landscapes. In *International Conference on Learning Representations*, 2018.
 718

719 Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can gener-
 720 alize. *The Annals of Statistics*, 48(3):1329–1347, 2020.
 721

722 Jingbo Liu. Simple and sharp generalization bounds via lifting. *arXiv preprint arXiv:2508.18682*,
 723 2025.
 724

725 Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew G
 726 Wilson. Pac-bayes compression bounds so tight that they can explain generalization. *Advances
 727 in Neural Information Processing Systems*, 35:31459–31473, 2022.
 728

729 Sanae Lotfi, Marc Finzi, Yilun Kuang, Tim GJ Rudner, Micah Goldblum, and Andrew Gordon Wil-
 730 son. Non-vacuous generalization bounds for large language models. In *International Conference
 731 on Machine Learning*, pp. 32801–32818. PMLR, 2024.
 732

733 Neil Lutz. A note on pointwise dimensions. *arXiv preprint arXiv:1612.05849*, 2016.
 734

735 David A McAllester. Some pac-bayesian theorems. In *Proceedings of the eleventh annual confer-
 736 ence on Computational learning theory*, pp. 230–234, 1998.
 737

738 Colin McDiarmid. Concentration. In *Probabilistic methods for algorithmic discrete mathematics*,
 739 pp. 195–248. Springer, 1998.
 740

741 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
 742 layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33):E7665–E7671,
 743 2018.
 744

745 Shahar Mendelson. Empirical processes with a bounded ψ_1 diameter. *Geometric and Functional
 746 Analysis*, 20(4):988–1027, 2010.
 747

748 Shahar Mendelson. Learning without concentration. *Journal of the ACM*, 62(3):1–25, 2015.
 749

750 Shahar Mendelson. Extending the scope of the small-ball method. *Studia Mathematica*, 256(2):
 751 147–167, 2021.
 752

753 Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Reconstruction and subgaussian
 754 operators in asymptotic geometric analysis. *Geometric and Functional Analysis*, 17(4):1248–
 755 1282, 2007.
 756

757 Vitali D Milman and Gideon Schechtman. *Asymptotic theory of finite dimensional normed spaces:
 758 Isoperimetric inequalities in riemannian manifolds*, volume 1200. Springer Science & Business
 759 Media, 1986.
 760

761 Theodor Misiakiewicz and Andrea Montanari. Six lectures on linearized neural networks. *arXiv
 762 preprint arXiv:2308.13431*, 2023.
 763

764 Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain general-
 765 ization in deep learning. *arXiv preprint arXiv:1902.04742*, 2019.
 766

756 Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic gradient de-
 757 scent. In *Proceedings of the Conference on Learning Theory*, volume 75, pp. 3222–3242. PMLR,
 758 2018.

759 Behnam Neyshabur, Russ R Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized op-
 760 timization in deep neural networks. *Advances in neural information processing systems*, 28,
 761 2015a.

763 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
 764 networks. In *Conference on learning theory*, pp. 1376–1401. PMLR, 2015b.

766 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
 767 spectrally-normalized margin bounds for neural networks. In *International Conference on Learn-
 768 ing Representations*, 2018.

769 nLab contributors. Non-perturbative quantum field theory. <https://ncatlab.org/nlab/show/non-perturbative+quantum+field+theory>, 2025a. nLab (The n -Category
 770 Café).

772 nLab contributors. Strongly correlated system. <https://ncatlab.org/nlab/show/strongly+correlated+system>, 2025b. nLab (The n -Category Café).

775 Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
 776 Sensitivity and generalization in neural networks: an empirical study. In *International Conference
 777 on Learning Representations*, 2018.

779 Christopher C Paige and Musheng Wei. History and generality of the cs decomposition. *Linear
 780 Algebra and its Applications*, 208:303–326, 1994.

781 Alain Pajor. Metric entropy of the grassmann manifold. *Convex Geometric Analysis*, 34(181-188):
 782 0942–46013, 1998.

784 Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 785 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 786 24652–24663, 2020.

787 Liam Parker, Emre Onal, Anton Stengel, and Jake Intrater. Neural collapse in the intermediate
 788 hidden layers of classification neural networks. *arXiv preprint arXiv:2308.02760*, 2023.

790 Niket Patel and Ravid Shwartz-Ziv. Learning to compress: Local rank and information compression
 791 in deep neural networks. *arXiv preprint arXiv:2410.07687*, 2024.

792 Andrea Pinto, Akshay Rangamani, and Tomaso A. Poggio. On generalization bounds for neural net-
 793 works with low rank layers. In *Proceedings of The 36th International Conference on Algorithmic
 794 Learning Theory*, volume 272, pp. 921–936. PMLR, 2025.

796 Gilles Pisier. *The volume of convex bodies and Banach space geometry*, volume 94. Cambridge
 797 University Press, 1999.

802 Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mecha-
 803 nism for feature learning in neural networks and backpropagation-free machine learning models.
 804 *Science*, 383(6690):1461–1467, 2024.

805 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 806 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference
 807 on machine learning*, pp. 5301–5310. PMLR, 2019.

808 Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
 809 norms. *Advances in neural information processing systems*, 33:21174–21187, 2020.

812 Anton Razzhigaev, Matvey Mikhalkhuk, Elizaveta Goncharova, Ivan Oseledets, Denis Dimitrov, and
 813 Andrey Kuznetsov. The shape of learning: Anisotropy and intrinsic dimensions in transformer-
 814 based models. In *Findings of the Association for Computational Linguistics*, pp. 868–874, 2024.

810 Dominic Richards and Ilja Kuzborskij. Stability & generalisation of gradient descent for shallow
 811 neural networks without the neural tangent kernel. *Advances in neural information processing*
 812 *systems*, 34:8609–8621, 2021.

813

814 Alessandro Rinaldo and Enxu Yan. Lecture 14: Uniform Bound via Rademacher Complexity,
 815 Scribed notes for CMU 36-755: Advanced Statistical Theory I. https://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/AST_Oct19_Scribe.pdf, 2016.

816

817

818 Daniel Russo and James Zou. Controlling bias in adaptive data analysis using information the-
 819 ory. In *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics*,
 820 volume 51, pp. 1232–1240. PMLR, 2016.

821

822 Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently computing
 823 local lipschitz constants of neural networks via bound propagation. *Advances in Neural Infor-
 824 mation Processing Systems*, 35:2350–2364, 2022.

825

826 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
 827 tion. *arXiv preprint arXiv:1703.00810*, 2017.

828

829 Leon Simon. Introduction to geometric measure theory. <https://math.stanford.edu/~lms/ntu-gmt-text.pdf>, 2018. NTU Lecture Notes, updated 7 Mar 2018.

830

831 Umut Simsekli, Ozan Sener, George Deligiannidis, and Murat A Erdogdu. Hausdorff dimension,
 832 heavy tails, and generalization in neural networks. *Advances in Neural Information Processing*
 833 *Systems*, 33:5138–5151, 2020.

834

835 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 836 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19:1–57,
 2018.

837

838 Nathan Srebro, Noga Alon, and Tommi Jaakkola. Generalization error bounds for collaborative
 839 prediction with low-rank matrices. *Advances In Neural Information Processing Systems*, 17,
 2004.

840

841 Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual
 842 information. In *Conference on Learning Theory*, pp. 3437–3452. PMLR, 2020.

843

844 Stanislaw J Szarek. Metric entropy of homogeneous spaces. *arXiv preprint math/9701213*, 1997.

845

846 Michel Talagrand. Regularity of gaussian processes. *Acta Mathematica*, 159:99–149, 1987.

847

848 Michel Talagrand. *The generic chaining: upper and lower bounds of stochastic processes*. Springer
 Science & Business Media, 2005.

849

850 Michel Talagrand. *Upper and Lower Bounds for Stochastic Processes: Modern Methods and Clas-
 851 sical Problems*, volume 60 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A
 852 Series of Modern Surveys in Mathematics*. Springer, Berlin, Heidelberg, 2014.

853

854 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *ieee
 855 information theory workshop*, pp. 1–5. Ieee, 2015.

856

857 Ramon Van Handel. Probability in high dimension. *Lecture Notes (Princeton University)*, 2(3):2–3,
 2014.

858

859 Gal Vardi. On the implicit bias in deep-learning algorithms. *Communications of the ACM*, 66(6):
 860 86–93, 2023.

861

862 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 863 volume 47. Cambridge university press, 2018.

864

865 Abraham Wald. Statistical decision functions which minimize the maximum risk. *Annals of Math-
 866 ematics*, 46(2):265–280, 1945.

864 Peng Wang, Xiao Li, Can Yaras, Zhihui Zhu, Laura Balzano, Wei Hu, and Qing Qu. Understanding
 865 deep representation learning via layerwise feature compression and discrimination. *arXiv preprint*
 866 *arXiv:2311.02960*, 2025.

867

868 Wikipedia contributors. Change of variables. https://en.wikipedia.org/wiki/Change_of_variables, 2025a.

869

870 Wikipedia contributors. Min–max theorem. https://en.wikipedia.org/wiki/Min–max_theorem, 2025b.

871

872 Wikipedia contributors. Minkowski inequality. https://en.wikipedia.org/wiki/Minkowski_inequality, 2025c.

873

874 Wikipedia contributors. Square root of a matrix. https://en.wikipedia.org/wiki/Square_root_of_a_matrix, 2025d.

875

876 Andrew Gordon Wilson. Deep learning is not so mysterious or different. *arXiv preprint*
 877 *arXiv:2503.02113*, 2025.

878

879 David P Woodruff et al. Sketching as a tool for numerical linear algebra. *Foundations and Trends®*
 880 in *Theoretical Computer Science*, 10(1–2):1–157, 2014.

881

882 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 883 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 884 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

885

886 Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learn-
 887 ing algorithms. In *Advances in Neural Information Processing Systems 30 (NeurIPS 2017)*, pp.
 888 2524–2533, 2017.

889

890 Yunbei Xu and Assaf Zeevi. Towards problem-dependent optimal learning rates. *Advances in Neural*
 891 *Information Processing Systems*, 33:2196–2206, 2020.

892

893 Yunbei Xu and Assaf Zeevi. Towards optimal problem dependent generalization error bounds in
 894 statistical learning theory. *Mathematics of Operations Research*, 50(1):40–67, 2025.

895

896 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 897 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–
 898 115, 2021.

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	CONTENTS	
919		
920		
921	1 Introduction	1
922		
923	2 A Pointwise Framework of Generalization	3
924		
925	3 Deep Neural Networks and Riemannian Dimension	4
926	3.1 Neural Network Setup	4
927	3.2 Non-Perturbative Expansion and Layer-wise Correlation	5
928	3.3 Hierarchical Covering from Local Chart to Global Atlas	6
929	3.3.1 Golden Standard: Effective Dimension	6
930	3.3.2 Key Challenge: Prior Independence from W	6
931	3.3.3 Hierarchical covering (mixture prior over subspaces).	7
932		
933		
934		
935	4 Generalization Bounds for DNN	8
936		
937		
938	5 Experiments	9
939		
940	6 Conclusion	10
941		
942	A Further Explanations of Experimental Results	20
943		
944	A.1 Feature Learning Compresses Effective Rank	20
945	A.2 SGD Finds Low Riemannian Dimension Point	21
946	A.3 Experimental Setup	21
947		
948		
949	B Related Works	22
950		
951	C Further Explanations and Proofs for Pointwise Generalization Framework (Section 2)	24
952		
953	C.1 Necessity of Finite-Scale Pointwise Geometry and Structural Analysis	24
954	C.2 The “Uniform Pointwise Convergence” Principle	25
955	C.2.1 Necessary and Sufficient Conditions for Pointwise Generalization	26
956	C.3 The PAC-Bayes Optimization Problem	27
957	C.3.1 Pointwise Dimension Bound via Metric Ball	28
958	C.3.2 Lower Bound and Optimality of PAC-Bayes Optimization	29
959		
960	C.4 Subset Homogeneity of Pointwise Dimension	30
961	C.5 Pointwise Generalization Bound via Ghost Sample	31
962	C.6 Proof of Theorem 1	37
963	C.7 Proof of Theorem 2	41
964	C.8 Background on Gaussian and Empirical Processes	42
965		
966		
967		
968		
969	D Further Explanations and Proofs for Deep Neural Networks and Riemannian Dimension (Section 3)	45
970		
971	D.1 Illustrative Figures	45

972	D.2 Proof of Lemma 1 (Non-Perturbative Feature Expansion)	46
973	D.3 Metric Domination Lemma	46
974	D.4 Pointwise Dimension Bound with Reference Subspace	47
975	D.5 Proof of Riemannian Dimension Bound for DNN (Theorem 3)	50
976	D.5.1 Decomposition Properties of NN-surrogate Metric Tensor	51
977	D.5.2 Proof of Theorem 3	52
980		
981	E Ellipsoidal Covering of the Grassmannian (Lemma 3)	56
983	E.1 Grassmannian Manifold, Stiefel Parameterization, and Orthogonal Groups	58
984	E.2 Principal Angles between Subspaces	59
985	E.3 Local Charts of the Grassmannian	60
986	E.4 Global Atlas of Graph Charts	62
987	E.5 Decomposition and Lipschitz Properties inside Graph Chart	64
988	E.6 Proof of the Main Result	66
989		
990		
991		
992	F Further Explanations and Proofs for Generalization Bounds (Section 4)	71
993	F.1 Comparison with Norm Bounds, VC, and NTK	71
994	F.2 Algorithmic Implications and Excess Risk Bound	72
995	F.3 Proof of Theorem 4 in Section 4	73
996	F.4 Proof for Regularized ERM in Section F.2	74
997	F.5 Improvement over Norm Bounds in Section F.1	75
998	F.5.1 Exponential Improvement to a Norm Bound and Comparison	75
999	F.5.2 Proof of Corollary 1	77
1000		
1001		
1002		
1003		
1004		
1005		
1006		
1007		
1008		
1009		
1010		
1011		
1012		
1013		
1014		
1015		
1016		
1017		
1018		
1019		
1020		
1021		
1022		
1023		
1024		
1025		

1026
 1027 Table 3: Final-epoch Effective Ranks for FCNs on MNIST, where Width- 2^* means $h = 2^*$, and
 1028 where for the form A/B, A represents the effective rank and B represents the original dimension,
 1029 and where Layer-1 means the input layer.

Metric	Width- 2^6	Width- 2^7	Width- 2^8	Width- 2^9	Width- 2^{10}	Width- 2^{11}	Width- 2^{12}
Layer-1	713/763	712/763	710/763	710/763	707/763	707/763	704/763
Layer-2	2048/2048	2044/2048	2042/2048	2048/2048	2047/2048	2048/2048	2048/2048
Layer-3	2048/2048	2045/2048	2037/2048	2019/2048	1925/2048	1460/2048	1009/2048
Layer-4	61/64	97/128	92/256	85/512	79/1024	79/2048	59/4096
Layer-5	23/64	43/128	34/256	33/512	28/1024	26/2048	22/4096
Layer-6	20/64	24/128	20/256	21/512	19/1024	18/2048	15/4096
Layer-7	15/64	18/128	17/256	15/512	15/1024	14/2048	13/4096
Layer-8	15/64	14/128	15/256	11/512	13/1024	13/2048	12/4096
Layer-9	14/64	14/128	15/256	13/512	13/1024	12/2048	12/4096
Layer-10	13/64	13/128	12/256	14/512	12/1024	13/2048	14/4096
Total	4970	5024	4994	4969	4858	4390	3908

1042
 1043 Table 4: Final-epoch Effective Ranks for ResNets on CIFAR-10, where for the form A/B, A represents the effective rank and B represents the original dimension, and where Layer-0% means the input layer.

Metric	ResNet-20	ResNet-32	ResNet-44	ResNet-56	ResNet-74	ResNet-110
Layer-0%	384/3072	384/3072	17/3072	0/3072	0/3072	0/3072
Layer-25%	2048/16384	2048/16384	7/16384	1/16384	0/16384	0/16384
Layer-50%	1024/8192	1024/8192	1024/8192	227/8192	0/8192	0/8192
Layer-75%	512/4096	512/4096	512/4096	512/4096	58/4096	0/4096
Layer-100%	8/64	8/64	8/64	8/64	8/64	8/64
Total	23432	37768	27564	16294	11401	6925

A FURTHER EXPLANATIONS OF EXPERIMENTAL RESULTS

A.1 FEATURE LEARNING COMPRESSES EFFECTIVE RANK

1061 We investigate the dynamics of feature learning by monitoring the effective rank of the feature Gram
 1062 matrices $F_{l-1}F_{l-1}^\top$, with the normalization $\cdot L\|W\|_F^2 \prod_{i>l} \|W_i\|_{\text{op}}^2$ dictated by our theory. Here,
 1063 replacing the local Lipschitz constant $M_{l \rightarrow L}(W, \varepsilon)$ by the spectral-norm product $\prod_{i>l} \|W_i\|_{\text{op}}$ is
 1064 conservative: state-of-the-art formal-verification toolchains (Shi et al., 2022) can compute local Lip-
 1065 schitz constants much more sharply—with well-developed packages and rigorous numerical guar-
 1066 antees—than this crude product bound, and could therefore further strengthen all our empirical results
 1067 (an active research area). On the other hand, this relaxation—dropping the ε —dependence when
 1068 making the conservative substitution—can be justified rigorously (see Appendix F.5.2, especially
 1069 Step 4 in the proof of Corollary 1), and we adopt this simplification in our experiments. We report
 1070 our empirical results in Tables 3, 4 and Figure 1.

1071 Experimental results reveal some clear patterns: (1) As training proceeds, the effective ranks of
 1072 feature grams decreases sharply after a short transient; refer to Figure 1. (2) Increased parameter
 1073 counts, both under width scaling (FCNs) and depth scaling (ResNets), foster compressing effective
 1074 ranks of feature grams in both the rate and the degree; refer to Figure 1. (3) On the largest FCN,
 1075 the degree of effective rank compression can reach as much as 1/300, which explains why the Rie-
 1076 mannian Dimension can achieve such a significant improvement over the VC dimension; refer to
 1077 Table 3. While on the largest ResNet, the effective ranks of the vast majority of layers compress
 1078 to zero, which explains why deeper networks can, paradoxically, exhibit a smaller Riemannian Di-
 1079 mension; refer to Table 4. These experimental results indicates that feature learning steadily reduces
 the intrinsic dimensionality of features over training and aim to learn a lower-dimensional feature
 manifold, and the overparameterization intensifies this reduction.

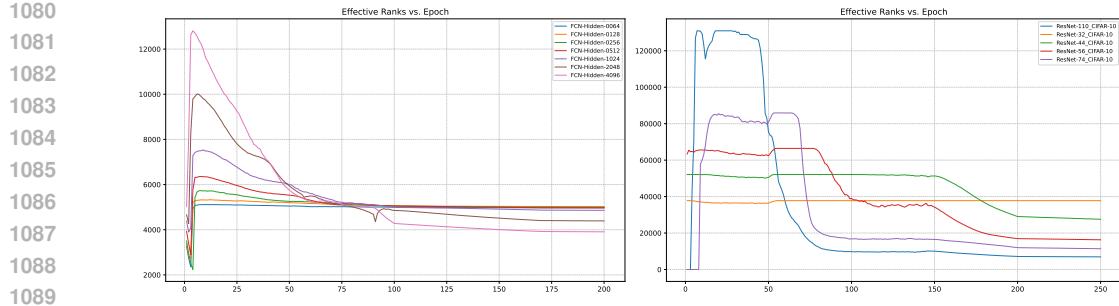


Figure 1: Effective Rank evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10 (right) across the training

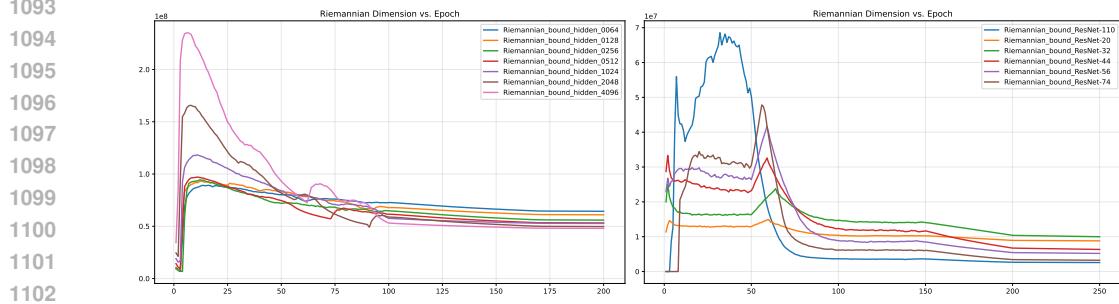


Figure 2: Riemannian Dimension evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10 (right) across the training

A.2 SGD FINDS LOW RIEMANNIAN DIMENSION POINT

Related literature has shown that various norms are implicit bias of optimizers, but typically limited to linear models (Vardi, 2023). This section studies whether SGD with momentum, in modern deep learning, implicit regularized Riemannian Dimension across training dynamics. We examine whether this optimizer preferentially converge to solutions with lower Riemannian Dimension point, and the experimental results are presented in Figure 2.

Empirical results show a repeatable pattern across the architectures: SGD with momentum drives the networks toward solutions with lower intrinsic Riemannian Dimension complexity, after an early transient; refer to Figure 2. Notably, Riemannian Dimension drops by orders of magnitude, whereas VC dimension remains essentially unchanged. The alignment between optimization dynamics and complexity control supports the view that SGD with momentum implicitly regularizes the Riemannian Dimension. Therefore, optimization is not merely as a mechanism for convergence; it is a primary driver of generalization through its systematic preference for low-complexity solutions. Riemannian Dimension provides a practical and theoretically grounded lens through which the implicit bias of optimizes in machine learning can be quantitatively assessed.

A.3 EXPERIMENTAL SETUP

We introduce detailed experimental setups. We evaluate our Riemannian Dimension bound on two standard architectures—Fully Connected Networks (FCNs) and ResNets, using two benchmark datasets—MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009), respectively. The architecture of FCNs: we consider a 9-hidden-layer FCN in which the first two hidden layers have width 2^{11} and the remaining seven hidden layers share a common width h , with $h \in \{2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$. The output layer is a linear classifier mapping to 10 logits, and we use ReLU as the activation and use PyTorch’s default initialization (Kaiming uniform for ReLU). Increasing h monotonically enlarges both layer widths and the total parameter count, yielding a clean capacity sweep at fixed depth. The architecture of ResNets: we adopt the canonical ResNet architectures, ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-74, and ResNet-110, which

1134 differ only in the number of residual blocks per stage while maintaining the same overall architecture
 1135 (three-stage, basic-block design) as introduced by (He et al., 2016). Following the practice of
 1136 (He et al., 2016), we apply BatchNorm and ReLU after each convolution, with shortcut connec-
 1137 tions added as needed, and a global average pooling layer precedes the final linear classifier. These
 1138 ResNet architectures provides a clean capacity sweep via depth.

1139 We adopt standard training pipelines widely used in the benchmarks. (1) The training Protocol
 1140 of FCNs is: SGD with momentum optimizer where momentum = 0.9, learning rate = 0.01, and
 1141 weight decay = 5×10^{-4} ; 200 epochs and 128 batch size; a step decay at epochs {100, 170}, where
 1142 the learning rate is scaled by $\times 0.1$. (2) The training Protocol of ResNets is: SGD with momentum
 1143 optimizer where momentum = 0.9, learning rate = 0.1, and weight decay = 5×10^{-4} ; 250 epochs
 1144 and 128 batch size; a step decay at epochs {50, 150, 200}, where the learning rate is scaled by $\times 0.1$;
 1145 Following practical training conditions, we apply standard data augmentation on CIFAR-10: random
 1146 horizontal flips and 4-pixel random crops with zero-padding.

1147 In the experiments of FCNs and ResNets, to enable layerwise analysis of the evolving fea-
 1148 ture representations and support our computation of Riemannian Dimension, we register for-
 1149 ward hooks on all nonlinearity layers. For layers followed by pooling, we replace the last
 1150 recorded ReLU activation with the corresponding pooled output. We also pre-register the in-
 1151 put hook to capture the feature matrix of the data. These hooks ensures precise extraction of
 1152 nonlinearity activations at each depth throughout training. We set the hyper-parameter ε via a
 1153 one-dimensional ternary-search procedure: at the end of each training stage we perform a 500-
 1154 step ternary search for FCNs and a 50-step ternary search for ResNets over the admissible interval
 1155 $[\sqrt{1/n}, \max_{l=1,\dots,L} \sqrt{\frac{2L\lambda_{\max}(F_{l-1}F_{l-1}^\top) \cdot \|W\|_F^2 \prod_{i>l} \|W_i\|_{\text{op}}^2}{n}}]$. The search selects the value that min-
 1156 imizes our one-shot Riemannian Dimension-based generalization bound (5). We note that tighter
 1157 bounds could be achieved with more refined optimization procedures on ε . For FCNs, we com-
 1158 pute full feature gram matrices. While for ResNets, the feature matrix F is formed by flattening
 1159 each activation map into a vector of dimension $d = C \cdot H \cdot W$, where C, H, W are the channel,
 1160 height, and width of the feature map respectively. To align with our theory, we simplify ResNets
 1161 to fully connected (feed-forward) networks when computing our bound; we apply the same simpli-
 1162 fication to the associated VC-dimension and parameter-count calculations to maintain consistency.
 1163 To avoid out-of-memory in computing full feature gram matrices in high-dimensional convolutional
 1164 layers, we use the standard Gaussian sketching approximation, where each feature gram matrix
 1165 uses a Gaussian sketch with parameter $r = \min(8192, \lfloor d/8 \rfloor)$ (Woodruff et al., 2014). By stan-
 1166 dard subspace-embedding guarantees, such Gaussian sketches preserve Gram quadratic forms—and
 1167 hence the spectra—of the feature matrices with high probability, introducing only negligible distor-
 1168 tion and leaving our conclusions unchanged (Woodruff et al., 2014).

1169 B RELATED WORKS

1170 Given the breadth of work on generalization and its empirical proxies, the mathematical grounding
 1171 of our approach, and its conceptual relevance to vision and language practice, we streamline the
 1172 exposition by concentrating on the most relevant prior results.

1173 **Theoretical Generalization Bounds for DNN.** A significant lineage of research anchors general-
 1174 ization bounds to various norms of network weights (e.g., path (Neyshabur et al., 2015a), spectral
 1175 (Neyshabur et al., 2018; Bartlett et al., 2017; Arora et al., 2018), Frobenius (Neyshabur et al., 2015b;
 1176 Golowich et al., 2020)). While offering conceptual insights, these bounds, often derived from glob-
 1177 ally uniform complexity measures like covering numbers or Rademacher complexity, frequently
 1178 suffer from exponential dependencies on depth or layer norms, rendering them vacuous for practi-
 1179 cal, deep architectures. Compelling empirical evidence (Farhang et al., 2022; Razin & Cohen, 2020)
 1180 further suggests that norm-based bounds alone are insufficient to fully elucidate the generalization
 1181 phenomenon in deep learning. The kernel perspective (Belkin et al., 2018), epitomized by NTK
 1182 theory (Jacot et al., 2018; Arora et al., 2019; Golikov et al., 2022), yields sharp guarantees by lin-
 1183 earizing a network around its initialization—effectively casting training as kernel ridge regression
 1184 with a fixed kernel. Within this linear/lazy regime, precise calculations explain both double de-
 1185 scent (Belkin et al., 2019) and benign overfitting (Bartlett et al., 2020), and an eigenspace-projection
 1186 viewpoint provides dimension-reduction and feature-compression insights (Bartlett et al., 2017). In-

vestigations beyond the lazy regime exist, but most analyses either study the two-layer infinite-width (mean-field) limit (e.g., (Mei et al., 2018; Chizat & Bach, 2018)) or remain in a neighborhood of initialization (Woodworth et al., 2020). While insightful, these settings are idealized and struggle to capture the behavior of finite, deep networks (see Chapter 6 of (Misiakiewicz & Montanari, 2023)). More broadly, linear, lazy, or infinite-width approximations fail to reflect the feature learning that arises when parameters move far from initialization and representations evolve. This omission is widely viewed as a central bottleneck in current theory; indeed, the rich, representation-learning regime is often argued to be the key phenomenon distinguishing modern deep learning from long-standing frameworks (see, e.g., Wilson (2025)). Building on these directions, we establish—to our knowledge—the first pointwise generalization bounds for nonlinear DNN that are comparable in sharpness to prior linearization results and, crucially, remain valid in the practical feature-learning regime.

Other Theoretical Perspectives of Generalization. A growing line of work connects generalization to geometric notions of fractal dimension (Birdal et al., 2021; Dupuis et al., 2023; Simsekli et al., 2020; Andreeva et al., 2024; Camuto et al., 2021), typically through Hausdorff- or Minkowski-type dimensions of optimization trajectories or invariant measures. However, these fractal dimensions are globally uniform, infinitesimal-scale ($\varepsilon \rightarrow 0$) notions of complexity. In contrast, our theory is built on a pointwise, finite-scale notion of geometric dimension. Section C.1 is precisely devoted to this distinction: we move from globally uniform to pointwise dimension and show that generalization is governed by the finite-scale pointwise dimension rather than its asymptotic limit. Several PAC–Bayesian approaches operate directly in parameter space W , endowing the weights with an explicit stochastic model and directly computing the KL divergence between a hand–designed prior and a posterior over W (Hinton & Van Camp, 1993; Dziugaite & Roy, 2017; Lotfi et al., 2022; 2024); e.g., Gaussian distribution in Dziugaite & Roy (2017). These parameter-space bounds are valuable for certifying that certain trained weight configurations admit non-vacuous PAC-Bayes guarantees, but they largely treat the network as a black box and do not directly capture how architecture and feature geometry control generalization. Alternative theoretical frameworks include algorithmic stability analyses, which are used primarily for one-hidden-layer networks and connected to the NTK/lazy-training viewpoint (Richards & Kuzborskij, 2021; Lei et al., 2022); and VC-dimension methods (Bartlett et al., 2019), which has been discussed in Section F.1.

Pointwise and Non-Perturbative Foundations. Our use of “pointwise” draws inspiration from several threads that emphasize hypothesis-specific complexity: the asymptotic pointwise dimension in fractal geometry (Falconer, 1997), PAC-Bayes analyses that tailor complexity to the chosen random posterior (McAllester, 1998; Alquier, 2024), and the Fernique–Talagrand integral in the majorizing-measure formulation of generic chaining (Fernique, 1975; Talagrand, 1987; Block et al., 2021). The synthesis of PAC-Bayes bounds with generic chaining dates back to Audibert & Bousquet (2003); Audibert & Bousquet (2007), and mutual information based bounds have also been combined with chaining (Russo & Zou, 2016; Xu & Raginsky, 2017; Asadi et al., 2018; Liu, 2025). To the best of our knowledge, this paper is the first work to establish a sharp pointwise bound for deterministic hypotheses in an uncountable class via localization to metric balls, explicitly connecting the result to pointwise dimension. A generic conversion from classical (subset-homogeneous) uniform convergence to pointwise generalization bounds, established in Xu & Zeevi (2020; 2025), serves as a guiding principle and plays a central role in our proof of Theorem 1. The adjective “non-perturbative,” borrowed from physics (nLab contributors, 2025a) and central to the study of strongly correlated systems (nLab contributors, 2025b), underscores that our theory remains valid far beyond infinitesimal neighborhoods of initialization—an essential property for deeply nonlinear, feature-learning DNN.

Connections to Differential Geometry and Lie Algebra. From a geometric perspective, Hausdorff dimension provides an asymptotic, covering-based notion of capacity (fundamental in geometric measure theory (Simon, 2018)), while differential and Riemannian geometry (Jost, 2008) develop the use of local charts and global atlases to analyze non-Euclidean manifolds. Our results motivate viewing generalization as a finite-scale problem in geometric analysis. The Grassmannian and families of orthogonal subspaces are traditionally studied via Lie groups; using differential-geometric tools, Szarek (1997); Pajor (1998) established finite-scale isotropic metric-entropy characterizations,

1242 which motivate our hierarchical covering viewpoint from local charts to a global atlas and our ellip-
 1243 sodial entropy framework.
 1244

1245 **Empirical Indicators of Generalization.** Complementing theory, much research has focused on
 1246 empirical indicators that explain the generalization of deep learning. Phenomena like *Neural Col-*
 1247 *lapse* (Papyan et al., 2020; Parker et al., 2023; Kothapalli, 2022) reveals the emergence of low-rank
 1248 geometric structures in last-layer features. Studies on *Intrinsic Dimension* (Li et al., 2018; Huh
 1249 et al., 2021) similarly suggest that deeper models exhibit an inductive bias toward low-rank last-
 1250 layer feature representations. A line of work focuses on *Dynamic NTK variants* (Atanasov et al.,
 1251 2021; Baratin et al., 2021; Fort et al., 2020; Kopitkov & Indelman, 2020) or related feature-gradient
 1252 kernels (Radhakrishnan et al., 2024), where the kernels evolve along optimization trajectories, has
 1253 empirically shown that the dynamic kernel evolution is linked to generalization behaviour. Other
 1254 probes, examining Fisher information (Karakida et al., 2019; Jastrzebski et al., 2021), Hessian spec-
 1255 tral properties (Ghorbani et al., 2019; Rahaman et al., 2019), and output-input Jacobians (Novak
 1256 et al., 2018), offer another lens. Collectively, existing empirical probes offer valuable, though of-
 1257 ten partial, insights—typically from a specific layer perspective, or through a constructed similarity
 1258 analysis—without a unifying formalism and a theory foundation. Our proposed empirical indicator,
 1259 rooted in a mathematically sharp theory, resonates with their goals (our theory is in fact supported
 1260 by many of their experiments) while advancing them. It provides a principled, formal measure for
 1261 characterizing the generalization of neural networks.
 1262

1262 **Feature Compression in Deep Models for Vision and Language.** Across vision and language,
 1263 deep networks exhibit a robust layer-wise compression of representations. In computer vision,
 1264 Ansini et al. (2019) measure intrinsic dimensionality across convolutional layers and find early ex-
 1265 pansion followed by sharp reduction, with lower late-stage dimensionality correlating with stronger
 1266 generalization; Feng et al. (2022) likewise show that feature matrices in CNNs and vision trans-
 1267 formers become progressively low-rank with depth, at fixed width, indicating active compression
 1268 of task-relevant information. Parallel trends appear in NLP: Cai et al. (2021) demonstrate that
 1269 contextual embeddings (e.g., BERT) occupy narrow, anisotropic cones despite high nominal dimen-
 1270 sion, and Razzhigaev et al. (2024) document a two-phase training trajectory—initial expansion,
 1271 then sustained compression. A complementary line grounded in the Information Bottleneck (Tishby
 1272 & Zaslavsky, 2015) interprets these findings as the selective removal of task-irrelevant variability:
 1273 Schwartz-Ziv & Tishby (2017) observe that networks spend most of training compressing internal
 1274 features toward a prediction-compression trade-off, while Patel & Schwartz-Ziv (2024) show gra-
 1275 dient descent reduces the local rank of intermediate activations. Balzano et al. (2025) provide a
 1276 complementary tutorial on low-rank structures arising during the training and adaptation of large
 1277 models, emphasizing how gradient-descent dynamics and implicit regularization generate low-rank
 1278 representations. Taken together, these phenomena motivate our investigation: compression is not
 1279 merely qualitative, but admits precise, hypothesis-specific complexity that governs generalization.
 1280

1280 C FURTHER EXPLANATIONS AND PROOFS FOR POINTWISE 1281 GENERALIZATION FRAMEWORK (SECTION 2)

1282 In section C.1, we bring new understandings on the nature of generalization, providing further ex-
 1283 planations of Section 2. The rest of this section is mainly devoted to a full proof of Theorem 1
 1284 (the integral upper bound). Conceptually, the pointwise-dimension principle already follows from
 1285 elementary PAC-Bayes arguments—see Lemma 6 and the subsequent remark in Appendix C.3.
 1286 We present the full derivation to make explicit structural properties (e.g., unified blueprint, subset
 1287 homogeneity, population-empirical isomorphism) that a rigorous proof requires.
 1288

1289 C.1 NECESSITY OF FINITE-SCALE POINTWISE GEOMETRY AND STRUCTURAL ANALYSIS

1290 The transition from uniform convergence to the “prior-density + localization” (pointwise dimension)
 1291 perspective offers a fundamental tightening over standard covering number approaches. However,
 1292 translating this theoretical advantage into a practical framework for deep learning requires address-
 1293 ing two distinct challenges. First, we will distinguish the *geometric nature* of generalization from
 1294 classical infinitesimal geometry: relevance lies not in the limit $\varepsilon \rightarrow 0$, but motivates a new program
 1295

1296 of finite-scale geometric analysis. Second, we must overcome the *computational intractability* of
 1297 evaluating the pointwise dimension directly, which necessitates a dedicated structural analysis for
 1298 deep neural networks.
 1299

1300 **Asymptotic vs. Finite-Scale Dimension.** Although powerful in mathematics, standard
 1301 differential-geometric tools (e.g., pointwise metrics and subspace angles) have not been system-
 1302 atically used in generalization theory, largely because they define dimension in infinitesimal no-
 1303 tions. For instance, the *asymptotic pointwise dimension*—central to fractal and Riemannian geom-
 1304 etry (Falconer, 1997; Jost, 2008) and used to characterize Hausdorff and packing dimensions (e.g.,
 1305 Theorem 3 of Lutz (2016))—is defined via a limit:

$$\lim_{\varepsilon \rightarrow 0} \frac{\log \pi(B_\varrho(f, \varepsilon))}{\log \varepsilon}.$$

1306 We argue that generalization is distinct from, and in some ways more challenging than, infinitesimal
 1307 geometry: the nature of generalization in deep models lies in reducing geometric dimension at a
 1308 *finite scale* of precision for each hypothesis. Crucially, the pointwise dimension $\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}$ is
 1309 monotonic: it naturally decreases as the resolution ε increases. Therefore, a finite-scale analysis
 1310 reveals significant dimension reduction that infinitesimal analysis misses. In our one-shot bound
 1311 (5), the objective is to identify the optimal finite scale ε^* where the trade-off between precision
 1312 and pointwise complexity is minimized. At this scale, the effective dimension can be orders of
 1313 magnitude smaller than the asymptotic dimension, explaining the tractability of overparameterized
 1314 models. To the best of our knowledge, this distinction is novel; prior uses of geometric dimension in
 1315 generalization (e.g., Birdal et al. (2021)) have largely emphasized globally uniform and infinitesimal
 1316 notions. And the Neural Tangent Kernel (NTK) (Jacot et al., 2018) and Gaussian-process (Lee et al.,
 1317 2018) viewpoints are valid only in an infinitesimal neighborhood of initialization (equivalently, in
 1318 the infinite-width regime). A precise account of deep-model generalization thus calls for a shift from
 1319 infinitesimal calculus to finite-scale, pointwise geometry.
 1320

1321 **Computation and the Necessity of Structural Analysis.** Although tight, Theorem 1—like many
 1322 abstract bounds (PAC-Bayes, mutual-information, generic chaining)—is generally not computationally
 1323 tractable on its own; practical use requires adapting it to the function class at hand and intro-
 1324 ducing suitable relaxations. If we denote an effective dimension by $d(f) = \log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon^*))}$ (ε^*
 1325 tuned in the one-shot bound (5)), a brute-force Monte Carlo estimator using i.i.d. draws $f' \sim \pi$
 1326 would require on the order of $e^{d(f)}$ samples to obtain a single hit $f' \in B_{\varrho_{n,\ell}}(f, \varepsilon)$ with constant
 1327 probability. For high-dimensional deep networks, where $d(f)$ should be moderate to large, this is
 1328 computationally prohibitive.
 1329

1330 This intractability helps explain why much of the PAC–Bayes literature pivoted to *inherent lin-*
 1331 *earization* via closed-form calculations under Gaussian priors/posteriors on the parameter space: by
 1332 relaxing the search over general posteriors on the nonlinear hypothesis class \mathcal{F} to Gaussians over
 1333 weights $W \in \mathbb{R}^p$, one obtains tractable objectives (Hinton & Van Camp, 1993; Dziugaite & Roy,
 1334 2017); see Sections 3 and 6 in Dziugaite & Roy (2017) for these objectives. However, this strat-
 1335 egy implicitly imposes a uniform linearization that discards the distinctive *pointwise* geometry of
 1336 deep networks, effectively flattening a curved manifold. To retain the sharpness of pointwise dimen-
 1337 sion without incurring the simulation barrier, we therefore avoid black-box sampling and instead
 1338 develop explicit *structural principles* of deep networks that allow analytic control of the pointwise
 1339 dimension—yielding generalization guarantees that are both theoretically rigorous and practically
 1340 computable.
 1341

1342 C.2 THE “UNIFORM POINTWISE CONVERGENCE” PRINCIPLE

1343 In this section, we present a unified blueprint for establishing pointwise generalization bounds. We
 1344 state necessary and sufficient conditions for pointwise generalization and show that, when applied
 1345 carefully, the resulting pointwise bounds are no harder to obtain than classical uniform-convergence
 1346 guarantees.
 1347

1348 We begin by citing a general principle for converting *subset-homogeneous* uniform convergence
 1349 guarantees—i.e., bounds in which the same pointwise complexity applies for every fixed subset
 1350 $\mathcal{H} \subseteq \mathcal{F}$ —into pointwise generalization bounds. This conversion, introduced by the name “uniform

localized convergence” principle in (Xu & Zeevi, 2020) (short conference version) and Xu & Zeevi (2025) (full journal version), provides a direct mechanism for obtaining the type of pointwise generalization bounds central to our work. We state this result as “uniform pointwise convergence” principle.

Lemma 4 (“Uniform Pointwise Convergence” Principle) (Proposition 1 in Xu & Zeevi (2020; 2025)). *For a function class \mathcal{F} and functional $d : \mathcal{F} \rightarrow [0, R]$, assume there is a function $\psi(r; \delta)$, which is non-decreasing with respect to r , non-increasing with respect to δ , and satisfies that $\forall \delta \in (0, 1)$, $\forall r \in [0, R]$, with probability at least $1 - \delta$,*

$$\sup_{f \in \mathcal{F}: d(f) \leq r} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \psi(r; \delta). \quad (17)$$

Then, given any $\delta \in (0, 1)$ and $r_0 \in (0, R]$, with probability at least $1 - \delta$, uniformly over all $f \in \mathcal{F}$,

$$(\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \psi \left(\max\{2d(f), r_0\}; \delta \left(\log_2 \frac{2R}{r_0} \right)^{-1} \right). \quad (18)$$

This lemma provides a succinct proof that serves as a unifying principle to sharpen classical localization, building on Section 2 of Xu & Zeevi (2025). A key advantage of this framework is its level of abstraction: it establishes subset homogeneity as the necessary and sufficient condition for pointwise generalization when the complexity functional $d(\cdot)$ is data-independent, and likewise when $d(\cdot)$ is swap-invariant and depends on both the observed sample $S = \{z_i\}_{i=1}^n$ and an i.i.d. ghost sample $S' = \{z'_i\}_{i=1}^n$. It also provides a clean treatment of data-dependent functionals and their induced (random) sublevel sets $\{f \in \mathcal{F} : d(f) \leq r\}$, as outlined before Section 4 of Xu & Zeevi (2025). Crucially, this approach circumvents the circularities that often arise when combining symmetrization with localization or offset arguments.

C.2.1 NECESSARY AND SUFFICIENT CONDITIONS FOR POINTWISE GENERALIZATION

We leverage this “uniform pointwise convergence” principle to streamline the derivation of our bounds. Let $d(\cdot)$ denote a pointwise complexity functional, which we categorize into data-independent forms and data-dependent forms. Let $\psi(\cdot; \delta)$ be a non-decreasing function (typically $\psi(r; \delta) \asymp \sqrt{(r + \log(1/\delta))/n}$). We provide a clean characterization of pointwise generalization.

Necessary Condition: Subset Homogeneity. A valid pointwise generalization guarantee (i.e., (3)) necessitates *subset homogeneity*. That is, if the pointwise inequality

$$(\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \psi(d(f); \delta) \quad (19)$$

holds with probability at least $1 - \delta$, then (19) must imply that for every fixed (i.e., data-independent) subset $\mathcal{H} \subseteq \mathcal{F}$,

$$\sup_{f \in \mathcal{H}} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \sup_{f \in \mathcal{H}} \psi(d(f); \delta).$$

Crucially, the complexity evaluation $d(f)$ must *not* depend on the chosen subset \mathcal{H} . For instance, for the pointwise dimension $\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}$, the prior π (in particular, its support) should be independent of \mathcal{H} . This contrasts with classical empirical-process techniques—e.g., naive uses of Rademacher complexity and generic chaining—where the *pre-specified* index sets dictate the proxy $d(\cdot)$ via the chosen Rademacher expectation, admissible tree construction, or prior.

Subset homogeneity is thus the primary eligibility check for any candidate pointwise complexity functional. In Appendix C.4, we complete this check by establishing that the pointwise dimension is *ambiently equivalent*: using a prior $\pi \in \Delta(\mathcal{F})$ or its restriction $\pi \in \Delta(\mathcal{H})$ produces complexities that agree in order (up to absolute constants).

Sufficient Condition: Subset Homogeneity + Data-Independent (or Symmetrized) $d(\cdot)$. Assuming the following subset-homogeneity uniform convergence condition: for every fixed (i.e., data-independent) subset $\mathcal{H} \subseteq \mathcal{F}$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{H}} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \sup_{f \in \mathcal{H}} \psi(d(f); \delta). \quad (20)$$

1404 By taking the sublevel set
 1405
 1406

$$\mathcal{H} = \{f \in \mathcal{F} : d(f) \leq r\},$$

1407 the condition (20) (applied to this fixed sublevel set) directly implies the surrogate conditions (17)
 1408 in Lemma 4, and hence the pointwise bound (18). Thus, subset homogeneity is a necessary and
 1409 sufficient condition for a data-independent $d(\cdot)$ to imply a pointwise generalization bound.

1410 Likewise, in Appendix C.5, we show that when the complexity $d(\cdot)$ may depend on both the observed
 1411 sample $S = \{z_i\}_{i=1}^n$ and an i.i.d. ghost sample $S' = \{z'_i\}_{i=1}^n$, provided it is swap-invariant in
 1412 (S, S') (i.e., invariant under any exchange $z_i \leftrightarrow z'_i$), subset homogeneity suffices to yield a pointwise
 1413 generalization bound via a final swap-symmetrization argument. This establishes Theorem 5: a
 1414 pointwise generalization result in which the complexity is evaluated using both the observed sample
 1415 S and the ghost sample S' .
 1416

1417 **Toward pointwise bounds using only observed sample.** If one seeks bounds that are fully com-
 1418 putable from the observed data $\{z_i\}_{i=1}^n$ alone (e.g., Theorem 1), without ghost sample or sample
 1419 splitting, the analysis is more involved. A practical route is two-step: (i) first derive a symmetrized
 1420 pointwise bound using a complexity functional based on (S, S') (which is already valid and sharp);
 1421 (ii) then prove an isomorphism between the $L_2(\mathbb{P}_S)$ - and $L_2(\mathbb{P}_{S'})$ -induced pointwise complexities
 1422 (following Appendix A.4 of Xu & Zeevi (2025)) so as to replace population or ghost-dependent
 1423 terms by empirical ones, yielding a fully data-dependent bound. Theorem 1 will be fully proved in
 1424 Appendix C.6.
 1425

1426 C.3 THE PAC-BAYES OPTIMIZATION PROBLEM

1427 We illustrate why pointwise dimension is a natural consequence of *best* PAC-Bayes optimization.

1429 **Lemma 5 (PAC-Bayes Bound (Catoni, 2003); see also Theorem 2.1 in Alquier (2024))** Let π
 1430 be a prior on a hypothesis class \mathcal{F} independent to the data, and let $\ell: \mathcal{F} \times \mathcal{Z} \rightarrow [0, 1]$ be a bounded
 1431 loss. Fix confidence $\delta \in (0, 1)$ and sample size n . Then for every $\eta > 0$, with probability at least
 1432 $1 - \delta$ over n i.i.d. draws $z_1, \dots, z_n \sim \mathbb{P}$, for every distribution μ on \mathcal{F} simultaneously,

$$1434 \quad 1435 \quad (\mathbb{P} - \mathbb{P}_n) \langle \mu, \ell(f; z) \rangle \leq \inf_{\eta > 0} \left\{ \frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{\eta n} + \frac{\eta}{8} \right\} = \sqrt{\frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{8n}}.$$

1438 We now use the PAC-Bayes bound (which holds uniformly for every random posterior μ) to ap-
 1439 proximate a deterministic hypothesis f . On the event that the above PAC-Bayes bound holds, with
 1440 probability at least $1 - \delta$, we have that uniformly over every random $\mu \in \Delta(\mathcal{F})$ every deterministic
 1441 $f \in \mathcal{F}$, for every $\eta > 0$, the following uniform ‘‘deterministic hypothesis’’ bound holds:

$$1442 \quad 1443 \quad (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \\ 1444 \quad = \langle \mu, (\mathbb{P} - \mathbb{P}_n) \ell(\cdot; z) \rangle + \langle \mu, (\mathbb{P}_n - \mathbb{P}) [\ell(\cdot; z) - \ell(f; z)] \rangle \\ 1445 \quad \leq \frac{\eta}{8} + \frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{\eta n} + \langle \mu, \frac{1}{n} \sum_{i=1}^n |\ell(\cdot; z) - \ell(f; z)| \rangle + \langle \mu, \mathbb{E} |\ell(\cdot; z) - \ell(f; z)| \rangle \\ 1446 \quad = \frac{\eta}{8} + \frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{\eta n} + \langle \mu, \tilde{\varrho}(\cdot, f) \rangle, \quad (21)$$

1451 where the metric $\tilde{\varrho}$ is defined as the sum of loss-induced $L_1(\mathbb{P}_n)$ metric and $L_1(\mathbb{P})$ metric:

$$1453 \quad 1454 \quad \tilde{\varrho}(f', f) = \frac{1}{n} \sum_{i=1}^n |\ell(f'; z) - \ell(f; z)| + \mathbb{E} |\ell(f'; z) - \ell(f; z)|. \quad (22)$$

1455 In (21), the inequality uses the PAC-Bayes bound (Lemma 5) to bound the first term, which we term
 1456 the ‘‘variance’’ term, and use absolute values to bound the second term, which we term the ‘‘bias’’
 1457 term.

Motivated by the above bias-variance optimization (21) via PAC-Bayes, for a given prior π , metric ϱ , and confidence $\delta \in (0, 1)$ we define the *PAC-Bayes optimization objective*

$$V(\mu, \eta, f, \varrho) := \underbrace{\frac{\eta}{8} + \frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{\eta n}}_{\text{Variance}} + \underbrace{\langle \mu, \varrho(\cdot, f) \rangle}_{\text{Bias}}, \quad (23)$$

where $\eta > 0$, n is the sample size, μ is a posterior over hypotheses. Here, the ‘‘Variance’’ term arises from a PAC-Bayes bound (Lemma 5) applied to μ , and the ‘‘Bias’’ term $\langle \mu, \varrho(\cdot, f) \rangle := \mathbb{E}_{h \sim \mu} [\varrho(h, f)]$ measures how well the randomized μ approximates the target f .

Optimizing the Posterior μ for the Objective (23) The intuitive analysis (21) explains how the PAC-Bayesian optimization objective naturally bounds the generalization gap. We now minimize the posterior μ in (23). It is straightforward that (23) is minimized by the Gibbs posterior. To obtain a closed-form characterization of the optimized value, we proceed in two steps: (i) derive an explicit pointwise-dimension upper bound by taking μ to be the π -normalized distribution on the metric ball $B_\varrho(f, \varepsilon)$ (Lemma 6), and (ii) show that this choice is near-optimal (Lemma 7).

C.3.1 POINTWISE DIMENSION BOUND VIA METRIC BALL

Given any prior π on \mathcal{F} and any $f \in \mathcal{F}$, take μ to be the π -normalized distribution on the metric ball $B_\varrho(f, \varepsilon)$, i.e.,

$$\mu(A) = \frac{\pi(A \cap B_\varrho(f, \varepsilon))}{\pi(B_\varrho(f, \varepsilon))} \quad \text{for all measurable } A \subseteq \mathcal{F}. \quad (24)$$

This simple choice is essentially optimal in that it yields the same analytical upper bound as the Gibbs posterior that minimizes the bound (later presented in Lemma 7).

Lemma 6 (Pointwise Dimension and Pointwise Generalization Upper Bound) For the PAC-Bayes objective (23), let μ be π -normalized on $B_\varrho(f, \varepsilon)$, i.e.

$$\frac{d\mu}{d\pi}(h) = \begin{cases} \frac{1}{\pi(B_\varrho(f, \varepsilon))}, & h \in B_\varrho(f, \varepsilon), \\ 0, & h \notin B_\varrho(f, \varepsilon). \end{cases}$$

Then, with $\eta^* = \sqrt{8(\text{KL}(\mu, \pi) + \log(1/\delta))/n}$,

$$V(\mu, \eta^*, f, \varrho) \leq \sqrt{\frac{\text{KL}(\mu, \pi) + \log(1/\delta)}{2n}} + \varepsilon = \sqrt{\frac{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))} + \log(1/\delta)}{2n}} + \varepsilon. \quad (25)$$

Combining the upper bound (25) with (21) yields the pointwise generalization bound: for every $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over every $f \in \mathcal{F}$,

$$(\mathbb{P} - \mathbb{P}_n)\ell(f; z) \leq \inf_{\varepsilon > 0} \left\{ \sqrt{\frac{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))} + \log(1/\delta)}{2n}} + \varepsilon \right\},$$

where $\tilde{\varrho}$ is the mixed $L_1(\mathbb{P}_n) + L_1(\mathbb{P})$ metric defined by $\tilde{\varrho}(f', f) = \frac{1}{n} \sum_{i=1}^n |\ell(f'; z_i) - \ell(f; z_i)| + \mathbb{E}|\ell(f'; z) - \ell(f; z)|$.

Remark (why this intuition matters). Since the mixed L_2 -metric dominates the sum of empirical and population L_1 -metrics, consider

$$\bar{\varrho}(f', f) := \left(\frac{1}{n} \sum_{i=1}^n (\ell(f'; z_i) - \ell(f; z_i))^2 + \mathbb{E}[(\ell(f'; Z) - \ell(f; Z))^2] \right)^{1/2}. \quad (26)$$

By Lemma 19, pointwise dimension is monotone in the underlying metric; hence replacing $\tilde{\varrho}$ by the larger metric $\sqrt{2}\bar{\varrho}$ yields a valid pointwise generalization bound. For a trained predictor \hat{f} , this

means we may estimate the bound using the observed sample $S = \{z_i\}_{i=1}^n$ together with an i.i.d. ghost sample $S' = \{z'_i\}_{i=1}^n$ to evaluate balls in the mixed metric (26).

Theorem 1 then *sharpens* this picture: it turns the one-shot PAC–Bayes bound into a chaining–integral and removes the need for the ghost sample by working solely with the empirical $L_2(\mathbb{P}_n)$ –metric. The core spirit of Theorem 1 remains the same with the PAC–Bayes bias–variance optimization; the practical differences are (i) integral vs. one-shot control and (ii) using S alone instead of (S, S') .

Proof of Lemma 6: For the choice (24),

$$\text{KL}(\mu, \pi) = \int_{\mathcal{F}} \log\left(\frac{d\mu}{d\pi}(h)\right) \mu(dh) = \int_{B_\varrho(f, \varepsilon)} \log\left(\frac{1}{\pi(B_\varrho(f, \varepsilon))}\right) \mu(dh) = \log \frac{1}{\pi(B_\varrho(f, \varepsilon))}. \quad (27)$$

Moreover, by construction,

$$\langle \mu, \varrho(\cdot, f) \rangle = \int_{B_\varrho(f, \varepsilon)} \varrho(h, f) \mu(dh) \leq \varepsilon.$$

Plugging (27) into (23) and minimizing $\frac{\eta}{8} + \frac{\text{KL}(\mu, \pi) + \log(1/\delta)}{\eta n}$ over $\eta > 0$ gives $\sqrt{(\text{KL}(\mu, \pi) + \log(1/\delta))/(2n)}$, which together with the bias bound $\langle \mu, \varrho(\cdot, f) \rangle \leq \varepsilon$ yields the claimed bound (25). \square

C.3.2 LOWER BOUND AND OPTIMALITY OF PAC-BAYES OPTIMIZATION

The following lemma indicates that the uniform-ball posterior is optimal up to the min–max gap: the lower bound $\min\{a, \varepsilon\}$ and the upper bound $\max\{a, \varepsilon\}$ bracket the optimum, coincide when $a = \varepsilon$, and have the same order whenever a and ε are comparable.

Lemma 7 (Optimality of Pointwise Dimension in PAC-Bayes Optimization) *For the PAC–Bayes optimization objective $V(\mu, \eta, f, \varrho)$ defined in (23), we have that for every $f \in \mathcal{F}$, $\eta > 0$, and $\varepsilon > 0$,*

$$\inf_{\mu} V(\mu, \eta, f, \varrho) \geq \frac{\eta}{8} + \frac{\log \frac{1}{\delta}}{\eta n} + \min\left\{\frac{1}{\eta n} \log \frac{1}{\pi(B_\varrho(f, \varepsilon))}, \varepsilon\right\} - \frac{\log 2}{\eta n}. \quad (28)$$

Consequently, for every $f \in \mathcal{F}$, $\eta > 0$, and $\varepsilon > 0$,

$$\frac{\eta}{8} + \frac{\log \frac{1}{\delta}}{\eta n} + \min\left\{\frac{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}}{\eta n}, \varepsilon\right\} - \frac{\log 2}{\eta n} \leq \inf_{\mu} V(\mu, \eta, f, \varrho) \leq \frac{\eta}{8} + \frac{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}}{\eta n} + \log \frac{1}{\delta} + \varepsilon. \quad (29)$$

Proof of Lemma 7 The upper bound in (29) is already proved in Lemma 6, so we only need to prove the lower bound (28). The Donsker–Varadhan variational identity states that for any measurable h ,

$$-\log \int e^h d\pi = \inf_{\mu} \left\{ \text{KL}(\mu, \pi) - \int h d\mu \right\}.$$

Apply it with $h = -\eta n \varrho(\cdot, f)$ to obtain

$$-\log \int e^{-\eta n \varrho(\cdot, f)} d\pi = \inf_{\mu} \left\{ \text{KL}(\mu, \pi) + \int \eta n \varrho(\cdot, f) d\mu \right\},$$

which implies that

$$\frac{\eta}{8} + \frac{\log \frac{1}{\delta}}{\eta n} - \frac{1}{\eta n} \log \int e^{-\eta n \varrho(\cdot, f)} d\pi = \inf_{\mu} \left\{ \frac{\eta}{8} + \frac{\text{KL}(\mu, \pi) + \log \frac{1}{\delta}}{\eta n} + \langle \mu, \varrho(\cdot, f) \rangle \right\}. \quad (30)$$

By splitting the dual integral,

$$\begin{aligned} \int e^{-\eta n \varrho(\cdot, f)} d\pi &= \int_{B_\varrho(f, \varepsilon)} e^{-\eta n \varrho(\cdot, f)} d\pi + \int_{B_\varrho(f, \varepsilon)^c} e^{-\eta n \varrho(\cdot, f)} d\pi \\ &\leq \pi(B_\varrho(f, \varepsilon)) + e^{-\eta n \varepsilon} (1 - \pi(B_\varrho(f, \varepsilon))) \\ &\leq \pi(B_\varrho(f, \varepsilon)) + e^{-\eta n \varepsilon}, \end{aligned}$$

1566 where $B_\varrho(f, \varepsilon)^c$ is complement of $B_\varrho(f, \varepsilon)$; and we have used $e^{-\eta n \varrho(\cdot, f)} \leq 1$ on $B_\varrho(f, \varepsilon)$ and
 1567 $e^{-\eta n \varrho(\cdot, f)} \leq e^{-\eta n \varepsilon}$ on $B_\varrho(f, \varepsilon)^c$. Hence
 1568

$$1569 \inf_\mu V(\mu, n, f, \varrho) \geq \frac{\eta}{8} + \frac{\log \frac{1}{\delta}}{\eta n} - \frac{1}{\eta n} \log \left(\pi(B_\varrho(f, \varepsilon)) + e^{-\eta n \varepsilon} \right). \quad (31)$$

1571 The simplified form (28) follows from $a+b \leq 2 \max\{a, b\}$ or equivalently $-\log(a+b) \geq -\log 2 +$
 1572 $\min\{-\log a, -\log b\}$ on (31). Combining (23), (27) and (28) yields the sandwich (29).
 1573 \square
 1574

1575 C.4 SUBSET HOMOGENEITY OF POINTWISE DIMENSION 1576

1577 We show that, for any $f \in \mathcal{H} \subseteq \mathcal{F}$, the pointwise–dimension functional defined with a prior π is
 1578 unchanged in order (up to absolute constants) whether π is supported on \mathcal{H} or on the ambient class
 1579 \mathcal{F} . Hence one may take $\pi \in \Delta(\mathcal{F})$ without restricting it to any particular subset, which suffices to
 1580 meet the subset–homogeneity condition in Appendix 2.
 1581

1582 **Lemma 8 (Ambient Equivalence of Pointwise Dimension)** *Let (\mathcal{F}, ϱ) be a metric space and let
 1583 $\mathcal{H} \subseteq \mathcal{F}$ be a subset. Consider a nearest-point selector $p : \mathcal{F} \rightarrow \mathcal{F}$ satisfying $\varrho(f, p(f)) =$
 1584 $\min_{h \in \mathcal{H}} \varrho(f, h)$ for all $f \in \mathcal{F}$, and the pushforward measure induced by the nearest-point selector:*

$$1585 \pi_{\mathcal{H}}(h) := \int \pi(f) \mathbf{1}\{p(f) = h\} df.$$

1586 Then for every $\varepsilon > 0$ we have

$$1587 \pi_{\mathcal{H}}(B_\varrho(f, 2\varepsilon)) \geq \pi(B_\varrho(f, \varepsilon)), \quad \log \frac{1}{\pi_{\mathcal{H}}(B_\varrho(f, 2\varepsilon))} \leq \log \frac{1}{\pi(B_\varrho(f, \varepsilon))}.$$

1590 Consequently, for $a > 0$, $b > 0$, $\mu \in \Delta(\mathcal{F})$, $f \in \mathcal{H}$, define the majorizing measure integral
 1591

$$1592 I(\pi, f, \varrho, r) := \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_\alpha^{\sqrt{r}} \sqrt{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}} d\varepsilon \right\}$$

1593 Then we have

$$1594 \frac{1}{2} \inf_{\mu \in \Delta(\mathcal{H})} \sup_{f \in \mathcal{H}} I(\mu, f, \varrho, 4r) \leq \inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{H}} I(\pi, f, \varrho, r) \leq \inf_{\mu \in \Delta(\mathcal{H})} \sup_{f \in \mathcal{H}} I(\mu, f, \varrho, r). \quad (32)$$

1595 **Proof of Lemma 8:** The upper bound in (32) is immediate since $\Delta(\mathcal{H}) \subset \Delta(\mathcal{F})$: taking μ supported on \mathcal{H} gives $\inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{H}} I(\pi, f, \varrho, r) \leq \inf_{\mu \in \Delta(\mathcal{H})} \sup_{f \in \mathcal{H}} I(\mu, f, \varrho, r)$.
 1596

1597 For the lower bound in (32), take $\pi_{\mathcal{H}}$ to be the pushforward induced by the nearest-point selector.
 1598 For any $f \in \mathcal{H}$ and $\varepsilon > 0$, if $f' \in B_\varrho(f, \varepsilon)$ then

$$1603 \varrho(p(f'), f) \leq \varrho(p(f'), f') + \varrho(f', f) = \min_{f \in \mathcal{H}} \varrho(f', f) + \varrho(f', f) \leq 2\varepsilon,$$

1604 hence $p(f') \in B_\varrho(f, 2\varepsilon)$ and

$$1605 \pi_{\mathcal{H}}(B_\varrho(f, 2\varepsilon)) \geq \pi(B_\varrho(f, \varepsilon)), \quad \log \frac{1}{\pi_{\mathcal{H}}(B_\varrho(f, 2\varepsilon))} \leq \log \frac{1}{\pi(B_\varrho(f, \varepsilon))}. \quad (33)$$

1606 Therefore,

$$\begin{aligned} 1607 I(\pi, f, \varrho, r) &= \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_\alpha^{\sqrt{r}} \sqrt{\log \frac{1}{\pi(B_\varrho(f, \varepsilon))}} d\varepsilon \right\} \\ 1608 &\geq \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_\alpha^{\sqrt{r}} \sqrt{\log \frac{1}{\pi_{\mathcal{H}}(B_\varrho(f, 2\varepsilon))}} d\varepsilon \right\} \\ 1609 &= \frac{1}{2} \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ 2\alpha + \frac{1}{\sqrt{n}} \int_{2\alpha}^{2\sqrt{r}} \sqrt{\log \frac{1}{\pi_{\mathcal{H}}(B_\varrho(f, \varepsilon))}} d\varepsilon \right\} \\ 1610 &= \frac{1}{2} I(\pi_{\mathcal{H}}, f, \varrho, 4r), \end{aligned}$$

1620 where the first inequality is by (33); the second equality is by the change of variables. Taking
 1621 $\sup_{f \in \mathcal{H}}$ and then $\inf_{\pi \in \Delta(\mathcal{F})}, \inf_{\mu \in \Delta(\mathcal{H})}$ yields the desired lower bound.
 1622

□

1623
 1624 **Relationship to Fractional Covering Number** Additionally, note that the minimax quantity
 1625

$$1626 \quad N'(\mathcal{H}, \varrho, \varepsilon) := \inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{H}} \frac{1}{\pi(B_\varrho(f, \varepsilon))}$$

1627 is the *fractional covering number*; see Section 3 of Block et al. (2021) for its role in chaining; see
 1628 also Chen et al. (2024) for connections to information-theoretic lower bounds (e.g., Fano’s method,
 1629 the Yang–Barron method, and local packing). In particular, with $N(\mathcal{H}, \varrho, \varepsilon)$ denoting the (internal)
 1630 covering number from Definition 5, we have the order equivalence (Lemma 8 in Block et al. (2021);
 1631 Lemma 14 in Chen et al. (2024))

$$1633 \quad \log N(\mathcal{H}, \varrho, 2\varepsilon) \leq \log N'(\mathcal{H}, \varrho, \varepsilon) = \inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{H}} \log \frac{1}{\pi(B_\varrho(f, \varepsilon))} \leq \log N(\mathcal{H}, \varrho, \varepsilon). \quad (34)$$

1634 The covering number in Definition 5 does not depend on the ambient set \mathcal{F} , which in turn suggests
 1635 that the pointwise dimension enjoys favorable ambient–equivalence properties.
 1636

1637 **Collapsing the Distinction between Chaining and Generic Chaining.** A simple illustration of
 1638 the strength of our pointwise blueprint is the multi–dimensional setting. Let $(d^{(1)}, \dots, d^{(k)}) : \mathcal{F} \rightarrow$
 1639 $(0, R]^k$ be coordinatewise nondecreasing complexities and let $\psi(\cdot; \delta)$ be monotone. Our blueprint
 1640 makes no essential distinction between the two uniform forms

$$1641 \quad (\text{sup–inside}) \quad \sup_{f \in \mathcal{H}} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \psi \left(\sup_{f \in \mathcal{H}} d_n^{(1)}(f), \dots, \sup_{f \in \mathcal{H}} d_n^{(k)}(f); \delta \right),$$

$$1642 \quad (\text{sup–outside}) \quad \sup_{f \in \mathcal{H}} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \sup_{f \in \mathcal{H}} \psi \left(d_n^{(1)}(f), \dots, d_n^{(k)}(f); \delta \right),$$

1643 in the sense that *either* one leads to the same pointwise conclusion after peeling.
 1644

1645 More precisely, fix a base scale $r_0 \in (0, R]$. Then with probability at least $1 - \delta$, for every $f \in \mathcal{F}$,
 1646

$$1647 \quad (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \leq \psi \left(\left(\dots, \max \left\{ 2d^{(j)}(f), r_0 \right\}, \dots \right); \delta \left(\log_2 \frac{2R}{r_0} \right)^{-k} \right). \quad (35)$$

1648 The most straightforward proof uses essentially the same peeling argument as in Lemma 4, with the
 1649 only change that we use a grid of size $(\log_2(2R/r_0))^k$ (partition each coordinate into $\log_2(2R/r_0)$
 1650 dyadic scales); see the short proof of Proposition 1 in Xu & Zeevi (2025). Alternatively, this can
 1651 be proved by applying Lemma 4 for k times, where at each step we remove one dimension functional
 1652 and divide confidence by $\log_2(2R/r_0)$. Moreover, the multi–dimensional pointwise bound (35)
 1653 shows that its right–hand side, viewed as a *scalar* complexity, yields an equally tight pointwise
 1654 bound. Hence the multi–dimensional formulation does not improve the best–achievable rates beyond
 1655 a suitably defined one–dimensional complexity (as in generic chaining).
 1656

1657 Conceptually, this shows that the apparent gap between classical chaining (entropy inte-
 1658 gral; sup–inside), generic chaining (majorizing measures; sup–outside), and our pointwise
 1659 generic–chaining bound (Theorem 1) disappears within the blueprint: each is just a sub-
 1660 set–homogeneous uniform statement that implies the same pointwise bound up to absolute constants
 1661 and minor logarithms.
 1662

1663 C.5 POINTWISE GENERALIZATION BOUND VIA GHOST SAMPLE

1664 In this section, we prove an easier variant of Theorem 1 that permits *swap-invariant* random-
 1665 ized priors depending on both the observed sample and its ghost counterpart. This setting sub-
 1666 sumes—and strengthens—the conditional mutual information (CMI) framework of Steinke &
 1667 Zaldivar & Zaldivar (2020).

1668 Let $S = (z_1, \dots, z_n)$ and $S' = (z'_1, \dots, z'_n)$ be two i.i.d. samples drawn from \mathbb{P}^n , independent of
 1669 each other. For each index $i \in \{1, \dots, n\}$, define the coordinate–swap map
 1670

$$1671 \quad \tau_i(S, S') := ((z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_n), (z'_1, \dots, z'_{i-1}, z_i, z'_{i+1}, \dots, z'_n)).$$

1674 A randomized, data-dependent prior is a mapping $\pi_{(\cdot, \cdot)} : \mathcal{Z}^{2n} \rightarrow \Delta(\mathcal{F})$; we write $\pi_{(S, S')} \in \Delta(\mathcal{F})$
 1675 for the realized prior over \mathcal{F} (a distribution on \mathcal{F} that may depend on (S, S')). We say that π is
 1676 *swap-invariant* on (S, S') , if
 1677

$$1678 \pi_{(S, S')} = \pi_{\tau_i(S, S')} \quad \text{for all } i = 1, \dots, n \text{ and for } \mathbb{P}^{2n}\text{-a.e. } (S, S').$$

1680 Equivalently, π depends only on the unordered multiset $\{(z_i, z'_i)\}_{i=1}^n$ and not on which element
 1681 of each pair is designated as “observed” versus “ghost.”

1682 **Connection to CMI.** This notion covers the conditional-mutual-information (CMI) framework of
 1683 Steinke & Zakythinos (2020). In the CMI setup, one draws paired data $Z = ((Z_i^{(0)}, Z_i^{(1)}))_{i=1}^n \stackrel{\text{i.i.d.}}{\sim}$
 1684 $(\mathbb{P} \times \mathbb{P})^n$ and an independent selector $U \in \{0, 1\}^n$. The training and ghost sets are $S_U =$
 1685 $(Z_1^{(U_1)}, \dots, Z_n^{(U_n)})$ and $S_{\bar{U}} = (Z_1^{(1-U_1)}, \dots, Z_n^{(1-U_n)})$. Any prior π that is a function of Z only
 1686 (independent of U) is swap-invariant, since flipping U_i implements τ_i . Conversely, swap-invariance
 1687 for all i is equivalent to invariance under all coordinatewise flips of U , hence independence from U .
 1688

1689 Throughout, let $S = \{z_i\}_{i=1}^n$ be the observed sample and $S' = \{z'_i\}_{i=1}^n$ an i.i.d. ghost sample,
 1690 independent of S . We write \mathbb{P}_S for the empirical measure \mathbb{P}_n based on S , and $\varrho_{n, \ell}$ for the metric
 1691 $\varrho_{n, \ell}$ from the main paper. Let $\mathbb{P}_{S'}$ denote the empirical measure based on S' . For any integrable
 1692 function $g : \mathcal{Z} \rightarrow \mathbb{R}$ (we write $g(z)$ when convenient; e.g., $g(z) = \ell(f; z)$), define the empirical
 1693 averaging operators
 1694

$$\mathbb{P}_S g := \frac{1}{n} \sum_{i=1}^n g(z_i), \quad \mathbb{P}_{S'} g := \frac{1}{n} \sum_{i=1}^n g(z'_i).$$

1695 We use the shorthand $(\mathbb{P}_S \pm \mathbb{P}_{S'})g := \mathbb{P}_S g \pm \mathbb{P}_{S'} g$ for the sum/difference of the two sample-average
 1696 operators, and the same notation when $\mathbb{P}_S \pm \mathbb{P}_{S'}$ appear inside norms or distances.
 1697

1700 **Theorem 5 (Pointwise Generalization via Ghost Sample)** *Let $\ell(f; z) \in [0, 1]$. There exists an
 1701 absolute constant $C > 0$ such that for any swap-invariant prior $\pi_{(\cdot, \cdot)}$ on (S, S') , and any $\delta \in (0, 1)$,
 1702 with probability at least $1 - \delta$ over (S, S') , uniformly in $f \in \mathcal{F}$,*
 1703

$$1704 (\mathbb{P}_{S'} - \mathbb{P}_S) \ell(f; z) \\ 1705 \leq C \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2}} \sqrt{\log \frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S'), \ell}}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right),$$

$$1709 \text{where } \varrho_{(S, S'), \ell}(f_1, f_2) = \sqrt{(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1; z) - \ell(f_2; z))^2}.$$

1711 **Proof of Theorem 5:** The proof of the upper bound in Theorem 5 consists of three steps: 1.
 1712 Subset-Homogeneous Uniform Convergence; 2. Generic Conversion to Pointwise Generalization
 1713 Bound; 3. High-Probability Symmetrization.
 1714

1715 **Step 1: Subset-Homogeneous Uniform Convergence.** Let $S = \{z_i\}_{i=1}^n$ be the observed sample,
 1716 and $S' = \{z'_i\}_{i=1}^n$ be an i.i.d. ghost sample. We consider the symmetrized loss
 1717

$$1718 \tilde{\ell}(f; (z, z')) = \ell(f; z') - \ell(f; z). \quad (36)$$

1720 Since $\ell(f; z)$ is uniformly bounded in $[0, 1]$, $\tilde{\ell}(f; (z, z'))$ is uniformly bounded in $[-1, 1]$. We adopt
 1721 the notation

$$1722 \varrho_{S, \ell}(f_1, f_2) = \varrho_{n, \ell}(f_1, f_2) = \sqrt{\mathbb{P}_S(\ell(f_1; z) - \ell(f_2; z))^2}.$$

1724 from the main paper. Furthermore, we define the loss-induced L_2 metrics $\varrho_{S', \ell}$ and $\varrho_{(S, S'), \ell}$ by
 1725

$$1726 \varrho_{S', \ell}(f_1, f_2) = \sqrt{\mathbb{P}_{S'}(\ell(f_1; z) - \ell(f_2; z))^2},$$

$$1727 \varrho_{(S, S'), \ell}(f_1, f_2) = \sqrt{(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1; z) - \ell(f_2; z))^2}.$$

1728 By Minkowski's inequality (see, e.g., Wikipedia contributors (2025c)) and $\sqrt{a} + \sqrt{b} \leq \sqrt{2(a+b)}$,
 1729 we have

$$1730 \sqrt{\frac{1}{n} \sum_{i=1}^n (\tilde{\ell}(f_1; (z_i, z'_i)) - \tilde{\ell}(f_2; (z_i, z'_i)))^2} \leq \varrho_{S, \ell}(f_1, f_2) + \varrho_{S', \ell}(f_1, f_2) \leq \sqrt{2} \varrho_{(S, S'), \ell}(f_1, f_2). \quad (37)$$

1734 For every fixed $R \in [0, 2]$, we define

$$1737 \mathcal{F}_R = \{f \in \mathcal{F} : (\mathbb{P}_S + \mathbb{P}_{S'}) \ell(f; z)^2 \leq R\}.$$

1738 The goal of setting R is to further localize the integrand upper limit as in Theorem 5.

1740 Now applying the truncated integral bound (Lemma 14) to the empirical Rademacher complexity:
 1741 let $\{\xi_i\}_{i=1}^n$ be i.i.d. Rademacher variables, then conditioned on (S, S') , given any subset $\mathcal{H} \subseteq \mathcal{F}_R$,
 1742 we have that for all $\delta \in (0, 1)$, with probability at least $1 - \delta$ (the randomness all comes from
 1743 $\{\xi_i\}_{i=1}^n$),

$$1744 \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \xi_i \tilde{\ell}(f; (z_i, z_i)) \leq \mathbb{E}_\xi \left[\sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \xi_i \tilde{\ell}(f; (z_i, z_i)) \right] + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}} \\ 1745 \leq C_0 \inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \inf_{\mu \in \Delta(\mathcal{H})} \sup_{f \in \mathcal{H}} \int_{\alpha}^{2\sqrt{2R}} \sqrt{\log \frac{1}{\mu(B_{\tilde{\ell}}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}},$$

1750 where $C_0 > 0$ is an absolute constant, and $\tilde{\varrho}(f_1, f_2) :=$
 1751 $\sqrt{\frac{1}{n} \sum_{i=1}^n (\tilde{\ell}(f_1; (z_i, z'_i)) - \tilde{\ell}(f_2; (z_i, z'_i)))^2}$. Here, the first inequality is by Mcdiarmid's in-
 1752 equality (Lemma 16); and the second inequality is by Lemma 14; and the integral is capped at
 1753 $2\sqrt{2R}$ because

$$1755 \sup_{f_1 \in \mathcal{H}, f_2 \in \mathcal{H}} \tilde{\varrho}(f_1, f_2) \leq \sup_{f_1 \in \mathcal{H}, f_2 \in \mathcal{H}} \sqrt{2} \varrho_{(S, S'), \ell}(f_1, f_2) \leq \sup_{f \in \mathcal{H}} 2\sqrt{2} \sqrt{(\mathbb{P}_S + \mathbb{P}_{S'}) \ell(f; z)^2} \leq 2\sqrt{2R},$$

1758 where the first inequality is due to (37) and the second inequality is due to Minkowski's inequality
 1759 (Wikipedia contributors, 2025c). By the ambient-equivalence of the pointwise-dimension func-
 1760 tional (Lemma 8), we have (note that we take the support of π to be \mathcal{F} rather than \mathcal{H} or \mathcal{F}_R)

$$1761 \inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \inf_{\mu \in \Delta(\mathcal{H})} \sup_{f \in \mathcal{H}} \int_{\alpha}^{2\sqrt{2R}} \sqrt{\log \frac{1}{\mu(B_{\tilde{\ell}}(f, \varepsilon))}} d\varepsilon \right\} \\ 1762 \leq \inf_{\alpha \geq 0} 2 \left\{ \alpha + \frac{1}{\sqrt{n}} \inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{H}} \int_{\alpha}^{\sqrt{2R}} \sqrt{\log \frac{1}{\pi(B_{\tilde{\ell}}(f, \varepsilon))}} d\varepsilon \right\}.$$

1767 By (37) and the fact that pointwise dimension is monotone in the underlying metric (Lemma 19),
 1768 we have that for any $\pi \in \Delta(\mathcal{F})$,

$$1769 \int_{\alpha}^{\sqrt{2R}} \sqrt{\log \frac{1}{\pi(B_{\tilde{\ell}}(f, \varepsilon))}} d\varepsilon \leq \int_{\alpha}^{\sqrt{2R}} \sqrt{\log \frac{1}{\pi(B_{\sqrt{2}\varrho_{(S, S'), \ell}}(f, \varepsilon))}} d\varepsilon = \sqrt{2} \int_{\alpha/\sqrt{2}}^{\sqrt{R}} \sqrt{\log \frac{1}{\pi(B_{\varrho_{(S, S'), \ell}}(f, \varepsilon))}} d\varepsilon,$$

1773 where the equality follows by a change of variables. Combining the above three inequalities, we
 1774 prove the following *subset-homogeneous* uniform convergence argument when choosing an arbitrary
 1775 $\pi \in \Delta(\mathcal{F})$: conditioned on (S, S') , for any $\mathcal{H} \subseteq \mathcal{F}$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$
 1776 (the randomness all comes from $\{\xi_i\}_{i=1}^n$),

$$1777 \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \xi_i (\ell(f; z'_i) - \ell(f; z_i)) \leq \sup_{f \in \mathcal{H}} C_1 \inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{R}} \sqrt{\log \frac{1}{\pi(B_{\varrho_{(S, S'), \ell}}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}, \quad (38)$$

1781 where $C_1 = 2\sqrt{2}C_0 > 0$ is an absolute constant.

1782 Conditioned on (S, S') , for fixed $\pi_{(S, S')} \in \Delta(\mathcal{F})$ that is independent with $\{\xi_i\}_{i=1}^n$, define the
 1783 pointwise complexity
 1784

$$1785 \quad d_{S, S'}(f) := \left(\inf_{\alpha \geq 0} \left\{ \sqrt{n} \alpha + \int_{\alpha}^{\sqrt{R}} \sqrt{\log \frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S')}, \ell}(f, \varepsilon))}} d\varepsilon \right\} \right)^2. \quad (39)$$

1788 Then, by (38), conditioned on (S, S') , for any $\mathcal{H} \subseteq \mathcal{F}_R$ and any $\delta \in (0, 1)$, with probability at least
 1789 $1 - \delta$ (the randomness all comes from $\{\xi_i\}_{i=1}^n$),
 1790

$$1791 \quad \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \xi_i(\ell(f; z'_i) - \ell(f; z_i)) \leq \sup_{f \in \mathcal{H}} \left(C_1 \sqrt{\frac{d_{S, S'}(f)}{n}} + \sqrt{\frac{2 \log \frac{2}{\delta}}{n}} \right). \quad (40)$$

1794 As discussed in Appendix C.2.1, this condition is both necessary and sufficient to establish pointwise
 1795 convergence when the complexity functional is the $\{\xi_i\}_{i=1}^n$ -independent $d_{S, S'}(\cdot)$ when conditioned
 1796 on (S, S') .
 1797

1798 **Step 2: Generic Conversion to Pointwise Generalization Bound.** All the analysis in this step
 1799 is condition on (S, S') , thus all the randomness discussed here comes from $\{\xi_i\}_{i=1}^n$. Choosing
 1800 $\alpha = \sqrt{R}$ in (39) yields $d_{S, S'}(f) \leq (\sqrt{R}n)^2 \leq 2n$ for all f , so Lemma 4 applies with the upper
 1801 bound of $d(f)$ being $2n$. For every $r \in [0, 2n]$, we take the subset
 1802

$$1803 \quad \mathcal{H} = \{f \in \mathcal{F}_R : d_{S, S'}(f) \leq r\},$$

1804 which, by (40), implies that $\forall \delta \in (0, 1)$ and $\forall r \in [0, 32n]$, with probability at least $1 - \delta$
 1805

$$1806 \quad \sup_{f: d_{S, S'}(f) \leq r} \frac{1}{n} \sum_{i=1}^n \xi_i(\ell(f; z'_i) - \ell(f; z_i)) \leq C_1 \sqrt{\frac{r}{n}} + \sqrt{\frac{2 \log \frac{2}{\delta}}{n}}, \quad (41)$$

1809 where and C_1 is an absolute constant. The inequality (41) is precisely the condition (17) in the
 1810 generic conversion provided in Lemma 4 (here, the expectation (equal to 0) and the empirical average
 1811 are taken for $\{\xi_i\}_{i=1}^n$). Thus applying Lemma 4 we have the pointwise generalization bound:
 1812 conditioned on (S, S') , for any $\delta \in (0, 1)$, by taking $r_0 = 1/n$, with probability at least $1 - \delta$,
 1813 uniformly over all $f \in \mathcal{F}_R$,
 1814

$$1815 \quad \frac{1}{n} \sum_{i=1}^n \xi_i(\ell(f; z'_i) - \ell(f; z_i)) \leq \frac{C_1}{\sqrt{n}} \sqrt{\max \left\{ 2d_{S, S'}(f), \frac{1}{n} \right\}} + \sqrt{\frac{2 \log \frac{2 \log_2(4n^2)}{\delta}}{n}} \\ 1816 \quad \leq C_1 \sqrt{\frac{2d_{S, S'}(f)}{n}} + \frac{C_1}{n} + \sqrt{\frac{2 \log \frac{4 \log_2(2n)}{\delta}}{n}}. \\ 1817 \quad \leq C_2 \left(\sqrt{\frac{d_{S, S'}(f)}{n}} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right), \quad (42)$$

1824 where $C_2 > 0$ is an absolute constant, where the second inequality is because there exists $C_2 \geq$
 1825 $\sqrt{2}C_1$ such that for all positive integer n ,
 1826

$$1827 \quad \frac{C_1}{n} + \sqrt{\frac{2 \left(\log \frac{1}{\delta} + \log(\log 2 + \log n) + \log \frac{4}{\log 2} \right)}{n}} \leq C_2 \sqrt{\frac{\log \frac{1}{\delta} + \log(\log 2 + \log n)}{n}}.$$

1831 Thus we prove the pointwise generalization bound (42) for the complexity functional $d_{S, S'}(\cdot)$ de-
 1832 fined in (39), under the randomness of $\{\xi_i\}_{i=1}^n$.

1833 Now we again apply the “uniform pointwise generalization” principle to further localize R in (42)
 1834 around the data-dependent quantity
 1835

$$d(f) := (\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2 \in [0, 2].$$

1836 Applying Lemma 4 with $R_0 = 1/n$ (spirit: taking $R_k = 2^k R_0$, and then using an union bound
 1837 over these dyadic grid R_k to (42) uniformly over all $k = 1, \dots, \lceil \log_2(2n) \rceil$), we have that for all
 1838 $\delta \in (0, 1)$, with probability at least $1 - \delta$, for all $f \in \mathcal{F}$,

$$1840 \frac{1}{n} \sum_{i=1}^n \xi_i (\ell(f; z'_i) - \ell(f; z_i)) \\ 1841 \leq C_2 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2, R_0}} \sqrt{\frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S')}, \ell}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n) \lceil \log_2(4n) \rceil}{\delta}}{n}} \right).$$

1846 If the maximum in $\max\{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2, R_0\}$ is attained at $R_0 = 1/n$, then the upper limit in
 1847 the integral equals to $4\sqrt{1/n}$. In this case we may choose $\alpha = 4\sqrt{1/n}$, so that the complexity mea-
 1848 sure term vanishes. The remaining contribution is then of order $O(1/\sqrt{n})$, which can be absorbed
 1849 into the absolute constant and the $\sqrt{\log(2n)/n}$ term. Thus we prove the following pointwise gen-
 1850 eralization bound: there exists an absolute constant $C_3 > 0$ such that for all $\pi \in \Delta(\mathcal{F})$, conditioned
 1851 on (S, S') , for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over all $f \in \mathcal{F}$,

$$1853 \frac{1}{n} \sum_{i=1}^n \xi_i (\ell(f; z'_i) - \ell(f; z_i)) \\ 1854 \leq C_3 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2}} \sqrt{\frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S')}, \ell}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right). \\ 1855 \quad \quad \quad (43)$$

1861 **Step 3: High-Probability Symmetrization.** Recall that $S = \{z_i\}_{i=1}^n$ and $S' = \{z'_i\}_{i=1}^n$ are i.i.d.
 1862 samples, independent of each other, and $\{\xi_i\}_{i=1}^n$ are i.i.d. Rademacher signs, independent of (S, S') .
 1863 The mixed (ghost) metric

$$1864 \varrho_{(S, S'), \ell}(f_1, f_2) = \sqrt{(\mathbb{P}_S + \mathbb{P}_{S'}) (\ell(f_1; z) - \ell(f_2; z))^2},$$

1865 is swap-invariant to the pair (z_i, z'_i) for each $i = 1, \dots, n$. By the definition of swap-invariant prior
 1866 before Theorem 5, the prior $\pi_{(S, S')} \in \Delta(\mathcal{F})$ is also swap-invariant to the pair (z_i, z'_i) .

1867 Denote the functionals

$$1868 X(f; S, S'; \delta) \\ 1869 := \frac{1}{n} \sum_{i=1}^n (\ell(f; z'_i) - \ell(f; z_i)) \\ 1870 \quad \quad \quad - C_3 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2}} \sqrt{\frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S')}, \ell}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right),$$

1871 and

$$1872 Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \\ 1873 := \frac{1}{n} \sum_{i=1}^n \xi_i (\ell(f; z'_i) - \ell(f; z_i)) \\ 1874 \quad \quad \quad - C_3 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2}} \sqrt{\frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S')}, \ell}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right).$$

1875 **Symmetry argument.** We write $\stackrel{d}{=}$ to denote equality in distribution (i.e., the random variables
 1876 have the same law, equivalently the same cumulative distribution function). For each $i \in \{1, \dots, n\}$,

1890 let $\tau_i(S, S')$ be the pair obtained by swapping z_i and z'_i . Since $\varrho_{(S, S'), \ell}$ and $\pi_{(S, S')}$ are invariant
 1891 under $(S, S') \mapsto \tau_i(S, S')$ and $\tau_i(S, S') \stackrel{d}{=} (S, S')$, we have, for all $t \in \mathbb{R}$,
 1892

$$\begin{aligned} 1893 \quad & \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t) \\ 1894 \quad & = \frac{1}{2} \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = 1) + \frac{1}{2} \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = -1) \\ 1895 \quad & = \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = 1), \end{aligned}$$

1896 i.e., $Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \stackrel{d}{=} Y(f; S, S', \{\xi_1, \dots, \xi_{i-1}, 1, \xi_{i+1}, \dots, \xi_n\}; \delta)$. In the second equality, we have used the fact: conditioning on (S, S') , the transformation
 1897

$$(S, S', \{\xi_j\}_{j=1}^n) \mapsto (\tau_i(S, S'), \{\xi_1, \dots, \xi_{i-1}, -\xi_i, \xi_{i+1}, \dots, \xi_n\})$$

1900 leaves the value of Y unchanged (by the swap-invariance of $\varrho_{(S, S'), \ell}$ and $\pi_{(S, S')}$) and preserves
 1901 the joint law of $(S, S', \{\xi_j\}_{j=1}^n)$, because (z_i, z'_i) are i.i.d. and ξ_i is a symmetric Rademacher sign;
 1902 hence the two conditional distributions coincide, and
 1903

$$\Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = 1) = \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = -1),$$

1904 so

$$\Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t) = \Pr(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq t | \xi_i = 1).$$

1905 Iterate over all indices $i = 1, \dots, n$, we obtain that
 1906

$$Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \stackrel{d}{=} Y(f; S, S', \{1, \dots, 1\}; \delta) = X(f; S, S'; \delta).$$

1907 By the conclusion (43) in Step 2, for any $\delta \in (0, 1)$,
 1908

$$\Pr_{\xi} \left(Y(f; S, S', \{\xi_i\}_{i=1}^n; \delta) \leq 0 \text{ for all } f \in \mathcal{F} \mid S, S' \right) \geq 1 - \delta.$$

1909 By equality in distribution between Y and X (the symmetry argument above), this implies
 1910

$$\Pr_{\xi} \left(X(f; S, S'; \delta) \leq 0 \text{ for all } f \in \mathcal{F} \mid S, S' \right) \geq 1 - \delta \quad \text{for all } (S, S').$$

1911 Let

$$A(S, S') := \left\{ X(f; S, S'; \delta) \leq 0 \text{ for all } f \in \mathcal{F} \right\}.$$

1912 Note that $A(S, S')$ (and hence its indicator $\mathbb{1}_A(S, S')$) depends only on (S, S') and is independent
 1913 of the Rademacher signs $\{\xi_i\}_{i=1}^n$. Using the tower property of conditional expectation, we obtain
 1914

$$\begin{aligned} 1915 \quad & \Pr_{S, S'}(A(S, S')) = \mathbb{E}_{S, S'}[\mathbb{1}_A(S, S')] \\ 1916 \quad & = \mathbb{E}_{S, S'}[\mathbb{E}_{\xi}[\mathbb{1}_A(S, S') \mid S, S']] \\ 1917 \quad & = \mathbb{E}_{S, S'}[\Pr_{\xi}(A(S, S') \mid S, S')] \\ 1918 \quad & \geq \mathbb{E}_{S, S'}[1 - \delta] = 1 - \delta, \end{aligned}$$

1919 where the inequality uses the conditional bound above.
 1920

1921 Hence, with probability at least $1 - \delta$ over the draw of (S, S') , we have, uniformly over all $f \in \mathcal{F}$,
 1922

$$\begin{aligned} 1923 \quad & \frac{1}{n} \sum_{i=1}^n (\ell(f; z'_i) - \ell(f; z_i)) \\ 1924 \quad & \leq C_3 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2}} \sqrt{\log \frac{1}{\pi_{(S, S')}(B_{\varrho_{(S, S'), \ell}}(f, \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right), \end{aligned}$$

1925 where $\varrho_{(S, S'), \ell}(f_1, f_2) = \sqrt{(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1; z) - \ell(f_2; z))^2}$, and $C_3 > 0$ is an absolute constant.
 1926

1927 \square

1944 C.6 PROOF OF THEOREM 1
1945

1946 Theorem 5 have established a pointwise generalization bound through both the observed sample S
1947 and the ghost sample S' . In this section we build on Theorem 5 to a prove pointwise generalization
1948 bound that only depends on the observed sample S . As outlined in Appendix C.2.1, the key is to
1949 estalish pointwise isomorphism between the $L_2(\mathbb{P}_S)$ and $L_2(\mathbb{P}_{S'})$ metrics.

1950 **From Ghost Sample to Observed Sample.** Recall that we use \mathbb{P}_S to be the same notation as \mathbb{P}_n
1951 in the main paper; $\varrho_{S,\ell}$ to be the same notation as the $\varrho_{n,\ell}$ metric in the main paper; and $\mathbb{P}_{S'}$ to be
1952 the empirical distribution and sample average operator actioned on the ghost sample S' , similar to
1953 how \mathbb{P}_S actioned on S (see the comments before Theorem 5).

1954 Let $\mathcal{G} \subseteq \{g : \mathcal{Z} \rightarrow [0, M]\}$, let ϱ be a semi-metric on \mathcal{G} , and let $\mu \in \Delta(\mathcal{G})$ be a prior. For $g \in \mathcal{G}$ and
1955 $r \geq 0$ define

$$1957 I(\mu, g, \varrho, r) := \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{r}} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g, \varepsilon))}} d\varepsilon \right\}. \quad (44)$$

1960 Under this definition, Theorem 5 implies that: there exists absolute constant $C_1 > 0$ such that,
1961 every fixed prior $\pi \in \Delta(\mathcal{F})$ independent of (S, S') (such fixed prior clearly satisfies the condition
1962 in Theorem 5) and every $\delta \in (0, 1)$, uniformly over all $f \in \mathcal{F}$, we have

$$1963 (\mathbb{P}_{S'} - \mathbb{P}_S)\ell(f; z) \leq C_1 \left(I(\pi, f, \varrho_{(S, S'), \ell}, 2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right). \quad (45)$$

1966 We have the following lemma that converts Theorem 5 to Theorem 1.

1967 **Lemma 9 (Ghost to Observed Conversion)** *For every fixed prior $\pi \in \Delta(\mathcal{F})$ independent of
1968 (S, S') and every $\delta \in (0, 1)$, if with probability at least $1 - \delta$, uniformly for all $f \in \mathcal{F}$,*

$$1969 I(\pi, f, \varrho_{(S, S'), \ell}, 2(\mathbb{P}_S + \mathbb{P}_{S'})\ell(f; z)^2) \leq C_2 \left(I(\pi, f, \varrho_{S, \ell}, 1) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right), \quad (46)$$

1972 where $C_2 > 0$ is an absolute constant, then there exists an absolute constant $C > 0$ such that for all
1973 $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over all $f \in \mathcal{F}$,

$$1974 (\mathbb{P} - \mathbb{P}_n)\ell(f; z) \leq C \left(I(\pi, f, \varrho_{S, \ell}, 1) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right),$$

1977 and this is exactly Theorem 1.

1978 **Proof of Lemma 9:** Setting the confidence parameter to $\delta/2$ in (45) and to $\delta/2$ in (46), a union
1979 bound implies that both inequalities hold simultaneously with probability at least $1 - \delta$. Combining
1980 them yields Lemma 9. □

1982 We now verify condition (46) in Lemma 9, thereby completing the proof of Theorem 1. Condition
1983 (46) asserts a *pointwise isomorphism*: uniformly over all $f \in \mathcal{F}$, an $L_2(\mathbb{P}_{S'})$ -induced quantity
1984 is controlled (up to absolute constants) by its fully $L_2(\mathbb{P}_S)$ -induced counterpart.

1985 Such isomorphisms are a longstanding theme in empirical process theory. Our proof adopts a fixed-
1986 point (localized Rademacher / generic-chaining) approach to transfer bounds from $\mathbb{P}_S + \mathbb{P}_{S'}$ to
1987 purely \mathbb{P}_S , yielding the desired *pointwise*, uniform comparison over \mathcal{F} . This route follows Section
1988 4 in Bartlett et al. (2005) and Appendix A.4 of Xu & Zeevi (2025), but is developed here in the new
1989 context of pointwise-dimension functionals.

1990 For classical *class-wide* isomorphisms (where the deviation depends on a global complexity of the
1991 class rather than a pointwise functional), see Klartag & Mendelson (2005) for bounded classes;
1992 Mendelson et al. (2007); Mendelson (2010) for sub-Gaussian and heavy-tailed regimes; Mendelson
1993 (2015) for weak small-ball conditions in unbounded settings; and Mendelson (2021) for a unified
1994 synthesis of bounded and small-ball analyses. These works are now cornerstones of the field. Our
1995 contribution refines this line by replacing global complexity with a *purely pointwise* complexity in
1996 the isomorphism comparison.

1998 **Basic properties of the truncated pointwise integral.** We first state some basic properties of the
 1999 truncated pointwise integral: it is sub-root in r and Lipschitz in g .
 2000

2001 **Lemma 10 (Basic properties of the truncated pointwise integral)** *For the truncated integral
 2002 $I(\mu, g, \varrho, r)$ defined in (44), the following hold.*
 2003

2004 (i) (Sub-root and fixed point) *For each fixed $g \in \mathcal{G}$, the map $r \mapsto I(\mu, g, \varrho, r)$ is a sub-root
 2005 function. Consequently, by Definition 3.1 and Lemma 3.2 in Bartlett et al. (2005), there
 2006 exists a unique $r^* \in (0, \infty)$ such that $I(\mu, g, \varrho, r^*) = r^*$, and for all $r > 0$,*
 2007

$$2008 \quad r \geq I(\mu, g, \varrho, r) \iff r \geq r^*. \\ 2009$$

2010

2011 (ii) (Lipschitz shift in g) *For every $g_1 \in \mathcal{G}$, $g_2 \in \mathcal{G}$, $r \geq 0$,*
 2012

$$2013 \quad I(\mu, g_2, \varrho, r) \leq I(\mu, g_1, \varrho, r) + \varrho(g_1, g_2). \\ 2014$$

2015 **Proof of Lemma 10:** Fix $g \in \mathcal{G}$ and abbreviate

$$2018 \quad h_g(\varepsilon) := \sqrt{\log \frac{1}{\mu(B_\varrho(g, \varepsilon))}}, \quad F_g(u) := \int_0^u h_g(\varepsilon) d\varepsilon, \quad u \geq 0. \\ 2019 \\ 2020$$

2022 Since $\varepsilon \mapsto B_\varrho(g, \varepsilon)$ is increasing, $\mu(B_\varrho(g, \varepsilon))$ is nondecreasing, hence $\varepsilon \mapsto h_g(\varepsilon)$ is nonincreasing;
 2023 therefore F_g is concave, nondecreasing and $F_g(0) = 0$.
 2024

2025 (i) **Sub-root.** Write, for $0 \leq \alpha \leq \sqrt{r}$,

$$2027 \quad \Phi_g(r, \alpha) := \alpha + \frac{1}{\sqrt{n}}(F_g(\sqrt{r}) - F_g(\alpha)) \quad \text{so that} \quad I(\mu, g, \varrho, r) = \inf_{0 \leq \alpha \leq \sqrt{r}} \Phi_g(r, \alpha). \\ 2028 \\ 2029$$

2030 Nonnegativity is immediate. Monotonicity in r holds because F_g is nondecreasing. To prove the
 2031 sub-root property, consider for fixed α the function
 2032

$$2034 \quad r \mapsto \frac{\Phi_g(r, \alpha)}{\sqrt{r}} = \frac{\alpha}{\sqrt{r}} + \frac{1}{\sqrt{n}} \frac{F_g(\sqrt{r})}{\sqrt{r}} - \frac{1}{\sqrt{n}} \frac{F_g(\alpha)}{\sqrt{r}}. \\ 2035 \\ 2036$$

2037 The first and third terms are of the form c/\sqrt{r} and are thus nonincreasing in r . For the middle
 2038 term, set $u = \sqrt{r}$; by concavity of F_g and $F_g(0) = 0$, the map $u \mapsto F_g(u)/u$ is nonincreasing on
 2039 $(0, \infty)$. Hence $r \mapsto F_g(\sqrt{r})/\sqrt{r}$ is nonincreasing. Therefore, for every fixed α , $r \mapsto \Phi_g(r, \alpha)/\sqrt{r}$
 2040 is nonincreasing. Taking the infimum over α preserves this property: $r \mapsto I(\mu, g, \varrho, r)/\sqrt{r}$ is
 2041 nonincreasing. Thus $I(\mu, g, \varrho, \cdot)$ is sub-root. The fixed-point and characterization then follow from
 2042 Lemma 3.2 in Bartlett et al. (2005).
 2043

2044 (ii) **Shift in g .** Assume $\varrho(g_1, g_2) = \beta$. By the triangle inequality, for all $\varepsilon \geq 0$,

$$2045 \quad B_\varrho(g_1, \varepsilon) \subseteq B_\varrho(g_2, \varepsilon + \beta). \\ 2046$$

2048 Hence $\mu(B_\varrho(g_2, \varepsilon + \beta)) \geq \mu(B_\varrho(g_1, \varepsilon))$ and therefore
 2049

$$2050 \quad \sqrt{\log \frac{1}{\mu(B_\varrho(g_2, \varepsilon + \beta))}} \leq \sqrt{\log \frac{1}{\mu(B_\varrho(g_1, \varepsilon))}}. \\ 2051$$

2052 Using this, a change of variables $u = \varepsilon + \beta$, and the constraint $0 \leq \alpha \leq \sqrt{r}$, we obtain
 2053

$$\begin{aligned}
 2054 \quad I(\mu, g_2, \varrho, r) &= \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{r}} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g_2, \varepsilon))}} d\varepsilon \right\} \\
 2055 \\
 2056 \quad &\leq \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{r}} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g_2, \varepsilon + \beta))}} d\varepsilon \right\} \\
 2057 \\
 2058 \quad &= \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha+\beta}^{\sqrt{r}+\beta} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g_2, u))}} du \right\} \\
 2059 \\
 2060 \quad &\leq \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \beta + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{r}} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g_2, u))}} du \right\} \\
 2061 \\
 2062 \quad &\leq \inf_{0 \leq \alpha \leq \sqrt{r}} \left\{ \alpha + \beta + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{r}} \sqrt{\log \frac{1}{\mu(B_{\varrho}(g_1, u))}} du \right\} \\
 2063 \\
 2064 \quad &= I(\mu, g_1, \varrho, r) + \beta,
 \end{aligned}$$

2065 which proves the claim.
 2066

□

2067 **Pointwise Isomorphism via Fixed Point Analysis.** Define $\bar{\varrho}_{(S, S'), \ell}$ to be the quadratic-loss-
 2068 induced L_2 metric over the product space $\mathcal{F} \times \mathcal{F}$, given by
 2069

$$2070 \quad \bar{\varrho}_{(S, S'), \ell}((f'_1, f'_2), (f_1, f_2)) = ((\mathbb{P}_S + \mathbb{P}_{S'})[(\ell(f'_1, z) - \ell(f'_2, z))^2 - (\ell(f_1, z) - \ell(f_2, z))^2])^{1/2}.$$

2071 By Theorem 5, there exists an absolute constant $C_1 > 0$ such that given a fixed, data-independent
 2072 prior $\mu \in \Delta(\mathcal{F} \times \mathcal{F})$, for every $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over all
 2073 $f_1 \in \mathcal{F}, f_2 \in \mathcal{F}$,

$$\begin{aligned}
 2074 \quad &|(\mathbb{P}_{S'} - \mathbb{P}_S)(\ell(f_1, z) - \ell(f_2, z))^2| \\
 2075 \quad &\leq C_1 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^{\sqrt{2(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1, z) - \ell(f_2, z))^4}} \sqrt{\log \frac{1}{\mu(B_{\bar{\varrho}_{(S, S')}, \ell}((f_1, f_2), \varepsilon))}} d\varepsilon \right\} + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right) \\
 2076 \quad &\leq C_1 \left(I(\mu, (f_1, f_2), \bar{\varrho}_{(S, S'), \ell}, 2(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1, z) - \ell(f_2, z))^2) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right), \quad (47)
 \end{aligned}$$

2077 where the first inequality applies Theorem 5 twice—once with $g(z) = (\ell(f_1, z) - \ell(f_2, z))^2$ at
 2078 confidence level $\delta/2$ and once with $g(z) = -(\ell(f_1, z) - \ell(f_2, z))^2$ at confidence level $\delta/2$ —and
 2079 then takes a union bound; the second inequality uses the uniform bound $|\ell| \leq 1$, which implies
 2080 $|\ell(f_1, z) - \ell(f_2, z)| \leq 1$ and hence $(\ell(f_1, z) - \ell(f_2, z))^4 \leq (\ell(f_1, z) - \ell(f_2, z))^2$ pointwise, yielding
 2081 the L_4 – L_2 comparison.

2082 Given a fixed, data-independent $\pi \in \Delta(\mathcal{F})$, take μ to be the independent product measure $\pi \otimes \pi$.
 2083 By Minkowski’s inequality (Wikipedia contributors, 2025c) and $\ell(f, z) \in [0, 1]$ we have that for all
 2084 $f_1 \in \mathcal{F}, f_2 \in \mathcal{F}$,

$$2085 \quad \bar{\varrho}_{(S, S'), \ell}((f'_1, f'_2), (f_1, f_2)) \leq 2\varrho_{(S, S'), \ell}(f'_1, f_1) + 2\varrho_{(S, S'), \ell}(f'_2, f_2).$$

2086 Then we have the decomposition
 2087

$$\begin{aligned}
 2088 \quad &\log \frac{1}{\mu(B_{\bar{\varrho}_{(S, S'), \ell}}((f_1, f_2), \varepsilon))} \\
 2089 \quad &\leq \log \frac{1}{\pi \otimes \pi(f'_1 \in \mathcal{F}, f'_2 \in \mathcal{F} : \varrho_{(S, S'), \ell}(f'_1, f_1) \leq \frac{\varepsilon}{4}, \varrho_{(S, S'), \ell}(f'_2, f_2) \leq \frac{\varepsilon}{4})} \\
 2090 \quad &= \log \frac{1}{\pi(B_{\varrho_{(S, S'), \ell}}(f_1, \varepsilon/4))} + \log \frac{1}{\pi(B_{\varrho_{(S, S'), \ell}}(f_2, \varepsilon/4))}.
 \end{aligned} \quad (48)$$

Combining (47) and (48), we obtain that for all $\delta \in (0, 1)$, with probability at least $1 - \delta$, for all $f_1 \in \mathcal{F}, f_2 \in \mathcal{F}$,

$$\begin{aligned} & \varrho_{(S, S'), \ell}^2(f_1, f_2) - 2\varrho_{S, \ell}^2(f_1, f_2) \\ &= (\mathbb{P}_{S'} - \mathbb{P}_S)(\ell(f_1; z) - \ell(f_2; z))^2 \\ &\leq C_2 \left(I(\pi, f_1, \varrho_{(S, S'), \ell}, (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1; z) - \ell(f_2; z))^2/8) \right. \end{aligned} \quad (49)$$

$$\left. + I(\pi, f_2, \varrho_{(S, S'), \ell}, (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f_1; z) - \ell(f_2; z))^2/8) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right), \quad (50)$$

where $C_2 = 4C_1 > 0$ are absolute constants.

By Lemma 10,

$$\psi_{S, S'}(r; f) := \sup_{f' \in \mathcal{F}: \varrho_{(S, S'), \ell}^2(f', f) \leq r} C_2 \left(I(\pi, f, \varrho_{(S, S'), \ell}, r/8) + I(\pi, f', \varrho_{(S, S'), \ell}, r/8) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right)$$

is a sub-root function, so there exists a unique fixed point $r_{S, S'}^*$ such that

$$r_{S, S'}^*(f) = \psi_{S, S'}(r_{S, S'}^*(f); f).$$

By the definition of sub-root function, for $r \geq 4r_{S, S'}^*(f)$, we have that

$$\begin{aligned} & \sup_{(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 \leq r} (\varrho_{(S, S'), \ell}(f_1, f_2) - 2\varrho_{S, \ell}^2(f_1, f_2)) \leq \psi_{S, S'}(r; f) \\ & \leq \sqrt{\frac{r}{r_{S, S'}^*(f)}} \psi_{S, S'}(r_{S, S'}^*(f); f) = \sqrt{r} \sqrt{r_{S, S'}^*(f)} \leq \frac{1}{2} r, \end{aligned} \quad (51)$$

where the first inequality is due to (50); the second inequality is by the definition of sub-root function; the equality is by the definition of fixed point; and the last inequality is by $r \geq 4r_{S, S'}^*(f)$. Combining (47) and (51), we have the following: with probability at least $1 - \delta$, for all $f \in \mathcal{F}, f' \in \mathcal{F}$ such that $(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 \geq 4r_{S, S'}^*(f)$,

$$|(\mathbb{P}_S - \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2| \leq \frac{1}{2} (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2,$$

which implies that with probability at least $1 - \delta$, whenever $(\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 \geq 4r_{S, S'}^*(f)$,

$$\frac{4}{3} \mathbb{P}_S(\ell(f'; z) - \ell(f; z))^2 \leq (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 \leq 4\mathbb{P}_S(\ell(f'; z) - \ell(f; z))^2. \quad (52)$$

Therefore, with probability at least $1 - \delta$, for all $f \in \mathcal{F}$ and $r \geq 4r_{S, S'}^*(f)$,

$$\psi_S(r; f) := \sup_{f' \in \mathcal{F}: 2\varrho_{(S, S'), \ell}^2(f', f) \leq 3r/2} C_2 \left(I(\pi, f, 2\varrho_{S, \ell}, r/8) + I(\pi, f', 2\varrho_{S, \ell}, r/8) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right) \quad (53)$$

is a surrogate function of $\psi_{S, S'}(r; f)$: with probability at least $1 - \delta$,

$$\psi_S(r; f) \geq \psi_{S, S'}(r; f), \quad \forall r \geq r_{S, S'}^*(f), \forall f \in \mathcal{F}.$$

Here replacing $\varrho_{(S, S'), \ell}$ by $2\varrho_S$ inside the integral is by the metric monotonicity of pointwise dimension (Lemma 19) and the right hand side of (52); and replacing the constraint $\varrho_{(S, S'), \ell}(f' f) \leq r$ by the new constraint $2\varrho_{S, \ell}(f' f) \leq 3r/2$ outside the parentheses is due to the left hand side of (52) and its implication: with probability at least $1 - \delta$,

$$\{f' \in \mathcal{F}: \varrho_{(S, S'), \ell}(f' f) \leq r\} \subseteq \{f' \in \mathcal{F}: 2\varrho_{S, \ell}(f' f) \leq 3r/2\}, \quad \forall r \geq r_{S, S'}^*(f), \forall f \in \mathcal{F}.$$

This means that with probability at least $1 - \delta$, for all $f \in \mathcal{F}$,

$$\psi_S(r_{S, S'}^*(f); f) \geq \psi_{S, S'}(r_{S, S'}^*(f); f) = r_{S, S'}^*(f).$$

Define the fixed point of $\psi_S(f; r)$ to be $r_S^*(f)$. By the above inequality and the fact that sub-root function has an unique fixed point (Lemma 10), we must have

$$r_S^*(f) \geq r_{S, S'}^*(f). \quad (54)$$

This implies that

2160 1. For all $f' \in \mathcal{F}, f \in \mathcal{F}$ such that $2\varrho_{S,\ell}^2(f', f) \geq 3r_S^*(f)/2$, by (52) and (54), we have that

$$2161 \quad (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 \leq 4\mathbb{P}_S(\ell(f'; z) - \ell(f; z))^2.$$

2163 2. For all $f' \in \mathcal{F}, f \in \mathcal{F}$ such that $2/3 \cdot 2\varrho_{S,\ell}^2(f', f) < r_S^*(f)$, we have that

$$2165 \quad \frac{2}{3} \cdot 2\varrho_{S,\ell}^2(f', f) \leq \psi\left(\frac{2}{3} \cdot 2\varrho_{S,\ell}^2(f', f); f\right)$$

$$2167 \quad \leq C_2 \left(I(\pi, f, 2\varrho_{S,\ell}, r/8) + I(\pi, f', 2\varrho_{S,\ell}, r/8) + \sqrt{\frac{\log(\log(2n))}{n}} \right),$$

2170 where the first inequality is a simple consequence of the definition of fixed point: when
2171 $r \leq r_S^*(f)$, $r \leq \psi_S(r; f)$; and the second inequality is be the definition of $\psi_S(r; f)$ in (53).

2172 Together, we obtain that with probability at least $1 - \delta$, uniformly over all $f \in \mathcal{F}$ and $f' \in \mathcal{F}$,

$$2174 \quad (\mathbb{P}_S + \mathbb{P}_{S'})(\ell(f'; z) - \ell(f; z))^2 - 4\mathbb{P}_S(\ell(f'; z) - \ell(f; z))^2 \\ 2175 \quad \leq C_2 \left(2I(\pi, f, 2\varrho_{S,\ell}, \varrho_{S,\ell}(f', f)/4) + 2\varrho_{S,\ell}(f', f) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right)$$

2177 By definition (53), we have

$$2179 \quad \psi_{(S,S'),\ell}(\varrho_{(S,S'),\ell}(f', f); f) \leq C_2 \left(2I(\pi, f, 2\varrho_{S,\ell}, \varrho_{S,\ell}(f', f)/4) + 2\varrho_{S,\ell}(f', f) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right).$$

2181 This is an inequality in the form of

$$2183 \quad r - 2r' \leq C_2(a(r'/8) + 2\sqrt{r'}),$$

2184 where

$$2185 \quad a(r) = 2I(\pi, f, 2\varrho_{S,\ell}, r) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}}.$$

2187 Solving the above inequality we have that there exists absolute constant $C_3 > 0, C_4 > 0$ such that
2188 with probability at least $1 - \delta$, uniformly over $f \in \mathcal{F}$ and $f' \in \mathcal{F}$,

$$2190 \quad \varrho_{(S,S'),\ell}(f_1, f_2) \leq C_3 \varrho_{S,\ell}(f_1, f_2) + C_4 \left(2I(\pi, f, 2\varrho_{S,\ell}, \varrho_{S,\ell}(f_1, f_2)/4) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right)$$

2192 By the Lipchitz property in Lemma 10, we prove that there exists absolute constant $C_5 > 0$ such
2193 that

$$2195 \quad I(\pi, f, \varrho_{(S,S'),\ell}, 2(\mathbb{P}_S + \mathbb{P}_{S'}))\ell(f; z)^2 \leq C_5 \left(I(\pi, f, \varrho_{S,\ell}, 1) + \sqrt{\frac{\log(\log(2n)/\delta)}{n}} \right)$$

2197 This is exactly the condition (46) in Lemma 9, which enables us to prove Theorem 1 from Theorem
2198 5. □

C.7 PROOF OF THEOREM 2

2203 We use the classical result that the expected uniform convergence is lower bounded by Gaussian
2204 complexity of the centered class, up to a $\sqrt{\log n}$ factor, see Definition 2 and Lemma 15 in the
2205 auxiliary lemma part for this classical result. To be specific, by Lemma 15 we have that

$$2206 \quad \mathbb{E}_z \left[\sup_{f \in \mathcal{F}} (\mathbb{P} - \mathbb{P}_n)\ell(f; z) \right] \geq \frac{c_1}{\sqrt{\log n}} \mathbb{E}_{g,z} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i(\ell(f; z_i) - \mathbb{E}_z[\ell(f; z)]) \right] \\ 2207 \quad \geq \frac{c_1}{\sqrt{\log n}} \mathbb{E}_{g,z} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i \ell(f; z_i) - \left| \frac{1}{n} \sum_{i=1}^n g_i \right| \cdot \sup_{\mathcal{F}} \mathbb{E}[\ell(f; z)] \right] \\ 2208 \quad = \frac{c_1}{\sqrt{\log n}} \mathbb{E}_{g,z} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i \ell(f; z_i) \right] - \frac{c_1}{\sqrt{\log n}} \sqrt{\frac{2}{\pi n}} \sup_{\mathcal{F}} \mathbb{E}[\ell(f; z)], \quad (55)$$

2214 where $c_1 > 0$ is an absolute constant, and the equality use the fact that $\mathbb{E}[|Y|] = \sqrt{\frac{2}{\pi n}}$ for $Y \sim$
 2215 $N(0, 1/n)$.

2217 Now applying Lemma 12 to lower bounding the Gaussian process $\frac{1}{n} \sum_{i=1}^n g_i \ell(f; z_i)$ by the integral,
 2218 we have for any $\{z_i\}_{i=1}^n$,

$$2220 \mathbb{E}_g \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i \ell(f; z_i) \right] \geq c_2 \inf_{\pi} \sup_{f \in \mathcal{F}} \int_0^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon,$$

2223 taking expectation on both side yields

$$2225 \mathbb{E}_{g,z} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i \ell(f; z_i) \right] \geq c_2 \mathbb{E} \inf_{\pi} \sup_{f \in \mathcal{F}} \int_0^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon. \quad (56)$$

2228 Combining (55) and (56), we have that there exist absolute constants $c, c' > 0$ such that

$$2230 \mathbb{E} \left[\sup_{f \in \mathcal{F}} (\mathbb{P} - \mathbb{P}_n) \ell(f; z) \right] \geq \frac{c}{\sqrt{n \log n}} \mathbb{E} \inf_{\pi} \sup_{f \in \mathcal{F}} \int_0^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon - \frac{c' \sup_{\mathcal{F}} \mathbb{E}[\ell(f; z)]}{\sqrt{n \log n}}.$$

2233 This inequality implies the following result

$$2234 \mathbb{E} \left[\sup_{\pi \in \Delta(\mathcal{F}), f \in \mathcal{F}} \left((\mathbb{P} - \mathbb{P}_n) \ell(f; z) - \frac{c}{\sqrt{n \log n}} \int_0^1 \sqrt{\log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f, \varepsilon))}} d\varepsilon \right) + \frac{c' \sup_{\mathcal{F}} \mathbb{E}[\ell(f; z)]}{\sqrt{n \log n}} \right] \geq 0,$$

2237 where we have used the facts that $-\inf_x h(x) = \sup_x (-h(x))$ and $\sup_x h_1(x) - \sup_x h_2(x) \leq$
 2238 $\sup_x (h_1(x) - h_2(x))$. □

2242 C.8 BACKGROUND ON GAUSSIAN AND EMPIRICAL PROCESSES

2243 It is now well understood that the supremum of Gaussian process can be tightly characterized by
 2244 the majorizing measure integral via matching upper and lower bounds up to absolute constants
 2245 (Fernique, 1975; Talagrand, 1987); the goal of this section is to extend this characterization to (1)
 2246 bounded empirical processes and (2) a truncated form of integral.

2247 **Background on Gaussian Processes.** We begin by recalling several key results from a series
 2248 of seminal papers by Talagrand, Fernique, and others, which introduces the majorizing-measure
 2249 formulation of the generic chaining framework (Fernique, 1975; Talagrand, 1987). Note that generic
 2250 chaining have several equivalent formulations (Talagrand, 2005), and the one closest to our purpose
 2251 is through majorizing measure.

2252 A *centered Gaussian random variable* X is a real-valued measurable function on the outcome space
 2253 such that the law of X has density

$$2256 (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$

2258 The law of X is thus determined by $\sigma = (\mathbb{E}[X^2])^{1/2}$. If $\sigma = 1$, X is called *standard normal*.

2259 A *Gaussian process* is a family $\{X_t\}_{t \in T}$ of random variables indexed by some set T , such that every
 2260 finite linear combination $\sum_{j=1}^k \alpha_j X_{t_j}$ is Gaussian. On the index set T , consider the semi-metric ϱ
 2261 given by

$$2264 \varrho(u, v) = \sqrt{\mathbb{E}[(X_u - X_v)^2]}. \quad (57)$$

2265 Gaussian processes are thus a very rigid class of stochastic processes, with exceptionally nice prop-
 2266 erties that have been fully developed in the literature.

2267 Fernique (1975) proved the following integral upper bound.

2268
 2269 **Lemma 11 (Upper Bound of Gaussian Processes via Majorizing Measure, Fernique (1975))**
 2270 *Given a Gaussian process $(X_t)_{t \in T}$ with its metric ϱ defined by (57), we have*

2271
 2272
$$\mathbb{E} \left[\sup_{t \in T} X_t \right] \leq C \inf_{\pi \in \Delta(T)} \sup_{t \in T} \int_0^\infty \sqrt{\log \frac{1}{\pi(B_\varrho(t, \varepsilon))}} d\varepsilon,$$

 2273

2274 *where $C > 0$ is an absolute constant.*

2275 A prior π that makes the right hand side in Lemma 11 finite is called a *majorizing measure*. Fernique conjectured as early as 1974 that the existence of majorizing measures might characterize the boundedness of Gaussian processes. He proved a number of important partial results, and his determination eventually motivated the Talagrand to attack the problem in 1987. Talagrand (1987) proved that the integral in Lemma 11 is tight up to absolute constants; the upper bound in Lemma 11 is thus called the Fernique-Talagrand (majorizing measure) integral.

2282 **Lemma 12 (Lower Bound of Gaussian Processes via Majorizing Measure, Talagrand (1987))**
 2283 *Given a Gaussian process $(X_t)_{t \in T}$ with its metric ϱ defined by (57), we have*

2284
 2285
$$\mathbb{E} \left[\sup_{t \in T} X_t \right] \geq c \inf_{\pi \in \Delta(T)} \sup_{t \in T} \int_0^\infty \sqrt{\log \frac{1}{\pi(B_{\varrho_2}(t, \varepsilon))}} d\varepsilon,$$

 2286

2288 *where $c > 0$ is an absolute constant.*

2289 Thus the Fernique-Talagrand integral gives a complete characterization to the supremum of Gaussian
 2290 process.

2292 **Background on Empirical Processes.** We now give several results on upper and lower bounding
 2293 empirical process by Rademacher and Gaussian complexities Giné & Zinn (1984); Bartlett &
 2294 Mendelson (2002).

2296 **Definition 2 (Rademacher and Gaussian complexities)** *For a function class \mathcal{F} that consists of
 2297 mappings from \mathcal{Z} to \mathbb{R} , define the Rademacher complexity of \mathcal{F} as*

2299
 2300
$$R_n(\mathcal{F}) := \mathbb{E}_{z, \xi} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \xi_i f(z_i) \right],$$

 2301

2302 *where $\{\xi_i\}_{i=1}^n$ are i.i.d. Rademacher variables; and define the Gaussian complexity of \mathcal{F} as*

2304
 2305
$$G_n(\mathcal{F}) := \mathbb{E}_{z, g} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n g_i f(z_i) \right],$$

 2306

2307 *where $\{g_i\}_{i=1}^n$ are i.i.d. standard Gaussian variables.*

2308 It is well-known that Rademacher and Gaussian complexities are upper bounds of empirical pro-
 2309 cesses (see, e.g., Lemma 7.4 in Van Handel (2014)):

2311 **Lemma 13 (Upper Bounds with Rademacher and Gaussian Complexities)** *For any function
 2312 class \mathcal{F} that consists of mappings from \mathcal{Z} to \mathbb{R} , we have*

2314
 2315
$$\mathbb{E} \left[\sup_{f \in \mathcal{F}} (\mathbb{P} - \mathbb{P}_n) f(z) \right] \leq 2R_n(\mathcal{F}) \leq \sqrt{2\pi} G_n(\mathcal{F}),$$

 2316

2317 *where $R_n(\mathcal{F})$ and $G_n(\mathcal{F})$ are (expected) Rademacher and Gaussian complexities defined in Defini-
 2318 tion 2.*

2319 We state a truncated form of the Fernique-Talagrand integral, adapted from Theorem 3 of Block
 2320 et al. (2021), and use it in the proof of Theorem 1. Up to absolute constants, this truncated form
 2321 is equivalent to the classical (nontruncated) Fernique-Talagrand integral; throughout, we interpret

both forms as placing the \inf_{π} and $\sup_{f \in \mathcal{F}}$ outside the integral.² The truncated variant is often more convenient for deriving tighter relaxations—for example, when fixing a particular prior π rather than taking \inf_{π} , as used in Theorem 1.

Lemma 14 (Truncated integral bound) *Given a function class \mathcal{F} that consists of mappings from \mathcal{Z} to $[0, 1]$. Define the empirical $L_2(\mathbb{P}_n)$ pseudometric*

$$\rho_n(f_1, f_2) := \sqrt{\frac{1}{n} \sum_{i=1}^n (f_1(z_i) - f_2(z_i))^2}.$$

There exists an absolute constant $C > 0$ such that

$$\mathbb{E}_{\xi} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \xi_i f(z_i) \right] \leq C \inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \inf_{\pi \in \Delta(\mathcal{F})} \sup_{f \in \mathcal{F}} \int_{\alpha}^1 \sqrt{\log \frac{1}{\pi(B_{\rho_n}(f, \varepsilon))}} d\varepsilon \right\},$$

where $\{\xi_i\}_{i=1}^n$ are i.i.d. Rademacher variables, and the left hand side of the above inequality is called the empirical Rademacher complexity.

Remarks. (i) Because $f \in [0, 1]$, the diameter of \mathcal{F} with ρ_n is bounded by 1, which justifies truncating the integral at 1 and adding the small-scale term α . (ii) An analogous bound holds for Gaussian processes; we state the Rademacher version since it directly controls empirical processes via symmetrization and is what we need for Theorem 1. (iii) The proof of Lemma 14 is a straightforward adaptation of Theorem 3 in Block et al. (2021), specializing their sequential argument to the classical i.i.d. setting (with only minor notational changes).

The following result illustrate that Gaussian and Rademacher complexities can also be used to lower bounding empirical processes.

Lemma 15 (Lower Bounds with Rademacher and Gaussian Complexities) *For any function class \mathcal{F} that consists of mappings from \mathcal{Z} to \mathbb{R} , defined its centered class $\tilde{\mathcal{F}}$ as $\{f - \mathbb{E}[f(z)] : f \in \mathcal{F}\}$. We have*

$$\mathbb{E} \left[\sup_{f \in \mathcal{F}} (\mathbb{P} - \mathbb{P}_n) f(z) \right] \geq \frac{1}{2} R_n(\tilde{\mathcal{F}}) \geq \frac{c}{\sqrt{\log n}} G_n(\tilde{\mathcal{F}}),$$

where $c > 0$ is an absolute constant.

Proof of Lemma 15: Both the fact that uniform convergence admit a lower bound in terms of the Rademacher complexity of the centered class, and the result that Rademacher complexity itself is bounded below by Gaussian complexity up to a factor of $\sqrt{\log n}$, are classical and admit simple proofs. For a full proof of the first inequality, see Theorem 14.3 in Rinaldo & Yan (2016); for a reference and proof sketch of the second inequality, see Problem 7.1 in Van Handel (2014). \square

Basic Concentration Inequalities. We state Mcdiarmid’s inequality, Hoeffding’s inequality, and Bernstein’s inequality.

Lemma 16 (McDiarmid’s inequality (bounded differences), McDiarmid (1998)) *Let Z_1, \dots, Z_n be independent random variables with $Z_i \in \mathcal{Z}_i$. Let $h : \mathcal{Z}_1 \times \dots \times \mathcal{Z}_n \rightarrow \mathbb{R}$ be a measurable function satisfying the bounded difference property: there are constants $c_1, \dots, c_n \geq 0$ such that for all $i \in \{1, \dots, n\}$ and all $Z_1 \in \mathcal{Z}_1, \dots, Z_n \in \mathcal{Z}_n$,*

$$\sup_{Z'_i \in \mathcal{Z}_i} |h(Z_1, \dots, Z_{i-1}, Z_i, Z_{i+1}, \dots, Z_n) - h(Z_1, \dots, Z_{i-1}, Z'_i, Z_{i+1}, \dots, Z_n)| \leq c_i.$$

²Sketch: for the γ_2 functional, one may cap the chaining diameter at 1 at any scale $\alpha \in (0, 1]$, absorbing finer scales into an additive α term. By the standard equivalences among the γ_2 functional, admissible trees, and the Fernique–Talagrand integral (see §6.2 of Talagrand (2014)), the truncated and nontruncated forms are equivalent up to absolute constants.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

Figure 3: Hierarchical construction of the data-independent prior π and its role in the pointwise-dimension bound (one single-layer case).

Then for every $t \geq 0$,

$$\Pr(h(Z_1, \dots, Z_n) - \mathbb{E}[h(Z_1, \dots, Z_n)] \geq t) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

Lemma 17 (Hoeffding's inequality, Chapter 2 in Vershynin (2018)) Let Z_1, \dots, Z_n be independent random variables with $a_i \leq Z_i \leq b_i$ almost surely. Then for every $t \geq 0$,

$$\Pr\left(\sum_{i=1}^n Z_i - \mathbb{E}[Z] \geq t\right) \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

Lemma 18 (Bernstein's inequality, Chapter 2 in Vershynin (2018)) Let Z_1, \dots, Z_n be independent mean-zero random variables with $|Z_i| \leq M$ almost surely. Then for every $t \geq 0$,

$$\Pr\left(\sum_{i=1}^n Z_i \geq t\right) \leq \exp\left(-\frac{\frac{1}{2}t^2}{\sum_{i=1}^n \mathbb{E}[Z_i^2] + \frac{1}{3}Mt}\right).$$

D FURTHER EXPLANATIONS AND PROOFS FOR DEEP NEURAL NETWORKS AND RIEMANNIAN DIMENSION (SECTION 3)

D.1 ILLUSTRATIVE FIGURES

For intuition, we illustrate the construction of the prior π in the single-layer case—via the schematic in Figure 3. From a top-down view, the prior π can be generated by first sampling the effective rank r , then a subspace $\bar{\mathcal{V}}$ on the Grassmannian, and finally a weight W inside that subspace. The general L -layer setting is then obtained by applying the same construction independently to each layer and taking a product measure, which is enabled by the layer-wise decomposable structure of neural networks (a consequence of our non-perturbative analysis).

2430 D.2 PROOF OF LEMMA 1 (NON-PERTURBATIVE FEATURE EXPANSION)
24312432 We start with the telescoping decomposition presented in the main paper, which serves as a non-
2433 perturbative replacement of conventional Taylor expansion, where in each summand the only differ-
2434 ence lie in W'_l and W_l .

2435
$$F_L(W', X) - F_L(W, X)$$

2436
2437
$$= \sum_{l=1}^L \underbrace{[\sigma_L(W'_L \cdots W'_{l+1}) \underbrace{\sigma_l}_{\text{by 1}}(W'_l \underbrace{F_{l-1}(W, X)}_{\text{learned feature}})) - \sigma_L(W'_L \cdots W'_{l+1} \sigma_l(W_l \underbrace{F_{l-1}(W, X)}_{\text{learned feature}}))]}_{\text{controlled by } M_{l \rightarrow L}}$$

2438

2439 Applying Cauchy-Schwartz inequality to the above identity, we have
2440

2441
$$\|F(W', X) - F(W, X)\|_{\mathbf{F}}^2 \quad (58)$$

2442

2443
$$\leq \sum_{l=1}^L L \|\sigma_L(W'_L \cdots W'_{l+1} \sigma_l(W'_l F_{l-1}(W, X))) - \sigma_L(W'_L \cdots W'_{l+1} \sigma_l(W_l F_{l-1}(W, X)))\|_{\mathbf{F}}^2 \quad (59)$$

2444

2445 By the definition of local Lipschitz constant in Section 3, for all $W' \in B_{\varrho_n}(W, \varepsilon)$,
2446

2447
$$\begin{aligned} & \|\sigma_L(W'_L \cdots W'_{l+1} \sigma_l(W'_l F_{l-1}(W, X))) - \sigma_L(W'_L \cdots W'_{l+1} \sigma_l(W_l F_{l-1}(W, X)))\|_{\mathbf{F}} \\ & \leq M_{l \rightarrow L}[W, \varepsilon] \|\sigma_l(W'_l F_{l-1}(W, X)) - \sigma_l(W_l F_{l-1}(W, X))\|_{\mathbf{F}}. \end{aligned} \quad (60)$$

2448

2449 Because the activation function σ_l is 1-Lipschitz for each column, we have
2450

2451
$$\|\sigma_l(W'_l F_{l-1}(W, X)) - \sigma_l(W_l F_{l-1}(W, X))\|_{\mathbf{F}} \leq \|(W'_l - W_l) F_{l-1}(W, X)\|_{\mathbf{F}}. \quad (61)$$

2452

2453 Combining (58) (60) and (61), we prove that
2454

2455
$$\|F(W', X) - F(W, X)\|_{\mathbf{F}}^2 \leq \sum_{l=1}^L L \cdot M_{l \rightarrow L}[W, \varepsilon]^2 \cdot \|(W'_l - W_l) F_{l-1}(W, X)\|_{\mathbf{F}}^2.$$

2456

2457 \square
24582459 D.3 METRIC DOMINATION LEMMA
24602461 Our non-perturbative expansion facilitates bounding the pointwise dimension of complex geometries
2462 via metric comparison. By constructing a simpler, dominating metric (i.e., one that is pointwise
2463 larger), we establish that the pointwise dimension of the original geometry is upper bounded by that
2464 of this new, more structured geometry. This ‘‘enlargement’’ for analytical tractability, a concept with
2465 roots in comparison geometry and majorization principles, is operationalized in Lemma 19.
24662467 **Lemma 19 (Metric Domination Lemma)** *For two metrics ϱ_1, ϱ_2 defined on \mathbb{R}^p , if $\varrho_1(W', W) \leq$
2468 $\varrho_2(W', W)$ for all $W' \in B_{\varrho_2}(W, \varepsilon)$, then for any prior $\pi \in \Delta(\mathbb{R}^p)$ and any $\varepsilon > 0$, we have*

2469
$$\log \frac{1}{\pi(B_{\varrho_1}(W, \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_2}(W, \varepsilon))}.$$

2470

2471 **Proof of Lemma 19:** Because $\varrho_1(W', W) \leq \varrho_2(W', W)$ for all $W' \in B_{\varrho_2}(W, \varepsilon)$, we have that
2472

2473
$$B_{\varrho_1}(W, \varepsilon) \supseteq B_{\varrho_2}(W, \varepsilon).$$

2474

2475 So for any prior π on \mathbb{R}^p , monotonicity of measures gives
2476

2477
$$\pi(B_{\varrho_1}(W, \varepsilon)) \geq \pi(B_{\varrho_2}(W, \varepsilon)),$$

2478

2479 this implies
2480

2481
$$\log \frac{1}{\pi(B_{\varrho_1}(W, \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_2}(W, \varepsilon))}.$$

2482

2483 \square 2484 We then state an extension of the metric domination lemma, which turns pointwise dimension in a
2485 high-dimensional space into a lower-dimensional subspace.
2486

2484 **Lemma 20 (Subspace Metric Domination Lemma)** *Given a metric ϱ_1 defined on \mathbb{R}^p a subspace
 2485 $\mathcal{V} \subseteq \mathbb{R}^p$, and a metric ϱ_2 defined on \mathcal{V} . Define the orthogonal projector to subspace \mathcal{V} as $\mathcal{P}_{\mathcal{V}}(W) :=$
 2486 $\arg \min_{\tilde{W} \in \mathcal{V}} \|\tilde{W} - W\|_2$. If there exists $\varepsilon_1 \in (0, \varepsilon)$ such that for every $W' \in \mathcal{V}$,*

$$2488 \quad (\varrho_1(W', W))^2 \leq (\varrho_2(W', \mathcal{P}_{\mathcal{V}}(W)))^2 + \varepsilon_1^2, \quad (62)$$

2489 *then for any prior $\pi \in \Delta(\mathcal{V})$, we have*

$$2491 \quad \log \frac{1}{\pi(B_{\varrho_1}(W, \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_2}(\mathcal{P}_{\mathcal{V}}(W), \sqrt{\varepsilon^2 - \varepsilon_1^2}))}. \quad (63)$$

2494 **Proof of Lemma 20:** By the condition (62), we know

$$2496 \quad B_{\varrho_1}(W, \varepsilon) \supseteq B_{\varrho_1}(W, \varepsilon) \cap \mathcal{V} \supseteq B_{\varrho_2}(\mathcal{P}_{\mathcal{V}}(W), \sqrt{\varepsilon^2 - \varepsilon_1^2}),$$

2498 and this gives the desired conclusion (63) in Lemma 20.

□

2501 D.4 POINTWISE DIMENSION BOUND WITH REFERENCE SUBSPACE

2503 **Set Up of Reference Effective Subspace** Consider the weight space $B_2(R) \subset \mathbb{R}^p$ for vectorized
 2504 weights W , where $B_2(R) := \{w \in \mathbb{R}^p : \|w\|_2 \leq R\}$. Given any fixed $p \times p$ PSD matrix $G(W)$,
 2505 order the eigenvalues $\lambda_1(G(W)), \dots, \lambda_p(G(W))$ nonincreasingly. For notational convenience, we
 2506 suppress the dependence on $G(W)$ and write simply λ_k when no confusion can arise. We denote
 2507 $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$ to be the *effective subspace*—the true top- r_{eff} eigenspace—of $G(W)$. For noti-
 2508 onal convenience, we use r_{eff} as the abbreviation of $r_{\text{eff}}(G(W), R, \varepsilon)$, and \mathcal{V} as an abbreviation of
 2509 $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$ when no confusion can arise.

2510 Assume there is another r -dimensional subspace $\bar{\mathcal{V}}$. We will show that if $\bar{\mathcal{V}}$ approximates \mathcal{V} , then
 2511 using a prior supported on $\bar{\mathcal{V}}$ still yields a valid effective-dimension bound. This observation under-
 2512 pins the hierarchical covering argument in Theorem 3. For a self-contained introduction to subspaces
 2513 (collectively known as the Grassmannian) and their frame parameterizations (the Stiefel manifold);
 2514 see Section E.1, where we translate algebraic and differential-geometric insights into machine learning
 2515 terminology.

2516 **Motivation of Approximate Effective Subspace.** We can view the orthogonal projector to a sub-
 2517 space as a matrix (see the definition via the Stiefel parameterization in (87)), which is consistent with
 2518 the earlier operator notation characterized by ℓ_2 -distance in Lemma 20. Now define the projected
 2519 metric $\varrho_{G(W)}^{\bar{\mathcal{V}}}$ as

$$2521 \quad \varrho_{G(W)}^{\bar{\mathcal{V}}}(W_1, W_2) = \sqrt{(\mathcal{P}_{\bar{\mathcal{V}}}(W_1) - \mathcal{P}_{\bar{\mathcal{V}}}(W_2))^{\top} G(W) (\mathcal{P}_{\bar{\mathcal{V}}}(W_2) - \mathcal{P}_{\bar{\mathcal{V}}}(W_1))} = \sqrt{(W_1 - W_2)^{\top} \mathcal{P}_{\bar{\mathcal{V}}}^{\top} G(W) \mathcal{P}_{\bar{\mathcal{V}}}(W_1 - W_2)}.$$

2523 By the subspace metric dominance lemma (Lemma 20), if $\mathcal{P}_{\bar{\mathcal{V}}}^{\top} G(W) \mathcal{P}_{\bar{\mathcal{V}}}$ approximates $G(W)$, we
 2524 can use prior over $\bar{\mathcal{V}}$ to bound the pointwise dimension and achieve dimension reduction.

2526 We will require the following approximation error condition:

$$2528 \quad \varrho_{\text{proj}, G(W)}(\mathcal{V}, \bar{\mathcal{V}}) = \|G(W)^{\frac{1}{2}} (\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}} \leq \frac{\sqrt{n}\varepsilon}{4R}.$$

2530 In Section E, we systematically study the ellipsoidal covering of Grassmannian, and establish that
 2531 we can *always* find $\bar{\mathcal{V}}$ that approximates \mathcal{V} to the desired precision, with an additional covering cost
 2532 of the Grassmannian bound in the Riemannian Dimension. This generalizes the canonical projection
 2533 metric between subspaces into ellipsoidal set-up.

2534 **Effective Dimension Bound for Approximate Effective Subspace.** We now present the lemma
 2535 that establish effective dimension bound using prior supported on approximate effective subspace
 2536 $\bar{\mathcal{V}}$ (not necessarily the true effective subspace $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$). We state the main result of this
 2537 subsection (Lemma 2 in the main paper).

2538 Consider the weight space $B_2(R) \subset \mathbb{R}^p$ for vectorized weights, and a pointwise ellipsoidal metric
 2539 defined via PSD $G(W)$. Let $\bar{\mathcal{V}} \subseteq \mathbb{R}^p$ be a fixed r -dimensional subspace. Define the prior $\pi_{\bar{\mathcal{V}}} =$
 2540 $\text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}})$. Then, uniformly over all (W, ε) such that the top- r eigenspace \mathcal{V} of $G(W)$
 2541 can be approximated by $\bar{\mathcal{V}}$ to precision
 2542

$$\varrho_{\text{proj}, G(W)}(\mathcal{V}, \bar{\mathcal{V}}) := \|G(W)^{1/2}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}} \leq \frac{\sqrt{n}\varepsilon}{4R}, \quad (64)$$

2543 we have
 2544

$$\log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_G(W)}(W, \sqrt{n}\varepsilon))} \leq \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(G(W), R, \varepsilon)} \log \left(\frac{40R^2\lambda_k(G(W))}{n\varepsilon^2} \right) = d_{\text{eff}}(G(W), \sqrt{5}R, \varepsilon).$$

2545 **Proof of Lemma 2:** Given a fixed PSD matrix $G(W)$ with eigenvalues $\lambda_1 \geq \dots \geq \lambda_p$, denote
 2546 $r_{\text{eff}} = r_{\text{eff}}(G(W), R, \varepsilon)$, and the projected metric $\varrho_{G(W)}^{\bar{\mathcal{V}}}$ on $\bar{\mathcal{V}}$:

$$\varrho_{G(W)}^{\bar{\mathcal{V}}}(W_1, W_2) = \sqrt{(W_1 - W_2)^\top \mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}}(W_1 - W_2)}.$$

2547 Since \mathcal{V} is the top- r_{eff} eigenspace of $G(W)$, by the elementary property of eigendecomposition we
 2548 have that

$$\begin{aligned} G(W) &= \mathcal{P}_{\mathcal{V}}^\top G(W) \mathcal{P}_{\mathcal{V}} + \mathcal{P}_{\mathcal{V}^\perp}^\top G(W) \mathcal{P}_{\mathcal{V}^\perp} \\ &\leq \mathcal{P}_{\mathcal{V}}^\top G(W) \mathcal{P}_{\mathcal{V}} + \lambda_{r_{\text{eff}}+1} \cdot \mathcal{P}_{\mathcal{V}^\perp}^\top \mathcal{P}_{\mathcal{V}^\perp}, \end{aligned} \quad (65)$$

2549 where \mathcal{V}^\perp is orthogonal complement of \mathcal{V} . It is also straightforward to see
 2550

$$\mathcal{P}_{\mathcal{V}}^\top G(W) \mathcal{P}_{\mathcal{V}} \preceq 2\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}} + 2(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})^\top G(W)(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}}). \quad (66)$$

2551 Combining (65) and (66), we have the fundamental loewner order inequality
 2552

$$G(W) \preceq 2\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}} + 2(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})^\top G(W)(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}}) + \lambda_{r_{\text{eff}}+1} \cdot \mathcal{P}_{\mathcal{V}^\perp}^\top \mathcal{P}_{\mathcal{V}^\perp}. \quad (67)$$

2553 In order to apply the subspace metric domination lemma (Lemma 20), we hope to bound $\|W' - W\|_2^2$
 2554 and apply that bound to the two last reminder terms in the right hand side of (67).

2555 To bound $\|W' - W\|_2^2$, we firstly state the following lemma on the eigenvalue of $\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}}$,
 2556 whose proof is deferred until after the current proof.

2557 **Lemma 21 (Eigenvalue Bound for Projected Metric Tensor)** *Assume \mathcal{V} is the top- r eigenspace
 2558 of a PSD matrix Σ with eigenvalues $\lambda_1 \geq \dots \geq \lambda_p$, then for a r -dimensional subspace $\bar{\mathcal{V}}$ we have
 2559 that for $k = 1, 2, \dots, r$,*

$$\lambda_k \geq \lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) \geq \lambda_k/2 - \|\Sigma^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}^2.$$

2560 For every $W' \in B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$, we have $\forall k = 1, \dots, r_{\text{eff}}$,

$$\begin{aligned} \|W' - \mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2^2 &\leq \frac{(W' - \mathcal{P}_{\bar{\mathcal{V}}}(W))^\top \mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}}(W' - \mathcal{P}_{\bar{\mathcal{V}}}(W))}{\lambda_{r_{\text{eff}}}(\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}})} \leq \frac{n\varepsilon^2}{16\lambda_{r_{\text{eff}}}(\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W) \mathcal{P}_{\bar{\mathcal{V}}})} \\ &\leq \frac{n\varepsilon^2}{8\lambda_{r_{\text{eff}}} - 16\|G(W)^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}^2} \leq \frac{1}{3}R^2, \end{aligned} \quad (68)$$

2561 where the first inequality holds because if A is a symmetric positive definite matrix, then for all
 2562 vectors x , we have $x^\top A x \geq \lambda_{\min}(A)\|x\|_2^2$; the second inequality used the condition of $W' \in$
 2563 $B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$; the third inequality uses Lemma 21; and the last inequality uses $\lambda_{r_{\text{eff}}} \geq$
 2564 $\frac{n\varepsilon^2}{2R^2}$ (by definition (10) of effective rank) and the approximation error condition (64). On the other
 2565 hand, we have that $\|W\|_2^2 \leq R^2$, so that for every $W' \in B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$

$$\|W' - W\|_2^2 = \|W' - \mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2^2 + \|\mathcal{P}_{\bar{\mathcal{V}}}^\perp(W)\|_2^2 \leq \frac{4}{3}R^2,$$

2592 combined with (68).
2593

2594 From the fundamental loewner order inequality (67), we establish the desired metric domination
2595 condition: for all $W' \in B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$ and $W \in B_2(R)$,

$$\begin{aligned} & (W' - W)^\top G(W)(W' - W) \\ & \leq (W' - W)^\top (2\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W)\mathcal{P}_{\bar{\mathcal{V}}})(W' - W) + (2\|G(W)\|_{\text{op}}^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}^2 + \lambda_{r_{\text{eff}}+1})\|W' - W\|_2^2 \\ & \leq 2\varrho_{G(W)}^{\bar{\mathcal{V}}}(W', \mathcal{P}_{\bar{\mathcal{V}}}(W))^2 + \frac{5n\varepsilon^2}{6}, \end{aligned}$$

2602 where the first inequality holds because of the loewner order inequality (67) and the property of
2603 operator norm: $x^\top Ax \leq \|A\|_{\text{op}} \cdot \|x\|_2^2$ (one could also apply Lemma 21 to validate $\|\mathcal{P}_{\mathcal{V}_\perp}^\top \mathcal{P}_{\mathcal{V}_\perp}\|_{\text{op}} \leq$
2604 1); and the last inequality uses the fact $\lambda_{r_{\text{eff}}+1} < \frac{n\varepsilon^2}{2R^2}$ (by definition 10 of effective rank) and the
2605 approximation error condition (64). Now we can apply the subspace metric domination lemma
2606 (Lemma 20) and obtain: for any $\pi \in \Delta(\bar{\mathcal{V}})$,

$$\log \frac{1}{\pi(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq \log \frac{1}{\pi(B_{\sqrt{2}\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/\sqrt{6}))} \leq \log \frac{1}{\pi(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4))}. \quad (69)$$

2611 In particular, we choose π to be the uniform prior over $\bar{\mathcal{V}}$:
2612

$$\pi_{\bar{\mathcal{V}}} = \text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}}).$$

2613 Then we aim to prove that $B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4) \subseteq \bar{\mathcal{V}} \cap B_2(1.58R)$. This is true because: 1)
2614 for every $W' \in B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$, (68) suggests $\|W' - \mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2^2 \leq \frac{1}{3}R^2$, and 2) for every
2615 $W \in B_2(R)$, we have $\|\mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2 \leq \|W\|_2 \leq R$. Combining this and the above inequality we have

$$\|W'\|_2 \leq \|W' - \mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2 + \|\mathcal{P}_{\bar{\mathcal{V}}}(W)\|_2 \leq (\sqrt{1/3} + 1)R < 1.58R.$$

2616 This proves that $B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4) \subseteq \bar{\mathcal{V}} \cap B_2(1.58R)$, so we have
2617

$$\log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4))} = \frac{\text{Vol}(\bar{\mathcal{V}} \cap B_2(1.58R))}{\text{Vol}(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4))}. \quad (70)$$

2618 By the change-of-variables theorem in multivariate calculus (Wikipedia contributors, 2025a), the
2619 linear map $T = G(W)^{\frac{1}{2}}$ implies the volume formula for ellipsoid $E = B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4)$
2620 with dimension r_{eff} , eigenvalues $\{\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top G(W)\mathcal{P}_{\bar{\mathcal{V}}})\}_{k=1}^{r_{\text{eff}}}$ and radius $\sqrt{n}\varepsilon/4$

$$\text{Vol}(E) = |\det T|^{-1} \text{Vol}(T(E)) = (\det G(W))^{-1/2} \text{Vol}(B_2(\sqrt{n}\varepsilon/4)) = \left(\prod_{k=1}^{r_{\text{eff}}} \lambda_k \right)^{-1/2} \text{Vol}(B_2(\sqrt{n}\varepsilon/4)),$$

2621 Also by the change-of-variable theorem, we have that the volume of r_{eff} -dimensional isotropic ball
2622 $\mathcal{V} \cap B_2(2R)$ is

$$\text{Vol}(\bar{\mathcal{V}} \cap B_2(1.58R)) = \left(\frac{1.58R}{\sqrt{n}\varepsilon/4} \right)^{r_{\text{eff}}} \text{Vol}(B_2(\sqrt{n}\varepsilon/4)).$$

2623 Hence, applying (69) (70) and combining it with the two above volume equalities, we have
2624

$$\begin{aligned} & \log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(W, \sqrt{n}\varepsilon))} \leq \log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4))} = \log \frac{\text{Vol}(\bar{\mathcal{V}} \cap B_2(1.58R))}{\text{Vol}(B_{\varrho_{G(W)}^{\bar{\mathcal{V}}}}(\mathcal{P}_{\bar{\mathcal{V}}}(W), \sqrt{n}\varepsilon/4))} \\ & \leq \frac{1}{2} \log \frac{(1.58R)^{2r_{\text{eff}}} \prod_{k=1}^{r_{\text{eff}}} \lambda_k}{(\sqrt{n}\varepsilon/4)^{2r_{\text{eff}}}} \leq \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}} \log \frac{40R^2 \lambda_k}{n\varepsilon^2} \\ & = d_{\text{eff}}(G(W), \sqrt{5}R, \varepsilon). \end{aligned}$$

Finally, since the prior construction $\pi_{\bar{\mathcal{V}}} = \text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}})$ only depends on $\bar{\mathcal{V}}$ rather than W and ε , we have that uniformly over all $(W, \varepsilon) \in B_2(R) \times [0, \infty)$ such that $\bar{\mathcal{V}}$ approximates $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$ to the precision (64),

$$\log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq d_{\text{eff}}(G(W), \sqrt{5}R, \varepsilon),$$

which is the claimed bound. \square

Proof of Lemma 21: The Courant–Fischer–Weyl max-min characterization (Wikipedia contributors, 2025b) states that for any Hermitian (i.e. symmetric for real matrices studying here) matrix,

$$\lambda_k(\Sigma) = \max_{\substack{\mathcal{S} \subseteq \mathbb{R}^p \\ \dim \mathcal{S} = k}} \min_{\substack{W \in \mathcal{S} \\ W \neq 0}} \frac{W^\top \Sigma W}{\|W\|_2^2},$$

and we have that for any r -dimensional subspace $\bar{\mathcal{V}}$,

$$\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) = \max_{\substack{\mathcal{S} \subseteq \bar{\mathcal{V}} \\ \dim \mathcal{S} = k}} \min_{\substack{W \in \mathcal{S} \\ W \neq 0}} \frac{W^\top \mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}} W}{\|W\|_2^2},$$

so we have $\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) \leq \lambda_k$ for $k = 1, 2, \dots, r$.

Moreover, by the elementary property of eigendecomposition we have $\lambda_k = \lambda_k(\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}})$, and by the Courant–Fischer–Weyl max-min characterization we know that,

$$\begin{aligned} \lambda_k(\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}}) &= \max_{\substack{\mathcal{S} \subseteq \mathbb{R}^p \\ \dim \mathcal{S} = k}} \min_{\substack{W \in \mathcal{S} \\ W \neq 0}} \frac{W^\top (\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}}) W}{\|W\|_2^2} \\ &\leq \max_{\substack{\mathcal{S} \subseteq \mathbb{R}^p \\ \dim \mathcal{S} = k}} \min_{\substack{W \in \mathcal{S} \\ W \neq 0}} \frac{W^\top (2\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) W + \|\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}} - 2\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}\|_{\text{op}} \|W\|_2^2}{\|W\|_2^2} \\ &= 2\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) + \|\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}} - 2\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}\|_{\text{op}} \\ &\leq 2\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) + 2\|(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})^\top \Sigma (\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}, \end{aligned}$$

where the first inequality is because for every fixed S and W we have $W^\top (\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}}) W \leq W^\top (2\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) W + \|\mathcal{P}_{\mathcal{V}}^\top \Sigma \mathcal{P}_{\mathcal{V}} - 2\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}\|_{\text{op}} \|W\|_2^2$; and the last inequality is due to (66). Therefore we have

$$\lambda_k(\mathcal{P}_{\bar{\mathcal{V}}}^\top \Sigma \mathcal{P}_{\bar{\mathcal{V}}}) \geq \lambda_k/2 - \|\Sigma^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}^2.$$

\square

D.5 PROOF OF RIEMANNIAN DIMENSION BOUND FOR DNN (THEOREM 3)

In the language of Riemannian geometry (Jost, 2008), we regard a pointwise PSD, matrix-valued function $G(W)$ as a (possibly degenerate) *metric tensor*; such a $G(W)$ endows the parameter space $\mathbb{R}^{\sum_{l=1}^L d_{l-1} d_l}$ with a (semi-)Riemannian manifold structure. The pointwise ellipsoidal metric in (9) belongs to the following family of block-decomposable metric tensors.

Definition 3 (Metric Tensor of NN-surrogate Type) A metric tensor $G(W)$ (pointwise PSD-valued function of size $\sum_{l=1}^L d_{l-1} d_l \times \sum_{l=1}^L d_{l-1} d_l$) is of “NN-surrogate” type if $G(W)$ is in the form

$$G(W) = \text{blockdiag}(A_1(W) \otimes I_{d_1}, \dots, A_l(W) \otimes I_{d_l}, \dots, A_L(W) \otimes I_{d_L})$$

where $A_l(W) \in \mathbb{R}^{d_{l-1} \times d_{l-1}}$.

By Lemma 1, the non-perturbative feature expansion gives rise to the metric tensor $G_{\text{NP}}(W)$ defined in (9); $G_{\text{NP}}(W)$ belongs to the “NN-surrogate” class. We first record some elementary decomposition properties for this family of NN-surrogate metric tensors, and then prove Theorem 3.

2700 D.5.1 DECOMPOSITION PROPERTIES OF NN-SURROGATE METRIC TENSOR
27012702 The NN-surrogate metric tensor $G(W)$ in Definition 3 has decomposition properties described by
2703 the next lemma.
27042705 **Lemma 22 (Decomposition Properties of NN-surrogate Metric Tensor)** *Given a NN-surrogate
2706 metric tensor $G(W)$ defined in Definition 3, for every W , we have the following decomposition
2707 properties: First, the effective rank and dimension decompose to*
2708

2709
$$r_{\text{eff}}(G(W), R, \varepsilon) = \sum_{l=1}^L d_l \cdot r_{\text{eff}}(A_l(W), R, \varepsilon);$$

2710
2711
$$d_{\text{eff}}(G(W), R, \varepsilon) = \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), R, \varepsilon).$$

2712
2713

2714 Second, denote $\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon)$ the effective subspace (i.e., the top- $r_{\text{eff}}(A_l(W), R, \varepsilon)$ eigenspace)
2715 of $A_l(W)$. Then the effective subspace of $G(W)$ is
2716

2717
$$\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon) = \mathcal{V}_{\text{eff}}(A_1(W), R, \varepsilon)^{d_1} \times \cdots \times \mathcal{V}_{\text{eff}}(A_L(W), R, \varepsilon)^{d_L}.$$

2718

2719 **Proof of Lemma 22.** It is straightforward to see that, first, the effective rank of the fixed matrix
2720 $G(W)$ is
2721

2722
$$\begin{aligned} & r_{\text{eff}}(G(W), R, \varepsilon) \\ &= \max\{k : 2\lambda_k(G(W))R^2 \geq n\varepsilon^2\} \\ &= \sum_{l=1}^L \max\{k : 2\lambda_k(A_l(W) \otimes I_{d_l})R^2 \geq n\varepsilon^2\} \\ &= \sum_{l=1}^L d_l \max\{k : 2\lambda_k(A_l(W))R^2 \geq n\varepsilon^2\} \\ &= \sum_{l=1}^L d_l \cdot r_{\text{eff}}(A_l(W), R, \varepsilon); \end{aligned}$$

2733 and the effective dimension of the fixed matrix $G(W)$ is
2734

2735
$$\begin{aligned} & d_{\text{eff}}(G(W), R, \varepsilon) \\ &= \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(G(W), R, \varepsilon)} \log \left(\frac{8R^2 \lambda_k(G(W))}{n\varepsilon^2} \right) \\ &= \sum_{l=1}^L \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(A_l(W) \otimes I_{d_l}, R, \varepsilon)} \log \left(\frac{8R^2 \lambda_k(A_l(W) \otimes I_{d_l})}{n\varepsilon^2} \right) \\ &= \sum_{l=1}^L d_l \cdot \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}(A_l(W), R, \varepsilon)} \log \left(\frac{8R^2 \lambda_k(A_l(W))}{n\varepsilon^2} \right) \\ &= \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), R, \varepsilon). \end{aligned}$$

2748 Second, as the effective subspace of the matrix tensor product $A_l(W) \otimes I_{d_l}$ is subspace ten-
2749 sor product $\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon)^{d_l}$, the effective subspace for NN-surrogate metric tensor $G(W) =$
2750 $\text{blockdiag}(\cdots; A_l(W) \otimes I_{d_l}; \cdots)$ is
2751

2752
$$\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon) := \mathcal{V}_{\text{eff}}(A_1(W), R, \varepsilon)^{d_1} \times \cdots \times \mathcal{V}_{\text{eff}}(A_L(W), R, \varepsilon)^{d_L}.$$

2753

□

2754 D.5.2 PROOF OF THEOREM 3
2755

2756 We firstly prove the following result, which is almost Theorem 3, with the only difference being
2757 that the radius in the effective dimension depends on the global radius R rather than the pointwise
2758 Frobenius norm $\|W\|_{\mathbf{F}}$. Extending this result to Theorem 3 can be achieved via a simple application
2759 of the “uniform pointwise convergence” principle (Xu & Zeevi, 2025) illustrated in Lemma 4.

2760 **Lemma 23 (Riemannian Dimension for NN-surrogate Metric Tensor—Global Radius Version)**
2761 Consider the NN-surrogate metric tensor in Definition 3, and the weight space $B_{\mathbf{F}}(R)$. Then we
2762 have that the pointwise dimension is bounded by the pointwise Riemannian Dimension as the
2763 following: there exists a prior π such that uniformly over all $W \in B_{\mathbf{F}}(R)$,

$$2764 \log \frac{1}{\pi(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq \sum_{l=1}^L \left(\underbrace{d_l \cdot d_{\text{eff}}(A_l(W), CR, \varepsilon)}_{\text{“must pay” cost at each } W} + \underbrace{d_{l-1} \cdot d_{\text{eff}}(A_l(W), CR, \varepsilon)}_{\text{covering cost of Grassmannian}} + \underbrace{\log(d_{l-1})}_{\text{covering cost of } r_{\text{eff}} \in [d_{l-1}]} \right),$$

2765 where $C > 0$ is an absolute constant.

2766 **Proof of Lemma 23:** The proof has two key steps: 1. Hierarchical covering argument, and 2.
2767 Bound covering Cost of the Grassmannian. A crucial lemma about the ellipsoidal covering of the
2768 Grassmannian, which is new even in the pure mathematics context, is deferred to Section E.

2769 **Step 1: Hierarchical Covering.** As explained the main paper, the major difficulty is that the prior
2770 measure $\pi_{\mathcal{V}}$ it constructed, is defined over the effective subspace \mathcal{V} , which itself encodes information
2771 of the point W and $\varepsilon > 0$. The goal of our proof is to construct a “universal” prior π that does not
2772 depend on \mathcal{V} . This is achieved via a hierarchical covering argument (13), which we make rigorous
2773 below.

2774 The key idea of hierarchical covering is as follows: Firstly, for all W , we search for subspace $\bar{\mathcal{V}}$
2775 that approximates the true effective subspace (top- r_{eff} eigenspace) $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$ to the precision
2776 required by (64):

$$2777 \quad \|G(W)^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}} \leq \frac{\sqrt{n}\varepsilon}{4R}, \quad (71)$$

2778 where $G(W)^{\frac{1}{2}}$ is the unique square root of PSD matrix $G(W)$ (see, e.g, (Wikipedia contributors,
2779 2025d)). Then by Lemma 2 (Pointwise Dimension Bound for Nonlinear Manifold with Approximate
2780 Effective Subspace), for every $(W, \varepsilon) \in B_2(R) \times [0, \infty)$ such that $\bar{\mathcal{V}}$ approximates $\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon)$
2781 to the precision (71), the prior $\pi_{\bar{\mathcal{V}}} = \text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}})$ satisfies

$$2782 \quad \log \frac{1}{\pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq d_{\text{eff}}(G(W), \sqrt{5}R, \varepsilon) = \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), \sqrt{5}R, \varepsilon), \quad (72)$$

2783 where the first inequality is by Lemma 2 (see definition (11) of effective dimension); and the last
2784 equality is by the decomposition property of NN-surrogate metric tensor (Lemma 22).

2785 Secondly, we put a prior μ over all possible subspaces \mathcal{V} and construct the “universal” prior

$$2786 \quad \pi(W) = \sum_{\mathcal{V}} \mu(\mathcal{V}) \times \pi_{\mathcal{V}}(W), \quad (73)$$

2787 which implies that uniformly over all $W \in B_{\mathbf{F}}(R)$,

$$\begin{aligned} 2788 \quad & \log \frac{1}{\pi(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \\ 2789 \quad &= \log \frac{1}{\sum_{\mathcal{V}} \mu(\mathcal{V}) \pi_{\mathcal{V}}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \\ 2790 \quad &\leq \log \frac{1}{\mu(\bar{\mathcal{V}} : \bar{\mathcal{V}} \text{ satisfies (71)}) \inf_{\mathcal{V} \text{ satisfies (71)}} \pi_{\bar{\mathcal{V}}}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \\ 2791 \quad &\leq \log \underbrace{\frac{1}{\mu(\bar{\mathcal{V}} : \bar{\mathcal{V}} \text{ satisfies (71)})}}_{\text{covering cost of the Grassmannian}} + \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), \sqrt{5}R, \varepsilon), \end{aligned} \quad (74)$$

2808 where the first equality is by definition (73) of the “universal” prior π ; the first inequality is straight-
 2809 forward; and the last inequality is by (72) (the result of the “must pay” part in the hierarchical
 2810 covering) and the equivalence between $B_2(R)$ and $B_F(R)$.

2811 The above hierarchical covering argument successfully gives a valid Riemannian Dimension, with
 2812 the cost of the additional covering cost given by the subspace prior μ . This explains our basic proof
 2813 idea. The remaining proof executes this basic proof idea.

2815 **Step 2: Bounding Covering Cost of the Grassmannian.** Section E provides a systematical study
 2816 to the ellipsoidal metric entropy of Grassmannian manifold, which we detail the conclusion below.

2817 Define

$$2819 \text{Gr}(d, r) := \{r\text{-dimensional linear subspaces of } \mathbb{R}^d\}$$

2820 as the *Grassmannian manifold*.

2821 Given a $d \times d$ PSD Σ , define the anisometric projection metric between two subspaces by (labeled
 2822 as Definition 4 in Section E)

$$2823 \varrho_{\text{proj}, \Sigma}(\mathcal{V}, \bar{\mathcal{V}}) = \|\Sigma^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}, \quad (75)$$

2824 where $\Sigma^{\frac{1}{2}}$ is the square root of the PSD matrix Σ (see, e.g., (Wikipedia contributors, 2025d)).

2826 Lemma 3 states that (note that we use ε_1 and C_0 here instead of ε and C in the original statement of
 2827 Lemma 3), given a Grassmannian $\text{Gr}(d, r)$, for uniform prior $\mu = \text{Unif}(\text{Gr}(d, r))$, we have that for
 2828 every $\mathcal{V} \in \text{Gr}(d, r)$, every $\varepsilon_1 > 0$ and PSD matrix $\Sigma \in \mathbb{R}^{d \times d}$ with eigenvalues $\lambda_1 \geq \dots \geq \lambda_d \geq 0$, we
 2829 have the pointwise dimension bound

$$2830 \log \frac{1}{\mu(B_{\varrho_{\text{proj}, \Sigma}}(\mathcal{V}, \varepsilon_1))} \leq \frac{d-r}{2} \sum_{k=1}^r \log \frac{C_0 \max\{\lambda_k, \varepsilon_1^2\}}{\varepsilon_1^2} + \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{C_0 \max\{\lambda_k, \varepsilon_1^2\}}{\varepsilon_1^2}, \quad (76)$$

2832 where $C_0 > 0$ is an absolute constant. We will use the result (76) and (74) to prove Theorem 3.

2834 For a particular layer l , $d_{l-1} \times d_{l-1}$ PSD matrix $A_l(W)$, and a fixed rank r_l denote $\text{Gr}(d_{l-1}, r_l)$ as
 2835 a Grassmannian (the collection of all r_l -dimensional in $\mathbb{R}^{d_{l-1}}$). By (76) we have that there exists
 2836 a prior μ_l over $\text{Gr}(d_{l-1}, r_l)$ such that for every (W, ε_1) such that $r_{\text{eff}}(A_l(W), R, \varepsilon_1) = r_l$, and
 2837 $\lambda_{r_l+1}(A_l(W)) \leq c\varepsilon_1^2 \leq \lambda_{r_l}(A_l(W))$ where $c \geq 1$ can be any absolute constants no smaller than 1
 2838 (later we will specialize to $c = 8$),

$$2839 \log \frac{1}{\mu_l(\bar{\mathcal{V}} : \varrho_{\text{proj}, A_l(W)}(\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon), \bar{\mathcal{V}}) \leq \varepsilon_1)} \leq \frac{d_{l-1}}{2} \sum_{k=1}^{r_l} \log \frac{C_1 \lambda_k(A_l(W))}{\varepsilon_1^2}, \quad (77)$$

2841 where $C_1 = c \max\{C_0, 1\} \geq 1$ is an absolute constant depending only on the absolute constant c
 2842 (later we take $c = 8$ so $C_1 = 8 \max\{C_0, 1\}$ is indeed an absolute constant). (77) is because: 1) all
 2843 eigenvalues with index at least $r_l + 1$ (each no larger than $c\varepsilon_1^2$) contribute only through the second
 2844 term in (76). Their cumulative effect is at most

$$2846 \mathbb{1}\{d_{l-1} - r_l > r_l\} \cdot \frac{r_l}{2} \sum_{k=r_l+1}^{d_{l-1}-r_l} \log \frac{C_0 c \varepsilon_1^2}{\varepsilon_1^2} = \frac{r_l \max\{d_{l-1} - 2r_l, 0\}}{2} \log C_0 c \leq \frac{r_l(d_{l-1} - r_l)}{2} \log C_0 c$$

2848 unaffected to the spectrum, and we absorb this into the absolute constant C_1 . And 2) all eigenvalues
 2849 with index at most r_l ’s contribution leads to at most

$$2851 \frac{d_{l-1} - r_l}{2} \sum_{k=1}^{r_l} \log \frac{C_0 \lambda_k(A_l(W))}{\varepsilon_1^2} + \frac{r_l}{2} \sum_{k=1}^{\max\{r_l, d_{l-1}-r_l\}} \log \frac{C_0 \lambda_k(A_l(W))}{\varepsilon_1^2} \leq \frac{d_{l-1}}{2} \sum_{k=1}^{r_l} \log \frac{\max\{C_0, 1\} \lambda_k(A_l(W))}{\varepsilon_1^2}.$$

2853 Summing up the contributions two parts of the spectrum together, we get the right hand side of (77).

2854 By the subspace decomposition property in Lemma 22, we have that for $\bar{\mathcal{V}} = (\dots, \underbrace{\bar{\mathcal{V}}_l, \dots, \bar{\mathcal{V}}_l}_{\text{repeat } d_l \text{ times}}, \dots)$,

$$2857 \varrho_{\text{proj}, G(W)}(\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon), \bar{\mathcal{V}}) \\ 2858 = \varrho_{\text{proj}, G(W)}\left(\prod_{l=1}^L \mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon)^{d_l}, \prod_{l=1}^L \bar{\mathcal{V}}_l^{d_l}\right) \\ 2860 = \max_l \varrho_{\text{proj}, A_l(W)}(\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon), \bar{\mathcal{V}}_l), \quad (78)$$

2862 where the first equality is by Lemma 22, and the second equality is by the properties of the spectral
 2863 norm: $\|\text{blockdiag}(A, B)\|_{\text{op}} = \max\{\|A\|_{\text{op}}, \|B\|_{\text{op}}\}$ and $\|A \otimes I_d\|_{\text{op}} = \|A\|_{\text{op}}$.
 2864

2865 Taking $\varepsilon_1 = \frac{\sqrt{n}\varepsilon}{4R}$, by definition (10) on the threshold to determine effective rank, we obtain
 2866 $\lambda_{r_l+1}(A_l(W)) \leq 8\varepsilon_1^2 = n\varepsilon^2/(2R^2) \leq \lambda_{r_l}(A_l(W))$, thus this particular choice satisfies the re-
 2867 quired eigenvalue condition to establish (77) with $c = 8$. Then for all layers $l = 1, \dots, L$, given a
 2868 fixed $\{r_1, \dots, r_L\}$, by (77), we have that there exists a prior
 2869
 2870

$$2871 \mu_{\{r_l\}_{l=1}^L} = \mu_1^{d_1} \otimes \dots \otimes \mu_L^{d_L} = \prod_{l=1}^L (\underbrace{\mu_l \otimes \dots \otimes \mu_l}_{d_l \text{ times}}) \quad (79)$$

2875 over the product Grassmannian $\text{Gr}(d_0, r_1)^{d_1} \times \dots \times \text{Gr}(d_{L-1}, r_L)^{d_L}$ such that uniformly over all
 2876 $W \in B_{\mathbf{F}}(R)$ such that $r_{\text{eff}}(A_l(W), R, \varepsilon) = r_l, \forall l \in [L]$ (here $[L]$ is the notation of $\{1, 2, \dots, L\}$),
 2877 the “Grassmannian covering cost” term in (74) is bounded by
 2878

$$\begin{aligned} 2879 \log \frac{1}{\mu(\bar{\mathcal{V}} : \bar{\mathcal{V}} \text{ satisfies (71)})} \\ 2880 &= \log \frac{1}{\mu_{\{r_l\}_{l=1}^L}(\bar{\mathcal{V}} : \varrho_{\text{proj}, G(W)}(\mathcal{V}_{\text{eff}}(G(W), R, \varepsilon), \bar{\mathcal{V}}) \leq \frac{\sqrt{n}\varepsilon}{4R} = \varepsilon_1)} \\ 2881 &\leq \log \frac{1}{\mu_{\{r_l\}_{l=1}^L}((\dots, \underbrace{\bar{\mathcal{V}}_l, \dots, \bar{\mathcal{V}}_l}_{d_l \text{ times}}, \dots) : \varrho_{\text{proj}, A_l(W)}(\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon), \bar{\mathcal{V}}_l) \leq \varepsilon_1, \forall l \in [L])} \\ 2882 &= \sum_{l=1}^L \log \frac{1}{\mu_{\{r_l\}_{l=1}^L}(\dots, \bar{\mathcal{V}}_l, \dots) : \varrho_{\text{proj}, A_l(W)}(\mathcal{V}_{\text{eff}}(A_l(W), R, \varepsilon), \bar{\mathcal{V}}_l) \leq \varepsilon_1} \\ 2883 &\leq \sum_{l=1}^L \frac{d_{l-1}}{2} \sum_{k=1}^{r_l} \log \frac{C_1 \lambda_k(A_l(W))}{\varepsilon_1^2} \\ 2884 &\leq \sum_{l=1}^L d_{l-1} d_{\text{eff}}(A_l(W), \sqrt{2C_1}R, \varepsilon), \end{aligned} \quad (80)$$

2885 where the first inequality is by restricting $\bar{\mathcal{V}}$ to the form $\prod_{l=1}^L \bar{\mathcal{V}}_l^{d_l}$ and using (78); the second equality
 2886 is by the choice of the product prior (79); the second inequality is by the layer-wise covering bound
 2887 (77); and the last inequality is by the choice $\varepsilon_1 = \sqrt{n}\varepsilon/(4R)$, and definition (11) of effective
 2888 dimension.

2889 Note that (80) is uniformly over all $W \in B_{\mathbf{F}}(R)$ such that $r_{\text{eff}}(A_l(W), R, \varepsilon) = r_l, \forall l \in [L]$, not
 2890 uniformly over all $W \in B_{\mathbf{F}}(R)$. We would like to extend (80) to all $W \in B_{\mathbf{F}}(R)$ over uniform prior
 2891 over possible integer values of r_l . Now assign uniform prior over $[d_{l-1}] = \{1, \dots, d_{l-1}\}$ for r_l , we
 2892 obtain the “universal” prior π (as we have pursued in our hierarchical covering argument (73))
 2893 defined by
 2894

$$\begin{aligned} 2895 \mu(\mathcal{V}) &= \prod_{l=1}^L \underbrace{\text{Unif}([d_{l-1}])}_{\text{prior of } r_l} \otimes \underbrace{\mu_{\{r_k\}_{k=1}^L}}_{\text{prior over product Grassmannian in (79)}}, \\ 2896 \pi(W) &= \sum_{\mathcal{V}} \underbrace{\mu(\mathcal{V})}_{\text{prior over subspaces defined above}} \otimes \underbrace{\text{Unif}(B_2(1.58R) \cap \bar{\mathcal{V}})}_{\text{uniform prior constrained in subspace}}. \end{aligned} \quad (81)$$

2916 Then we have that uniformly over all $W \in B_{\mathbf{F}}(R)$,
 2917

$$\begin{aligned}
 2918 \quad & \log \frac{1}{\pi(B_{\varrho_G(W)}(W, \sqrt{n}\varepsilon))} \\
 2919 \quad & \leq \log \frac{1}{\mu(\bar{\mathcal{V}} : \bar{\mathcal{V}} \text{ satisfies (71)})} + \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), \sqrt{5}R, \varepsilon)) \\
 2920 \quad & \leq \sum_{l=1}^L \log d_{l-1} + \log \frac{1}{\mu_{\{r_k\}_{k=1}^L}(\bar{\mathcal{V}} : \bar{\mathcal{V}} \text{ satisfies (71)})} + \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), \sqrt{5}R, \varepsilon)) \\
 2921 \quad & \leq \sum_{l=1}^L \log d_{l-1} + \sum_{l=1}^L d_{l-1} \cdot d_{\text{eff}}(A_l(W), \sqrt{2C_1}R, \varepsilon) + \sum_{l=1}^L d_l \cdot d_{\text{eff}}(A_l(W), \sqrt{5}R, \varepsilon)),
 \end{aligned}$$

2922 where $C_1 > 0$ is an absolute constant. Here the first inequality is by the hierarchical covering
 2923 argument (74); the second inequality is by the prior construction (81); and the third inequality is by
 2924 the Grassmannian covering bound (80) for fixed $\{r_k\}_{k=1}^L$. This shows that for NN-surrogate metric
 2925 tensor $G(W)$, the pointwise dimension is bounded by the Riemannian Dimension as the following:
 2926

$$2927 \quad \log \frac{1}{\pi(B_{\varrho_G(W)}(W, \sqrt{n}\varepsilon))} \leq \sum_{l=1}^L (d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), CR, \varepsilon) + \log(d_{l-1}),$$

2928 where C is a positive absolute constant. This finishes the proof of Lemma 23 with R in effective
 2929 dimension being a global upper bound of $\|W\|_{\mathbf{F}}$.
 2930 \square

2931 **Proof of Theorem 3:** Motivated by the ‘‘uniform pointwise convergence’’ principle (proposed
 2932 in Xu & Zeevi (2025) and illustrated in Lemma 4), we apply a peeling argument to adapt the
 2933 Riemannian Dimension to $\|W\|_{\mathbf{F}}$. Given any $R_0 \in (0, R]$, we take $R_k = 2^k R_0$ for $k =$
 2934 $0, 1, \dots, \log_2 \lceil R/R_0 \rceil$. Taking a uniform prior on these R_k , and set
 2935

$$2936 \quad \tilde{\pi} = \underbrace{\text{Unif}(\{R_0, \dots, 2^{\log_2 \lceil R/R_0 \rceil} R_0\})}_{\text{prior over upper bound } \tilde{R} \text{ of } \|W\|_{\mathbf{F}}} \otimes \underbrace{\pi_{\tilde{R}}}_{\text{prior defined via (81)}}, \quad 2937$$

2938 where $\pi_{\tilde{R}}$ is the prior defined via (81) in the proof of Lemma 23. Then for every $W \in B_{\mathbf{F}}(R)$ where
 2939 $\|W\|_{\mathbf{F}} > R_0$, denote $k(W)$ to be the integer such that $2^{k(W)} R_0 < \|W\|_{\mathbf{F}} \leq 2^{k(W)+1} R_0$, then
 2940

$$\begin{aligned}
 2941 \quad & \log \frac{1}{\tilde{\pi}(B_{\varrho_G(W)}(W, \sqrt{n}\varepsilon))} \\
 2942 \quad & \leq \underbrace{\log \log_2 \lceil R/R_0 \rceil}_{\text{density of } 2^{k(W)+1} R_0} + \underbrace{\log \frac{1}{\pi_{2^{k(W)+1} R_0}(B_{\varrho_G(W)}(W, \sqrt{n}\varepsilon))}}_{\text{is constructed via (81), with global radius taken to be } 2^{k(W)+1} R_0} \\
 2943 \quad & \leq \log \log_2 \lceil R/R_0 \rceil + \sum_{l=1}^L ((d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), C_1 2^{k(W)+1} R_0, \varepsilon) + \log d_{l-1}) \\
 2944 \quad & \leq \log \log_2 \lceil R/R_0 \rceil + \sum_{l=1}^L ((d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), C_1 \cdot 2\|W\|_{\mathbf{F}}, \varepsilon) + \log d_{l-1}),
 \end{aligned}$$

2945 where the first inequality is due to the product construction of $\tilde{\pi}$; the second inequality is due to
 2946 Lemma 23, with $C_1 > 0$ being an absolute constant; and the last inequality uses the fact $\|W\|_{\mathbf{F}} \leq$
 2947 $2^{k(W)+1} R_0 \leq 2\|W\|_{\mathbf{F}}$, with $C_1 > 0$.
 2948

2970 The above bound assumes $\|W\|_{\mathbf{F}} > R_0$. When $\|W\|_{\mathbf{F}} \leq R_0$, we directly apply Lemma 23 and
 2971 obtain

$$\begin{aligned}
 2973 \quad & \log \frac{1}{\tilde{\pi}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \\
 2974 \quad & \leq \underbrace{\log \log_2 \lceil R/R_0 \rceil}_{\text{density of } R_0} + \underbrace{\log \frac{1}{\pi_{R_0}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))}}_{\pi \text{ is constructed via (81), with global radius taken to be } R_0} \\
 2975 \quad & \leq \log \log_2 \lceil R/R_0 \rceil + \sum_{l=1}^L (d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), C_1 \cdot R_0, \varepsilon) + \log d_{l-1}.
 \end{aligned}$$

2982 Combining the two cases discussed above, we conclude that the pointwise dimension for NN-
 2983 surrogate metric tensor $G(W)$ in Definition 3 is bounded by the Riemannian Dimension

$$\begin{aligned}
 2984 \quad & \log \frac{1}{\tilde{\pi}(B_{\varrho_{G(W)}}(W, \sqrt{n}\varepsilon))} \leq d_{\mathbf{R}}(W, \varepsilon) \\
 2985 \quad & = \sum_{l=1}^L (d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), C \max\{\|W\|_{\mathbf{F}}, R_0\}) + \log(d_{l-1} \log_2 \lceil R/R_0 \rceil),
 \end{aligned}$$

2990 where $C = 2C_1$ is a positive absolute constant.

2991 Finally, by the sentence below (9) (which is a straightforward result from non-perturbative feature
 2992 expansion for DNN (Lemma 1) and the metric domination lemma (Lemma 19)), we know that there
 2993 exists a prior $\tilde{\pi}$ such that uniformly over all $W \in B_{\mathbf{F}}(R)$,

$$\begin{aligned}
 2994 \quad & \log \frac{1}{\tilde{\pi}(B_{\varrho_n}(f(W, \cdot), \varepsilon))} \leq \log \frac{1}{\tilde{\pi}(B_{\varrho_{G_{\text{NP}}}(W)}(W, \sqrt{n}\varepsilon))} \\
 2995 \quad & \leq d_{\mathbf{R}}(W, \varepsilon) = \sum_{l=1}^L (d_l + d_{l-1}) \cdot d_{\text{eff}}(A_l(W), C \max\{\|W\|_{\mathbf{F}}, R_0\}) + \log(d_{l-1} \log_2 \lceil R/R_0 \rceil),
 \end{aligned}$$

3001 where $A_l(W) = LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X)F_{l-1}^\top(W, X)$ when taking $G(W)$ to be $G_{\text{NP}}(W)$ de-
 3002 fined in (9). Taking $R_0 = R/2^n$ proves Theorem 3. □

3006 E ELLIPSOIDAL COVERING OF THE GRASSMANNIAN (LEMMA 3)

3008 The central goal of this section is to prove the following result on the ellipsoidal metric entropy of
 3009 the Grassmannian manifold. The definition for Gr (Grassmannian manifold), St (Stiefel parameter-
 3010 ization manifold) are temporarily deferred to Section E.1.

3011 **Definition 4 (Ellipsoidal Projection Metric)** For two subspaces $\mathcal{V}, \bar{\mathcal{V}} \in \text{Gr}(d, r)$, and a positive
 3012 semidefinite matrix Σ , define the ellipsoidal projection metric $\varrho_{\text{proj}, \Sigma}$ by

$$3014 \quad \varrho_{\text{proj}, \Sigma}(\mathcal{V}, \bar{\mathcal{V}}) = \|\Sigma^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}},$$

3016 where $\mathcal{P}_{\mathcal{V}}$ and $\mathcal{P}_{\bar{\mathcal{V}}}$ are orthogonal projectors to subspace \mathcal{V} and $\bar{\mathcal{V}}$, respectively.

3018 We view orthogonal projectors as matrices (see the definition via the Stiefel parameterization in
 3019 (87)), consistent with the earlier operator notation characterized by ℓ_2 -distance in Lemma 20. In the
 3020 isotropic case $\Sigma = I_d$, the ellipsoidal projection metric reduces to the standard isotropic projection
 3021 metric

$$3022 \quad \varrho_{\text{proj}}(\mathcal{V}, \bar{\mathcal{V}}) = \|\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}}\|_{\text{op}}.$$

3023 We now state our main result in this section (Lemma 3 in the main paper).

3024 Consider the Grassmannian $\text{Gr}(d, r)$ and the uniform prior $\mu = \text{Unif}(\text{Gr}(d, r))$, then for every
 3025 $\mathcal{V} \in \text{Gr}(d, r)$, every $\varepsilon > 0$ and every PSD matrix Σ with eigenvalues $\lambda_1 \geq \dots \lambda_d \geq 0$, we have
 3026

$$3027 \log \frac{1}{\mu(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon))} \leq \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2}, \quad (82)$$

3029 where $C > 0$ is an absolute constant.

3031 Recall that the traditional covering number bound for the Grassmannian manifold states that
 3032

$$3033 \left(\frac{C}{\varepsilon}\right)^{r(d-r)} \leq N(\text{Gr}(d, r), \varrho_{\text{proj}}, \varepsilon) \leq \left(\frac{C}{\varepsilon}\right)^{r(d-r)}. \quad (83)$$

3035 Here $N(\mathcal{F}, \varrho, \varepsilon)$ is the standard covering number—the smallest size of an ε -net that covers \mathcal{F} under
 3036 the metric ϱ ; see Definition 5 for details. In comparison, Lemma 3 is much more challenging than
 3037 proving classical isotropic covering number bounds (83) because
 3038

- 3039 • 1) we consider ellipsoidal metric;
- 3040 • 2) we require the prior μ to be independent with Σ and ε .

3042 We need to firstly understand how such classical results are proved, and then proceed to generalized
 3043 them. This suggests that deep mathematical insights are necessary for the purpose to study neural
 3044 networks generalization, as we will introduce below.

3045 **From Pure Mathematics to Machine Learning Language.** Understanding the classical proof
 3046 for the Grassmannian and generalizing them to prove Lemma 3 necessitate the a deep dive in
 3047 to the geometry and algebra of subspaces and Grassmannians. In fact, traditional treatments to
 3048 study Grassmannian manifold often invoke advanced machinery—ranging from differential geom-
 3049 etry (Bendokat et al., 2024) and Lie-group theory (Szarek, 1997) to algebraic geometry (Devriendt
 3050 et al., 2024), and the seminal covering number proof (Szarek, 1997) is particularly stated in Lie-
 3051 algebra and differential-geometry language.

3052 Motivated by the subsequent covering number proof (Pajor, 1998) that uses relatively more elemen-
 3053 tary language, we give an exposition that is elementary and entirely self-contained, relying only
 3054 on matrix-analysis and learning-theoretic techniques familiar from machine learning. In particular,
 3055 every “advanced” fact—for example, the group theory of continuous symmetries traditionally han-
 3056 dled via Lie groups—is derived by elementary means (explicit matrix parameterizations, principal-
 3057 angle/cosine-sine representations, and basic spectral arguments) while preserving the high-level geo-
 3058 metric intuition. We hope that this versatile framework—and our novel contributions (e.g., Defini-
 3059 tion 4 and Lemma 3), which are new even in a pure-mathematics setting—will establish subspaces,
 3060 the Grassmannian, and their underlying algebraic structures as powerful tools for future machine
 3061 learning applications.

3062 **Effective Rank vs. Full-Spectrum Complexity.** Consider a covariance matrix Σ with eigenvalues
 3063 $\lambda_1 \geq \dots \lambda_d \geq 0$. By Definition 4, the ellipsoidal metric satisfies

$$3064 \varrho_{\text{proj}, \Sigma}(\mathcal{V}, \bar{\mathcal{V}}) \leq \lambda_1^{\frac{1}{2}} \varrho_{\text{proj}}(\mathcal{V}, \bar{\mathcal{V}}).$$

3067 If one is willing to accept a coarser complexity scaling, then one could invoke existing Grassmannian
 3068 covering results under the canonical isotropic metric (83) (taking $\mu = \text{Unif}(\text{Gr}(d, r))$) and obtain
 3069

$$3070 \log \frac{1}{\mu(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon))} \leq \log \frac{1}{\mu(B_{\varrho_{\text{proj}}}(\mathcal{V}, \varepsilon/\sqrt{\lambda_1}))} \leq (d - r_{\text{eff}}(\Sigma, R, \varepsilon)) r_{\text{eff}}(\Sigma, R, \varepsilon) \log \frac{C \lambda_1}{\varepsilon^2}. \quad (84)$$

3073 However, this makes the *global atlas* cost dominate the *local chart* cost, yielding a suboptimal
 3074 bound than the full-spectrum effective dimension in (82). The refined analysis in this section—also
 3075 simplifying and strengthening the isotropic route—establishes the correct structural principle: the
 3076 global-atlas cost must be balanced by the local-chart cost. Thus, while the effective-rank bound
 3077 (84) serves as a useful sanity check, the full-spectrum treatment is what delivers the sharpened
 complexities required for our main results.

3078 E.1 GRASSMANNIAN MANIFOLD, STIEFEL PARAMETERIZATION, AND ORTHOGONAL
 3079 GROUPS
 3080

3081 Fix integers $r \leq d$. Define

3082 $\text{Gr}(d, r) := \{r\text{-dimensional linear subspaces of } \mathbb{R}^d\}$
 3083

3084 as the *Grassmann manifold*. Write

3085 $\text{St}(d, r) := \{V \in \mathbb{R}^{d \times r} : V^\top V = I_r\}$
 3086

3087 for the *Stiefel manifold* of r orthonormal columns in \mathbb{R}^d . $\text{St}(d, r)$ is a convenient *parameterization*
 3088 of that class $\text{Gr}(d, r)$.

3089 If for subspace $\mathcal{V} \in \text{Gr}(d, r)$ and matrix $V \in \text{St}(d, r)$ we have $\mathcal{V} = \text{span}(V)$, then we say V
 3090 is a *parameterization matrix* of \mathcal{V} . Though such parameterization is not unique, the associated
 3091 orthogonal projector and projection metric are both unique. Moreover, the anisometric projection
 3092 we define in Definition 4 is also unique. We will prove these shortly.

3093 Write

3094 $O(r) := \{Q \in \mathbb{R}^{r \times r} : Q^\top Q = QQ^\top = I_r\}$
 3095

3096 to be the *orthogonal group*. Optionally, we also state that (in the real setting)

3097 $\text{Gr}(d, r) \cong O(d) / (O(r) \times O(d-r)) \cong \text{Gr}(d, d-r), \quad (85)$
 3098

3099 where “ $/$ ” denotes the *quotient* and “ \cong ” denotes a canonical *isomorphism* (indeed, a *diffeomorphism*
 3100 of smooth manifolds or a *homeomorphism* of topological manifolds; see, e.g., Chapter 1.5 in
 3101 (Awodey, 2010)). Moreover, $\text{Gr}(d, r)$ can be regarded as a standard *algebraic variety* (Devriendt
 3102 et al., 2024). We do not aim to explain these notions in detail, but merely note that:

3103 1. The geometric properties of $\text{Gr}(d, r)$ coincide with those of $\text{Gr}(d, d-r)$ under this iso-
 3104 morphism (geometric equivalence).
 3105 2. The number of degrees of freedom of $\text{Gr}(d, r)$ is

3106
$$\underbrace{\frac{d(d-1)}{2}}_{\dim O(d)} - \underbrace{\frac{r(r-1)}{2}}_{\dim O(r)} - \underbrace{\frac{(d-r)(d-r-1)}{2}}_{\dim O(d-r)} = r(d-r), \quad (86)$$

 3107
 3108
 3109

3110 which also appears as the dimension factor in the precise covering-number bounds (83).

3111 We now define the orthogonal projector and the projection metric on the Grassmannian manifold.

3112 **Definition of Orthogonal Projector.** For $V \in \text{St}(d, r)$ and its column-space $\mathcal{V} = \text{span}(V)$, define
 3113 the rank- r orthogonal projector³

3114 $\mathcal{P}_{\mathcal{V}} := VV^\top \in \mathbb{R}^{d \times d}. \quad (87)$
 3115

3116 Then $\mathcal{P}_{\mathcal{V}}$ depends *only* on the subspace \mathcal{V} . Indeed, if $Q \in O(r)$ then $(VQ)(VQ)^\top = VQQ^\top V^\top =$
 3117 VV^\top , so V and VQ represent the same subspace. Hence the map

3118 $\Psi : \text{St}(d, r) \longrightarrow \text{Gr}(d, r), \quad V \mapsto \text{span}(V),$
 3119

3120 is an $O(r)$ -quotient: two frames give the same subspace iff they differ by a right orthogonal factor.

3121

3122

3123 **Ellipsoidal Projection Metric.** Following Definition 4, for $\mathcal{V}, \bar{\mathcal{V}} \in \text{Gr}(d, r)$,

3124 $\varrho_{\text{proj}, \Sigma}(\mathcal{V}, \bar{\mathcal{V}}) := \|\Sigma^{\frac{1}{2}}(\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}})\|_{\text{op}}, \quad (88)$
 3125

3126 where $\mathcal{P}_{\mathcal{V}} := VV^\top$ for *any* V such that $\text{span}(V) = \mathcal{V}$ (similarly $\mathcal{P}_{\bar{\mathcal{V}}}$). Because $\mathcal{P}_{\mathcal{V}}$ is unique for
 3127 each subspace, $\varrho_{\text{proj}, \Sigma}$ is well defined (independent of the chosen V). The metric can be pulled back
 3128 to $\text{St}(d, r)$:

3129 $\varrho_{\text{proj}, \Sigma}(V, \bar{V}) := \varrho_{\text{proj}, \Sigma}(\text{span}(V), \text{span}(\bar{V})) = \|\Sigma^{\frac{1}{2}}(VV^\top - \bar{V}\bar{V}^\top)\|_{\text{op}}. \quad (89)$
 3130

3131 ³By elementary linear algebra, the matrix definition of the orthogonal projector \mathcal{P} here coincides with the
 3132 ℓ_2 -projection characterized in Lemma 20; thus the notation is consistent.

3132 E.2 PRINCIPAL ANGLES BETWEEN SUBSPACES
3133

3134 We study how metrics and angles between images \mathcal{V} and $\bar{\mathcal{V}}$ affect their spectral properties. We
3135 introduce principal angles and the cosine–sine (CS) decomposition—standard tools for analyzing
3136 subspaces (see, e.g., Chapter 6.4.3 in (Golub & Van Loan, 2013)).

3137 **Principle Angles and Cosine-Sine representation.** Let U and \bar{U} be two $d \times d$ orthogonal matrix,
3138 and V and \bar{V} be the first r columns of U and \bar{U} , respectively. We are interested in studying the
3139 metrics and angles between r –dimensional subspaces $\mathcal{V} = \text{span}(V)$ and $\bar{\mathcal{V}} = \text{span}(\bar{V})$. Formally,
3140 denote

$$3141 \quad U, \bar{U} \in O(d), \quad U = [V \ V_\perp], \quad \bar{U} = [\bar{V} \ \bar{V}_\perp],$$

3142 where

$$3143 \quad V, \bar{V} \in \mathbb{R}^{d \times r}, \quad V^\top V = I_r, \quad \bar{V}^\top \bar{V} = I_r,$$

3144 and

$$3145 \quad V_\perp, \bar{V}_\perp \in \mathbb{R}^{d \times (d-r)}, \quad V_\perp^\top V_\perp = I_{d-r}, \quad \bar{V}_\perp^\top \bar{V}_\perp = I_{d-r}.$$

3146 Since $U, \bar{U} \in O(d)$, their product $U^\top \bar{U}$ is itself orthogonal. Writing

$$3147 \quad U^\top \bar{U} = \begin{pmatrix} V^\top \\ V_\perp^\top \end{pmatrix} [\bar{V} \ \bar{V}_\perp] = \begin{pmatrix} V^\top \bar{V} & V^\top \bar{V}_\perp \\ V_\perp^\top \bar{V} & V_\perp^\top \bar{V}_\perp \end{pmatrix},$$

3148 define the four blocks

$$3149 \quad \underbrace{C}_{r \times r} = V^\top \bar{V}, \quad \underbrace{C_\perp}_{r \times (d-r)} = V^\top \bar{V}_\perp, \quad (90)$$

$$3150 \quad \underbrace{S}_{(d-r) \times r} = V_\perp^\top \bar{V}, \quad \underbrace{S_\perp}_{(d-r) \times (d-r)} = V_\perp^\top \bar{V}_\perp. \quad (91)$$

3151 Thus

$$3152 \quad U^\top \bar{U} = \begin{pmatrix} C & C_\perp \\ S & S_\perp \end{pmatrix} \in O(d).$$

3153 Now we introduce principal angles between $\mathcal{V} = \text{span}(V)$ and $\bar{\mathcal{V}} = \text{span}(\bar{V})$ by writing

$$3154 \quad C = V^\top \bar{V} = Q_1 \text{diag}(\cos \theta_1, \dots, \cos \theta_r) W_1^\top, \quad Q_1, W_1 \in O(r), \quad (92)$$

3155 where

$$3156 \quad 0 \leq \theta_1 \leq \theta_2 \leq \dots \leq \theta_r \leq \pi/2$$

3157 are called the principle angles between subspaces \mathcal{V} and $\bar{\mathcal{V}}$; and where $\{\cos \theta_1, \dots, \cos \theta_r\}$ are the
3158 singular values of C . Simultaneously, we have that the eigenvalues of S, C_\perp, S_\perp are (notation `spec`
3159 means spectrum, the set of singular values)

$$3160 \quad \text{spec}(S) = \{\sin \theta_1, \dots, \sin \theta_{\min\{r, d-r\}}, \underbrace{0, \dots, 0}_{\max\{d-2r, 0\}}\},$$

$$3161 \quad \text{spec}(C_\perp) = \{\sin \theta_1, \dots, \sin \theta_{\min\{r, d-r\}}, \underbrace{0, \dots, 0}_{\max\{d-2r, 0\}}\}$$

$$3162 \quad \text{spec}(S_\perp) = \{\cos \theta_1, \dots, \cos \theta_{\min\{r, d-r\}}, \underbrace{1, \dots, 1}_{\max\{d-2r, 0\}}\}. \quad (93)$$

3163 The above representation in (92) and (93) are without loss of generality: if $r \leq d - r$, then all the
3164 four spectrum contain all r principal angles; if $r > d - r$, then only first $d - r$ principal angles
3165 $\{\theta_k\}_{k=1}^{d-r}$ can be smaller than $\pi/2$ and $\theta_k = 0$ for all $d - r + 1 \leq k \leq r$.

3166 The cosine–sine representation of the eigenvalues in (92) and (93) motivates our notation C and S
3167 when defining block matrices in (90) and (91). This representation is an immediate consequence of
3168 the classical CS decomposition for orthogonal matrices (Paige & Wei, 1994; Golub & Van Loan,
3169 2013), and we henceforth regard the resulting eigenvalue characterization as given.

3186 **Projection Metric via Principal Angles.** For subspaces \mathcal{V} and $\bar{\mathcal{V}}$, recall that for orthogonal projectors
 3187
 3188

$$\mathcal{P}_{\mathcal{V}} = VV^T, \quad \mathcal{P}_{\bar{\mathcal{V}}} = \bar{V}\bar{V}^T,$$

3189 It is known that the projection metric defined in (88) and (89) are equal to $\sin \theta_r$, sine of the largest
 3190 principal angle between the two subspaces. Formally, there is the fact (see, e.g., the last equation in
 3191 Section 6.4.3 in (Golub & Van Loan, 2013))
 3192

$$\varrho_{\text{proj}} = \|\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\bar{\mathcal{V}}}\|_{\text{op}} = \max_{1 \leq k \leq r} \sin \theta_k = \sin \theta_r. \quad (94)$$

3193 Here θ_i is the i -th principal-angle between \mathcal{V} and $\bar{\mathcal{V}}$, and the spectral norm of the difference of two
 3194 projectors equals the largest of these sines.
 3195

3197 E.3 LOCAL CHARTS OF THE GRASSMANNIAN

3199 In differential geometry, a *chart* is a single local coordinate map. An *atlas* is the whole collection
 3200 of charts that covers the manifold. We introduce a useful atlas that consists of finite graph charts,
 3201 which only rely on elementary linear algebra and avoid more advanced Lie algebra and exponential
 3202 map techniques in Szarek (1997).
 3203

3204 Choose a reference subspace $\bar{\mathcal{V}} \in \text{Gr}(d, r)$ and its parameterization matrix $\bar{V} \in \text{St}(d, r)$. Denote
 3205 $X \in \mathbb{R}^{(d-r) \times r}$ to be mappings from r -dimensional subspace $\bar{\mathcal{V}}$ to $(d-r)$ -dimensional subspace
 3206 $\bar{\mathcal{V}}_{\perp}$. Every r -dimensional subspace close to $\bar{\mathcal{V}}$ can be written as the *graph*

$$\mathcal{V}(X) := \text{span} \left\{ [\bar{V} \bar{V}_{\perp}] \begin{pmatrix} I_r \\ X \end{pmatrix} \right\}, \quad X \in \mathbb{R}^{(d-r) \times r}, \quad (95)$$

3207 where $\mathcal{V}(X)$ is the subspace spanned by the columns of $[\bar{V} \bar{V}_{\perp}] \begin{pmatrix} I_r \\ X \end{pmatrix}$ (the matrix multiplication).
 3208

3209 Given the reference subspace $\bar{\mathcal{V}}$, define the local *graph chart* from $\mathbb{R}^{(d-r) \times r}$ to $\text{Gr}(d, r)$ by
 3210

$$\phi_{\bar{\mathcal{V}}} : X \mapsto \mathcal{V}(X) \in \text{Gr}(d, r). \quad (96)$$

3211 Note that for the $(d-r) \times r$ zero matrix (denoted as 0), we have $\phi_{\bar{\mathcal{V}}}(0) = \bar{\mathcal{V}}$.
 3212

3213 **Intuition for the graph chart.** If a subspace \mathcal{V} is close to $\bar{\mathcal{V}}$ —specifically, $\varrho_{\text{proj}}(\mathcal{V}, \bar{\mathcal{V}}) = \sin \theta_r <$
 3214 1—then all principal angles between \mathcal{V} and $\bar{\mathcal{V}}$ satisfy $\theta_i < \pi/2$. Equivalently, the orthogonal projection
 3215 $\mathcal{P}_{\bar{\mathcal{V}}}$ restricted to \mathcal{V} is a bijection $\mathcal{P}_{\bar{\mathcal{V}}}|\mathcal{V} : \mathcal{V} \rightarrow \bar{\mathcal{V}}$. In the orthonormal basis $[\bar{V} \bar{V}_{\perp}]$, this means
 3216 every $v \in \mathcal{V}$ can be written uniquely as
 3217

$$v = [\bar{V} \bar{V}_{\perp}] \begin{pmatrix} \bar{v} \\ X \bar{v} \end{pmatrix}, \quad \begin{pmatrix} \bar{v} \\ 0 \end{pmatrix} \in \text{span} \left\{ \begin{pmatrix} I_r \\ 0 \end{pmatrix} \right\},$$

3218 for a linear map $X \in \mathbb{R}^{(d-r) \times r}$. Thus, locally around $\bar{\mathcal{V}}$ (all principal angles $< \pi/2$), every r -plane
 3219 admits—and is uniquely determined by—its graph parameter X . We call X the *graph parameteri-
 3220 zation* of $\mathcal{V}(X)$ in this image. This is formalized as the following lemma.
 3221

3222 **Lemma 24 (Local Bijection of Graph Chart)** Fix an orthonormal decomposition $\mathbb{R}^d = \bar{\mathcal{V}} \oplus \bar{\mathcal{V}}_{\perp}$
 3223 with basis $[\bar{V} \bar{V}_{\perp}]$. Then every r -dimensional subspace \mathcal{V} such that $\varrho_{\text{proj}}(\mathcal{V}, \bar{\mathcal{V}}) < 1$ (i.e., all
 3224 principal angles $< \pi/2$) can be written uniquely as a graph
 3225

$$\mathcal{V} = \phi_{\bar{\mathcal{V}}}(X) = \text{span} \left\{ [\bar{V} \bar{V}_{\perp}] \begin{pmatrix} I_r \\ X \end{pmatrix} \right\}, \quad X \in \mathbb{R}^{(d-r) \times r}.$$

3226 **Proof of Lemma 24:** If $V \in \text{St}(d, r)$ spans \mathcal{V} , block it in the $[\bar{V} \bar{V}_{\perp}]$ basis: denote
 3227

$$\begin{pmatrix} A \\ B \end{pmatrix} := \begin{pmatrix} \bar{V}^T \\ \bar{V}_{\perp}^T \end{pmatrix} V \quad (A \in \mathbb{R}^{r \times r}, B \in \mathbb{R}^{(d-r) \times r}).$$

3228 Then by the principal angle representation (92), $A = \bar{V}^T V$ is invertible iff all principal angles
 3229 $< \pi/2$, and choosing
 3230

$$X = B A^{-1}$$

3240 leads to

3241

$$3242 \quad \mathcal{V} = \text{span}(V) = \text{span} \left\{ [\bar{V} \bar{V}_\perp] \begin{pmatrix} A \\ B \end{pmatrix} \right\} = \text{span} \left\{ [\bar{V} \bar{V}_\perp] \begin{pmatrix} I_r \\ X \end{pmatrix} \right\},$$

3243

3244 where the last equality is because for invertible A one always have $\text{span}(ZA) = \text{span}(Z)$ for any
3245 matrix Z .

3246

3247 We have already shown existence. For uniqueness, assuming there are two different X_1, X_2 such
3248 that $\phi_{\bar{\mathcal{V}}}(X_1) = \phi_{\bar{\mathcal{V}}}(X_2)$. Because two bases of the same r -dimensional subspace differ by an
3249 invertible change of coordinates, so there exists an invertible $r \times r$ matrix Y such that

3250

3251

$$[\bar{V} \bar{V}_\perp] \begin{pmatrix} I_r \\ X_1 \end{pmatrix} = [\bar{V} \bar{V}_\perp] \begin{pmatrix} I_r \\ X_2 \end{pmatrix},$$

3252

3253 which results in $Y = I_r$ and $X_1 = X_2$. Thus the parameterization X of \mathcal{V} is unique.

3254

□

3255

3256 **Sine-tangent Relationship in Graph Chart.** We will show that there is a sine-tangent relationship
3257 between $\varrho_{\text{proj}}(\mathcal{V}, \bar{\mathcal{V}})$ and $\|X\|_{\text{op}}$. To be specific, we have the following lemma.

3258

3259 **Lemma 25 (Sine-Tangent Relationship in Graph Chart)** *Denote θ_r is the maximal principal an-
3260 gle between the subspaces $\mathcal{V}(X)$ and $\bar{\mathcal{V}}$, defined in (92). For the graph chart (96), we have*

3261

3262

$$\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) = \sin \theta_r, \quad \|X\|_{\text{op}} = \tan \theta_r.$$

3263

3264 The above relationship immediately implies that

3265

3266

$$\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) = \|X\|_{\text{op}} / \sqrt{1 + \|X\|_{\text{op}}^2}.$$

3267

3268 **Proof of Lemma 25:** Given the fact $\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) = \sin \theta_r$ (which is already shown in (94)),
3269 where θ_r is the largest principal angle between the subspaces $\mathcal{V}(X)$ and the reference subspace $\bar{\mathcal{V}}$,
3270 we want to show $\|X\|_{\text{op}} = \tan \theta_r$.

3271

3272 **Step 1: Setup and Simplification.** The projection metric is invariant under orthogonal trans-
3273 formations of the ambient space \mathbb{R}^d . We can therefore choose a coordinate system that simplifies the
3274 calculations without loss of generality. We choose a basis such that the reference frame \bar{V} and its
3275 orthogonal complement \bar{V}_\perp are represented as:

3276

3277

$$\bar{V} = \begin{pmatrix} I_r \\ 0 \end{pmatrix} \in \text{St}(d, r), \quad \bar{V}_\perp = \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} \in \text{St}(d, d-r). \quad (97)$$

3278

3279 In this basis, the reference subspace is $\bar{\mathcal{V}} = \text{span}(\bar{V})$. The parameterization matrix (orthonormal
3280 basis) $V(X)$ for the subspace $\mathcal{V}(X)$ simplifies to (here $(I_r + X^\top X)^{-1/2}$ normalize $V(X)$ to be an
3281 orthogonal matrix):

3282

3283

$$V(X) = [\bar{V} \bar{V}_\perp] \begin{pmatrix} I_r \\ X \end{pmatrix} (I_r + X^\top X)^{-1/2} = I_d \begin{pmatrix} I_r \\ X \end{pmatrix} (I_r + X^\top X)^{-1/2} = \begin{pmatrix} I_r \\ X \end{pmatrix} (I_r + X^\top X)^{-1/2}, \quad (98)$$

3284

3285 where the second equality follows from our choice of basis without loss of generality: the reference
3286 frame \bar{V} and its complement \bar{V}_\perp are represented as block identity matrices as in (97).

3287

3288 **Step 2: Projection Metric and Principal Angles.** A fundamental result in matrix analysis, our
3289 equation (92), states that the cosines of the principal angles, $\cos \theta_i$, between two subspaces spanned
3290 by orthonormal bases V and \bar{V} are the singular values of $V^\top \bar{V}$. In our case, the principal angles
3291 between $\mathcal{V}(X)$ and $\bar{\mathcal{V}}$ are determined by the singular values of $V(X)^\top \bar{V}$ —which are, equivalently,
3292 the singular values of $\bar{V}^\top V(X)$.

3293

3294 **Step 3: Calculation of $\cos \theta_i$.** Let's compute the matrix product $\bar{V}^\top V(X)$ using our simplified
 3295 forms:
 3296

$$\begin{aligned} 3297 \bar{V}^\top V(X) &= (I_r \ 0) \left[\begin{pmatrix} I_r \\ X \end{pmatrix} (I_r + X^\top X)^{-1/2} \right] \\ 3298 &= \left((I_r \ 0) \begin{pmatrix} I_r \\ X \end{pmatrix} \right) (I_r + X^\top X)^{-1/2} \\ 3299 &= I_r \cdot (I_r + X^\top X)^{-1/2} \\ 3300 &= (I_r + X^\top X)^{-1/2}. \\ 3301 \\ 3302 \\ 3303 \end{aligned}$$

3304 To find the singular values of this matrix, we use the Singular Value Decomposition (SVD) of X .
 3305 Let $X = U\Sigma W^\top$, where $U \in \mathbb{R}^{(d-r) \times (d-r)}$ and $W \in \mathbb{R}^{r \times r}$ are orthogonal, and $\Sigma \in \mathbb{R}^{(d-r) \times r}$
 3306 is a rectangular diagonal matrix with the singular values $\lambda_1 \geq \lambda_2 \geq \dots \geq 0$ on its diagonal. The
 3307 spectral norm is $\|X\|_{\text{op}} = \lambda_1$.
 3308

3309 Then, $X^\top X = (U\Sigma W^\top)^\top (U\Sigma W^\top) = W\Sigma^\top U^\top U\Sigma W^\top = W\Sigma_r^2 W^\top$, where Σ_r^2 is the $r \times r$
 3310 diagonal matrix with entries λ_i^2 . So, the matrix $I_r + X^\top X = W(I_r + \Sigma_r^2)W^\top$. Its inverse square
 3311 root is: $(I_r + X^\top X)^{-1/2} = W(I_r + \Sigma_r^2)^{-1/2}W^\top$.
 3312

3313 The singular values of $\bar{V}^\top V(X)$ are the diagonal entries of $(I_r + \Sigma_r^2)^{-1/2}$, which are: $s_i = \frac{1}{\sqrt{1+\lambda_i^2}}$.
 3314 These singular values are the values of $\cos \theta_i$. The largest principal angle, θ_r , corresponds to the
 3315 smallest cosine value. This occurs when the singular value λ_i is largest, i.e., for $\lambda_1 = \|X\|_{\text{op}}$. Thus,
 3316

$$\cos \theta_r = \frac{1}{\sqrt{1 + \|X\|_{\text{op}}^2}}.$$

3319 **Step 4: Deriving $\tan \theta_r$.** Using the fundamental trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$ and
 3320 the fact that principal angles lie in $[0, \pi/2)$, we have:
 3321

$$\tan \theta_r = \|X\|_{\text{op}}.$$

3323 We have shown that for graph charts, there is the relationship $\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) = \sin \theta_r$ and $\|X\|_{\text{op}} =$
 3324 $\tan \theta_r$. This suggests
 3325

$$\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) = \frac{\|X\|_{\text{op}}}{\sqrt{1 + \|X\|_{\text{op}}^2}}.$$

□

3331 E.4 GLOBAL ATLAS OF GRAPH CHARTS

3333 For the Grassmannian $\text{Gr}(d, r)$ we have that for all $\varepsilon > 0$, we have the coarse covering number
 3334 bound $N(\text{Gr}(d, r), \varrho_{\text{proj}}, \varepsilon) \leq C \frac{r(d-r)}{\varepsilon}$, where $C > 0$ is an absolute constant. This is a coarse
 3335 bound—its dependence is exponential in $1/\varepsilon$ (hence not rate-optimal; the optimal dependence is
 3336 polynomial)—and we use it only as a preliminary supporting estimate. This coarse estimate sug-
 3337 gests that, a finite $O(e^{r(d-r)})$ number of graph charts are sufficient to cover the entire $\text{Gr}(d, r)$
 3338 such that every subspace $\mathcal{V} \in \text{Gr}(d, r)$ is contained in the image of a graph chart with its graph
 3339 parameterization X satisfies $\|X\|_{\text{op}} \leq 1$. From this intuition, we have the following lemma.
 3340

3341 **Lemma 26 (Pointwise Dimension Consequence of Finite Global Atlas)** *The uniform prior $\mu =$
 3342 $\text{Unif}(\text{Gr}(d, r))$ satisfies that for every $\mathcal{V} \in \text{Gr}(d, r)$, every PSD matrix Σ and every $\varepsilon > 0$,*

$$3343 \log \frac{1}{\mu(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon))} \leq C_1 r(d-r) + \sup_{X \in \mathcal{X}} \log \frac{1}{\text{Unif}(\bar{\mathcal{X}})\{X' \in \bar{\mathcal{X}} : \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \varepsilon\}},$$

3344 where $\mathcal{X} = \{X \in \mathbb{R}^{(d-r)r} : \|X\|_{\text{op}} \leq 1\}$ and $\bar{\mathcal{X}} = \{X \in \mathbb{R}^{(d-r)r} : \|X\|_{\text{op}} \leq 2\}$ (we make $\bar{\mathcal{X}}$
 3345 slightly larger than \mathcal{X} for later technical derivation), $\text{Unif}(\bar{\mathcal{X}})\{\cdot\}$ is the uniform measure over $\bar{\mathcal{X}}$,
 3346 and $C_1 > 0$ is an absolute constant.
 3347

3348 **Proof of Lemma 26:** Proposition 6 in (Pajor, 1998) prove a coarse covering number bound
 3349

$$3350 \quad N(\text{Gr}(d, r), \varrho_{\text{proj}}, \varepsilon) \leq C^{\frac{r(d-r)}{\varepsilon}}$$

3351 where $C > 0$ is an absolute constant; this coarse estimate is exponential rather than polynomial in ε ,
 3352 so it is used only for preliminary supporting purposes. For every $\mathcal{V} \in \text{Gr}(d, r)$, by the homogeneity
 3353 of the Grassmannian (under the action of $O(d)$), the ϱ_{proj} -ball $B_{\varrho_{\text{proj}}}(\mathcal{V}, \varepsilon)$ has volume independent
 3354 of its center. We therefore refer to this common value as the volume of an ε - ϱ_{proj} ball, written
 3355 as $\text{Vol}(\varepsilon - \varrho_{\text{proj}} \text{ ball})$. By the definition of covering number (see Definition 5 and the subsequent
 3356 inequality for background), we have that
 3357

$$3358 \quad N(\text{Gr}(d, r), \varrho_{\text{proj}}, \varepsilon) \cdot \text{Vol}(\varepsilon - \varrho_{\text{proj}} \text{ ball}) \geq \text{Vol}(\text{Gr}(d, r)),$$

3359 then for the uniform prior $\nu = \text{Unif}(\text{Gr}(d, r))$, we have that for every $\bar{\mathcal{V}} \in \text{Gr}(d, r)$,
 3360

$$3362 \quad \log \frac{1}{\nu(B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, \varepsilon))} = \log \frac{\text{Vol}(\text{Gr}(d, r))}{\text{Vol}(\varepsilon - \varrho_{\text{proj}} \text{ ball})} \leq r(d-r) \frac{\log C}{\varepsilon}.$$

3364 Note that ϱ_{proj} is not the target metric; our goal is the ellipsoidal metric $\varrho_{\text{proj}, \Sigma}$. Taking $\varepsilon = 1/\sqrt{2}$,
 3365 we obtain:
 3366

$$3367 \quad \log \frac{1}{\nu(B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 1/\sqrt{2}))} \leq C_1 r(d-r), \quad (99)$$

3370 where $C_1 > 0$ is an absolute constant. By Lemma 25, we have that inside the ball $B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 1/\sqrt{2})$,
 3371 by choosing $\bar{\mathcal{V}}$ as the reference subspace, the graph parameterization X of \mathcal{V} satisfies
 3372

$$3373 \quad \|X\|_{\text{op}} \leq 1,$$

3374 which follows from that if $\varrho_{\text{proj}}(\mathcal{V}(X), \bar{\mathcal{V}}) \leq 1/\sqrt{2}$ (i.e., $\sin \theta_r \leq 1/\sqrt{2}$), we have $\|X\|_{\text{op}} \leq 1$.
 3375 See (95) for the definition of this graph chart parameterization; the existence and uniqueness of the
 3376 parameterization X is by Lemma 24 (local bijection of graph chart). Furthermore, again by Lemma
 3377 24 and Lemma 25, $\mathcal{X} = \{X \in \mathbb{R}^{(d-r)r} : \|X\|_{\text{op}} \leq 1\}$ satisfies (\cong means isomorphism/bijection)
 3378

$$3379 \quad B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 1/\sqrt{2}) \cong \mathcal{X} \subset \bar{\mathcal{X}} \cong B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 2/\sqrt{5}). \quad (100)$$

3380 Let
 3381

$$3383 \quad \mu_{\bar{\mathcal{V}}} = \text{Unif}(B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 2/\sqrt{5})), \quad \mu(\mathcal{V}) = \int \nu(\bar{\mathcal{V}}) \mu_{\bar{\mathcal{V}}}(\mathcal{V}) d\bar{\mathcal{V}} = \text{Unif}(\text{Gr}(d, r)).$$

3385 Then we have
 3386

$$\begin{aligned} 3387 \quad \log \frac{1}{\mu(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon))} &= \log \frac{1}{\int \nu(\bar{\mathcal{V}}) \mu_{\bar{\mathcal{V}}}(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon)) d\bar{\mathcal{V}}} \\ 3388 &= \log \frac{1}{\int \nu(\bar{\mathcal{V}}) \mu_{\bar{\mathcal{V}}}(B_{\varrho_{\text{proj}}, \Sigma}(\mathcal{V}, \varepsilon) \cap B_{\varrho_{\text{proj}}}(\bar{\mathcal{V}}, 2/\sqrt{5})) d\bar{\mathcal{V}}} \\ 3389 &\leq \log \frac{1}{\nu(B_{\varrho_{\text{proj}}}(\mathcal{V}, 1/\sqrt{2}))} \min_{\bar{\mathcal{V}} \in B_{\varrho_{\text{proj}}}(\mathcal{V}, 1/\sqrt{2})} \mu_{\bar{\mathcal{V}}}(X' \in \bar{\mathcal{X}} : \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \varepsilon) \\ 3390 &\leq C_1 r(d-r) + \sup_{X \in \mathcal{X}} \log \frac{1}{\text{Unif}(\bar{\mathcal{X}})\{X' \in \bar{\mathcal{X}} : \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \varepsilon\}}, \end{aligned}$$

3397 where the first inequality is by restricting $\bar{\mathcal{V}}$ to $B_{\varrho_{\text{proj}}}(\mathcal{V}, 1/\sqrt{2})$; and the second inequality is by (99)
 3398 as well as the bijection stated in (100) and Lemma 24. Note that we use different radius here than in
 3399 $\mu_{\bar{\mathcal{V}}}$ to ensure that the set $\bar{\mathcal{X}}$ for X' , which is inside the uniform distribution in the final bound, to be
 3400 larger than the domain \mathcal{X} for X to take sup. This will help later technical derivation.
 3401

□

3402 E.5 DECOMPOSITION AND LIPSCHITZ PROPERTIES INSIDE GRAPH CHART
34033404 We apply a non-perturbative analysis to the ellipsoidal projection metric.
34053406 **Lemma 27 (Non-Perturbative Decomposition of Projector Difference)** *Let $X, X' \in \mathbb{R}^{(d-r) \times r}$
3407 be two matrices. Given any reference subspace $\bar{\mathcal{V}}$, consider the graph chart $\phi_{\bar{\mathcal{V}}} : X \mapsto \mathcal{V}(X)$ defined
3408 in (95). Then the difference between two projectors $\mathcal{P}_{\mathcal{V}(X)}, \mathcal{P}_{\mathcal{V}(X')}$ be decomposed as follows:*

3409
$$\mathcal{P}_{\mathcal{V}(X)} - \mathcal{P}_{\mathcal{V}(X')} = \mathcal{P}_{\mathcal{V}(X)_{\perp}} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') (I_r \ 0) \mathcal{P}_{\mathcal{V}(X')} + \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^{\top} - X'^{\top}) (0 \ I_{d-r}) \mathcal{P}_{\mathcal{V}(X')_{\perp}}.$$

3410
3411
3412

3413 **Proof of Lemma 27:** The projector is invariant under orthogonal transformations of the ambient
3414 space \mathbb{R}^d . We can therefore choose a coordinate system that simplifies the calculations without loss
3415 of generality. By the matrix representation (98) (which, without loss of generality, uses a convenient
3416 orthogonal basis specified by (97)), we denote

3417
$$A(X) = \begin{pmatrix} I_r \\ X \end{pmatrix}, \quad M(X) = (I_r + X^{\top} X)^{-1},$$

3418

3419 and have the following facts:

3420
$$\begin{aligned} V(X) &= A(X)M(X)^{1/2}, \\ 3421 \mathcal{P}_{\mathcal{V}(X)} &= A(X)M(X)A(X)^{\top} = A(X)M(X) \begin{pmatrix} I_r & X^{\top} \end{pmatrix} \end{aligned} \quad (101)$$

3422
3423
$$\mathcal{P}_{\mathcal{V}(X)} - \mathcal{P}_{\mathcal{V}(X')} = A(X)M(X)A(X)^{\top} - A(X')M(X')A(X')^{\top}$$

3424

3425
$$A(X)M(X) = \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} \quad (102)$$

3426

3427
$$A(X)M(X)X^{\top} = \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix}, \quad (103)$$

3428

3429 where (102) and (103) are straightforward consequences of (101).

3430 We begin with a non-perturbative decomposition:

3431
$$\begin{aligned} \mathcal{P}_{\mathcal{V}(X)} - \mathcal{P}_{\mathcal{V}(X')} &= A(X)M(X)A(X)^{\top} - A(X')M(X')A(X')^{\top} \\ 3432 &= (A(X) - A(X'))M(X')A(X')^{\top} + A(X)(M(X) - M(X'))A(X')^{\top} + A(X)M(X)(A(X) - A(X'))^{\top}. \end{aligned} \quad (104)$$

3433
3434

3435 We continue to decompose each term non-perturbatively. First,

3436
$$\begin{aligned} (A(X) - A(X'))M(X')A(X')^{\top} &= \begin{pmatrix} 0 \\ X - X' \end{pmatrix} M(X')A(X')^{\top} \\ 3437 &= \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X')M(X')A(X')^{\top} \\ 3438 &= \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') (I_r \ 0) \mathcal{P}_{\mathcal{V}(X')}, \end{aligned} \quad (105)$$

3439 where the last equality uses the fact (102) and symmetry of $\mathcal{P}_{\mathcal{V}(X')}$.

3440 Second, because we have the non-perturbative decomposition

3441
$$\begin{aligned} M(X) - M(X') &= (I_r + X^{\top} X)^{-1} \left((I_r + X'^{\top} X') - (I_r + X^{\top} X) \right) (I_r + X'^{\top} X')^{-1} \\ 3442 &= (I_r + X^{\top} X)^{-1} \left(X'^{\top} X' - X^{\top} X \right) (I_r + X'^{\top} X')^{-1} \\ 3443 &= (I_r + X^{\top} X)^{-1} \left(X^{\top} (X' - X) + (X'^{\top} - X^{\top}) X' \right) (I_r + X'^{\top} X')^{-1} \\ 3444 &= M(X)X^{\top} (X' - X)M(X') + M(X)(X'^{\top} - X^{\top})X'M(X'), \end{aligned}$$

3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

3456 we have

$$\begin{aligned}
 & A(X)(M(X) - M(X'))A(X')^\top \\
 &= A(X)M(X)X^\top(X' - X)M(X')A(X')^\top + A(X)M(X)(X'^\top - X^\top)X'M(X')A(X')^\top \\
 &= -\mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} - \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')}, \tag{106}
 \end{aligned}$$

3463 where the last equality uses the fact (102) and the fact (103).

3464 Third, we have

$$\begin{aligned}
 & A(X)M(X)(A(X) - A(X'))^\top \\
 &= A(X)M(X) \begin{pmatrix} 0 & X^\top - X'^\top \end{pmatrix} \\
 &= \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix}, \tag{107}
 \end{aligned}$$

3471 where the last equality uses the fact (102).

3472 Substituting (105), (106), (107) back into (104), we have

$$\begin{aligned}
 & \mathcal{P}_{\mathcal{V}(X)} - \mathcal{P}_{\mathcal{V}(X')} \\
 &= \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} \\
 &\quad - \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} - \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} \\
 &\quad + \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \\
 &= \mathcal{P}_{\mathcal{V}(X)_\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} + \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')_\perp},
 \end{aligned}$$

3485 where the last equality uses $I_d - \mathcal{P}_{\mathcal{V}(X)} = \mathcal{P}_{\mathcal{V}(X)_\perp}$ and $I_d - \mathcal{P}_{\mathcal{V}(X')} = \mathcal{P}_{\mathcal{V}(X')_\perp}$.

3486 \square

3488 Building upon the non-perturbative decomposition in Lemma 27, we have the following Lipschitz
3489 property of graph chart.

3490 **Lemma 28 (Lipschitz of Graph Chart)** *Let $X, X' \in \mathbb{R}^{(d-r) \times r}$ be two matrices. Given any reference
3491 subspace \mathcal{V} , consider the graph chart defined in (98). Then the ellipsoidal projection metric is
3492 Lipschitz to ellipsoidal spectral metrics as follows: for every rank- r PSD $\Sigma \in \mathbb{R}^{d \times d}$,*

$$\varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X'))$$

$$\leq \left\| \left(\begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X)_\perp}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)_\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} \right)^{\frac{1}{2}} (X - X') \right\|_{\text{op}} + \left\| \left(\begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X)}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} \right)^{\frac{1}{2}} (X^\top - X'^\top) \right\|_{\text{op}}.$$

3499 **Proof of Lemma 28:** By Lemma 27, we have

$$\begin{aligned}
 & \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) = \left\| \Sigma^{\frac{1}{2}} (\mathcal{P}_{\mathcal{V}(X)} - \mathcal{P}_{\mathcal{V}(X')}) \right\|_{\text{op}} \\
 &= \left\| \Sigma^{\frac{1}{2}} \mathcal{P}_{\mathcal{V}(X)_\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')} + \Sigma^{\frac{1}{2}} \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X')_\perp} \right\|_{\text{op}} \\
 &\leq \left\| \Sigma^{\frac{1}{2}} \mathcal{P}_{\mathcal{V}(X)_\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} (X - X') \right\|_{\text{op}} + \left\| \Sigma^{\frac{1}{2}} \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} (X^\top - X'^\top) \right\|_{\text{op}} \\
 &= \left\| \left(\begin{pmatrix} 0 & I_{d-r} \end{pmatrix} \mathcal{P}_{\mathcal{V}(X)_\perp}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)_\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix} \right)^{\frac{1}{2}} (X - X') \right\|_{\text{op}} + \left\| \left(\begin{pmatrix} I_r & 0 \end{pmatrix} \mathcal{P}_{\mathcal{V}(X)}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix} \right)^{\frac{1}{2}} (X^\top - X'^\top) \right\|_{\text{op}}.
 \end{aligned}$$

3510 where the inequality follows from the triangle inequality and the facts that the spectral norms of
 3511 $\mathcal{P}_{\mathcal{V}(X')}$, $\mathcal{P}_{\mathcal{V}(X')^\perp}$, and the two block-identity matrices are all at most 1 (the fact that spectral norms
 3512 of projectors are at most 1 can be proved via the first inequality in Lemma 21); and the last equality
 3513 is because for any matrices A, B we have

$$3515 \quad \|\Sigma^{\frac{1}{2}}AB\|_{\text{op}} = \sqrt{\|B^\top A^\top \Sigma AB\|_{\text{op}}} = \|(A^\top \Sigma A)^{\frac{1}{2}}B\|_{\text{op}}.$$

□

3518 We continue to present the following lemma, which implies that the projectors and the block-identity
 3519 matrices in Lemma 28 only reduces the effective dimensions of the ellipsoidal map, and does not
 3520 increase the eigenvalues (up to absolute constants).

3521 **Lemma 29 (Spectral domination under contractions)** *Let $\Sigma \succeq 0$ be a $d \times d$ PSD matrix with
 3522 ordered eigenvalues $\lambda_1(\Sigma) \geq \dots \geq \lambda_d(\Sigma)$. Let $A \in \mathbb{R}^{d \times m}$ for some $m \leq d$ and write $s := \|A\|_{\text{op}}$.
 3523 Denote by $\mu_1 \geq \dots \geq \mu_m$ the eigenvalues of $A^\top \Sigma A$. Then, for every $k = 1, \dots, m$,*

$$3525 \quad \mu_m \leq s^2 \lambda_m(\Sigma).$$

3527 **Proof of Lemma 29:** By the Courant–Fischer–Weyl max-min characterization (see, e.g.,
 3528 Wikipedia contributors, 2025b)), we have

$$\begin{aligned} 3530 \quad \lambda_k(A^\top \Sigma A) &= \min_{\substack{S \subset \mathbb{R}^d \\ \dim S = d-k+1}} \sup\{\|A^\top \Sigma^{\frac{1}{2}} x\|_2^2 : x \in S, \|x\|_2 = 1\} \\ 3531 \\ 3532 &\leq s^2 \cdot \min_{\substack{S \subset \mathbb{R}^d \\ \dim S = d-k+1}} \sup\{\|\Sigma^{1/2} x\|_2 : x \in S, \|x\|_2 = 1\} \\ 3533 \\ 3534 &= s^2 \lambda_k(\Sigma). \end{aligned}$$

□

3538 E.6 PROOF OF THE MAIN RESULT

3540 From Lemma 26, to cover $\text{Gr}(d, r)$ it suffices to cover the unit ball of $(d-r) \times r$ matrices under
 3541 the ellipsoidal spectral metric. We are now ready to prove Lemma 3, the main result for ellipsoidal
 3542 Grassmannian covering.

3543 **Proof of Lemma 3:** We present the proof in multiple parts.

3544 **Part 1: Applying Lemma 26.** Define $\mathcal{X} = \{X \in \mathbb{R}^{(d-r) \times r} : \|X\|_{\text{op}} \leq 1\}$ and $\bar{\mathcal{X}} =$
 3545 $\{X \in \mathbb{R}^{(d-r) \times r} : \|X\|_{\text{op}} \leq 2\}$. By Lemma 26 (Pointwise Dimension Consequence of Finite Global
 3546 Atlas), for $\mu = \text{Unif}(\text{Gr}(d, r))$, we have that for all $\mathcal{V} \in \text{Gr}(d, r)$ and all $\varepsilon > 0$,

$$3550 \quad \log \frac{1}{\mu(B_{\varrho_{\text{proj}, \Sigma}}(\mathcal{V}, \varepsilon))} \leq C_1 r(d-r) + \sup_{X \in \mathcal{X}} \log \frac{1}{\text{Unif}(\bar{\mathcal{X}}) \{X' \in \bar{\mathcal{X}} : \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \varepsilon\}}, \quad (108)$$

3553 where $C_1 > 0$ is an absolute constant.

3554 Define the $(d-r) \times (d-r)$ positive definite matrices $H_1(X)$ and the $r \times r$ positive definite matrix
 3555 $H_2(X)$ as the following

$$\begin{aligned} 3557 \quad H_1(X) &= (0 \quad I_{d-r}) \mathcal{P}_{\mathcal{V}(X)^\perp}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)^\perp} \begin{pmatrix} 0 \\ I_{d-r} \end{pmatrix}, \\ 3558 \\ 3559 \quad H_2(X) &= (I_r \quad 0) \mathcal{P}_{\mathcal{V}(X)}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)} \begin{pmatrix} I_r \\ 0 \end{pmatrix}. \end{aligned}$$

3562 By Lemma 28 (Lipschitz of Graph Chart), we have that

$$3563 \quad \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \|H_1(X)^{\frac{1}{2}}(X' - X)\|_{\text{op}} + \|H_2(X)^{\frac{1}{2}}(X' - X)^\top\|_{\text{op}}.$$

3564
 3565 **Part 2: Volumetric Arguments.** We analyze the log density complexity in (108) via volumetric
 3566 arguments.
 3567

3568 **A technical step: ball inclusion via thresholding** In order to compute the log density complexity
 3569 with the uniform prior, one needs the operator norm ball to be included in the support of the prior.
 3570 Given a PSD matrix $H \in \mathbb{R}^{m \times m}$ and an eigenvalue threshold α , assume its eigendecomposition is
 3571 $H = U \text{diag}(\beta_1, \dots, \beta_m)U^\top$, define the thresholding function T_α by
 3572

$$T_\alpha(H) = U \text{diag}(\max\{\beta_1, \alpha\}, \dots, \max\{\beta_m, \alpha\})U^\top.$$

3573 Clearly this function only increases the metric. We further define the following two ellipsoidal
 3574 metrics:
 3575

$$\begin{aligned} \varrho_1^2(X, X') &= \|(X' - X)^\top \bar{H}_1(X)(X' - X)\|_{\text{op}}, & \bar{H}_1(X) &= T_{\varepsilon^2}(H_1(X)) \\ \varrho_2^2(X, X') &= \|(X' - X)\bar{H}_2(X)(X - X')^\top\|_{\text{op}}, & \bar{H}_2(X) &= T_{\varepsilon^2}(H_2(X)) \end{aligned}$$

3579 We note that the two balls $B_{\varrho_1}(X, \varepsilon), B_{\varrho_2}(X, \varepsilon)$ are contained in $\bar{\mathcal{X}}$, as we have applied the thresh-
 3580 olding function to ensure this inclusion. For example, for the first ball, from

$$X' - X = (\bar{H}_1(X))^{-1/2} \underbrace{(\bar{H}_1(X))^{\frac{1}{2}}(X' - X)}_{\text{spectral norm } \leq \varepsilon \text{ for } X' \in B_{\varrho_1}(X, \varepsilon)},$$

3585 we have (by using the ε estimate from the second underbraced term above, and combining it with
 3586 the thresholding guarantee $\lambda_{\min}(\bar{H}_1(X)) \geq \varepsilon^2$)

$$\|X' - X\|_{\text{op}} \leq \lambda_{\min}(\bar{H}_1(X))^{-1/2} \cdot \varepsilon \leq 1,$$

3589 which resulting in $\|X'\|_{\text{op}} \leq \|X' - X\|_{\text{op}} + \|X\|_{\text{op}} \leq 2$ and thus $B_{\varrho_1}(X, \varepsilon) \subseteq \bar{\mathcal{X}}$. Similarly, we
 3590 can show $B_{\varrho_2}(X, \varepsilon) \subseteq \bar{\mathcal{X}}$. this gives us the auxiliary ball-inclusion result:

$$B_{\varrho_1 + \varrho_2}(X, \varepsilon) \subseteq B_{\varrho_1}(X, \varepsilon) \cap B_{\varrho_2}(X, \varepsilon) \subseteq B_{\varrho_1}(X, \varepsilon) \cup B_{\varrho_2}(X, \varepsilon) \subseteq \bar{\mathcal{X}}. \quad (109)$$

3593 Now we are ready to proceed with the main part of the proof. By Lemma 28 (Lipschitz of Graph
 3594 Chart) and the fact that threholding only increase the spectral norm, the ellipsoidal projection metric
 3595 is bounded by $\varrho_1 + \varrho_2$, so for any $X \in \mathcal{X}$,

$$\begin{aligned} & \log \frac{1}{\text{Unif}(\bar{\mathcal{X}})\{X' \in \bar{\mathcal{X}} : \varrho_{\text{proj}, \Sigma}(\mathcal{V}(X), \mathcal{V}(X')) \leq \varepsilon\}} \\ & \leq \log \frac{1}{\text{Unif}(\bar{\mathcal{X}})\{X' \in \bar{\mathcal{X}} : \varrho_1(X, X') + \varrho_2(X, X') \leq \varepsilon\}} \\ & = \log \frac{1}{\text{Unif}(\bar{\mathcal{X}})\{B_{\varrho_1 + \varrho_2}(X, \varepsilon)\}} \\ & = \frac{\text{Vol}(\bar{\mathcal{X}})}{\text{Vol}(B_{\varrho_1 + \varrho_2}(X, \varepsilon))}, \end{aligned} \quad (110)$$

3606 where the first equality uses the ball-inclusion result (109).
 3607

3608 **Background on covering number.** Classical volume-ratio arguments give the following results
 3609 on the covering number of balls in general normed space \mathcal{Y} . For a p -dimensional normed space
 3610 equipped with the metric associated to its norm $\|\cdot\|$, we denote by $B(y, R)$ the ball in \mathcal{Y} centered at
 3611 $y \in \mathcal{Y}$ with radius R , and by $N(\mathcal{Z}, \|\cdot\|, \varepsilon)$ the covering number of a subset $\mathcal{Z} \subseteq \mathcal{Y}$. Formally, we
 3612 give the definition of covering number as follows.
 3613

3614 **Definition 5 (Covering numbers)** Let $(\mathcal{Y}, \|\cdot\|)$ be a normed space and let $\mathcal{Z} \subseteq \mathcal{Y}$. For $\varepsilon > 0$, a
 3615 set $\mathcal{N} \subseteq \mathcal{Z}$ is an internal ε -cover of \mathcal{Z} if for every $z \in \mathcal{Z}$ there exists $y \in \mathcal{N} \subseteq \mathcal{Z}$ with $\|z - y\| \leq \varepsilon$.
 3616 The (internal) covering number is

$$N(\mathcal{Z}, \|\cdot\|, \varepsilon) := \min\{m : \exists \text{ internal } \varepsilon\text{-cover of } \mathcal{Z} \text{ with size } m\}.$$

3618 A set $\mathcal{N}_{\text{ext}} \subseteq \mathcal{Y}$ (not necessarily inside \mathcal{Z}) is an external ε -cover of \mathcal{Z} if for every $z \in \mathcal{Z}$ there exists
 3619 $y \in \mathcal{N}_{\text{ext}}$ with $\|z - y\| \leq \varepsilon$. The external covering number is
 3620

$$3621 \quad \mathsf{N}_{\text{ext}}(\mathcal{Z}, \|\cdot\|, \varepsilon) := \min\{m : \exists \text{ external } \varepsilon\text{-cover of } \mathcal{Z} \text{ with size } m\}.$$

3622 Internal covering numbers depend only on the metric induced on \mathcal{Z} , while external covering numbers
 3623 also depend on the ambient space \mathcal{Y} . Throughout the paper, “covering number” means the
 3624 internal one unless otherwise stated.

3625 We now relate the internal and external covering numbers, showing they are equivalent up to a
 3626 constant factor in the radius—and thus interchangeable for our purposes.

3628 **Lemma 30 (Properties of External Covering Number)** For every $\varepsilon > 0$ and $\mathcal{Z} \subseteq \mathcal{Y}$,

$$3630 \quad \mathsf{N}_{\text{ext}}(\mathcal{Z}, \|\cdot\|, \varepsilon) \leq \mathsf{N}(\mathcal{Z}, \|\cdot\|, \varepsilon) \leq \mathsf{N}_{\text{ext}}(\mathcal{Z}, \|\cdot\|, \varepsilon/2). \quad (112)$$

3631 And the external covering number enjoys monotonicity under set inclusion: if $\mathcal{Z}_1 \subseteq \mathcal{Z}_2$ then
 3632 $\mathsf{N}_{\text{ext}}(\mathcal{Z}_1, \|\cdot\|, \varepsilon) \leq \mathsf{N}_{\text{ext}}(\mathcal{Z}_2, \|\cdot\|, \varepsilon)$.
 3633

3634 **Proof of Lemma 30:** The left inequality in (112) is immediate since any internal cover is also an
 3635 external cover. For the right inequality in (112), let $\{y_1, \dots, y_m\} \subseteq \mathcal{Y}$ be an external $(\varepsilon/2)$ -cover
 3636 of \mathcal{Z} . For each i , define the (possibly empty) cell $V_i := \{z \in \mathcal{Z} : \|z - y_i\| \leq \varepsilon/2\}$. By the very
 3637 definition of external $(\varepsilon/2)$ -cover, every $z \in \mathcal{Z}$ is within distance $\varepsilon/2$ of some y_i ; hence

$$3638 \quad \bigcup_{i=1}^m V_i = \mathcal{Z}.$$

3641 If $V_i \neq \emptyset$, pick a representative $z_i \in V_i$. Then for any $z \in V_i$,

$$3643 \quad \|z - z_i\| \leq \|z - y_i\| + \|y_i - z_i\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

3644 so the selected $\{z_i\} \subseteq \mathcal{Z}$ form an internal ε -cover. Hence $\mathsf{N}(\mathcal{Z}, \|\cdot\|, \varepsilon) \leq m = \mathsf{N}_{\text{ext}}(\mathcal{Z}, \|\cdot\|, \varepsilon/2)$.
 3645 Lastly, the monotonicity under set inclusion for the external covering number is a straightforward
 3646 consequence of its definition. □

3649 Proposition 4.2.10 in Vershynin (2018) (the proof is elementary and clearly holds true for general
 3650 metric in a normed space) states that for $\mathcal{Z} \subseteq \mathcal{Y}$ and general metric $\|\cdot\|$, we have that for any $y \in \mathcal{Y}$,

$$3652 \quad \frac{\text{Vol}(\mathcal{Z})}{\text{Vol}(B(y, \varepsilon))} \leq \mathsf{N}(\mathcal{Z}, \|\cdot\|, \varepsilon) \leq \frac{\text{Vol}(\mathcal{Z} + B(y, \frac{\varepsilon}{2}))}{\text{Vol}(B(y, \frac{\varepsilon}{2}))},$$

3654 where the set $\mathcal{A} + \mathcal{B} := \{a + b : a \in \mathcal{A}, b \in \mathcal{B}\}$. When \mathcal{Z} is convex and $B(y, \varepsilon) \subseteq \mathcal{Z}$, we further
 3655 have

$$3657 \quad \frac{\text{Vol}(\mathcal{Z})}{\text{Vol}(B(y, \varepsilon))} \leq \mathsf{N}(\mathcal{Z}, \|\cdot\|, \varepsilon) \leq \frac{\text{Vol}(\mathcal{Z} + B(y, \frac{\varepsilon}{2}))}{\text{Vol}(B(y, \frac{\varepsilon}{2}))} \leq \frac{\text{Vol}(\frac{3}{2}\mathcal{Z})}{\text{Vol}(B(y, \frac{\varepsilon}{2}))} = 3^p \frac{\text{Vol}(\mathcal{Z})}{\text{Vol}(B(y, \varepsilon))}, \quad (113)$$

3659 where $\lambda\mathcal{A} := \{\lambda a : a \in \mathcal{A}\}$ for $\lambda > 0$. Lastly, when the normed space \mathcal{Y} is p -dimensional, for
 3660 every $\varepsilon \in (0, R]$, setting $\mathcal{Z} = B(0, R)$ turns the above inequality (113) into the optimal covering
 3661 number bound

$$3662 \quad \left(\frac{R}{\varepsilon}\right)^p \leq \mathsf{N}(B(0, R), \|\cdot\|, \varepsilon) \leq \left(\frac{3R}{\varepsilon}\right)^p. \quad (114)$$

3665 Note that this result is for general normed space, not only for the ℓ_2 norm in Euclidean space (see,
 3666 e.g., display (1) in Pajor (1998); see also Milman & Schechtman (1986); Pisier (1999)).

3667 **A technical step-lifting to product space.** Consider the product space $\mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r}$ (of
 3668 dimension $2 \times (d-r) \times r$). Given any $(d-r) \times (d-r)$ positive definite matrix H_1 and $r \times r$
 3669 positive definite matrix H_2 , define the modified spectral norm by

$$3671 \quad \|(X_1, X_2) - (X'_1, X'_2)\|_{\text{op}, H_1, H_2} := \|H_1^{\frac{1}{2}}(X_1 - X'_1)\|_{\text{op}} + \|H_2^{\frac{1}{2}}(X_2^\top - X'_2^\top)\|_{\text{op}}.$$

3672 Consider the constrained set

$$3673 \quad \mathcal{S} := \{(X_1, X_2) \in \mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r} : X_1 = X_2\} = \{(X, X) : X \in \mathbb{R}^{(d-r) \times r}\},$$

3675 which is a normed space with dimension $(d-r) \times r$ (isomorphic to $\mathbb{R}^{(d-r) \times r}$), equipped with the
3676 modified spectral norm

$$3678 \quad \|(X, X) - (X', X')\|_{\text{op}, H_1, H_2} = \|H_1^{\frac{1}{2}}(X - X')\|_{\text{op}} + \|H_2^{\frac{1}{2}}(X^{\top} - X'^{\top})\|_{\text{op}}.$$

3679 Denote $B_{\text{op}, H_1, H_2}^{\mathcal{S}}((X, X), R) = \{(X', X') \in \mathcal{S} : \|(X', X') - (X, X)\|_{\text{op}, H_1, H_2} \leq R\}$ (the
3680 ball constrained in \mathcal{S}). Because there is a bijective, distance-preserving (isometric) map between
3681 $B_{\varrho_1 + \varrho_2}(X, \varepsilon)$ and $B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon)$, and likewise $B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4)$ and $\bar{\mathcal{X}}$ (here 0
3682 denotes the $(d-r) \times r$ 0 matrix), we obtain

$$3684 \quad \frac{\text{Vol}(\bar{\mathcal{X}})}{\text{Vol}(B_{\varrho_1 + \varrho_2}(X, \varepsilon))} = \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4))}{\text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon))}, \quad (115)$$

3685 where the volume on \mathcal{S} is defined via the surface area measure. (115) is exactly the objective we
3686 need to bound in (110).

3687 Given $\varepsilon > 0$, by the property (113) of covering number, we have that for every $X \in \mathcal{X}$ and $\varepsilon > 0$,

$$3691 \quad \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4))}{\text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon))} \leq N(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon). \quad (116)$$

3694 **Remark on why lifting to product space double the degree of freedom.** We now lift the
3695 \mathcal{S} -constrained ball $B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4)$ to the product space $\bar{\mathcal{X}} \times \bar{\mathcal{X}}$, using the covering num-
3696 ber of the lifted product space to bound the covering number of the original space, in order to obtain
3697 an upper bound on (116) and (115). This is the reason why our final bound will scale (in the isotropic
3698 case) in the order $O((d-r)r \log \frac{1}{\varepsilon^2}) = O(2(d-r)r \log \frac{1}{\varepsilon})$ rather than the classical optimal order
3699 $\Theta((d-r)r \log \frac{1}{\varepsilon})$ —the lifting to product space increase the number of freedom by a multiplicative
3700 factor of 2. Nevertheless, such difference is negligible in our theory.

3701 For every $(X_1, X_2) \in \mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r}$, every $(d-r) \times (d-r)$ matrix $H_1 \succ 0$, and every
3702 $r \times r$ matrix $H_2 \succ 0$, and radius R , denote $B_{\text{op}, H_1, H_2}((X_1, X_2), R)$ to be the unconstrained ball in
3703 $\mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r}$:

$$3704 \quad B_{\text{op}, H_1, H_2}((X_1, X_2), R) := \{(X'_1, X'_2) \in \mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r} : \|(X_1, X_2) - (X'_1, X'_2)\|_{\text{op}, H_1, H_2} \leq R\}.$$

3706 Lifting to the product space can only increase the external covering number (monotonicity under set
3707 inclusion), and the external covering number is equivalent to the internal covering number up to a
3708 constant factor in the radius. To be specific, by Lemma 30, we have

$$3709 \quad \begin{aligned} & N(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon) \\ 3710 & \leq N_{\text{ext}}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon/2) \\ 3711 & \leq N_{\text{ext}}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon/2) \\ 3712 & \leq N(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon/2). \end{aligned} \quad (117)$$

3715 For every $X \in \mathcal{X}$, the ball-inclusion argument (109) is strong enough to imply that the uncon-
3716 strained ball $B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon) \subseteq \mathbb{R}^{(d-r) \times r} \times \mathbb{R}^{(d-r) \times r}$ is also included in the lifted ball
3717 $B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4)$, which gives that

$$3718 \quad B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon/2) \subset B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon) \subseteq B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4).$$

3720 This satisfies the inclusion condition required to establish (113), and we have

$$3721 \quad \begin{aligned} N(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon/2) & \leq 3^{2(d-r)r} \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4))}{\text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon/2))} \\ 3722 & = 6^{2(d-r)r} \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}^{\mathcal{S}}((0, 0), 4))}{\text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}^{\mathcal{S}}((X, X), \varepsilon))}. \end{aligned} \quad (118)$$

3726 **Part 3: Applying Change of Variable and Calculating the Jacobian Determinant.** Applying
 3727 the standard change of variables
 3728

$$3729 \quad Y_1 = \bar{H}_1(X)^{1/2} X_1, \quad Y_2 = X_2 \bar{H}_2(X)^{1/2},$$

3730 the map on vectorized variables is
 3731

$$3732 \quad \text{vec}(Y_1) = (I_r \otimes \bar{H}_1(X)^{1/2}) \text{vec}(X_1), \quad \text{vec}(Y_2) = (\bar{H}_2(X)^{\top 1/2} \otimes I_{d-r}) \text{vec}(X_2),$$

3733 and the total Jacobian is
 3734

$$3735 \quad J(X) = \begin{pmatrix} I_r \otimes \bar{H}_1(X)^{1/2} & 0 \\ 0 & \bar{H}_2(X)^{\top 1/2} \otimes I_{d-r} \end{pmatrix}.$$

3738 The two block-diagonal Jacobian determinants are

$$3739 \quad \left| \det(I_r \otimes \bar{H}_1(X)^{1/2}) \right| = (\det \bar{H}_1(X)^{1/2})^r = \det(\bar{H}_1(X))^{r/2},$$

$$3741 \quad \left| \det(\bar{H}_2(X)^{\top 1/2} \otimes I_{d-r}) \right| = (\det \bar{H}_2(X)^{1/2})^{d-r} = \det(\bar{H}_2(X))^{(d-r)/2}.$$

3743 Multiplying the two factors, the total Jacobian of the linear change of variables is
 3744

$$3745 \quad \det(J(X)) = \det(\bar{H}_1(X))^{r/2} \det(\bar{H}_2(X))^{(d-r)/2}.$$

3747 (We used $\det(B^\top) = \det(B)$ and that $\bar{H}_1(X), \bar{H}_2(X) \succ 0$, so determinants are positive.) By the
 3748 change of variable formula in integration (see, e.g., Wikipedia contributors (2025a)), we have

$$3749 \quad \text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}((X, X), \varepsilon))$$

$$3750 \quad = \text{Vol}(B_{\text{op}, I_{d-1}, I_r}((X, X), \varepsilon)) (\det(J(X)))^{-1}$$

$$3752 \quad = \text{Vol}(B_{\text{op}, I_{d-1}, I_r}((X, X), \varepsilon)) \prod_{k=1}^{d-r} \lambda_k(\bar{H}_1(X))^{-r/2} \prod_{k=1}^r \lambda_k(\bar{H}_2(X))^{-(d-r)/2},$$

3755 which implies
 3756

$$3757 \quad \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}((0, 0), 4))}{\text{Vol}(B_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}((X, X), \varepsilon))} = \prod_{k=1}^{d-r} \lambda_k(\bar{H}_1(X))^{r/2} \prod_{k=1}^r \lambda_k(\bar{H}_2(X))^{(d-r)/2} \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}((0, 0), 4))}{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}((X, X), \varepsilon))}. \quad (119)$$

3761 **Part 4: Proving the Final Bound.** For all $X \in \mathcal{X}$ and $\varepsilon \leq 1$, we have that
 3762 $B_{\text{op}, I_{d-r}, I_r}((X, X), \varepsilon) \subseteq B_{\text{op}, I_{d-r}, I_r}((0, 0), 4)$ and thus by (113) and (114), we have
 3763

$$3764 \quad \frac{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}((0, 0), 4))}{\text{Vol}(B_{\text{op}, I_{d-r}, I_r}((X, X), \varepsilon))} \leq \left(\frac{12}{\varepsilon} \right)^{2(d-r)r}. \quad (120)$$

3767 Combining the above inequality (120) with (118) and (119), we have
 3768

$$3769 \quad \log \text{N}(B_{\text{op}, I_{d-r}, I_r}((0, 0), 4), \|\cdot\|_{\text{op}, \bar{H}_1(X), \bar{H}_2(X)}, \varepsilon/2)$$

$$3770 \quad \leq 2(d-r)r \log \frac{72}{\varepsilon} + \frac{r}{2} \sum_{k=1}^{d-r} \log \lambda_k(\bar{H}_1(X)) + \frac{d-r}{2} \sum_{k=1}^r \log \lambda_k(\bar{H}_2(X))$$

$$3773 \quad = \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{72^2 \lambda_k(\bar{H}_1(X))}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{72^2 \lambda_k(\bar{H}_2(X))}{\varepsilon^2}. \quad (121)$$

3776 Combing the above inequality (121) with (115), (116) and (117), we have that for all $X \in \mathcal{X}$,
 3777

$$3778 \quad \log \frac{\text{Vol}(\bar{\mathcal{X}})}{\text{Vol}(B_{\rho_1 + \rho_2}(X, \varepsilon))} \leq \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{72^2 \lambda_k(\bar{H}_1(X))}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{72^2 \lambda_k(\bar{H}_2(X))}{\varepsilon^2}. \quad (122)$$

Finally, combine the above inequality (122) with (108) and (110), we prove that for $\mu = \text{Unif}(\text{Gr}(d, r))$, we have that for all $\mathcal{V} \in \text{Gr}(d, r)$ and all $\varepsilon > 0$,

$$\begin{aligned} \log \frac{1}{\mu(B_{\varrho_{\text{proj}, \Sigma}}(\mathcal{V}, \varepsilon))} &\leq C_1 r(d-r) + \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{72^2 \lambda_k(\bar{H}_1(X))}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{72^2 \lambda_k(\bar{H}_2(X))}{\varepsilon^2} \\ &= \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{C \lambda_k(\bar{H}_1(X))}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{C \lambda_k(\bar{H}_2(X))}{\varepsilon^2}, \end{aligned} \quad (123)$$

where $C > 0$ is an absolute constant.

We end the proof by applying Lemma 29 and Lemma 21: since

$$\begin{aligned} \lambda_k(H_1(X)) &\leq \lambda_k(\mathcal{P}_{\mathcal{V}(X)}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)}) \leq \lambda_k, \quad k = 1, \dots, d-r; \\ \lambda_k(H_2(X)) &\leq \lambda_k(\mathcal{P}_{\mathcal{V}(X)}^\top \Sigma \mathcal{P}_{\mathcal{V}(X)}) \leq \lambda_k, \quad k = 1, \dots, r, \end{aligned}$$

we have

$$\begin{aligned} \lambda_k(\bar{H}_1(X)) &\leq \max\{\lambda_k, \varepsilon^2\}, \quad k = 1, \dots, d-r; \\ \lambda_k(\bar{H}_2(X)) &\leq \max\{\lambda_k, \varepsilon^2\}, \quad k = 1, \dots, r. \end{aligned}$$

Substituting this bound to (123), we prove that for $\mu = \text{Unif}(\text{Gr}(d, r))$, we have that for all $\mathcal{V} \in \text{Gr}(d, r)$ and all $\varepsilon > 0$,

$$\log \frac{1}{\mu(B_{\varrho_{\text{proj}, \Sigma}}(\mathcal{V}, \varepsilon))} \leq \frac{r}{2} \sum_{k=1}^{d-r} \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2} + \frac{d-r}{2} \sum_{k=1}^r \log \frac{C \max\{\lambda_k, \varepsilon^2\}}{\varepsilon^2},$$

where $C > 0$ is an absolute constant.

□

F FURTHER EXPLANATIONS AND PROOFS FOR GENERALIZATION BOUNDS (SECTION 4)

F.1 COMPARISON WITH NORM BOUNDS, VC, AND NTK

We compare our generalization bound for fully connected DNN (Theorem 4) with three established lines of work: (i) bounds based on products of spectral norms, (ii) VC-dimension-type capacity bounds, and (iii) Neural Tangent Kernel (NTK) linearizations that are valid only in an infinitesimal neighborhood of initialization. Our framework yields *exponentially* tighter rates than norm-product bounds, refines VC-type statements into hypothesis- and data-dependent guarantees, and replaces infinitesimal linearization with a finite-scale, non-perturbative analysis that holds simultaneously for every trained hypothesis. For space, we defer the recovery of representative norm bounds to Appendix F.5.1 and a broader literature review to Appendix B.

Norm Bounds: Starting from the Riemannian-dimension term in Theorem 4, apply the elementary inequality

$$\log x \leq \log(1+x) \leq x, \quad \forall x > 0$$

together with $\sum_{k \geq 1} \lambda_k(F_{l-1} F_{l-1}^\top) = \|F_{l-1}(W, X)\|_{\mathbf{F}}^2$, we obtain: for each layer l ,

$$\sum_{k \geq 1} \log \left(\frac{\lambda_k(F_{l-1} F_{l-1}^\top) \|W_l\|_{\mathbf{F}}^2 L M_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2} \right) \leq \frac{\|F_{l-1}(W, X)\|_{\mathbf{F}}^2 \|W_l\|_{\mathbf{F}}^2 L M_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2}.$$

Aggregating over layers and controlling $M_{l \rightarrow L}(W, \varepsilon)$ through $\prod_{i>l} \|W_i\|_{\text{op}}$, Theorem 4 yields the following rank-free, spectrally normalized consequence: uniformly over all $W \in B_{\mathbf{F}}(R)$

$$(\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \leq O \left(\frac{\beta \|W\|_{\mathbf{F}}}{n} \sqrt{\sum_{l=1}^L L(d_l + d_{l-1}) \prod_{i \neq l} \|W_i\|_{\text{op}}^2} \right), \quad (124)$$

3834 where the $O(\cdot)$ notation hides only nonessential terms (see Corollary 1 in Appendix F.5.1); more-
 3835 over, since $\|X\|_{\mathbb{F}} \leq \sqrt{n} \max_{1 \leq i \leq n} \|x_i\|_2$, the bound in (124) typically scales as $n^{-1/2}$. Therefore,
 3836 we illustrate that the Riemannian-dimension bound in Theorem 4 is *exponentially tighter* than (124),
 3837 a representative spectral-norm bound in the style of Bartlett et al. (2017); Neyshabur et al. (2018);
 3838 Golowich et al. (2020); Pinto et al. (2025); Ledent et al. (2025). Appendix F.5.1 provides the full
 3839 derivation and a detailed, side-by-side comparison.

3840
 3841 **VC Dimension:** Let L be the number of layers and $P = \sum_{l=1}^L d_l d_{l-1}$ be the total number of
 3842 weights, Bartlett et al. (2019) prove a nearly tight VC-dimension bound $\text{VCdim} \leq O(PL \log P)$,
 3843 supported by a lower bound $\text{VCdim} \geq \Omega(PL \log(P/L))$. This VC dimension bound is roughly
 3844 equivalent to be $L \sum_{l=1}^L d_l d_{l-1}$.⁴ Our Riemannian Dimension bound, by contrast, substantially
 3845 sharpens this rate: it removes the explicit dependence on depth L and replaces the crude width
 3846 factor with a (layerwise) effective-rank term.

3847
 3848 **Neural Tangent Kernel (NTK):** Our approach uses an exact, non-perturbative expansion that
 3849 preserves the finite-scale geometry of deep networks, going beyond NTK’s Taylor linearizations,
 3850 which remain valid only in an infinitesimal neighborhood around initialization (or equivalently, in
 3851 the infinite-width “lazy” regime) (Jacot et al., 2018; Arora et al., 2019). Outside this regime the
 3852 NTK approximation typically breaks down, limiting its explanatory power for practical networks.
 3853 From a generalization standpoint, the initialization-centric, infinitesimal view suppresses the feature
 3854 learning that actually drives generalization, and thus cannot account for why modern deep networks
 3855 generalize well. In contrast, our results provide a finite-scale, pointwise theory that operates directly
 3856 in practical regimes and explicitly captures feature learning through the spectra of the *learned* feature
 3857 matrices.

3858 F.2 ALGORITHMIC IMPLICATIONS AND EXCESS RISK BOUND

3859
 3860 **Pointwise Dimension as Regularization and Excess Risk Bound.** Our bounds imply a natural
 3861 regularization strategy for algorithm design. Given the pointwise generalization inequality (3) (e.g.,
 3862 the Riemannian Dimension bound in Theorem 4), we consider a regularized ERM objective that
 3863 explicitly minimizes this complexity measure:

$$3864 \hat{f} = \arg \min_{f \in \mathcal{F}} \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(2/\delta)}{n}} \right\}. \quad (125)$$

3865 With probability at least $1 - \delta$, its excess risk is bounded by (compared to any benchmark $f^* \in \mathcal{F}$):

$$3866 \mathbb{P} \ell(\hat{f}; z) - \mathbb{P} \ell(f^*; z) \\ 3867 \leq \inf_{f \in \mathcal{F}} \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(2/\delta)}{n}} \right\} - \mathbb{P} \ell(f^*; z) \\ 3868 \leq (C + \sqrt{1/2}) \sqrt{\frac{d(f^*) + \log(2/\delta)}{n}}; \quad (126)$$

3869 see Appendix F.4 for full proof. Thus we obtain a problem-dependent oracle bound of order
 3870 $\sqrt{d(f^*)/n}$ that adapts to the optimal hypothesis f^* .

3871
 3872 **From Explicit Regularization to Implicit Bias of Practical Algorithms.** Since modern optimizers
 3873 like SGD routinely drive empirical risk to near-zero, convergence analysis alone offers limited
 3874 insight into generalization. The central theoretical challenge is therefore not determining *whether* a
 3875 minimum is reached, but identifying *which* of the infinite interpolating solutions the optimizer selects.
 3876 Plain ERM is insufficient for this task: without constraints on pointwise dimension, an empirical
 3877 risk minimizer yields no guarantee of controlled excess risk. In contrast, our RD-regularized ob-
 3878 jective (125) explicitly enforces the low-complexity structure required for the generalization bound

3879
 3880 ⁴The extra factor L beyond parameter count in VCdim is essentially unavoidable: for nonlinear composi-
 3881 tional models, VC/packing dimensions depend on the logarithm of a global worst-case Lipschitz constant, and
 3882 in depth- L networks that constant grows multiplicatively across layers, yielding an additional linear depen-
 3883 dence on L .

3888 in (126). Although this intuition is rooted in the earliest practices of deep learning, our pointwise
 3889 theory rigorously articulates the underlying mathematical reasoning.
 3890

3891 This motivates a concrete agenda for optimization in deep learning: characterize algorithms whose
 3892 implicit bias drives iterates toward solutions with *low pointwise complexity*, in particular low *Rie-
 3893 mannian Dimension (RD)*. Analogous phenomena are well documented in linear and kernel settings:
 3894 gradient descent converges to max-margin (logistic loss) or minimum-norm (least squares)
 3895 solutions (Soudry et al., 2018; Gunasekar et al., 2018), iterate-averaged SGD behaves like ridge re-
 3896 gression (Neu & Rosasco, 2018), and “ridgeless” kernel regression can generalize with an optimally
 3897 zero ridge parameter (Liang & Rakhlin, 2020); see Vardi (2023) for a survey. Our regularizer in
 3898 (125), based on pointwise dimension and, in particular, the RD from Theorem 4, is strictly more
 3899 informative than any single norm, making it a natural target for such analyses.

3900 Empirically, we say an algorithm exhibits *Riemannian-Dimension implicit bias* if it preferentially
 3901 returns solutions with small RD despite RD’s large dynamic range; in Section 5 we observe that
 3902 SGD indeed finds low-RD solutions.

3903 F.3 PROOF OF THEOREM 4 IN SECTION 4

3905 The proof consists of two steps: 1. Obtaining the Integral Bound on Generalization Gap; and 2.
 3906 Obtaining the Expression of Riemannian Dimension.

3907 **Step 1: Obtaining the Integral Bound on Generalization Gap.** As presented in (9), we construct
 3908 the metric tensor

$$3910 G_{\text{NP}}(W) := \text{blockdiag}(\dots, LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}^\top(W, X) \otimes I_{d_l}, \dots).$$

3911 By Lipschitz property of the loss function we have

$$3912 \varrho_{n,\ell}(f(W', \cdot), f(W, \cdot)) = \sqrt{\mathbb{P}_n(\ell(f(W', x), y) - \ell(f(W, x), y))^2} \\ 3913 \leq \beta \sqrt{\mathbb{P}_n \|f(W', x) - f(W, x)\|_2^2} = \beta \varrho_n(W', W)$$

3915 By Lemma 1 we have the metric dominating relationship: for every $W \in B_{\mathbf{F}}(R)$,

$$3916 \sqrt{n} \varrho_n(f(W', \cdot), f(W, \cdot)) \leq \varrho_{G_{\text{NP}}(W)}(W', W), \quad \forall W' \in B_{\mathbf{F}}(R).$$

3918 Combining the above two inequalities we have

$$3919 \varrho_{n,\ell}(f(W', \cdot), f(W, \cdot)) \leq \frac{\beta}{\sqrt{n}} \varrho_{G_{\text{NP}}(W)}(W', W), \quad \forall W' \in B_{\mathbf{F}}(R).$$

3921 By the metric domination lemma (Lemma 19), we have the pointwise dimension bound: for every
 3922 $W \in B_{\mathbf{F}}(R)$,

$$3923 \log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f(W, \cdot), \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_{G_{\text{NP}}(W)}}(W, \sqrt{n}\varepsilon/\beta))},$$

3925 By Theorem 3 (Riemannian Dimension Bound for DNN), we have that there exists a prior π such
 3926 that uniformly over every $W \in B_{\mathbf{F}}(R)$,

$$3927 \log \frac{1}{\pi(B_{\varrho_{n,\ell}}(f(W, \cdot), \varepsilon))} \leq \log \frac{1}{\pi(B_{\varrho_{G_{\text{NP}}(W)}}(W, \sqrt{n}\varepsilon/\beta))} \leq d_{\mathbf{R}}(W, \varepsilon/\beta), \quad (127)$$

3930 where the definition of Riemannian Dimension $d_{\mathbf{R}}$ can be found in Theorem 3. By Theorem 1, we
 3931 have that there exists an absolute constant C_1 such that with probability at least $1 - \delta$, uniformly
 3932 over all $W \in B_{\mathbf{F}}(R)$,

$$3933 (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \leq C_1 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^1 \sqrt{\log \left(\frac{1}{\pi(B_{\varrho_{n,\ell}}(f(W, \cdot), \varepsilon))} \right)} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right) \\ 3934 \\ 3935 \leq C_1 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{1}{\sqrt{n}} \int_{\alpha}^1 \sqrt{d_{\mathbf{R}}(W, \varepsilon/\beta)} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right) \\ 3936 \\ 3937 = C_1 \left(\inf_{\alpha \geq 0} \left\{ \alpha + \frac{\beta}{\sqrt{n}} \int_{\alpha}^1 \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon \right\} + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right). \quad (128)$$

3942 where C_1 is an absolute constant; the first inequality uses Theorem 1; and the second inequality uses
 3943 (127). This finishes the first part of Theorem 4 (integral upper bound).
 3944

3945 **Step 2: Obtaining the Expression of Riemannian Dimension.** It remains to express the Rie-
 3946 manian Dimension d_R by Theorem 3 and prove the second part of Theorem 4. By Theorem 3, we
 3947 have that the expression of Riemannian Dimension is

$$3948 d_R(W, \varepsilon) = \sum_{l=1}^L \left((d_l + d_{l-1}) \cdot d_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top, C_2 \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon) \right. \\ 3949 \left. + \log(d_{l-1}n) \right), \quad (129)$$

3950 where $R = \sup_{\mathcal{W}} \|W\|_{\mathbf{F}}$, C_2 is an absolute constant, and the effective dimension (defined via (11))
 3951 is
 3952

$$3953 d_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top, C_2 \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon) \\ 3954 = \frac{1}{2} \sum_{k=1}^{r_{\text{eff}}[W, l]} \log \frac{8C_2^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon) \lambda_k(F_{l-1} F_{l-1}^\top)}{n \varepsilon^2}, \quad (130)$$

3955 where F_{l-1} is the abbreviation of $F_{l-1}(W, X)$ and $r_{\text{eff}}[W, l]$ is the abbreviation of
 3956 $r_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot F_{l-1}(W, X) F_{l-1}(W, X)^\top, C_2 \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon)$.
 3957

3958 Combining the identities (129) and (130), we have the pointwise dimension bound
 3959

$$3960 d_R(W, \varepsilon) \\ 3961 = \sum_{l=1}^L \left((d_l + d_{l-1}) \sum_{k=1}^{r_{\text{eff}}[W, l]} \log \frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2} + \log(d_{l-1}n) \right) \\ 3962 = \sum_{l=1}^L \left((d_l + d_{l-1}) \sum_{k=1}^{r_{\text{eff}}[W, l]} \log \frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top)}{n \varepsilon^2} \right. \\ 3963 \left. + (d_l + d_{l-1}) r_{\text{eff}}[W, l] \cdot \log \left(LM_{l \rightarrow L}^2(W, \varepsilon) L \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} \right) + \log(d_{l-1}n) \right) \quad (131)$$

3964 where F_{l-1} is the abbreviation of $F_{l-1}(W, X)$; $r_{\text{eff}}[W, l]$ is the abbreviation of $r_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot$
 3965 $F_{l-1}(W, X) F_{l-1}(W, X)^\top, C_2 \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon)$; and C_2 is an absolute constant.
 3966

3967 This finishes the second part of Theorem 4 (expression of Riemannian Dimension).
 3968

3969 Combining the integral upper bound (128) and the Riemannain dimension expression (131) con-
 3970 cludes the proof of Theorem 4.
 3971

□

3972 F.4 PROOF FOR REGULARIZED ERM IN SECTION F.2

3973 **Lemma 31 (Excess Risk Bound for Regularized ERM)** *Assume we have high-probability point-
 3974 wise generalization bound in the form of (3), and the loss $\ell(f; z)$ is uniformly bounded by $[0, 1]$.
 3975 Then for the regularized ERM*

$$3976 \hat{f} = \operatorname{argmin}_f \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(2/\delta)}{n}} \right\},$$

3977 we have the excess risk bound against the population risk minimizer $f^* := \arg \min_{\mathcal{F}} \mathbb{P} \ell(f; z)$: with
 3978 probability at least $1 - \delta$,

$$3979 \mathbb{P} \ell(\hat{f}; z) - \mathbb{P} \ell(f^*; z) \leq \inf_{f \in \mathcal{F}} \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(2/\delta)}{n}} \right\} - \mathbb{P} \ell(f^*; z) \\ 3980 \leq (C + \sqrt{1/2}) \sqrt{\frac{d(f^*) + \log(2/\delta)}{n}}.$$

3996 **Proof of Lemma 31:** By (3), for every $\delta \in (0, 1)$, take $\delta_1 = \delta_2 = \delta/2$, we have that with
 3997 probability at least $1 - \delta_1 - \delta_2 = 1 - \delta$, we have
 3998

$$\begin{aligned}
 3999 \quad \mathbb{P}\ell(\hat{f}; z) &\leq \inf_{f \in \mathcal{F}} \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(1/\delta_1)}{n}} \right\} \\
 4000 \\
 4001 \\
 4002 \quad &\leq \mathbb{P}_n \ell(f^*; z) + C \sqrt{\frac{d(f^*) + \log(1/\delta_1)}{n}} \\
 4003 \\
 4004 \quad &\leq \mathbb{P}\ell(f^*; z) + \sqrt{\frac{\log(1/\delta_2)}{2n}} + C \sqrt{\frac{d(f^*) + \log(1/\delta_1)}{n}} \\
 4005 \\
 4006 \quad &= \mathbb{P}\ell(f^*; z) + \sqrt{\frac{\log(2/\delta)}{2n}} + C \sqrt{\frac{d(f^*) + \log(2/\delta)}{n}} \\
 4007 \\
 4008 \quad &\leq \mathbb{P}\ell(f^*; z) + (C + \sqrt{1/2}) \sqrt{\frac{d(f^*) + \log(2/\delta)}{n}}.
 4009 \\
 4010
 \end{aligned}$$

4011 where the first inequality uses the bound of the form (3); the second inequality uses definition of
 4012 \hat{f} ; and the third inequality is an application of the Hoeffding's inequality (Lemma 17) at f^* ; the
 4013 equality is by $\delta_1 = \delta_2 = \delta/2$; and the last inequality follows from the monotonicity of the square
 4014 root function. Thus we have that the excess risk is bounded by
 4015

$$\begin{aligned}
 4016 \quad \mathbb{P}\ell(\hat{f}; z) - \mathbb{P}\ell(f^*; z) &\leq \inf_{f \in \mathcal{F}} \left\{ \mathbb{P}_n \ell(f; z) + C \sqrt{\frac{d(f) + \log(2/\delta)}{n}} \right\} - \mathbb{P}\ell(f^*; z) \\
 4017 \\
 4018 \quad &\leq (C + \sqrt{1/2}) \sqrt{\frac{d(f^*) + \log(2/\delta)}{n}}.
 4019 \\
 4020
 \end{aligned}$$

□

4023 F.5 IMPROVEMENT OVER NORM BOUNDS IN SECTION F.1

4025 F.5.1 EXPONENTIAL IMPROVEMENT TO A NORM BOUND AND COMPARISON

4027 We now provide norm-constrained bound from Theorem 4 without any expression r_{eff} and d_{eff} in
 4028 the bound. Invoking the elementary bound $\log x \leq \log(1 + x) \leq x$, the effective dimension factor
 4029 in Theorem 4 can be relaxed to the dimension-independent bound

$$\begin{aligned}
 4030 \quad \sum_{k=1}^{\infty} \log \left(\frac{\lambda_k(F_{l-1} F_{l-1}^\top) \|W\|_{\mathbf{F}}^2 L M_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2} \right) &\leq \frac{\sum_{k=1}^{\infty} \lambda_k(F_{l-1} F_{l-1}^\top) \|W\|_{\mathbf{F}}^2 L M_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2} \\
 4031 \\
 4032 \quad &\leq \frac{\|F_{l-1}(W, X)\|_{\mathbf{F}}^2 \|W\|_{\mathbf{F}}^2 L M_{l \rightarrow L}^2(W, \varepsilon)}{n \varepsilon^2},
 4033 \\
 4034
 \end{aligned}$$

4035 and one arrives at the following rank-free consequence.
 4036

4037 **Corollary 1 (Norm-constrained bound)** *Theorem 4 is never worse than: uniformly over all $W \in$
 4038 $B_{\mathbf{F}}(R)$, the generalization gap $(\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y)$ is bounded by*

$$O \left(\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}(W, X)\|_{\mathbf{F}}^2 \|W\|_{\mathbf{F}}^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}}{n} + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + \log \frac{\log(2n)}{\delta}}{n}} \right). \quad (132)$$

4044 Furthermore, (132) implies the spectrally normalized bound: uniformly over $W \in B_{\mathbf{F}}(R)$, the
 4045 generalization gap $(\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y)$ is bounded by

$$O \left(\frac{\beta \|X\|_{\mathbf{F}} \|W\|_{\mathbf{F}} \cdot \sqrt{\sum_{l=1}^L L (d_l + d_{l-1}) \prod_{i \neq l} \|W_i\|_{\text{op}}^2}}{n} + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + L \log \frac{n \log \max\{R, 2\}}{\delta}}{n}} \right). \quad (133)$$

4050 Here in both (132) and (133), O hides multiplicative absolute constants 4051 and two ignorable high-order terms: $\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}}}{n^{5.5}}$ and 4052 $\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 R^2 \sup_{\varepsilon > 0} M_{l \rightarrow L^2(W, \varepsilon)}}}{n^{2n}}$; and in (133), O additionally hides an ignorable 4053 high-order term $\frac{\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \sum_{l=1}^L (d_l + d_{l-1}) (R/\sqrt{L-1})^{L-1}}}{n \max\{R, 2\}^n}$. 4054

4055 Note that (132) and (133), the data matrix X contain n features vectors so their Frobenius norms 4056 scales with \sqrt{n} , making the order of both bounds to be $n^{-1/2}$. 4057

4058 **Discussion of Corollary 1:** We proceed in three paragraphs of discussion. First, we show that the 4059 Riemannian Dimension bound in Theorem 4 is *exponentially* tighter than the spectrally normalized 4060 bound in (133). Second, we offer a metric–tensor interpretation that clarifies the source of this 4061 improvement. Finally, we position (133) relative to the most representative spectrally normalized 4062 bounds (SNB) in the existing literature. 4063

4064 **I: Why the improvement is exponential.** Empirically one observes 4065

$$4066 \|F_{l-1}\|_{\mathbf{F}} \ll \prod_{i < l} \|W_i\|_{\text{op}} \|X\|_{\mathbf{F}}, \quad M_{l \rightarrow L}(W, \varepsilon) \leq \sup_{W' \in B_{\varepsilon n}(W, \varepsilon)} \prod_{i > l} \|W'_i\|_{\text{op}}.$$

4067 Combining this dramatic improvement with the *already–exponential* gain that comes *solely* from 4068 the elementary inequality $\log x \leq \log(1 + x) \leq x$ (for $x \geq 0$), we conclude that Theorem 4 is 4069 *exponentially tighter* than (133). Therefore, Theorem 4 improves on Corollary 1 by an exponential 4070 factor. 4071

4072 **II: Metric tensor interpretation.** For understand the improvement deeper, we highlight that the 4073 spectral norm bound (133) can be equivalently viewed as replacing the metric tensor G_{NP} (9) used 4074 in Theorem 4 by the diagonal metric tensor 4075

$$4076 G_{\text{SNB}}(W) = \text{blockdiag}\left(\dots, L \sup_{W' \in B_{\mathbf{F}}(R)} \prod_{k \neq l} \|W'_k\|_{\text{op}} \|X\|_{\mathbf{F}}^2 \otimes I_{d_l \times d_{l-1}}, \dots\right),$$

4077 which is a far coarser relaxation that completely discards the learned feature $F_l(W, X)$. 4078

4079 **III: Relation to existing spectrally normalized bounds.** The bound in (133) is structurally close 4080 to the classical SNB results of Bartlett et al. (2017) and Neyshabur et al. (2018); the three bounds 4081 differ only in the *global ball* used to constraint the hypothesis class. 4082

4083 (a) Our bound (133) controls *all* layers simultaneously via the global Frobenius norm $\|W\|_{\mathbf{F}}$, 4084 hence the factor $\|W\|_{\mathbf{F}}$ in the numerator.

4085 (b) Neyshabur et al. (2018) bounds each layer l separately by its Frobenius norm $\|W_l\|_{\mathbf{F}}$. 4086 Strengthening their argument with Dudley’s entropy integral (one-shot optimization in the 4087 original paper) gives

$$4088 (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \leq \tilde{O}\left(\frac{\beta \|X\|_{\mathbf{F}} \sqrt{\sum_{l=1}^L L^2(d_l + d_{l-1}) \|W_l\|_{\mathbf{F}}^2 \prod_{i \neq l} \|W_i\|_{\text{op}}^2}}{n} + \sqrt{\frac{\log \frac{1}{\delta}}{n}}\right). \quad (134)$$

4089 Neither (133) nor (134) strictly dominates the other, since factors of the form 4090 $(\sum_l a_l)(\sum_l b_l)$ in (133) *vs.* factors of the form $L \sum_l a_l b_l$ in (134) can swap their 4091 relative order.

4092 (c) Bartlett et al. (2017) replaces each Frobenius norm by the $\|\cdot\|_{2,1}$ norm, obtaining the tighter

$$4093 (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \leq \tilde{O}\left(\frac{\beta \|X\|_{\mathbf{F}} \left(\sum_l \|W_l\|_{2,1}^{2/3} \sum_l (\prod_{i \neq l} \|W_i\|_{\text{op}})^{2/3}\right)^{3/2}}{n} + \sqrt{\frac{\log \frac{1}{\delta}}{n}}\right), \quad (135)$$

4094 which improves on (133) and (134) thanks to the sharper $2,1$ norm. Extending our 4095 Riemannian-dimension analysis to the $2,1$ norm setting is an interesting direction for future 4096 work.

4104 (d) Size-independent SNB bounds (pioneered by Golowich et al. (2020)) remove all
 4105 depth/width dependence at the price of a worse scaling in n ; incorporating their technique
 4106 is left for future research.
 4107 (e) Pinto et al. (2025) impose explicit per-layer rank constraints on the weight matrices, thereby
 4108 replacing the width factors in (134) with the corresponding ranks while leaving the product
 4109 of spectral norms unchanged. Their bound includes an additional C^L factor, which is sub-
 4110 sequentially removed by Ledent et al. (2025). Moreover, Ledent et al. (2025) seek to bridge
 4111 the spectral-norm and parameter-count regimes by leveraging the Schatten- p framework
 4112 of Golowich et al. (2020), which interpolates between the product-of-spectral-norm regime
 4113 ($p \rightarrow \infty$) and layerwise low-rank scalings ($p \rightarrow 0$). In the extreme $p \rightarrow 0$ limit, a repre-
 4114 sentative consequence (Theorem E.8 of Ledent et al., 2025) yields

$$4115 \quad 4116 \quad 4117 \quad (\mathbb{P} - \mathbb{P}_n)\ell(f(W, x), y) \leq \tilde{O} \left(\frac{\sup_i \|x_i\|_2^2}{\sqrt{n}} \sqrt{\sum_{l=1}^L L(d_l + d_{l-1}) \text{rank}(W_l)} \right).$$

4119 Notably, the explicit dependence on the *ranks of the weight matrices*—rather than on
 4120 spectrum-aware or *feature-rank* quantities—renders this result structurally similar to VC-
 4121 dimension bounds (indeed, the proof proceeds via uniform covering numbers, and pack-
 4122 ing/VC dimensions for matrices are known to adapt to explicit rank constraints (Srebro
 4123 et al., 2004)). As the authors acknowledge, this is a principal limitation: empirical evidence
 4124 suggests that deep networks exhibit low rank in their *features* rather than their weights, a
 4125 phenomenon this bound does not capture.

4126 In any case, (133) is a representative SNB bound, and the key message in this subsection is that our
 4127 Riemannian-Dimension result in Theorem 4 is *exponentially* sharper than (133).

4128 F.5.2 PROOF OF COROLLARY 1

4131 The bound in Theorem 4 (or (128) in its proof) can be further upper bounded by the following form

$$4132 \quad 4133 \quad 4134 \quad (\mathbb{P} - \mathbb{P}_n)\ell(f(W, x), y) \leq C_1 \left(\frac{1}{\sqrt{n}} \int_0^1 \sqrt{d_R(W, \varepsilon)} d\varepsilon + \sqrt{\frac{\log \frac{\log(2n)}{\delta}}{n}} \right), \quad (136)$$

4135 where the integral

$$4137 \quad 4138 \quad 4139 \quad \int_0^1 \sqrt{d_R(W, \varepsilon)} d\varepsilon = \inf_{\alpha \geq 0} \left(\int_0^\alpha \sqrt{d_R(W, \varepsilon)} d\varepsilon + \int_\alpha^1 \sqrt{d_R(W, \varepsilon)} d\varepsilon \right).$$

4140 Building on this inequality, we structure the proof in four steps.

4141 **Step 1: Bounding the Dominating Integral.** As we will take α to be very small so that the
 4142 $\int_0^\alpha \sqrt{d_R(W, \varepsilon)}$ will be not exceed the order of $\int_\alpha^1 \sqrt{d_R(W, \varepsilon)}$, we firstly prove $\int_\alpha^1 \sqrt{d_R(W, \varepsilon)} d\varepsilon$.
 4143 By the basic inequality $\log x \leq \log(1 + x) \leq x$ for $x > 0$, we have

$$4144 \quad 4145 \quad \sum_{k=1}^{r_{\text{eff}}[W, l]} \log \left(\frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} \right) \\ 4146 \quad 4147 \quad \leq \sum_{k=1}^{r_{\text{eff}}[W, l]} \frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} \\ 4148 \quad 4149 \quad \leq \sum_{k=1}^{d_{l-1}} \frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} \\ 4150 \quad 4151 \quad = \frac{8C_2^2 \|F_{l-1}\|_{\mathbf{F}}^2 \{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2}, \quad (137)$$

4155 where F_{l-1} is the abbreviation of $F_{l-1}(W, X)$; $r_{\text{eff}}[W, l]$ is the abbreviation of $r_{\text{eff}}(LM_{l \rightarrow L}^2(W, \varepsilon) \cdot$
 $F_{l-1}(W, X) F_{l-1}(W, X)^\top, C_2 \max\{\|W\|_{\mathbf{F}}, R/2^n\}, \varepsilon)$; and C_2 is a positive absolute constant. Here

4158 the second inequality uses the definition that $r_{\text{eff}}[W, l]$ as the effective rank of a $d_{l-1} \times d_{l-1}$ matrix,
 4159 is no larger than the matrix width d_{l-1} ; the first equality is because
 4160

$$4161 \quad \sum_{k=1}^{d_{l-1}} \lambda_k(F_{l-1} F_{l-1}^\top) = \text{Tr}(F_{l-1} F_{l-1}^\top) = \|F_{l-1}\|_{\mathbf{F}}^2, \quad (138)$$

4164 a well-known property of the Frobenius norm (the squared Frobenius norm $\|F_{l-1}\|_{\mathbf{F}}^2$ equals trace of
 4165 $F_{l-1} F_{l-1}^\top$). By (137) and Theorem 4 we have the Riemannian Dimension upper bound
 4166

$$4167 \quad d_{\mathbf{R}}(W, \varepsilon) \leq 8C_2^2 \sum_{l=1}^L (d_l + d_{l-1}) \frac{\|F_{l-1}\|_{\mathbf{F}}^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} + \sum_{l=1}^L \log(d_{l-1}n), \quad (139)$$

4170 where C_2 is a positive absolute constant.

4171 Taking (139) to the integral $\int_{\alpha}^1 \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon$, we have

$$4172 \quad \int_{\alpha}^1 \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon \\ 4173 \quad \leq 2\sqrt{2}C_2 \int_{\alpha}^1 \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) \frac{\|F_{l-1}\|_{\mathbf{F}}^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2}} d\varepsilon + (1-\alpha) \sqrt{\sum_{l=1}^L \log(d_{l-1}n)} \\ 4174 \quad \leq C_3 \sqrt{\frac{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}{n}} \log \frac{1}{\alpha} + (1-\alpha) \sqrt{\sum_{l=1}^L \log(d_{l-1}n)},$$

4183 where $C_3 > 0$ is an absolute constant.

4185 **Step 2: Bounding the Rest Integral.** We then prove $\int_0^{\alpha} \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon$. Again, by the basic in-
 4186 equality $\log x \leq \log(1+x) \leq x$ for $x > 0$, we have
 4187

$$4188 \quad \sum_{k=1}^{r_{\text{eff}}[W, l]} \log \left(\frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} \right) \\ 4189 \quad \leq \sum_{k=1}^{d_{l-1}} \log \left(\frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\varepsilon^2} \right) \\ 4190 \quad = \sum_{k=1}^{d_{l-1}} \log \left(\frac{8C_2^2 \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\alpha^2} \right) + d_{l-1} \log \frac{\alpha^2}{\varepsilon^2} \\ 4191 \quad \leq \frac{8C_2^2 \sum_{k=1}^{d_{l-1}} \lambda_k(F_{l-1} F_{l-1}^\top) \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\alpha^2} + d_{l-1} \log \frac{\alpha^2}{\varepsilon^2} \\ 4192 \quad = \frac{8C_2^2 \|F_{l-1}(W, X)\|_{\mathbf{F}}^2 \cdot \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\alpha^2} + d_{l-1} \log \frac{\alpha^2}{\varepsilon^2}. \quad (140)$$

4202 Taking (140) to the integral $\int_0^{\alpha} \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon$, we have
 4203

$$4204 \quad \int_0^{\alpha} \sqrt{d_{\mathbf{R}}(W, \varepsilon)} d\varepsilon \\ 4205 \quad \leq 2\sqrt{2}C_2 \int_0^{\alpha} \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) \frac{\|F_{l-1}\|_{\mathbf{F}}^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} LM_{l \rightarrow L}^2(W, \varepsilon)}{n\alpha^2}} d\varepsilon + \int_0^{\alpha} \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1} \log \frac{\alpha^2}{\varepsilon^2}} d\varepsilon \\ 4206 \quad \leq C_4 \left(\sqrt{\frac{\sum_{l=1}^L (d_l + d_{l-1}) \|F_{l-1}\|_{\mathbf{F}}^2 \max\{\|W\|_{\mathbf{F}}^2, R^2/4^n\} L \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}{n}} + \alpha \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}} \right),$$

4212 where the second inequality holds by calculating the integral $\int_0^\alpha \sqrt{\log(\frac{\alpha^2}{\varepsilon^2})} d\varepsilon = \alpha \sqrt{\frac{\pi}{2}}$, and $C_4 > 0$
 4213 is an absolute constant. Taking $\alpha = \frac{1}{n^5}$, the high-order term $\alpha \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}}$ will be
 4214 $\frac{\sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}}}{n^5}$ and is ignorable.
 4215

4216
 4217 **Step 3: Combing the Two Integrals.** Combining Step 1 and Step 2, we get the full Riemannian
 4218 Dimension integral upper bound
 4219

$$4220 \frac{1}{\sqrt{n}} \int_0^\infty \sqrt{d_R(W, \varepsilon)} d\varepsilon \leq O \left(\frac{\sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 \|W\|_{\mathbf{F}}^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}}{n} + \sqrt{\frac{\sum_{l=1}^L \log(d_{l-1} n)}{n}} \right),$$

4224 where O hides multiplicative absolute constants and two ignorable high-order terms:
 4225 $\frac{\sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}}}{n^{5.5}}$ and $\sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 R^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}$.
 4226

4227 Put this bound into Theorem 4 (or (136)), we have with probability at least $1 - \delta$, uniformly over all
 4228 $W \in B_{\mathbf{F}}(R)$,

$$4229 (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \\ 4230 \leq O \left(\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 \|W\|_{\mathbf{F}}^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}}{n} + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + \log \frac{\log(2n)}{\delta}}{n}} \right), \\ 4234 \quad (141)$$

4235 where O hides multiplicative absolute constants and two ignorable high-order terms:
 4236 $\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}}}{n^{5.5}}$ and $\frac{\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 R^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)}}{n^{2n}}$. Note that here
 4237 $F_{l-1}(W; X) \in R^{d_{l-1} \times n}$ contains n features vectors in dimension d_{l-1} so its Frobenius norm
 4238 $\|F_{l-1}\|_{\mathbf{F}}$ scales with \sqrt{n} with respect to sample size; and $\sup_{\varepsilon > 0} M_{l \rightarrow L}(W, \varepsilon)$ is the “one-point”
 4239 Lipschitz constant at W in the sense that
 4240

$$4241 \|F_l(F_l(W', X), \{W'_i\}_{i=l+1}^L) - F_l(F_l(W, X), \{W'_i\}_{i=l+1}^L)\|_{\mathbf{F}} \\ 4242 \leq \left(\sup_{\varepsilon} M_{l \rightarrow L}(W, \varepsilon) \right) \|F_l(W', X) - F_l(W, X)\|_{\mathbf{F}}, \quad \forall W' \in B_{\mathbf{F}}(R).$$

4244 This concludes the first generalization bound in Corollary 1.

4245
 4246 **Step 4: Prove the Second Generalization Bound.** Now we continue to show that the bound in
 4247 Corollary 1 is strictly better than the spectrally normalized bound. To see this, as we presented under
 4248 Corollary 1, we have
 4249

$$4250 \|F_{l-1}(W, X)\|_{\mathbf{F}} \\ 4251 = \|\sigma_{l-1}(W_{l-1} \cdots W_2 \sigma_1(W_1 X))\|_{\mathbf{F}} \\ 4252 \leq \prod_{i < l} \|W_i\|_{\text{op}} \cdot \|X\|_{\mathbf{F}}, \\ 4254 \quad (142)$$

4255 by the property of spectral norm ($\|AB\|_{\mathbf{F}} \leq \|A\|_{\text{op}} \|B\|_{\mathbf{F}}$), and the fact that all activation functions
 4256 are 1-Lipschitz in column.

4257 In the meanwhile, we know that

$$4259 \left(\sup_{\varepsilon} M_{l \rightarrow L}(W, \varepsilon) \right) \leq \sup_{\varepsilon} \prod_{i > l} \|W'_i\|_{\text{op}},$$

4262 again by the property of spectral norm ($\|AB\|_{\mathbf{F}} \leq \|A\|_{\text{op}} \|B\|_{\mathbf{F}}$) and the fact that all activation
 4263 functions are 1-Lipschitz in column. This results in

$$4264 \sup_{\varepsilon} \prod_{i > l} \|W'_i\|_{\text{op}} \leq \sup_{W \in B_{\mathbf{F}}(R)} \prod_{i > l} \|W_i\|_{\text{op}}. \\ 4265 \quad (143)$$

Combining (142) and (143) together with (141), we have that for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over every $W \in B_{\mathbf{F}}(R)$, we have

$$\begin{aligned} & (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \\ & \leq O \left(\frac{\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \cdot \sum_{l=1}^L (d_l + d_{l-1}) \prod_{i < l} \|W_i\|_{\text{op}}^2 \sup_{W \in B_{\mathbf{F}}(R)} \prod_{i > l} \|W_i\|_{\text{op}}^2}}{n} \right. \\ & \quad \left. + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + \log \frac{\log(2n)}{\delta}}{n}} \right), \end{aligned} \quad (144)$$

where O hides multiplicative absolute constants and two ignorable high-order terms: $\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}} / n^{5.5}$ and $\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 R^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)} / n^{2n}$.

The next step is to use a multi-dimensional extension of the “uniform pointwise convergence” principle (resulting in pointwise generalization bound (35) in this paper) to give a conversion from the uniform convergence to the pointwise convergence. Denote the functional $T_l : B_{\mathbf{F}}(R) \rightarrow (0, R_l]$ is defined by

$$T_l(W) = \prod_{i \neq l} \|W_i\|_{\text{op}}^2.$$

Since $\sum_{i \neq l} \|W_i\|_{\mathbf{F}}^2 \leq \|W\|_{\mathbf{F}}^2 \leq R^2$, we have $T_l(W) = \prod_{i \neq l} \|W_i\|_{\text{op}}^2 \leq (R/\sqrt{L-1})^{2(L-1)}$ according to the AM-GM inequality. The bound in (144) implies that for any $l = 1, \dots, L$, $\forall t_l \in (0, (R/\sqrt{L-1})^{2(L-1)})$, with probability at least $1 - \delta$,

$$\begin{aligned} & \sup_{W: T_l(W) \leq t_l, \forall l \in [L]} (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \\ & \leq O \left(\frac{\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \cdot \sum_{l=1}^L (d_l + d_{l-1}) t_l}}{n} + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + \log \frac{\log(2n)}{\delta}}{n}} \right). \end{aligned} \quad (145)$$

With the smallest radius r_0 chosen to be $r_0 = (R/\sqrt{L-1})^{2(L-1)} / \max\{R, 2\}^n$, and a grid of size $(\log_2(2 \max_{W,l} \{T_l(W)\} / r_0))^k$ (partition each coordinate into $\log_2(2 \max_{W,l} \{T_l(W)\} / r_0)$ dyadic scales, we can prove that for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, uniformly over every $W \in B_{\mathbf{F}}(R)$,

$$\begin{aligned} & (\mathbb{P} - \mathbb{P}_n) \ell(f(W, x), y) \\ & \leq O \left(\frac{\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \sum_{l=1}^L (d_l + d_{l-1}) \max\{4T_l^2(W), \frac{(R/\sqrt{L-1})^{2L-2}}{\max\{R, 2\}^{2n}}\}}{n} \right. \\ & \quad \left. + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + L \log \frac{n \log \max\{R, 2\}}{\delta}}{n}} \right) \\ & = O \left(\frac{\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \cdot \sum_{l=1}^L (d_l + d_{l-1}) \prod_{i \neq l} \|W_i\|_{\text{op}}^2}}{n} + \sqrt{\frac{\beta^2 \sum_{l=1}^L \log(d_{l-1} n) + L \log \frac{n \log \max\{R, 2\}}{\delta}}{n}} \right), \end{aligned} \quad (146)$$

where O hides multiplicative absolute constants and three ignorable high-order terms: $\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) d_{l-1}} / n^{5.5}$, $\beta \sqrt{\sum_{l=1}^L (d_l + d_{l-1}) L \|F_{l-1}\|_{\mathbf{F}}^2 R^2 \sup_{\varepsilon > 0} M_{l \rightarrow L}^2(W, \varepsilon)} / n^{2n}$ and $\beta \sqrt{L \|W\|_{\mathbf{F}}^2 \|X\|_{\mathbf{F}}^2 \sum_{l=1}^L (d_l + d_{l-1}) (R/\sqrt{L-1})^{L-1}} / n \max\{R, 2\}^n$. The proof of this multi-dimensional “uniform pointwise convergence” is essentially the same peeling argument as in Lemma 4, with the only change that we use multi-dimensional grid; alternatively, this can be proved by applying Lemma 4 for k times, where at each step we remove one dimension functional and divided confidence by $\log_2(2R/r_0)$. We omit the repetitive proof details.

4320 Now we see from (142) and (143) that the derived norm-constraint bound (141) implies the spectrally
4321 normalized bound (146). This completes the proof.

□

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373