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ABSTRACT

We address the long-standing question of why deep neural networks generalize by
establishing a complete pointwise generalization theory for fully connected net-
works. For each trained model, we equip the hypothesis with a pointwise Rieman-
nian dimension through the effective ranks of the learned feature matrices across
layers, and derive hypothesis- and data-dependent generalization bounds. These
spectrum-aware bounds break long-standing barriers and are orders of magnitude
tighter in theory and experiment, rigorously surpassing bounds based on model
size, products of norms, and infinite-width linearizations. Analytically, we iden-
tify structural properties and mathematical principles that explain the tractabil-
ity of deep nets. Empirically, the pointwise Riemannian dimension exhibits sub-
stantial dimensionality reduction, decreases with increased over-parameterization,
and captures feature learning and the implicit bias of optimizers across standard
datasets and modern architectures. Taken together, these results show that deep
networks are mathematically tractable in the practical regime and that their gener-
alization is sharply explained by pointwise, spectrum-aware complexity.

1 INTRODUCTION

Deep learning has ushered in a new era of AI, delivering striking generalization across a wide range
of scientific tasks. Yet these successes are predominantly empirical; theory has not kept pace. Para-
doxically, despite massive overparameterization, especially for large language models, classical the-
ory predicts severe overfitting, whereas practice shows strong generalization. The resulting gap has
fueled a prevailing pessimism that neural networks are opaque “black boxes” resistant to principled
explanation. This paper closes a key part of that gap by resolving the generalization problem for the
canonical neural network—fully connected deep neural network (DNN). Under minimal, verifiable
spectral conditions, we prove that fully connected deep networks fall into the tractable family—on a
rigorous footing comparable to sparse linear models and low-rank matrix factorization—rather than
the unconstrained “general” overparameterized class. To our knowledge, this is the first rigorous
account in decades that establishes generalization in fully connected deep networks as tractable by
the accepted standards of learning theory.

We study standard fully connected (feed-forward) networks on a dataset X = [x1, . . . , xn] ∈
Rd0×n, where each column is one input example. The network has widths d1, . . . , dL, and weight
matrices Wl ∈ Rdl×dl−1 for l = 1, . . . , L. We define the feature matrix at layer l by the recursion

Fl(W,X) := σl
(
Wl Fl−1(W,X)

)
∈ Rdl×n, l = 1, . . . , L, (1)

where F0 := X and the nonlinear activation σl acts columnwise. Each column of Fl is the feature
vector of one data point at layer l; each row of Fl is the activation of one neuron across the dataset.

Our focus is the generalization gap—the difference between test and training loss at the learned
weights W . Informally (up to universal constants and mild logarithms), we prove that this gap is
controlled by the effective dimension of the learned features: uniformly over everyW ∈ R

∑
l dl·dl−1 ,

Ltest(W )− Ltrain(W ) <∼

√√√√ 1

n

L∑
l=1

(
dl + dl−1

)
deff

(
Fl−1(W,X)Fl−1(W,X)⊤

)
. (2)
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Here deff(·) denotes the (layerwise) effective dimension—a smoothed notion of rank—of the feature
Gram matrix Fl−1(W,X)Fl−1(W,X)⊤, i.e., the number of meaningful directions the feature data
actually occupies at that layer. Intuitively, each layer contributes a term proportional to its size
(dl+dl−1) multiplied by how many directions its features Fl−1(W,X) truly use, deff . When features
are correlated, low rank, or exhibit a rapidly decaying spectrum (a few large eigenvalues dominating
many small ones), deff is small, so the bound remains tight even for very wide/deep networks and
improves with sample size as 1/

√
n. Such “feature compression” phenomena is widely observed in

modern deep learning (Huh et al., 2021; Wang et al., 2025; Parker et al., 2023). Strikingly, in our
experiments, increasing overparameterization often induces pronounced feature-rank compression:
the bound (2) decreases as model size grows (Section A); for example, in ResNet trained on CIFAR-
10, a majority of layers compress to (near-)zero effective rank.

Inequality (2) yields a strong uniform, hypothesis-dependent guarantee, which we term pointwise
generalization. It tracks how features evolve across layers of the trained model and explains overpa-
rameterization in practice. Moreover, the right-hand side of (2) can be used directly as a regularizer,
leading to algorithms that adapt to the effective ranks around a benchmark W ⋆ (Section 4.2). Under
minimal spectral conditions, our theory places fully connected networks in the same complexity
class as sparse linear models and low-rank matrix factorization: generalization is governed by a ef-
fective dimension rather than parameter count. The spectrum-aware effective-dimension notion we
adopt is standard and minimax-sharp in linear and kernel settings (Even & Massoulié, 2021). In
contrast, existing bounds either rely on infinite-width linearizations (e.g., NTK), are exponential in
products of spectral norms (from (Bartlett & Mendelson, 2002) to (Bartlett et al., 2017)), or scale
with model size (e.g., VC dimension (Bartlett et al., 2019)). Our bounds avoid these pathologies and
provide a pointwise, spectral account that matches known upper and lower rates, thereby establish-
ing fully connected deep networks as tractable by the accepted standards of learning theory.

1.1 CONTRIBUTIONS

The paper is organized into three parts—(i) a pointwise generalization framework (Section 2, (ii)
structural principles of deep networks (Section 3-4), and (iii) empirical validation (Section A). We
elaborate noveltes in each.

Pointwise Generalization and Finite-Scale Geometry. Classical tools (e.g., Rademacher com-
plexity, uniform covers, products of norms) measure global complexity and are often too coarse for
modern deep nets: they miss how a specific trained model uses its learned features across layers.
We propose a pointwise framework that targets the model actually trained and yields bounds with
matching upper and lower rates via a finite-scale notion of pointwise dimension—achieving the pre-
cision of generic chaining—while assigning each hypothesis a pointwise dimension that governs
its error. This yields a geometric view of generalization: a finite-scale, spectrum-aware geome-
try driven by dimension reduction (as opposed to infinitesimal limits), which clarifies the nature of
generalization and the sources of its difficulty. Our bounds can also be read as optimally analyzed
PAC–Bayes: the analysis admits data-dependent priors and deterministic predictors while retaining
posterior adaptivity, thereby overcoming core limitations of standard PAC–Bayes approaches.

Structual Principles and Tight Bounds for Neural Networks. We develop a non-perturbative ap-
proach that uses exact telescoping decompositions (rather than Taylor linearizations) to preserve the
finite-scale geometry of deep networks. This yields our first structural principle: cross-layer corre-
lations factor through the feature matrices and approximately preserve a pointwise linear structure.
We then show that bounding the pointwise dimension reduces to the gold standard of effective dimen-
sion on local charts, and we extend this to a global statement by constructing an ellipsoidal covering
over the set of subspaces (Grassmannian). This extension—novel beyond the classical differen-
tial–geometric/Lie–algebraic treatments—establishes our second structural principle: the complex-
ity of the global atlas (covering reference top eigenspaces) does not exceed that of the local charts.
Building on these principles, we introduce a pointwise Riemannian dimension—a spectrum-aware,
layerwise effective complexity—that governs generalization at the trained model and yields tight,
analyzable bounds. We review each step and argue that the resulting bounds are tight in a qualified
sense; moreover, they unconditionally reduce to spectral–norm bounds (see Appendix E.3).

Empirical Findings and Evidences. The experiments are designed to systematically examine three
central questions in modern deep learning: (i) why does overparameterization often improve gener-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

alization? (ii) how does feature learning evolve during training? and (iii) what implicit regulariza-
tion is encoded by the baseline optimizer? Across the experimental results, we observe that (i) the
overparameterization impressively leads to decreasing Riemannian Dimension; (ii) feature learning
compresses the effective ranks of learned features during the training; and (iii) SGD with momentum
implicitly regularizes the Riemannian Dimension.

2 THE NATURE OF GENERALIZATION

In this section, we develop our pointwise framework for generalization analysis, which introduces
a tight tool–pointwise dimension–to characterize generalization. We illustrate its advancement to
existing methodologies and bring some new understandings on the nature of generalization.

2.1 POINTWISE GENERALIZATION AS BEST PAC-BAYES OPTIMIZATION

Let F be a hypothesis class, z be random data drawn from an unknown distribution P (e.g., input-
label pair z = (x, y)), and ℓ(f ; z) be real-valued loss function. Denote by Pn the empirical distri-
bution supported on an i.i.d. sample {zi}ni=1 ∼ Pn. Our goal is to control the generalization gap
(P − Pn)ℓ(f ; z) in the following manner: for δ ∈ (0, 1), with probability at least 1 − δ, uniformly
over every f ∈ F ,

(P− Pn)ℓ(f ; z) := Ez∼P
[
ℓ(f ; z)

]
− 1

n

n∑
i=1

ℓ(f ; zi) ≤ C

√
d(f) + log 1

δ

n
, (3)

where d(f) is a hypothesis–dependent complexity measure that aims to characterize the intrinsic
complexity of every trained hypothesis f , different from canonical uniform convergence analysis.

In the spirit of (3) we introduce the core concept in this section—pointwise dimension, a concept
strengthen several established generalization methodologies such as PAC-Bayesian analysis, Kol-
mogorov complexity, generic chaining, and we then illustrate its tightness in characterizing the gen-
eralization by two theorems. Throughout the paper, we use the term “metric” ϱ in the pseudometric
sense: it satisfies all the usual metric axioms except that ϱ(f1, f2) = 0 need not imply f1 = f2.

Definition 1 (Pointwise Dimension) Given a function class F , a metric ρ on F , and a data-
dependent prior π over F , the local dimension at f with scale ε is defined as the log inverse density
of the ε− ball Bϱ(f, ε) = {f ′ ∈ F : ϱ(f, f ′) ≤ ε} centered at f :

log
1

π(Bϱ(f, ε))
. (4)

To prepare for our first theorem, we define the loss-induced empirical L2(Pn) metric ϱn,ℓ as

ϱn,ℓ(f1, f2) =
√
Ez∼Pn

[
(ℓ(f1; z)− ℓ(f2; z))2

]
.

Theorem 1 (One-Shot Bound) Let π be any data-dependent prior on a function class F , and loss
ℓ(f ; z) bounded by [0, 1]. Then for every δ ∈ (0, 1), with probability at least 1 − δ over n i.i.d.
draws z1, . . . , zn ∼ P, uniformly over all f ∈ F ,

(P− Pn)ℓ(f ; z) ≤ inf
ε>

√
1/n

{
2ε+

√
2 log 1

π(Bϱn,ℓ
(f,ε))

n

}
+

√
4

n
+ 3

√
log 1

δ

2n
.

Intuitively, pointwise dimension not only concerns the prior mass on a single hypothesis but works
for general, incountable F by taking the piror mass over a ball centered at f . This overcomes key
limitations of previous hypothesis-dependent bounds such as Occam’s razor bound and Kolmogorov
complexity (Lotfi et al., 2022). Additionally, our perspective brings the best possible PAC-Bayesian
mechanism, where the PAC-Bayes is seen as a promising tool for sharpening generalization. The
proof develops the generalization error as an bias-variance optimization problem on the user-chosen
posterior. Through very novel techniques such as symmetrization and conditioning, we permits data-
dependent priors (not allowed in classical PAC-Bayes) and makes the framework applicable to every
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single hypothesis beyond artificial randomization. This theorem along, with proved optimality of
chosen posterior and closed-form final expression, greatly improves relevant works in the area such
as (Hinton & Van Camp, 1993) and (Dziugaite & Roy, 2017).

We present a second bound that strengthens the above one-shot bound via a multi-scale integral
(known as generic chaining Talagrand (2005)). It covers rich classes whose pointwise dimension
can grow as O

(
d(f) ε−2

)
while still achieving a generalization rate of

√
d(f)/n.

Theorem 2 (Generic Chaining Bound and Global Lower Bound) For loss ℓ(f ; z) bounded in
[0, 1], (i) there exists an absolute constant C > 0 such that for any data-dependent prior π on
H and any δ ∈ (0, 1), with probability at least 1− δ, uniformly over every f ∈ F

(P− Pn)ℓ(f ; z) ≤ C

 1√
n

∫ ∞

0

√
log

(
1

π(Bϱn,ℓ
(f, ε))

)
dε+

√
log log(2n)

δ

n

 ;

(ii) under mild measurability conditions there are absolute constants c, c′ > 0 so that

E

[
inf
π

sup
f∈F

(
(P− Pn)ℓ(f ; z)−

c√
n log n

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε

)
+
c′ supF E[ℓ(f ; z)]√

n log n

]
≥ 0,

where notation E means taking expectation over samples.

The integral upper bound in Theorem 2 is tight in the following sense: no uniform improvement
(valid simultaneously for all hypotheses and priors) is possible. This is witnessed by a matching
lower bound. A strictly pointwise lower bound (depending on the realized hypothesis) is generally
unattainable, because the prior π must be hypothesis–blind (a “no free lunch” constraint). Theorem 2
extends Talagrand’s celebrated generic chaining to pointwise generalization bounds. Consequently,
it is fundamentally stronger than classical entropy–integral bounds based on global covering num-
bers, e.g., Dudley’s integral (Vershynin, 2009), whose integrand takes a supremum over the entire
class F rather than localizing at the realized hypothesis.

We defer technical innovations and connections to existing methodologies to the appendix. The
main takeaway is that the proposed pointwise dimension is a powerful and precise descriptor: it
tightly characterizes pointwise generalization.

2.2 GENERALIZATION IS FINITE-SCALE DIMENSION

We advocate the viewpoint that the nature of generalization’s is a finite-scale notion of dimension.
Concretely, our proposed pointwise dimension 4 is evaluated at a finite resolution—capturing the
model’s intrinsic, spectrum-aware complexity and drives dimension reduction at this scale. This
stands in sharp contrast to infinitesimal-scale geometric notions (which reduce to model size), and
therefore miss the structure that governs predictive performance.

Asymptotic vs. finite-scale dimension. A central notion to geometry is asymptotic pointwise di-
mension, and a classical definition is

lim
ε→0

log π(B(f, ε))

log ε
,

which is essential to fractal geometry (e.g., Chapter 10.1 in (Falconer, 1997)) and Riemannian ge-
ometry (Lutz, 2016), e.g., in the classical characterizations of Hausdorff and packing dimensions.
According to this definition, geometric dimension is inherently infinitesimal: it studies limit be-
havior ε → 0 at the point f . A key point that distinguishes generalization to geometry is that
generalization studies the finite-scale dimension; and our pointwise dimension log 1

π(Bϱ(f,ε))
clearly

reduces as ε increases; thus finite-scale study of geometry leads to significant dimension reduction.
In Theorem 1, the goal of generalization is to identify the best finite scale ( ε⋆ ≈ resulted bound),
and at this scale our pointwise dimension (4) could be much smaller than the asymptotic dimensions,
which allows tractable generalization in overparameterized models.

4
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3 DEEP NEURAL NETWORKS AND RIEMANNIAN DIMENSION

We consider fully connected (feed-forward) networks that map an input x ∈ Rd0 to an output
fL(W,x) ∈ RdL . The architecture is specified by widths d0, . . . , dL and weight matrices W =
{W1, . . . ,WL} with Wl ∈ Rdl×dl−1 for l = 1, . . . , L. Let σ1, . . . , σL be nonlinear activations (e.g.,
ReLU), acting componentwise on column vectors, and each σl : Rdl → Rdl is assumed 1-Lipschitz.
The network’s forward map is the composition

fL(W,x) := σL

(
WL σL−1

(
WL−1 · · · σ1(W1x)

))
.

Let X = [x1, . . . , xn] ∈ Rd0×n collect the n training inputs as columns. For each layer l ∈
{1, . . . , L}, define the depth-l map and the corresponding feature matrix

fl(W,x) := σl

(
Wl σl−1

(
Wl−1 · · · σ1(W1x)

))
, Fl(W,X) :=

[
fl(W,x1) · · · fl(W,xn)

]
∈ Rdl×n.

Equivalently (full, non-recursive form consist with (1)),

Fl(W,X) = σl

(
Wl σl−1

(
Wl−1 · · · σ1(W1X)

))
,

where for a matrix A = [a1, . . . , an] we write σl(A) := [σl(a1), . . . , σl(an) ]. Thus FL(W,X)
collects the network outputs on the dataset X .

We use ∥·∥F for the Frobenius norm and ∥·∥op for the spectral norm. The empirical L2(Pn) distance
between two hypotheses W,W ′ is (a 1/

√
n scaling is used to keep consistency with Section 2)

ϱn(W,W
′) :=

√∥∥FL(W,X)− FL(W ′, X)
∥∥2
F
/n .

The function-level empirical metric and generalization statements in Section 2 for the loss x 7→
ℓ(fL(W,x), y) at data–label pairs z = (x, y) specialize, on the dataset X , to the metric ϱn defined
above. We assume the loss ℓ(·, y) is β-Lipschitz in its first argument with respect to fL(W,x), which
bridges the metric ϱn,ℓ studied in Section 2 to ϱn defined on the weight space.

3.1 NON-PERTURBATIVE EXPANSION AND LAYER-WISE CORRELATION

Throughout, our finite-scale analysis relies on non-perturbative expansions. Borrowing terminology
from theoretical physics, “non-perturbative” here means we avoid Taylor/derivative expansions and
instead use exact, telescoping algebraic identities that hold at finite scale. For example,

W ′
2W

′
1 −W2W1 =W ′

2(W
′
1 −W1) + (W ′

2 −W2)W1, Σ′−1 − Σ−1 = Σ′−1
(Σ− Σ′)Σ−1,

with analogous decompositions used throughout. This viewpoint preserves the full finite-scale ge-
ometry of deep networks, rather than linearizing around an infinitesimal neighborhood.

To present our non-perturbative expansion for DNNs, we define local Lipchitz constant
Ml→L(W, ε), which characterizes the sensitivity of the layer L output, FL, to variations in layer
l’s output, within a neighborhood around Fl. Formally, we assume that for every W ′ ∈ Bϱn

(W, ε)

||FL(Fl(W
′, X), {W ′

i}Li=l+1)− FL(Fl(W,X), {W ′
i}Li=l+1)||F ≤Ml→L(W, ε)||Fl(W

′, X)− Fl(W,X)||F.
Local Lipschitz constants are typically much smaller than products of spectral norms and can be
computed by formal–verification toolchains (Shi et al., 2022). In our bounds these constants appear
only inside logarithmic factors, so they do not affect the leading rates. For completeness, we discuss
them carefully in the appendix. We propose a telescoping decomposition to replace conventional
Taylor expansion, where in each summand the only difference lie in W ′

l and Wl.

FL(W
′, X)− FL(W,X)

=

L∑
l=1

[σL(W
′
L · · ·W ′

l+1︸ ︷︷ ︸
controled byMl→L

σl︸︷︷︸
by1

(W ′
l Fl−1(W,X)︸ ︷︷ ︸

learned feature

))− σL(W
′
L · · ·W ′

l+1σl(Wl Fl−1(W,X)︸ ︷︷ ︸
learned feature

))],

Note that this is a non-perturbative expansion that holds unconditionally and does not rely on in-
finitesimal approximation, and crucially keeps the learned feature Fl−1(W,X) at the trained weight
W . From this decomposition and applying basic inequalities, we have the following key lemma.

5
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Lemma 1 (Non-Perturbative Feature Expansion) For all W ′ ∈ Bϱn
(W, ε),

||F (W ′, X)− F (W,X)||2F ≤
L∑

l=1

L ·Ml→L[W, ε]
2 · ||(W ′

l −Wl)Fl−1(W,X)||2F. (5)

The lemma captures the first structural principle of fully connected DNNs: cross-layer correlations
mostly pass through the feature matrices, preserving an approximate pointwise linear structure.

Since enlarging the metric only shrinks metric balls and hence increases the pointwise dimen-
sion (4) we analyze in Section 2, it suffices to analyze pointwise dimension under the pointwise
ellipsoidal metric that appears on the right-hand side of Lemma 1. Concretely, Gl(W ) :=
Fl−1(W,X)Fl−1(W,X)⊤, the feature Gram matrix from layer l−1, faithfully encodes the spec-
tral information induced by the network–data geometry. Working with the corresponding pointwise
ellipsoidal metric yields sharp, pointwise, spectrum-aware bounds with the desired properties for
deep networks, and underpins our tractability results (with the structural principles and technical
innovations to developed in the next subsection).

3.2 HIERARCHICAL COVERING FROM LOCAL CHART TO GLOBAL ATLAS

Lemma 1 suggests that the following pointwise ellipsoidal metric dominates n ·ϱn at everyW (here,
NP stands for “non-perturbative”):

GNP(W ) = blockdiag
(
· · · , LM2

l→L(W, ϵ) · Fl−1(W,X)F⊤
l−1(W,X)⊗ Idl

, · · ·
)

ϱGNP(W )(W,W
′) = vec(W ′ −W )⊤GNP(W )vec(W ′ −W ). (6)

We are therefore interested in bounding the enlarged pointwise dimension under the pointwise ellip-
soidal metric ϱGNP(W ): log 1

π(Bϱn (f(W,·),ϵ)) ≤ log 1
π(BϱGNP(W )

(W,
√
nϵ))

.

Golden standard: effective dimension. Classical studies of static ellipsoidal metrics suggest that
if π is chosen to be uniform over the top-r eigenspace of GNP(W ), then one can achieve a tight
effective dimension as follows: define

reff(G(W ), R, ε) := max{k : λk(G(W ), R2 ≥ nε2/2}, (7)

and spectrum-aware effective dimension

deff(G(W ), R, ε) :=
1

2

reff(G(W ),R,ε)∑
k=1

log

(
8R2λk
nε2

)
(8)

This definition serves as a gold standard for static ellipsoidal metrics and is asymptotically tight,
as established by the covering number of the unit ball with ellipsoids in Dumer et al. (2004). For
brevity, we write r for reff(G(W ), R, ε), and denote by V ⊂ Rp the r-dimensional subspace corre-
sponding to the top-reff eigenspace of G(W ).

Key challenge: prior independence fromW . However, the main challenge is that the construction
of π cannot rely on knowledge of W , including its top-reff eigenspace, yet still capture the under-
lying geometric structure. The next lemma extends classical results on static ellipsoidal metrics by
showing that a uniform prior over a reference subspace V̄ suffices to bound the pointwise dimension
for all W whose top-r eigenspace of G(W ) can be approximated by V̄ .

Lemma 2 (Pointwise Dimension via Reference Subspace) Consider the weight space B2(R) ⊂
Rp for vectorized weights, and a pointwise ellipsoidal metric defined via PSD G(W ). Let V̄ ⊆ Rp

be an r-dimensional subspace. Define the prior πV̄ = Unif
(
B2(1.58R) ∩ V̄

)
. Then, uniformly over

all (W, ε) such that the top-r eigenspace V of G(W ) can be approximated by V̄ to precision

ϱproj,G(W )(V, V̄) :=
∥∥G(W )1/2

(
PV − PV̄

) ∥∥ ≤
√
nε

4R , (9)

we have

log
1

πV̄(BϱG(W )
(W,

√
nε))

≤ 1

2

reff(G(W ),R,ε)∑
k=1

log

(
40R2λk
n(ε2 − ε21)

)
= deff(Σ,

√
5R, ε).

6
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In (9), PV denotes the orthogonal projector onto the subspace V , and ϱproj,G(W ) thus defines an
ellipsoidal projection metric between subspaces. Further details are provided in the appendix.

Hierarchical covering (mixture prior over subspaces). We employ a hierarchical covering argu-
ment. For each reference subspace V̄ , the bottom-level prior (uniform on V̄) can achieve a tight
pointwise dimension bound for all “local” weights W whose top-r eigenspace of G(W) can be well-
approximated by V̄ . At the top level, we then construct a prior over V̄ . By combining these two
levels of priors, we obtain a pointwise dimension bound using a prior π that is completely blind to
the choice of W . To formalize this, we introduce a top-level distribution µ over the Grassmannian

Gr(p, r) :=
{
r–dimensional linear subspaces of Rp

}
the collection of all r-dimensional subspaces, and define

π(W ) =
∑
V
µ(V)πV(W ).

We refer to this two-stage construction as the hierarchical covering argument. Under the result-
ing prior π, the following bound holds uniformly over all W ∈ W , the pointwise dimension
log 1

π(BϱG(W )
(W,

√
nϵ))

is bounded by two parts:

log
1

µ(Bϱproj,G(W )
(V,
√
nϵ/4R))︸ ︷︷ ︸

covering Grassmannian (global atlas)

+ sup
V̄∈Bϱproj,G(W )

(V,
√

nϵ/4R)

log
1

πV̄(BϱG(W )
(W,

√
nϵ))︸ ︷︷ ︸

covering local charts

, (10)

In differential–geometric terms, our argument has two components. Local (chart) analysis: fixing
a reference subspace V̄ , we use effective dimension as the gold standard to determine the metric
entropy of the corresponding local chart. Global (atlas) covering: we cover the Grassmannian by
such reference subspaces, i.e., we bound the metric entropy of the global atlas and account for the
cost of transitioning across charts. Lemma 2 controls the local part, while the following new result
on the ellipsoidal Grassmannian controls the global part:

Lemma 3 (Ellipsoidal Covering of the Grassmannian manifold) Consider the Grassmannian
Gr(dl, rl). For uniform prior µ = Unif(Gr(dl, rl)), we have that for every V ∈ Gr(dl, rl), ev-
ery ϵ > 0 and every PSD matrix Σ with eigenvalues λ1 ≥ · · ·λdl

, we have the pointwise dimension
bound

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ 1

2
(dl − rl)

rl∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
+ rl

dl−rl∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
,

where C > 0 is an absolute constant.

The result above is mathematically significant in its own right. It extends the classical metric-entropy
(covering number) theory for the Grassmannian—where log covering number ≍ r(d− r) log(C/ϵ)
under the isotropic projection metric— to an ellipsoidal (anisotropic) metric that captures feature–
and model–induced geometry. This generalization translates the traditional differential-geometric
and Lie-algebraic treatments (see Appendix D) and, we believe, illustrates a two–way exchange:
deep mathematical structure is essential to understanding generalization in modern neural networks,
and, conversely, generalization theory can motivate new questions and results in pure mathematics.

Leveraging the block–decomposable structure in (6), we obtain:

Theorem 3 (Riemannian Dimension for DNN) Consider the weight space BF(R), and a point-
wise ellipsoidal metric defined via the ellipsoidal metric GNP(W ) defined in (6). Define the point-
wise Riemannian dimension

dR(W, ϵ) =

L∑
l=1

(
dl · deff(Al(W ))︸ ︷︷ ︸

covering local charts

+ dl−1 · deff(Al(W ))︸ ︷︷ ︸
covering global atlas

+ log(dl−1n)︸ ︷︷ ︸
covering discretereff

)
,

where deff(Al(W )) is abbreviation of deff(Al(W ), Cmax{∥W∥F, R/2
n}, ϵ) and C is a positive

absolute constant. Then we have the pointwise dimension bound: uniformly over all W ∈ BF(R),

log
1

π(Bϱn(f(W, ·), ϵ))
≤ dR(W, ϵ).

7
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This concludes our program for fully connected networks: we establish Riemannian dimension as
a principled complexity measure that explains—and sharply bounds—generalization. We summa-
rize the second structural principle of fully connected DNNs: The complexity of the global atlas
(covering the space of reference top eigenspaces) remains commensurate with the layerwise, spec-
trum–aware complexity of covering the local charts.

4 GENERALIZATION BOUNDS AND COMPARISON

4.1 GENERALIZATION BOUND FOR DNNS

We are now ready to state our generalization bound for fully connected DNN here. Combining
Theorem 3 and Theorem 2, we have

Theorem 4 (Generalization Bounds for DNNs) Let the loss ℓ(f(W,x), y) be bounded in [0, 1]
and β−Lipchitz with respect to f(W,x), for every δ ∈ (0, 1), with probability at least 1 − δ,
uniformly over all W ∈ W ,

(P− Pn)ℓ(f(W,x), y) ≤ C1

( β√
n

∫ ∞

0

√
dR(W, ϵ)dϵ+

√
log log(2n)

δ

n

)
,

where the admitted Riemannian Dimension is

dR(W, ϵ)

=

L∑
l=1

(dl + dl−1)

reff[W,l]∑
k=1

log
8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2
+ log(dl−1n)

 ,

where Fl−1 is learned feature Fl−1(W,X); reff[W, l] :=
reff(LM

2
l→L(W, ϵ)Fl−1F

⊤
l−1, C2 max{||W ||F , R/2n}, ϵ) is abbreviation of effective rank;

and C1, C2 are positive absolute constant.

We conclude by reviewing our comprehensive theory for generalization in fully connected networks
and justifying the tightness of the resulting bounds. First, in Section 2 we develop a framework
based on pointwise dimension. The upper and lower bounds match in a qualified (non-uniform)
sense (see remarks after Theorem 2), and the framework has a profound connection to finite-scale
geometry—evidence that this is the right organizing principle. Second, Section 3 introduces a
non-perturbative expansion. Lemma 1 applies Cauchy–Schwarz layerwise (treating each layer as a
block). While there may be room to improve depth dependence, the telescoping decomposition (5)
is an equality, so the expansion is generally sharp (and fully avoid linearization). Third, the hier-
archical covering argument shows that the resulting Riemannian dimension bound matches the gold
standard of effective dimension. Thus our pointwise, spectrum-aware bounds achieve the optimal
form dictated by static ellipsoid theory, now in strongly correlated deep networks.

4.2 IMPLICIT BIAS AND ALGORITHMIC IMPLICATION

Pointwise Dimension is Implicit Bias. A central tenet in deep learning generalization is implicit
bias (regularization favored by the algorithms) (Vardi, 2023). With a definition, implicit bias means
an optimizer regularized one term besides the training loss during the training, and we call this term
the implicit bias of this optimizer. From our theory, we see any pointwise generalization bound
results in a regularization (and thus an implicit bias) for algorithm design. For a bound in the form

(3), considering the regularized ERM: f̂ = argminf{Pnℓ(f ; z)+C
√

d(f)+log(1/δ)
n }, its excess risk

Pℓ(f̂ ; z)− Pℓ(f∗; z) is bounded by (compared with any benchmark f∗ ∈ W),

inf
f∈F

{
Pℓ(f ; z) + 2C

√
d(f) + log(1/δ)

n

}
− Pℓ(f∗; z) ≤ 2C

√
d(f∗) + log(1/δ)

n
;

refer to Appendix E.2. This gives a problem-dependent upper bound
√
d(f∗)/n (adapts to the op-

timal hypothesis f∗). Sparse linear models and matrix factorization explicitly impose sparsity/low-
rank assumptions on f⋆; without strong convexity, the resulting statistical rates are unimprovable.

8
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Table 1: Final-epoch Metrics of FCNs on MNIST. Supplementary explanations of columns: 1)
Width−2∗ means h = 2∗; 2) Train Error; 3) Generalization error is defined as test error minus train
error; 4) The spectral norm is the spectrally normalized margin bound of (Bartlett et al., 2017). It
is the tightest norm–based bound in the literature to our knowledge; 5) Parameter Counts of the
network; 6) VC dimension. We adopt a nearly tight VC–dimension bound from (Bartlett et al.,
2019) and report PL logP for brevity (see Section 4.3); 7) R-D means our Riemannian Dimension.

Model Train Gen Spectral Norm # Parameters VC dimension R-D

Width-26 0.0002 0.0205 3.146× 1015 5.961× 106 9.299× 108 6.433× 107

Width-27 0.0002 0.0187 2.695× 1015 6.167× 106 9.641× 108 6.097× 107

Width-28 0.0000 0.0191 2.093× 1015 6.726× 106 1.057× 109 5.589× 107

Width-29 0.0000 0.0186 2.401× 1015 8.434× 106 1.345× 109 5.316× 107

Width-210 0.0000 0.0215 4.816× 1015 1.421× 107 2.340× 109 5.266× 107

Width-211 0.0000 0.0160 1.001× 1016 3.520× 107 6.116× 109 4.972× 107

Width-212 0.0000 0.0210 1.466× 1016 1.149× 108 2.133× 1010 4.803× 107

Table 2: Final-Epoch Metrics of ResNets on CIFAR-10
Model Train Error Gen Error # Parameters VC dimension R-D

ResNet-20 0.0016 0.0752 2.690× 105 6.727× 107 8.801× 106

ResNet-32 0.0003 0.0695 4.630× 105 1.933× 108 9.992× 106

ResNet-44 0.0001 0.0627 6.570× 105 3.872× 108 6.339× 106

ResNet-56 0.0000 0.0637 8.510× 105 6.507× 108 5.200× 106

ResNet-74 0.0000 0.0615 1.142× 106 1.179× 109 3.237× 106

ResNet-110 0.0000 0.0576 1.724× 106 2.723× 109 2.583× 106

4.3 COMPARISON WITH NORM BOUND, VC, AND NTK

Norm bound: Invoking the elementary bound log x ≤ log(1 + x) ≤ x, we prove that the Rieman-
nian–Dimension bound in Theorem 4 is exponentially tighter than the spectrally normalized bound
in (Bartlett et al., 2017; Neyshabur et al., 2018); refer to Appendix E.3.

VC dimension: Let P be the number of weights and L be the number of layers, Bartlett et al. (2019)
prove a nearly tight VC–dimension bound VCdim ≤ O (PL logP ), supported by a lower bound
VCdim ≥ Ω (PL log(P/L)). This VC dimension bound is roughly equivalent to beL

∑L
l=1 dldl−1.

Our Riemannian–Dimension bound, by comparison, significantly sharpens this VC bound by remov-
ing the length L and replacing the width to be the effective rank.

NTK: Our approach uses exact non-perturbative expansion, which preserves the finite-scale ge-
ometry of deep networks, beyond NTK’s Taylor linearizations that remains only valid in the
infinitesimal-scale neighborhood around initialization. In effect, our method provides a finite-scale
pointwise NTK in practical regimes, whereas NTK is a infinitesimal-scale theory resisting to the
generalization theory.

5 EXPERIMENTS AT A GLANCE AND CONCLUSIONS

Tables 1 and 2 show that our Riemannian dimension is orders of magnitude tighter than prior com-
plexity measures and—more strikingly—typically decreases as the number of parameters grows.
Additional results in Appendix A further show that for FCNs on MNIST the effective feature rank
can compress by as much as 300× (to 1/300 of width), and for ResNet on CIFAR-10 the majority
of layers have (near) zero effective rank, explaining the benign effect of overparameterization. More
details, tables, and discussion are deferred to Appendix A.

Collectively, our results establish a coherent, geometry-aware foundation for tractable and predictive
generalization in fully connected neural networks. Addressing this core challenge required several
technical innovations, and our experiments validate the resulting theoretical understanding.

9
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Table 3: Final-epoch Metrics of FCNs on MNIST. Supplementary explanations of columns: 1)
Width−2∗ means h = 2∗; 2) Train Error; 3) Generalization error is defined as test error minus train
error; 4) The spectral norm is the spectrally normalized margin bound of (Bartlett et al., 2017). It
is the tightest norm–based bound in the literature to our knowledge; 5) Parameter Counts of the
network; 6) VC dimension. We adopt a nearly tight VC–dimension bound from (Bartlett et al.,
2019) and report PL logP for brevity (see Section 4.3); 7) R-D means our Riemannian Dimension.

Model Train Gen Spectral Norm # Parameters VC dimension R-D

Width-26 0.0002 0.0205 3.146× 1015 5.961× 106 9.299× 108 6.433× 107

Width-27 0.0002 0.0187 2.695× 1015 6.167× 106 9.641× 108 6.097× 107

Width-28 0.0000 0.0191 2.093× 1015 6.726× 106 1.057× 109 5.589× 107

Width-29 0.0000 0.0186 2.401× 1015 8.434× 106 1.345× 109 5.316× 107

Width-210 0.0000 0.0215 4.816× 1015 1.421× 107 2.340× 109 5.266× 107

Width-211 0.0000 0.0160 1.001× 1016 3.520× 107 6.116× 109 4.972× 107

Width-212 0.0000 0.0210 1.466× 1016 1.149× 108 2.133× 1010 4.803× 107

Table 4: Final-Epoch Metrics of ResNets on CIFAR-10
Model Train Error Gen Error # Parameters VC dimension R-D

ResNet-20 0.0016 0.0752 2.690× 105 6.727× 107 8.801× 106

ResNet-32 0.0003 0.0695 4.630× 105 1.933× 108 9.992× 106

ResNet-44 0.0001 0.0627 6.570× 105 3.872× 108 6.339× 106

ResNet-56 0.0000 0.0637 8.510× 105 6.507× 108 5.200× 106

ResNet-74 0.0000 0.0615 1.142× 106 1.179× 109 3.237× 106

ResNet-110 0.0000 0.0576 1.724× 106 2.723× 109 2.583× 106

A EXPERIMENTS

We evaluate our Riemannian Dimension on two standard architectures—Fully Connected Networks
(FCNs) and ResNets, using two benchmark datasets—MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky, 2009), respectively. We consider a 9-hidden-layer FCN architecture, where, except
for the fixed layers, hidden layers share a common width h, with h ∈ {26, 27, 28, 29, 210, 211, 212}.
Increasing h monotonically enlarges both layer widths and model sizes. We adopt canonical ResNet
architectures—ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-74 and ResNet-110—which
differ only in the number of residual blocks per stage while maintaining the same overall architecture
(three-stage, basic-block design) as introduced by (He et al., 2016). These ResNet architectures
provides a clean capacity sweep via depth. In what follows, we organize experiments around the
two complementary regimes—width scaling on FCNs and depth scaling on ResNets.

This design lets us systematically study three central questions in modern deep learning: (i) why
does overparameterization often improve generalization? (ii) how does feature learning evolve dur-
ing training? and (iii) what implicit regularization is encoded by the baseline optimizer? Detailed
experimental setups are deferred to to the end of this section.

A.1 RIEMANNIAN DIMENSION EXPLAINS OVERPARAMETERIZATION

This section studies why does overparameterization—despite exploding model capacity—often im-
prove generalization. We investigate this paradox by tracking our Riemannian Dimension across
models with varying parameter counts, asking whether more parameters truly enlarge capacity or
instead deduce complexity.

Final-epoch metrics of FCNs on MNIST and ResNets on CIFAR-10 are reported in Table 3 and
Table 4, respectively. In these Tables, the train error quickly collapses to zero for sufficiently large
models, confirming their expressive capacity. Consistently, the generalization can continue to be
improved as parameters increase, especially on ResNets (Table 4). This phenomenon means the
overfitting does not appear and reflects a paradoxical truth of deep learning: over-parameterization
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Table 5: Final-epoch Effective Ranks for FCNs on MNIST, where Width−2∗ means h = 2∗, and
where for the form A/B, A represents the effective rank and B represents the original dimension,
and where Layer-1 means the input layer.

Metric Width-26 Width-27 Width-28 Width-29 Width-210 Width-211 Width-212

Layer-1 713/763 712/763 710/763 710/763 707/763 707/763 704/763
Layer-2 2048/2048 2044/2048 2042/2048 2048/2048 2047/2048 2048/2048 2048/2048
Layer-3 2048/2048 2045/2048 2037/2048 2019/2048 1925/2048 1460/2048 1009/2048
Layer-4 61/64 97/128 92/256 85/512 79/1024 79/2048 59/4096
Layer-5 23/64 43/128 34/256 33/512 28/1024 26/2048 22/4096
Layer-6 20/64 24/128 20/256 21/512 19/1024 18/2048 15/4096
Layer-7 15/64 18/128 17/256 15/512 15/1024 14/2048 13/4096
Layer-8 15/64 14/128 15/256 11/512 13/1024 13/2048 12/4096
Layer-9 14/64 14/128 15/256 13/512 13/1024 12/2048 12/4096
Layer-10 13/64 13/128 12/256 14/512 12/1024 13/2048 14/4096
Total 4970 5024 4994 4969 4858 4390 3908

Table 6: Final-epoch Effective Ranks for ResNets on CIFAR-10, where for the form A/B, A rep-
resents the effective rank and B represents the original dimension, and where Layer-0% means the
input layer.

Metric ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-74 ResNet-110

Layer-0% 384/3072 384/3072 17/3072 0/3072 0/3072 0/3072
Layer-25% 2048/16384 2048/16384 7/16384 1/16384 0/16384 0/16384
Layer-50% 1024/8192 1024/8192 1024/8192 227/8192 0/8192 0/8192
Layer-75% 512/4096 512/4096 512/4096 512/4096 58/4096 0/4096
Layer-100% 8/64 8/64 8/64 8/64 8/64 8/64
Total 23432 37768 27564 16294 11401 6925

is not a curse, but can benefit the generalization. However, classical complexity measures—e.g.,
the spectral norm and the VC dimension, often scale exponentially as the parameter count grows.
Notably, the spectral norm is about 106 times larger than the VC dimension and seems to be a worse
complexity measure (see Table 3). The two measures therefore struggle to explain the general-
ization of modern overparameterized networks. In contrast, our Riemannian Dimension exhibits a
consistent downward trend as model size grows—both under width scaling (last column of Table 3)
and depth scaling (last column of Table 4), and it is about 103 times smaller than the VC dimen-
sion, suggesting that the effective dimension—not raw parameter count—is the true indicator of
generalization in deep learning. In summary, increased parameterization is associated with reduced
effective model complexity, and Riemannian Dimension faithfully characterizes this phenomenon.

A.2 FEATURE LEARNING COMPRESSES EFFECTIVE RANK

We investigate the dynamics of feature learning by monitoring the effective rank of the feature Gram
matrices Fl−1F

⊤
l−1, with the normalization ·L||W ||2FΠi>l∥Wi∥2op dictated by our theory. Empirical

results appear in Tables 5, 6 and Figure 1.

Experimental results reveal some clear patterns: (1) As training proceeds, the effective ranks of
feature grams decreases sharply after a short transient; refer to Figure 1. (2) Increased parameter
counts, both under width scaling (FCNs) and depth scaling (ResNets), foster compressing effective
ranks of feature grams in both the rate and the degree; refer to Figure 1. (3) On the largest FCN,
the degree of effective rank compression can reach as much as 1/300, which explains why the Rie-
mannian Dimension can achieve such a significant improvement over the VC dimension; refer to
Table 5. While on the largest ResNet, the effective ranks of the vast majority of layers compress
to zero, which explains why deeper networks can, paradoxically, exhibit a smaller Riemannian Di-
mension; refer to Table 6. These experimental results indicates that feature learning steadily reduces
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Figure 1: Effective Rank evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10 (right)
across the training
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Figure 2: Riemannian Dimension evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10
(right) across the training

the intrinsic dimensionality of features over training and aim to learn a lower-dimensional feature
manifold, and the overparameterization intensifies this reduction.

A.3 SGD FINDS LOW RIEMANNIAN DIMENSION POINT

Related literature has shown that various norms are implicit bias of optimizers, but typically limited
to linear models (Vardi, 2023). This section studies whether SGD with momentum, in modern
deep learning, implicit regularized Riemannian Dimension across training dynamics. We examine
whether this optimizer preferentially converge to solutions with lower Riemannian Dimension point,
and the experimental results are presented in Figure 2.

Empirical results show a repeatable pattern across the architectures: SGD with momentum drives
the networks toward solutions with lower intrinsic Riemannian Dimension complexity, after an early
transient; refer to Figure 2. Notably, Riemannian Dimension drops by orders of magnitude, whereas
VC dimension remains essentially unchanged. The alignment between optimization dynamics and
complexity control supports the view that SGD with momentum implicitly regularizes the Rieman-
nian Dimension. Therefore, optimization is not merely as a mechanism for convergence; it is a
primary driver of generalization through its systematic preference for low-complexity solutions.
Riemannian Dimension provides a practical and theoretically grounded lens through which the im-
plicit bias of optimizes in machine learning can be quantitatively assessed.

Experimental Setup. We introduce detailed experimental setups. We evaluate our Riemannian
Dimension bound on two standard architectures—Fully Connected Networks (FCNs) and ResNets,
using two benchmark datasets—MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009),
respectively. The architecture of FCNs: we consider a 9-hidden-layer FCN in which the first two
hidden layers have width 211 and the remaining seven hidden layers share a common width h, with
h ∈ {26, 27, 28, 29, 210, 211, 212}. The output layer is a linear classifier mapping to 10 logits, and we
use ReLU as the activation and use PyTorch’s default initialization (Kaiming uniform for ReLU).
Increasing h monotonically enlarges both layer widths and the total parameter count, yielding a
clean capacity sweep at fixed depth. The architecture of ResNets: we adopt the canonical ResNet
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architectures, ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-74, and ResNet-110, which
differ only in the number of residual blocks per stage while maintaining the same overall architecture
(three-stage, basic-block design) as introduced by (He et al., 2016). Following the practice of (He
et al., 2016), we apply BatchNorm and ReLU after each convolution, with shortcut connections
added as needed, and a global average pooling layer precedes the final linear classifier. These ResNet
architectures provides a clean capacity sweep via depth.

We adopt standard training pipelines widely used in the benchmarks. (1) The training Protocol
of FCNs is: SGD with momentum optimizer where momentum = 0.9, learning rate = 0.01, and
weight decay = 5×10−4; 200 epochs and 128 batch size; a step decay at epochs {100, 170}, where
the learning rate is scaled by ×0.1. (2) The training Protocol of ResNets is: SGD with momentum
optimizer where momentum = 0.9, learning rate = 0.1, and weight decay = 5× 10−4; 250 epochs
and 128 batch size; a step decay at epochs {50, 150, 200}, where the learning rate is scaled by ×0.1;
Following practical training conditions, we apply standard data augmentation on CIFAR-10: random
horizontal flips and 4-pixel random crops with zero-padding.

In the experiments of FCNs and ResNets, to enable layerwise analysis of the evolving fea-
ture representations and support our computation of Riemannian Dimension, we register for-
ward hooks on all nonlinearity layers. For layers followed by pooling, we replace the last
recorded ReLU activation with the corresponding pooled output. We also pre-register the in-
put hook to capture the feature matrix of the data. These hooks ensures precise extraction of
nonlinearity activations at each depth throughout training. We set the hyper-parameter ε via a
one–dimensional ternary-search procedure: at the end of each training stage we perform a 500-
step ternary search for FCNs and a 50-step ternary search for ResNets over the admissible interval

[
√

1/n, maxl=1,...,L

√
2Lλmax(Fl−1F⊤

l−1)·||W ||2FΠi>l∥Wi∥2
op

n ]. The search selects the value that mini-
mizes our one-shot Riemannian Dimension-based generalization error bound (Theorem 1). We note
that tighter bounds could be achieved with more refined optimization procedures on ε. For FCNs, we
compute full feature gram matrices. While for ResNets, the feature matrix F is formed by flattening
each activation map into a vector of dimension d = C · H ·W , where C,H,W are the channel,
height, and width of the feature map respectively. To align with our theory, we simplify ResNets
to fully connected (feed-forward) networks when computing our bound; we apply the same simpli-
fication to the associated VC-dimension and parameter-count calculations to maintain consistency.
To avoid out-of-memory in computing full feature gram matrices in high-dimensional convolutional
layers, we use the standard Gaussian sketching approximation, where each feature gram matrix
uses a Gaussian sketch with parameter r = min(8192, ⌊d/8⌋) (Woodruff et al., 2014). By stan-
dard subspace-embedding guarantees, such Gaussian sketches preserve Gram quadratic forms—and
hence the spectra—of the feature matrices with high probability, introducing only negligible distor-
tion and leaving our conclusions unchanged (Woodruff et al., 2014).

B PROOFS FOR THE NATURE OF GENERALIZATION (SECTION 2)

B.1 PROOF OF THEOREM 1 (ONE-SHOT GENERALIZATION BOUND)

To prove our pointwise-dimension generalization bound, we start with a novel combination of sym-
metrization and conditional PAC-Bayes, which enables data-dependent prior and empirical L1/L2

metric control. In the next step, we show how a standard analysis of symmetrized loss extends this
result to original losses, incurring at most a constant factor of 2 in the bound.

B.1.1 SYMMETRIZED LOSSES AND CONDITIONAL PAC-BAYES

As discussed above, we start with a one-shot approximation bound for symmetrized loss. Now
define g(f ; z, ξ) = ξℓ(f ; z), where ξ is an independent Rademacher variable, a symmetric binary
random variable taking values with Pr(ξ = +1) = Pr(ξ = −1) = 1

2 . Denote the population and
empirical distributions of ξ as Q and Qn. By independence assumption we know that Q is also the
conditional distribution of (z, ξ) conditioned on z, thus we can use the product distribution (such as
Qn ⊗ Pn) to denote the joint distributions of (z, ξ). A key property of symmetrized loss is that it
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preserves the empirical L2 and L1 metric of the original loss:

ϱn,ℓ(f, f
′) :=

√
Pn[(ℓ(f ; z)− ℓ(f ′; z))2] =

√
Qn ⊗ Pn[(g(f ; z, ξ)− g(f ′; z, ξ))2], (11)

L1(Pn)(f, f
′) = Pn|ℓ(f ; z)− ℓ(f ′; z)| = Qn ⊗ Pn|ℓ(f ; z)− ℓ(f ′; z)|. (12)

because for Rdemacher variables ξ, (ℓ(f ; z)− ℓ(f ′; z))2 = [ξ(ℓ(f ; z)− ℓ(f ′; z))]2 = (g(f ; z, ξ)−
g(f ′; z, ξ))2, and |ℓ(f ; z)− ℓ(f ′; z)| = |ξ(ℓ(f ; z)− ℓ(f ′; z))| = |g(f ; z, ξ)− g(f ′; z, ξ)|.
We are interested in the conditional generalization gap (conditioned on every fixed realization of
{zi}ni=1 regardless of P):

Q⊗ Png(f ; z, ξ)−Qn ⊗ Png(f ; z, ξ) = 0 − 1

n

n∑
i=1

g
(
f ; zi, ξi

)
.

For technical reasons (the later application of McDiarmid’s inequality via bounded difference to
prove Theorem 1), we work with L1(Pn) metric now (which is a smaller metric than L2(Pn) so the
bound is more general).

Lemma 4 Let π be any data-dependent prior on a hypothesis class F (π can depend on z1, · · · , zn),
and let ℓ : F ×Z → [0, 1] be a bounded loss. Fix confidence δ ∈ (0, 1) and sample size n. Then for
all ε > 0, with probability at least 1 − δ over n i.i.d. draws ξ1, . . . , ξn from Q, uniformly over all
f ∈ F ,

0− 1

n
g(f ; zi, ξi) ≤ ε+

√
log 1

π(BL1(Pn)(f,ε))
+ log 1

δ

2n
.

Proof of Lemma 4: the proof consists of three steps: 1. Conditional PAC-Bayes; 2. Approximat-
ing the Deterministic Hypothesis; and 3. Taking Uniform Posterior in ε−Ball.

1. Conditional PAC-Bayes. Applying Catoni’s PAC-Bayes uniform bound (Catoni, 2003)
(Lemma 9 in our Auxiliary Lemma Part) to the population and empirical distribution of ξ, we
have that with probability at least 1 − δ, uniformly over every µ ∈ ∆(F), we have the “random
hypothesis” bound

⟨µ, 0−Qn ⊗ Png(·; z, ξ)⟩ ≤

√
KL
(
µ, π

)
+ log 1

δ

2n
, (13)

where the absolute constant comes from the loss g ∈ [−1, 1]. The DKL divergence is defined by
KL(µ∥π) =

∫
F log

(
dµ
dπ (f)

)
µ(df).

2. Approximating the Deterministic Hypothesis. So on the event that the above conditional
PAC-Bayes inequality (13) holds, with probability at least 1− δ, we have that uniformly over every
random µ ∈ ∆(F) and at the same time uniformly over every deterministic f ∈ F , for every η > 0,
we have the “deterministic hypothesis” bound: for any η > 0,

0−Qn ⊗ Png(f ; z, ξ)

=⟨µ, 0−Qn ⊗ Png(·; z, ξ)⟩+ ⟨µ,Qn ⊗ Pn[g(·; z, ξ)− g(f ; z, ξ)]⟩

≤η
8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ,Qn ⊗ Pn[|g(·; z, ξ)− g(f ; z, ξ)|]⟩

=
η

8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ,L1(Pn)(·, f)⟩ (14)

where the first identity holds because ⟨µ,Qn ⊗ Png(f ; z, ξ)⟩ = g(f ; z, ξ); the inequality uses con-
ditional PAC-Bayes (13) to bound the first term and use absolute values to bound the second term;
and the last identity uses metric preservation of symmetrization (identity (11)). On the event that
(13) holds, the new inequality (14) holds simultaneously not only for every random µ (due to PAC-
Bayes) but also for every deterministic f , because on such event, the new inequality (14) does not
use any new probabilistic inequality besides (13).
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Taking Uniform Posterior in ε−ball. Given any prior π on F , for any f ∈ F , we take µ to be
the uniform distribution over BL1(Pn)(f, ε):

µ = Unif(BL1(Pn)(f, ε)). (15)

We emphasize that using this uniform measure over the ε-ball is “essentially optimal” in that it
reproduces the same analytical upper bound—namely the conclusion of Lemma 4—as would be
obtained by employing the Gibbs distribution that minimizes the bound in (14).

This “essentially optimal” choice (15) of µ yields

dµ

dπ
(f) =


1

π(BL1(Pn)(f, ε))
, f ∈ BL1(Pn)(f, ε),

0, f /∈ BL1(Pn)(f, ε).

the KL divergence is

KL(µ∥π) =
∫
F
log
(

dµ
dπ (f)

)
µ(df)

=

∫
BL1(Pn)(f,ε)

log
(

1
π(BL1(Pn)(f,ε))

)
µ(df)

= log
1

π(BL1(Pn)(f, ε))

∫
BL1(Pn)(f,ε)

µ(df)︸ ︷︷ ︸
=1

= log
1

π(BL1(Pn)(f, ε))
. (16)

Because (14) holds simultaneously for every w and every µ = Unif(BL1(Pn)(f, ε)), we can apply
(14) and substitute KL equality (16) back to (14). Minimizing over η, this gives:

0−Qng(f ; z, ξ) ≤

√
log 1

π(BL1(Pn)(f,ε))
+ log 1

δ

2n
+ ε.

□

The proof develops the generalization error as an optimization problem on bias and variance.
Through introducing symmetrized losses and a conditioning technique, we transformer the bias-
variance optimization to a PAC-Bayes optimization problem on the posterior and prior. We solve it
optimally by establishing matching upper and lower bounds; refer to the following lemma.

Lemma 5 (Optimality of the ε-ball uniform posterior for the PAC–Bayes optimization)
Define the PAC–Bayes optimization functional

Vf (η;Pn, π) := inf
µ≪π

{η
8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ,L1(Pn)(·, f)⟩

}
.

Then for every f ∈ F , η > 0, and ε > 0:

Vf (η;Pn, π) ≥ η

8
+

log 1
δ

ηn
+min

{ 1

ηn
log

1

π
(
BL1(Pn)(f, ε)

) , ε} − log 2

ηn
. (17)

Consequently, for every f ∈ F , η > 0, and ε > 0,

η

8
+
log 1

δ

ηn
+min

{ log 1

π(BL1(Pn)(f,ε))

ηn
, ε
}
− log 2

ηn
≤ Vf (η;Pn, π) ≤ η

8
+
log 1

π(BL1(Pn)(f,ε))
+ log 1

δ

ηn
+ε.

(18)

Proof of Lemma 5 The Donsker–Varadhan variational identity states that for any measurable h,

− log

∫
eh dπ = inf

µ≪π

{
DKL(µ∥π) −

∫
h dµ

}
.
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Apply it with h = −ηnL1(Pn)(·, f) to obtain

− log

∫
e−ηnL1(Pn)(·,f) dπ = inf

µ≪π

{
DKL(µ∥π) +

∫
ηnL1(Pn)(·, f) dµ

}
,

which implies that

η

8
+

log 1
δ

ηn
− 1

ηn
log

∫
e−ηnL1(Pn)(·,f) dπ = inf

µ≪π

{η
2
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ,L1(Pn)(·, f)⟩

}
,

(19)
By splitting the dual integral,∫

e−ηnL1(Pn)(·,f) dπ =

∫
BL1(Pn)(f,ε)

e−ηnL1(Pn)(·,f) dπ +

∫
BL1(Pn)(f,ε)c

e−ηnL1(Pn)(·,f) dπ

≤ π
(
BL1(Pn)(f, ε)

)
+ e−ηnε

(
1− π

(
BL1(Pn)(f, ε)

))
≤ π

(
BL1(Pn)(f, ε)

)
+ e−ηnε,

where we have used e−ηnL1(Pn)(·,f) ≤ 1 on BL1(Pn)(f, ε) and e−ηnL1(Pn)(·,f) ≤ e−ηnε on
BL1(Pn)(f, ε)

c. Hence

Vf (η;Pn, π) ≥ η

8
+

log 1
δ

ηn
− 1

ηn
log
(
π
(
BL1(Pn)(f, ε)

)
+ e−ηnε

)
. (20)

The simplified form (17) follow from a+b ≤ 2max{a, b} or equivalently − log(a+b) ≥ − log 2+
min{− log a,− log b} on (20). Combining (14), (16) and (17) yields the sandwich (18). □

B.1.2 ORIGINAL LOSSES

In the next step, via symmetrization, we extend the bound for symmetrized losses (Lemma 4 to
original losses.

Proof of Theorem 1: The proof consists of three steps, following the standard symmetrization
routine in controlling empirical processes: 1. Obtain In-Expectation Bound for Offset Symmetrized
Losses; 2. Bounding Offset Symmetrized Losses by Offset Original Losses; 3. Applying McDi-
armid’s Inequality to Get High-Probability Bound.

1. Obtain In-Expectation Bound for Offset Symmetrized Losses. The bound in Lemma 4 im-
plies

Pr

sup
f∈F

0− 1

n

n∑
i=1

g(f ; zi, ξi)−

√
log 1

π(BL1(Pn)(f,ε))
+ log 1

δ

2n
− ε

 > 0

 ≤ δ

which implies (by Q⊗ Pg(f ; z, ξ) = 0 and
√
a+ b ≤

√
a+

√
b)

Pr

sup
f∈F

(Q⊗ P−QnPn)g(f ; z, ξ)−

√
log 1

π(BL1(Pn)(f,ε))

2n
− ε

 >

√
log 1

δ

n

 ≤ δ.

Denoted by supf∈F

{
(Q⊗ P−QnPn)g(f ; z, ξ)−

√
log 1

π(BL1(Pn)(f,ε))

2n − ε

}
= Y , then

EY ≤ EY+ =

∫ ∞

0

Pr(Y > t)dt ≤
∫ ∞

0

e−nt2dt =

√
π

4n
<

√
1

n
.

Thus, we now get an expectation bound.

E sup
f∈F

(Q⊗ P−QnPn)g(f ; z, ξ)−

√
log 1

π(BL1(Pn)(f,ε))

2n
− ε−

√
1

n

 ≤ 0. (21)
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2. Bounding Offset Symmetrized Losses by Offset Original Losses. Now we apply the follow-
ing analysis, standard in using symmetrization to control empirical processes:

Ez sup
f∈F

(P− Pn)ℓ(f ; z)− 2

√
log 1

π(BL1(Pn)(f,ε))

2n
− 2ε−

√
4

n


=Ez sup

f∈F
Ez′

Pn[(ℓ(f ; z
′)− ℓ(f ; z))]− 2

√
log 1

π(BL1(Pn)(f,ε))

2n
− 2ε−

√
4

n


≤Ez,z′ sup

f∈F

Pn[(ℓ(f ; z
′)− ℓ(f ; z))]− 2

√
log 1

π(BL1(Pn)(f,ε))

2n
− 2ε−

√
4

n


=Ez,z′,ξ sup

f∈F

Qn ⊗ Pn[ξ(ℓ(f ; z
′)− ℓ(f ; z))]− 2

√
log 1

π(BL1(Pn)(f,ε))

2n
− 2ε−

√
4

n


≤Ez′,ξ sup

f∈F

Qn ⊗ Pnξℓ(f ; z
′)−

√
log 1

π(BL1(Pn)(f,ε))

2n
− ε−

√
1

n


+ Ez,ξ sup

f∈F

Qn ⊗ Pn(−ξℓ(f ; z))−

√
log 1

π(BL1(Pn)(f,ε))

2n
− ε−

√
1

n


=2Ez,ξ sup

f∈F

(Q⊗ P−Qn ⊗ Pn)g(f ; z, ξ)−

√
log 1

π(BL1(Pn)(f,ε))

2n
− ε−

√
1

n


≤0

where the first inequality is because sup is a convex function; the second equality is because
ℓ(f ; z′) − ℓ(f ; z) has a symmetric distribution; the second inequality is because supx(h1(x) +
h2(x)) ≤ supx h1(x)+ supx h2(x); and the last equality is because ξℓ(f ; z′) has the same distribu-
tion with ξℓ(f, z); and the last inequality is by (21). We conclude that

Ez sup
f∈F

(P− Pn)ℓ(f ; z)− inf
ε>0


√

2 log 1
π(BL1(Pn)(f,ε))

n
+ 2ε

−
√

4

n

 ≤ 0

3. Applying McDiarmid’s Inequality to Get High-Probability Bound. Finally, we apply Mc-
Diarmid’s inequality (Lemma 10) to get the high probability bound. By an arbitrary change of
the sample s = {z1, ..., zn} to S′ = {z1, ..., z′j , ..., zn}, the bounded difference of supf∈F (P −

Pn)ℓ(f ; z)− infε>1/n

{√ 2 log 1
π(BL1(Pn)(f,ε))

n + 2ε
}
−
√

4
n is at most 3/n. Specifically, define

ψ(f ;S) = (P− Pn)ℓ(f ; z)− inf
ε>1/n

{√
2 log 1

π(BL1(Pn)(f,ε))

n
+ 2ε

}
−
√

4

n
,

we want to show

| sup
f
ψ(f ;S)− sup

f
ψ(f ;S′)| ≤ 3

n
.

Clearly, to prove (22), it suffices to show that for every fixed w ∈ F ,

|ψ(f, S)− ψ(f, S′)| ≤ 3

n
, ∀ fixed f. (22)
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Denote L1(S) and L1(S
′) to be the empirical L2 norms with S and S′, respectively. We have that

|ψ(f ;S)− ψ(f ;S′)| is bounded by∣∣∣∣∣∣ℓ(f ; z
′)− ℓ(f ; z)

n
+ inf

ε>1/n


√

2 log 1
π(BL1(S′)(f,ε))

n
+ 2ε

− inf
ε>1/n


√

2 log 1
π(BL1(S)(f,ε))

n
+ 2ε


∣∣∣∣∣∣ ,

(23)

For all ε > 1/n, as ℓ is bounded in [0, 1],

BL1(S)(f, ε− 1/n) ⊆ BL1(S′)(f, ε) ⊆ BL1(S)(f, ε+ 1/n),

so we have

log
1

π(BL1(S), ε+ 1/n)
≤ log

1

π(BL1(S′), ε)
≤ log

1

π(BL1(S), ε− 1/n)

and thus (taking ε1 = ε− 1/n and ε2 = ε+ 1/n.

inf
ε1>2/n


√

2 log 1
π(BL1(S)(f,ε1))

n
+ 2(ε1 − 1/n)

 ≤ inf
ε>1/n


√

2 log 1
π(BL1(S′)(f,ε))

n
+ 2ε


≤ inf

ε2>0


√

2 log 1
π(BL1(S′)(f,ε2))

n
+ 2(ε+ 1/n)

 .

This sandwich bound implies that∣∣∣∣∣∣ inf
ε>1/n


√

2 log 1
π(BL1(S′)(f,ε))

n
+ 2ε

− inf
ε>1/n


√

2 log 1
π(BL1(S)(f,ε))

n
+ 2ε


∣∣∣∣∣∣ ≤ 2

n
.

Combining the above bound with (23) we prove the bounded difference property (22). Thus, by
McDiarmid’s inequality (Lemma 10), from the bounded difference property (22), with probability
at least 1− δ,

sup
f∈F

(P− Pn)ℓ(f ; z)− inf
ε>1/n


√

2 log 1
π(BL1(Pn)(f,ε))

n
+ 2ε

−
√

4

n


≤Ez sup

f∈F

(P− Pn)ℓ(f ; z))− inf
ε>1/n


√

2 log 1
π(BL1(Pn)(f,ε))

n
+ 2ε

−
√

4

n

+ 3

√
log 1

δ

2n

≤3

√
log 1

δ

2n
.

Finally, we convert the stronger L1(Pn) bound to the weaker L2(Pn) bound we stated in the main
paper: combining the above L1(Pn) bound with the fact L1(Pn) ≤ L2(Pn), we have that with
probability at least 1− δ, uniformly over every h ∈ H,

(P− Pn)ℓ(f ; z) ≤ inf
ε>

√
1/n

2ε+

√
2 log 1

π(Bϱn,ℓ
(f,ε))

n
+

4

n
+ 3

√
log 1

δ

2n

 .

□

B.2 PROOF FOR THEOREM 2 (GENERIC CHAINING UPPER AND LOWER BOUNDS)

Theorem 2 is a corollary of established matching upper and lower bounds for Gaussian Processes
Fernique (1975); Talagrand (1987). Note that generic chaining have several equivament formula-
tions, and the one closest to our purpose is through majorizing measure. On the upper bound side,
we extend it to pointwise generalization bound; on the lower bound side, we re-derive it to empirical
processes.
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B.2.1 BACKGROUND ON GAUSSIAN PROCESSES

We now recall several key results from a series of seminal papers by Talagrand, Fernique, and others,
which introduces the majorizing-measure formulation of the generic chaining framework.

The statements below follow Talagrand’s original exposition [Talagrand, 1987, “Regularition of
Gaussian Processes,” Acta Mathematica, 1987] closely, with only minor adjustments in notation
and wording.

A centered Gaussian random variableX is a real-valued measurable function on the outcome space
such that the law of X has density

(2πσ2)−1/2 exp
(
− x2

2σ2

)
.

The law of X is thus determined by σ = (E[X2])1/2. If σ = 1, X is called standard normal.

A Gaussian process is a family {Xt}t∈T of random variables indexed by some set T , such that every
finite linear combination

∑k
j=1 αjXtj is Gaussian. Its covariance function

Γ(u, v) = E[XuXv ], (u, v) ∈ T × T,

determines E
[∑

j αjXtj

]2
, and hence the joint law of {Xt}t∈T . On the index set T , consider the

pseudo-distance ϱ given by

ϱ(u, v) =
√

E[(Xu −Xv)2].

Gaussian processes are thus a very rigid class of stochastic processes, with exceptionally nice prop-
erties that have been fully developed in the literature.

Fernique Fernique (1975) proved in 1975 the following result.

Lemma 6 (Upper Bound of Gaussian Processes via Majorizing Measure, Fernique (1975))
For any Gaussian process (Xt)t∈T , and any prior π on T , we have

E
[
sup
t∈T

Xt

]
≤ C sup

x∈T

∫ ∞

0

√
log

1

π(Bϱ(x, ϵ))
dϵ,

where C > 0 is an absolute constant.

A prior π that makes the right hand side in Lemma 6 finite is called a majorizing measure. Fer-
nique conjectured as early as 1974 that the existence of majorizing measures might characterize the
boundedness of Gaussian processes. He proved a number of important partial results, and his de-
termination eventually motivated the Talagrand to attack the problem in 1987. In Talagrand (1987)
Talagrand proved that the integral in Lemma 6 is tight up to absolute constants. We define the
following minor measurability condition:

Assumption 1 (Minor Measurability Condition) The Gaussian process satisfies supt∈D |Xt| <
∞ almost surely for each countable subset D ⊆ T .

Lemma 7 (Lower Bound of Gaussian Processes via Majorzing Measure, Talagrand (1987))
For every Gaussian process that satisfies a mild measurability condition (Assumption 1), there
exists a prior π on T such that

E
[
sup
x∈T

Xt

]
≥ c sup

x∈T

∫ ∞

0

√
log

1

π(Bϱ(x, ϵ))
dϵ,

where c > 0 is an absolute constant.

Thus the pointwise dimension integral gives a complete characterization to the supremum of Gaus-
sian process. We now use the upper and lower bounds in Lemma 6 and Lemma 7 to prove Theorem
2.
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B.2.2 PROOF OF THEOREM 2

I: Proof of Upper Bound. We begin by citing a general principle for converting (localized) uni-
form convergence guarantees into pointwise generalization bounds. This conversion, introduced as
“uniform localized convergence” principle in Xu & Zeevi (2025), provides a direct mechanism for
obtaining the type of pointwise generalization bounds central to our work. We state this result as
“uniform pointwise convergence” principle.

Lemma 8 (“Uniform Pointwise Convergence” Principle Xu & Zeevi (2025):) (A Generic Con-
version from Uniform Convergence to Pointwise Generalization.) For a function class F and func-
tional d : F → (0, R], assume there is a function ψ(r; δ), which is non-decreasing with respect to
r, non-increasing with respect to δ, and satisfies that ∀δ ∈ (0, 1), ∀r ∈ [0, R], with probability at
least 1− δ,

sup
f∈F :d(f)≤r

(P− Pn)ℓ(f ; z) ≤ ψ(r; δ). (24)

Then, given any δ ∈ (0, 1) and r0 ∈ (0, R], with probability at least 1−δ, uniformly over all f ∈ F ,

(P− Pn)ℓ(f ; z) ≤ ψ

(
max{2d(f), r0}; δ

(
log2

2R

r0

)−1
)
. (25)

The proof of the upper bound in Theorem 2 consists of three steps: 1. Bounding Empirical Process
by Gaussian Process; 2. Applying Integral Upper Bound; 3. Generic Conversion to Pointwise
Generalization Bound.

Step 1: Bounding Empirical Process by Gaussian Process. We start with the classical result
that Gaussian complexity of a function class is an upper bound for expected uniform convergence,
see Definition 2 and Lemma 11 in the auxiliary lemma part for this classical result. To be specific,
by Lemma 11 (and

√
2π < 3) we have

Ez

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≤ 3Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
,

where gi are i.i.d. standard Gaussian variables. Applying Mcdiarmid’s inequality (Lemma 10) twice,
we have that with probability at least 1− δ, the following two inequality simultaneously hold:

sup
f∈F

(P− Pn)ℓ(f ; z)− Ez

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≤

√
log 2

δ

2n
,

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)ℓ(f ; z)

]
− sup

f∈F

1

n

n∑
i=1

giℓ(f ; zi)ℓ(f ; z) ≤

√
log 2

δ

2n
.

Combining the above three inequalities we have

sup
f∈F

(P− Pn)ℓ(f ; z) ≤ 3 sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi) +

√
8 log 2

δ

n
,

taking expectation for {gi}ni=1 on both sides, we obtain

sup
f∈F

(P− Pn)ℓ(f ; z) ≤ 3Eg

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
+

√
8 log 2

δ

n
, (26)

Step 2: Applying Integral Upper Bound. Applying Lemma 6 to the Gaussian process
1
n

∑n
i=1 giℓ(f ; zi) (with fixed {zi}), we have that for all data-dependent prior π,

Eg

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
≤ C1√

n
sup
f∈F

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ, (27)

where C1 > 0 is an absolute constant.
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Step 3: Generic Conversion to Pointwise Generalization Bound. Combining (26) and (27), we
have: for all δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

(P− Pn)ℓ(f ; z) ≤
3C1√
n

sup
f∈F

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ+

√
8 log 2

δ

n
,

which implies that ∀δ ∈ (0, 1) and ∀r ∈ (0, n], with probability at least 1− δ

sup
f :d(f)≤r

(P− Pn)ℓ(f ; z) ≤ C2

√
r

n
+

√
8 log 2

δ

n
, (28)

where the functional d : F → [0, n] is defined by

d(f) = min

{∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ,
√
n

}2

,

and C2 = max{3C1, 1} is an absolute constant (C1 controls (28) for r < n and 1 controls (28) for
r = n). The inequality (28) is precisely the condition (24) in the generic conversion provided in
Lemma 8. Thus applying Lemma 8 we have the pointwise generalization bound: for any δ ∈ (0, 1),
and r0 = 1/n, with probability at least 1− δ, uniformly over all f ∈ F ,

(P− Pn)ℓ(f ; z) ≤
C2√
n
max

{
2min

{∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ,
√
n

}
,
1

n

}
+

√
8 log log2(4n

2)
δ

n

≤2C2√
n

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ+
C2

n1.5
+

√
8 log log2(4n

2)
δ

n
.

≤C

 1√
n

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ+

√
log log(2n)

δ

n

 ,

where C > 0 is an absolute constant.

II: Proof of Lower Bound. We use the classical result that the expected uniform convergence is
lower bounded by Gaussian complexity of the centered class, up to a

√
log n factor, see Definition 2

and Lemma 12 in the auxiliary lemma part for this classical result. To be specific, by Lemma 12 we
have that

Ez

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≥ c1√

log n
Eg,z

[
sup
f∈F

1

n

n∑
i=1

gi(ℓ(f ; zi)− Ez[ℓ(f ; z)])

]

≥ c1√
log n

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)−

∣∣∣∣∣ 1n
n∑

i=1

gi

∣∣∣∣∣ · supF E[ℓ(f ; z)]

]

=
c1√
log n

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
− c1√

log n

√
2

πn
sup
F

E[ℓ(f ; z)], (29)

where c1 > 0 is an absolute constant, and the equality use the fact that E[Y ] =
√

2
πn for Y ∼

N(0, 1/n).

Now applying Lemma 7 to lower bounding the Gaussian process 1
n

∑n
i=1 giℓ(f ; zi) by the integral,

we have for any {zi}ni=1,

Eg

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
≥ c2 inf

π
sup
f∈F

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ,
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taking expectation on both side yields

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
≥ c2E inf

π
sup
f∈F

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ. (30)

Combining (29) and (30), we have that there exist absolute constants c, c′ > 0 such that

E

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≥ c√

n log n
E inf

π
sup
f∈F

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ϵ))

dϵ− c′ supF E[ℓ(f ; z)]√
n log n

.

This inequality implies the following result

E

[
inf
π

sup
f∈F

(
(P− Pn)ℓ(f ; z)−

c√
n log n

∫ ∞

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε

)
+
c′ supF E[ℓ(f ; z)]√

n log n

]
≥ 0,

□

B.3 AUXILIARY LEMMAS FOR SECTION 2

Lemma 9 (PAC–Bayes Bound (Catoni, 2003); see also Theorem 2.1 in Alquier et al. (2024))
Let π be any prior on a hypothesis class F , and let ℓ : F × Z → [0, B] be a bounded loss. Fix
confidence δ ∈ (0, 1) and sample size n. Then for every η > 0, with probability at least 1− δ over
n i.i.d. draws z1, . . . , zn ∼ P , for every distribution µ on F simultaneously,

(P− Pn)ℓ(f ; z) ≤

√
B2
(
KL
(
µ, π

)
+ log 1

δ

)
8n

.

Lemma 10 (McDiarmid’s inequality (McDiarmid, 1998)) Suppose that z1, ..., zn ∈ X are inde-
pendent, and h : Zn → R. Let c1, ..., cn satisfy

sup
z1,...,zn,z′

i

|h(z1, ..., zi−1, zi, zi+1, ..., zn)− h(z1, ..., zi−1, z
′
i, zi+1, .., zn)| ≤ ci,

for i = 1, ..., n. Then

Pr(h(z1, · · · , zn)− E[h(z1, · · · , zn)] ≥ t) ≤ exp

(
−2t2∑n
i=1 c

2
i

)
.

Definition 2 (Rademacher and Gaussian complexities) For a function class F that consists of
mappings from Z to R, define the Rademacher complexity of F as

Rn(F) := E

[
sup
f∈F

1

n

n∑
i=1

ξif(zi)

]
,

where ξi are i.i.d. Rademacher variables; and define the Gaussian complexity of F as

Gn(F) := E

[
sup
f∈F

1

n

n∑
i=1

gif(zi)

]
,

where gi are i.i.d. standard Gaussian variables.

Lemma 11 (Upper Bounds with Rademacher and Gaussian Complexities, Lemma 7.4 in Van Handel (2014))
For any function class F that consists of mappings from Z to R, we have

E

[
sup
f∈F

(P− Pn)f(z)

]
≤ 2Rn(F) ≤

√
2πGn(F).

Lemma 12 (Lower Bounds with Rademacher and Gaussian Complexities) For any function
class F that consists of mappings from Z to R, defined its centered class F̃ as {f − E[f(z)] :
f ∈ F}. We have

E

[
sup
f∈F

(P− Pn)f(z)

]
≥ 1

2
Rn(F̃) ≥ c√

log n
Gn(F̃),

where c > 0 is an absolute constant.
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Proof of Lemma 12: Both the fact that uniform convergence admit a lower bound in terms of the
Rademacher complexity of the centered class, and the result that Rademacher complexity itself is
bounded below by Gaussian complexity up to a factor of

√
log n, are classical and admit simple

proofs. For a full proof of the first inequality, see Theorem 14.3 in Rinaldo & Yan (2016); for a
reference and proof sketch of the second inequality, see Problem 7.1 in Van Handel (2014).

□

C PROOFS FOR DEEP NEURAL NETWORKS AND RIEMANNIAN DIMENSION
(SECTION 3)

C.1 PROOF OF LEMMA 1 IN SECTION 3.1

We start with the telescoping decomposition presented in the main paper, which serves as a non-
perturvative replacement of conventional Taylor expansion, where in each summand the only differ-
ence lie in W ′

l and Wl.

FL(W
′, X)− FL(W,X)

=

L∑
l=1

[σL(W
′
L · · ·W ′

l+1︸ ︷︷ ︸
controled byMl→L

σl︸︷︷︸
by1

(W ′
l Fl−1(W,X)︸ ︷︷ ︸

learned feature

))− σL(W
′
L · · ·W ′

l+1σl(Wl Fl−1(W,X)︸ ︷︷ ︸
learned feature

))],

Applying Cauchy-Schwartz inequality to the above identity, we have

||F (W ′, X)− F (W,X)||2F (31)

≤
L∑

l=1

L∥σL(W ′
L · · ·W ′

l+1σl(W
′
lFl−1(W,X)))− σL(W

′
L · · ·W ′

l+1σl(WlFl−1(W,X)))∥2F (32)

By the definition of local Lipchitz constant in Section 3, for all W ′ ∈ Bϱn(W, ε),

∥σL(W ′
L · · ·W ′

l+1σl(W
′
lFl−1(W,X)))− σL(W

′
L · · ·W ′

l+1σl(WlFl−1(W,X)))∥F

≤Ml→L[W, ϵ]∥σl(W ′
lFl−1(W,X))− σl(WlFl−1(W,X))∥F. (33)

Because the activation function σl is 1−Lipchitz for each column, we have

∥σl(W ′
lFl−1(W,X))− σl(WlFl−1(W,X))∥F ≤ ∥(W ′

l −Wl)Ft−1(W,X)∥F. (34)

Combining (31) (33) and (34), we prove that

∥F (W ′, X)− F (W,X)∥2F ≤
L∑

l=1

L ·Ml→L[W, ϵ]
2 · ∥(W ′

l −Wl)Fl−1(W,X)∥2F.

□

C.2 METRIC DOMINATION LEMMA

Our non-perturbative expansion facilitates bounding the pointwise dimension of complex geometries
via metric comparison. By constructing a simpler, dominating metric (i.e., one that is pointwise
larger), we establish that the pointwise dimension of the original geometry is upper bounded by that
of this new, more structured geometry. This “enlargement” for analytical tractability, a concept with
roots in comparison geometry and majorization principles, is operationalized in Lemma 13.

Lemma 13 (Metric Domination Lemma) For two metrics ϱ1, ϱ2 defined on Rp, if ϱ(W ′,W ) ≤
ϱ′(W ′,W ) for all W ′ ∈ Bϱ2

(W, ϵ), then for any prior π ∈ ∆(Rp) and any ϵ > 0, we have

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(W, ϵ))
.
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Proof of Lemma 13: Because ϱ1(W ′,W ) ≤ ϱ2(W
′,W ) for all W ′ ∈ Bϱ2

(W, ϵ), we have that

Bϱ1
(W, ϵ) ⊇ Bϱ2

(W, ϵ).

So for any prior π on Rp, monotonicity of measures gives

π(Bϱ1
(W, ϵ)) ≥ π(Bϱ2

(W, ϵ)),

this implies

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(W, ϵ))
.

□

We then state an extension of the metric domination lemma, which turns pointwise dimension in a
high-dimensional space into a lower-dimensional sub-space.

Lemma 14 (Sub-Space Metric Domination Lemma) Given a metrics ϱ1 defined on Rp a sub-
space V ⊆ Rp, and a metrics ϱ2 defined on V . Define the orthogonal projector to sub-space V
as PV(W ) := argminW̃∈V ∥W̃ −W∥2. If there exists ϵ1 ∈ (0, ϵ) such that for every W ′ ∈ V ,

(ϱ1(W
′,W ))2 ≤ (ϱ2(W

′,PV(W )))2 + ϵ21, (35)

then for any prior π ∈ ∆(V) , we have

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(PV(W ),
√
ϵ2 − ϵ21))

. (36)

Proof of Lemma 14: By the condition (35), we know

Bϱ1
(W, ε) ⊇ Bϱ1

(W, ε) ∩ V ⊇ Bϱ2
(PV(W ),

√
ϵ2 − ϵ21),

and this gives the desired conclusion (36) in Lemma 14.

□

We also show that dominating matrix always has larger eigenvalues, which will be useful in our
proof.

Lemma 15 (Eigenvalue monotonicity under Loewner order) Let A,B ∈ Rp×p be positive-
semidefinite (PSD) matrices. If A ⪰ B (i.e. A−B is PSD), then for every k ∈ {1, . . . , p}

λk(A) ≥ λk(B),

where λ1 ≥ · · · ≥ λp denotes the eigenvalues in nonincreasing order.

Proof of Lemma 15: The Courant–Fischer–Weyl max-min characterization Wikipedia contribu-
tors (b) states that for any Hermitian (i.e., symmetric for real matrices studying here) matrix M ,

λk(M) = max
V⊆Rp

dimV=k

min
W∈V
W ̸=0

W⊤MW

∥W∥2
.

BecauseA ⪰ B impliesW⊤BW ≤W⊤AW for every vectorW , we have, for every k-dimensional
subspace V ,

min
W∈V\{0}

W⊤BW

∥W∥2
≤ min

W∈V\{0}

W⊤AW

∥W∥2
.

Taking the maximum over all such subspaces yields

λk(B) ≤ λk(A),

as desired.

□
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C.2.1 AUXILIARY LEMMAS FOR VOLUMETRIC ARGUMENTS

The following result on volumes of d−dimensional ℓ2 ball with radius r is classical (e.g., see the
Wikipedia page Wikipedia contributors (d)).

Lemma 16 (Volumes of ℓ2 Ball, Wikipedia contributors (d)) Let d be a positive integer and r >
0. Define

B2(r) = {x ∈ Rd : ∥x∥2 ≤ r}.
Then its volume is

Vol
(
B2(r)

)
=

π
d
2

Γ
(
d
2 + 1

) rd.
We now state the result on the volume of an ellipsoid, which is also classical. We give a proof here.

Lemma 17 (Volume of a Σ–Ellipsoid) Let Σ ∈ Rd×d be symmetric positive definite with eigenval-
ues λ1, . . . , λd > 0. For any r > 0, define the ellipsoid

E :=
{
w ∈ Rd : w⊤Σw ≤ r2

}
.

Then its d-dimensional volume is

Vol(E) =
π

d
2

Γ
(
d
2 + 1

) rd ( d∏
i=1

λi

)− 1
2
.

Proof of Lemma 17: Denote Σ1/2 to be the square root of Σ: the unique positive semidefinite
matrix satisfying Σ1/2Σ1/2 = Σ (see, e.g., Wikipedia contributors (c)). Define the linear map

T : Rd → Rd, z = T (w) := Σ1/2w.

For w ∈ E we have w⊤Σw ≤ r2, hence ∥z∥22 = w⊤Σw ≤ r2. Thus

T
(
E
)
= B2(r) := { z ∈ Rd : ∥z∥2 ≤ r},

the Euclidean ball of radius r. By the change–of–variables theorem in multivariate calculus
Wikipedia contributors (a), the linear map T scales Lebesgue measure by |detT |. Thus

Vol
(
E
)

= |detT |−1 Vol
(
T (E)

)
= (detΣ)−1/2 Vol

(
B2(r)

)
,

where the second identity holds since T = Σ1/2,

|detT | = det(Σ1/2) = (detΣ)1/2.

The standard formula, Lemma 16, gives

Vol
(
B2(r)

)
=

πd/2

Γ
(
d
2 + 1

) rd.
This yields the claimed expression

Vol
(
E
)

= (detΣ)−1/2 πd/2

Γ
(
d
2 + 1

) rd =
π

d
2

Γ
(
d
2 + 1

) rd ( d∏
i=1

λi

)− 1
2
.

□

C.3 POINTWISE DIMENSION BOUND WITH APPROXIMATE EFFECTIVE SUB-SPACE

Set Up of Approximate Effective Sub-Space Let the p × p PSD matrix Σ have the eigen-
decomposition Σ = U diag(λ1, · · · , λp)U⊤, where λ1, · · · , λp are in non-increasing order, and
U = [u1; · · · ;up]. Use reff as the abbreviation of reff(Σ, R, ϵ), and V as an abbreviation of
Veff(Σ, R, ϵ—the true effective sub-space (i.e., top-reff eigenspace).

Assume there is another r−dimensional sub-space V̄ . We will show that if V̄ approximates V ,
then using a prior supported on V̄ still yields a valid effective-dimension bound. This observation
underpins the hierarchical covering argument in Theorem 3. For a self-contained introduction to
subspaces (collectively known as the Grassmannian) and their frame parameterizations (the Stiefel
manifold), see Section D.1, where we translate algebraic and differential-geometric insights into
machine learning terminology.
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Motivation of Approximate Effective Sub-Space. We can view the orthogonal projector to a sub-
space as a matrix (see the definition via the Stiefel parameterization in (58)), which is consistent with
the earlier operator notation characterized by ℓ2–distance in Lemma 14. Now define the projected
metric ϱV̄Σ as

ϱV̄Σ(W1,W2) =
√
(PV̄(W1)− PV̄(W1))⊤Σ(PV̄(W1)− PV̄(W2)) =

√
(W1 −W2)P⊤

V̄ ΣPV̄(W1 −W2).

By the sub-space metric dominance lemma (Lemma 14), if P⊤
V̄ ΣPV̄ approximates Σ, we can use

prior over V̄ to bound the pointwise dimension and achieve dimension reduction.

We will require the following approximation error condition:

∥Σ 1
2 (PV − PV̄)∥op ≤

√
nϵ

4R
. (37)

In Section D, we systematically study the ellipsoidal covering of Grassmannian, and establish that
we can always find V̄ that approximates V to the desired precision, with an additional covering cost
of the Grassmannain bound in the Riemannain Dimension. This generalizes the canonical projection
metric between sub-spaces into ellipsoidal set-up.

Effective Dimension Bound for Approximate Effective Sub-Space. We now present the lemma
that establish effective dimension bound using prior supported on approximate effective sub-space V̄
(not necessarily the true effective sub-space Veff(Σ, R, ϵ)). We state the main result of this subsection
(Lemma 2) in the main paper).

Consider a manifold (W,Σ) W ⊆ B2(R) ⊂ Rp and G(W ) defines the metric tensor, and a given
r−dimensional sub-space V̄ ⊆ Rp. The prior πV̄ = Unif(B2(1.58R) ∩ V̄) satisfies that, uniformly
over all (W, ϵ) such that V̄ approximate Veff(G(W ), R, ϵ) to the precision (37),

log
1

πV̄(BϱG(W )(W,
√
nε))

≤ 1

2

reff(G(W ),R,ε)∑
k=1

log

(
40R2λk
n(ε2 − ϵ21)

)
= deff(Σ,

√
5R, ϵ).

Proof of Lemma 2: Given a PSD matrix Σ with eigenvalues λ1 ≥ · · ·λd, denote reff =

reff(Σ, R, ϵ), and the projected metric ϱV̄Σ on V̄:

ϱV̄Σ(W1,W2) =
√

(W1 −W2)⊤P⊤
V̄ ΣPV̄(W1 −W2).

Since V is the top-reff eigenspace of Σ, by the elementary property of eigendecomposition we have
that

Σ =P⊤
V ΣPV + P⊤

V⊥
ΣPV⊥

⪯P⊤
V ΣPV + λreff+1 · P⊤

V⊥
PV⊥ , (38)

where V⊥ is orthogonal complement of V . It is also straightforward to see

P⊤
V ΣPV ⪯ 2P⊤

V̄ ΣPV̄ + 2(PV − PV̄)
⊤Σ(PV − PV̄). (39)

Combining (38) and (39), we have the fundamental loewner order inequality

Σ ⪯ 2P⊤
V̄ ΣPV̄ + 2(PV − PV̄)

⊤Σ(PV − PV̄) + λreff+1 · P⊤
V⊥

PV⊥ . (40)

In order to apply the sub-space metric domination lemma (Lemma 14), we hope to bound ∥W ′ −
W∥22 and apply that bound to the two last reminder terms in the right hand side of (40).

To bound ∥W ′ −W∥22, we firstly state the following lemma on the eigenvalue of P⊤
V̄ ΣPV̄ , whose

proof is deferred until after the current proof.

Lemma 18 (Eigenvalue Bound for Projected Metric Tensor) Assume V is the top-r eigenspace
of Σ, then for a r−dimensional sub-space V̄ we have that for k = 1, 2, · · · , r,

λk ≥ λk(P⊤
V̄ ΣPV̄) ≥ λk/2− ∥Σ 1

2 (PV − PV̄)∥2op.
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For every W ′ ∈ BϱV
Σ
(PV(W ),

√
nε/4), we have ∀k = 1, · · · , reff,

∥W ′ − PV̄(W )∥22 ≤
(W ′ − PV̄(W ))P⊤

V̄ ΣPV̄(W
′ − PV̄(W ))

λreff(P⊤
V̄ ΣPV̄)

≤ nϵ2

16λreff(P⊤
V̄ ΣPV̄)

≤ nϵ2

8λreff − 16∥Σ 1
2 (PV − PV̄)∥2op

≤ 1

3
R2, (41)

where the last inequality uses λreff ≥ nϵ2

2R2 and the approximation error condition (37). On the other
hand, we have that ∥W∥22 ≤ R2, so that for every W ′ ∈ BϱV

Σ
(PV(W ),

√
nε/2)

∥W ′ −W∥22 = ∥W ′ − PV̄(W )∥22 + ∥PV̄⊥(W )∥22 ≤ 4

3
R2.

From the fundamental loewner order inequality (40), we establish the desired metric domination
condition: for all W ′ ∈ BϱV̄

Σ
(W,

√
nϵ/3) and W ∈ B2(R),

(W ′ −W )⊤Σ(W ′ −W )

≤(W ′ −W )⊤(2P⊤
V̄ ΣPV̄)(W

′ −W ) + (2∥Σ 1
2 (PV − PV̄)∥2op + λreff+1)∥W ′ −W∥22

≤2ϱV̄Σ(W
′,PV̄(W ))2 +

5nϵ2

6
.

Now we can apply the sub-space metric domination lemma (Lemma 14) and obtain: for any π ∈
∆(V̄),

log
1

π
(
BϱΣ(W,

√
nε)
) ≤ log

1

π
(
B√

2ϱV̄
Σ
(W,

√
nϵ/

√
6)
) ≤ log

1

π
(
BϱV̄

Σ
(W,

√
nϵ/4)

) . (42)

In particular, we choose π to the uniform prior over V̄:

πV̄ = Unif(B2(1.58R) ∩ V̄).

Then we prove that BϱV̄
Σ
(W,

√
nϵ/4) ⊆ V̄ ∩ B2(1.58R). This is because: 1) for every W ′ ∈

BϱV
Σ
(PV(W ),

√
nε/4), (41) suggests ∥W ′ − PV(W )∥22 ≤ 1

3R
2, and 2) for very W ∈ W , we have

∥PV(W )∥2 ≤ ∥W∥22 ≤ R2. Combining this and the above inequality we have

∥W ′∥2 ≤ ∥W ′ − PV(W )∥2 + ∥PV(W )∥2 ≤ (
√
1/3 + 1)R < 1.58R.

This proves that BϱV
Σ
(PV(W ),

√
nε/4) ⊆ V ∩B2(1.58R), so we have

log
1

πV̄(BϱV̄
Σ
(W,

√
nϵ/4)

=
Vol(V̄ ∩B2(1.58R))

Vol(BϱV̄
Σ
(W,

√
nϵ/4))

(43)

Applying Lemma 17 about the volume of ellipsoid, with dimension reff, eigenvalues
{λk(P⊤

V̄ ΣPV̄)}
reff
k=1 and radius r =

√
nε/4:

Vol(BϱV
Σ
(PV(W ),

√
n/2ε)) =

πreff/2

Γ(reff/2 + 1)

(√
n · ε/4

)reff
(
Πreff

k=1λk(P
⊤
V̄ ΣPV̄)

)−1/2

≥ πreff/2

Γ(reff/2 + 1)

(√
n · ε/4

)reff
(
Πreff

k=1λk

)−1/2

,

where the inequality uses Lemma 18 to upper bound λk(P⊤
V̄ ΣPV̄) by λk. The standard formula for

the volume of unit ball, Lemma 17, suggests that the volume of V ∩B2(2R) is

Vol(V ∩B2(1.58R)) =
πreff/2

Γ(reff/2 + 1)
(1.58R)reff .
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Hence, applying (42) (43) and combining it with the two above volume bounds, we have

log
1

π
(
BϱΣ(W,

√
nε)
) ≤ log

1

πV̄(BϱV̄
Σ
(PV(W ),

√
nε/4))

= log
Vol(V ∩B2(2R))

Vol(BϱV
Σ
(PV(W ),

√
nε/4))

≤ 1

2
log

(1.58R)2reffΠreff
k=1λk

(
√
nε/4)2reff

≤ 1

2

reff∑
k=1

log
40R2λk
nε2

=deff(Σ,
√
5R, ϵ).

Finally, since the prior construction πV̄ = Unif(B2(1.58R)∩V̄) only depends on V̄ rather than Σ and
ϵ, we have that uniformly over all (W, ϵ) ∈ W × [0,∞) such that V̄ approximates Veff(G(W ), R, ϵ)
to the precision (37),

log
1

πV̄(BϱΣ
(W,

√
nε))

≤ deff(G(W ),
√
5R, ϵ).

□

Proof of Lemma 18: The Courant–Fischer–Weyl max-min characterization Wikipedia contribu-
tors (b) states that for any Hermitian (i.e. symmetric for real matrices studying here) matrix,

λk(Σ) = max
S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤ΣW

∥W∥2
,

and we have that for any r−dimensional sub-space V̄ ,

λk(P⊤
V̄ ΣPV̄) = max

S⊆V̄
dimS=k

min
W∈S
W ̸=0

W⊤MW

∥W∥2
,

so we have λk(P⊤
V̄ ΣPV̄) ≤ λk for k = 1, 2, · · · , r.

Moreover, by the elementary property of eigendecomposition we have λk = λk(P⊤
V ΣPV), and by

the Courant–Fischer–Weyl max-min characterization we know that ,

λk(P⊤
V ΣPV) = max

S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤(P⊤
V ΣPV)W

∥W∥2

≤ max
S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤(2P⊤
V̄ ΣPV̄)W + ∥P⊤

V ΣPV − 2P⊤
V̄ ΣPV̄∥op∥W∥2

∥W∥2

=2λk(P⊤
V ΣPV) + ∥P⊤

V ΣPV − 2P⊤
V̄ ΣPV̄∥op

≤2λk(P⊤
V ΣPV) + 2∥(PV − PV̄)

⊤Σ(PV − PV̄)∥op,

where the last inequality is due to (39). Therefore we have

λk(P⊤
V̄ ΣPV̄) ≥ λk/2− ∥Σ 1

2 (PV − PV̄)∥2op.

□

C.4 PROOF FOR NN-TYPE MANIFOLD (THEOREM 3)

For a NN-type manifold, by its definition in Theorem 3 we have the structure that the metric tensor
G(W ) is

G(W ) = blockdiag(A1(W )⊗ Id1
; · · · ;Al(W )⊗ Idl

; · · · ;AL(W )⊗ IdL
),

where eachAl is a dl−1×dl−1 PSD matrix. We firstly state straightforward decomposition properties
for such manifold, and then prove Theorem 3.
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C.4.1 DECOMPOSITION PROPERTIES OF NN-TYPE MANIFOLD

The structured G(W ) in NN-type Manifold has decomposition properties described by the next
lemma.

Definition 3 (Metric Tensor for NN-type Manifold) A manifold (W, G) is called “NN-type” if
W ⊆ R

∑L
l=1 dl−1dl and its metric tensor G(W ) is in the form

G(W ) = blockdiag(A1(W )⊗ Id1
, · · · , Al(W )⊗ Idl

, · · · , AL(W )⊗ IdL
)

where Al(W ) ∈ Rdl−1×dl−1 .

Lemma 19 (Decomposition Properties of NN-type Manifold) Consider a NN-type manifold
(W, G) defined in Definition 3. For every W ∈ W , we have the following decomposition prop-
erties: First, the effective rank and dimension decompose to

reff(G(W ), R, ϵ) =

L∑
l=1

dl · reff(Al(W ), R, ϵ);

deff(G(W ), R, ϵ) =

L∑
l=1

dl · deff(Al(W ), R, ϵ).

Second, denote Veff(Al(W ), R, ϵ) the effective sub-space of Al(W ). Then the effective sub-space of
G(W ) is

Veff(G(W ), R, ϵ) = Veff(A1(W ), R, ϵ)d1 × · · · × Veff(AL(W ), R, ϵ)dL .

Proof of Lemma 19. It is straightforward to see that, first, the effective rank of the fixed matrix
G(W ) is

reff(G(W ), R, ϵ)

=max{k : 2λk(G(W ))R2 ≥ nϵ2}

=

L∑
l=1

max{k : 2λk(Al(W )⊗ Idl
)R2 ≥ nϵ2}

=

L∑
l=1

dl max{k : 2λk(Al(W ))R2 ≥ nϵ2}

=

L∑
l=1

dl · reff(Al(W ), R, ϵ);

and the effective dimension of the fixed matrix G(W ) is

deff(G(W ), R, ϵ)

=
1

2

reff(G(W ),R,ϵ)∑
k=1

log

(
8R2λk(G(W ))

nϵ2

)

=

L∑
l=1

1

2

reff(Al(W )⊗Idl ,R,ϵ)∑
k=1

log

(
8R2λk(Al(W )⊗ Idl

)

nϵ2

)

=

L∑
l=1

dl ·
1

2

reff(Al(W ),R,ϵ)∑
k=1

log

(
8R2λk(Al(W ))

nϵ2

)

=

L∑
l=1

dl · reff(Al(W ), R, ϵ).
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Second, as the effective sub-space of the matrix tensor product Al(W ) ⊗ Idl
is sub-space ten-

sor product Veff(Al(W ), R, ϵ)dl , the effective sub-space for NN-type metric tensor G(W ) =
blockdiag(· · · ;Al(W )⊗ Idl

;⊗) is

Veff(G(W ), R, ϵ) := Veff(A1(W ), R, ϵ)d1 × · · · × Veff(AL(W ), R, ϵ)dL .

□

C.4.2 PROOF OF THEOREM 3

We firstly prove the following result, which is almost Theorem 3, with the only difference being
that the radius in the effective dimension depends on the global radius R rather than the pointwise
Frobenious norm ∥W∥. Extending this result to Theorem 3 can be achieved via a simple application
of the “uniform pointwise convergence” principle Xu & Zeevi (2025) illustrated in Lemma 8.

Lemma 20 (Riemannian Dimension for NN-type Manifold—Global Radius Version)
Consider a NN-type manifold (W, G) and assume supW ||W ||F ≤ R. Then (W, G) admits
Riemannian Dimension

dR(W, ϵ) =

L∑
l=1

(
dl · deff(Al(W ), CR, ϵ)︸ ︷︷ ︸

“must pay” cost at each W

+ dl−1 · deff(Al(W ), CR, ϵ)︸ ︷︷ ︸
covering cost of Grassmannian

+ log(dl−1)︸ ︷︷ ︸
covering cost of reff ∈ [dl−1]

)
,

where C > 0 is an absolute constant.

Proof of Lemma 20: The proof has two key steps: 1. Hierarchical covering argument, and 2.
Bound covering Cost of the Grassmannian. A crucial lemma about the ellipsoidal covering of the
Grassmannian, which is new even in the pure mathematics context, is deferred to Section D.

Step 1: Hierarchical Covering. As explained the main paper, the major difficulty is that the
prior measure πV it constructed, is defined over the effective sub-space V , which itself encodes
information of the point W ∈ W and ϵ > 0. The goal of our proof is to construct a “universal” prior
π that does not depend on V . This is achieved via a hierarchical covering argument (10), which we
make rigorous below.

The key idea of hierarchical covering is as follows: Firstly, for all W ∈ W , we search for sub-
space V̄ that approximates the true effective sub-space (top-reff eigenspace) Veff(G(W ), R, ϵ) to the
precision required by (37):

∥G(W )
1
2 (PV − PV̄)∥op ≤

√
nϵ

4R
, (44)

where G(W )
1
2 is the unique square root of PSD matrix G(W ) (see, e.g, wikipedia Wikipedia con-

tributors (c)). Then by Lemma 2 (Pointwise Dimension Bound for Non-Linear Manifold with
Approximate Effective Sub-Space), for every (W, ϵ) ∈ W × [0,∞) such that V̄ approximates
Veff(G(W ), R, ϵ) to the precision (44), the prior πV̄ = Unif(B2(1.58R) ∩ V̄) satisfies

log
1

πV̄(BϱΣ(w,
√
nε))

≤ deff(G(W ),
√
5R, ϵ) =

L∑
l=1

dl · deff(Al(W ),
√
5R, ϵ), (45)

where the first inequality is by by Lemma 2; the first equality is by definition (8) of effective dimen-
sion; and the last equality is by the decomposition property of NN-type manifold (Lemma 19).

Secondly, we put a prior µ over all possible sub-spaces V and construct the “universal” prior

π(W ) =
∑
V
µ(V)× πV(W ), (46)
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which implies that uniformly over all W ∈ W ,

log
1

π(BϱG(W )
(W,

√
nϵ))

= log
1∑

V µ(V)πV (BϱG(W )
(W,

√
nϵ))

≤ log
1

µ(V̄ : V̄ satisfies (44)) inf V̄ satisfies (44) πV̄(BϱG(W )
(W,

√
nϵ))

≤ log
1

µ(V̄ : V̄ satisfies (44)︸ ︷︷ ︸
covering cost of the Grassmannian

+

L∑
l=1

dl · deff(Al(W ),
√
5R, ϵ), (47)

where the first equality is by definition (46) of the “universal” prior π; the first inequality is straight-
forward; and the last inequality is by (45), the result of the “must pay” part in the hierarchical
covering.

The above hierarchical covering argument successfully gives a valid Riemannian Dimension, with
the cost of the additional covering cost given by the sub-space prior µ. This explains our basic proof
idea. The remaining proof executes this basic proof idea.

Step 2: Bounding Covering Cost of the Grassmannian. Section D provides a systematical study
to the ellipsoidal metric entropy of Grassmannian manifold, which we detail the conclusion below.

Define
Gr(d, r) :=

{
r–dimensional linear subspaces of Rd

}
as the Grassmann manifold.

Given a d× d PSD Σ, define the anisometric projection metric between two sub-spaces by (labeled
as Definition 4 in Section D)

ϱproj,Σ(V, V̄) = ∥Σ 1
2 (PV − PV̄)∥op, (48)

where Σ
1
2 is the square root of the PSD matrix Σ (see, e.g., wikipedia Wikipedia contributors (c)).

Lemma 3 states that, given a Grassmannian Gr(d, r), for uniform prior µ = Unif(Gr(d, r)), we
have that for every V ∈ Gr(d, r), every ϵ > 0 and PSD matrix Σ ∈ Rd×d, we have the pointwise
dimension bound

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ 1

2
(d− r)

r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
+ r

d−r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
,

(49)

where C1 > 0 is an absolute constant. We will use the result (49) and (47) to prove Theorem 3.

For a particular layer l, dl−1 × dl−1 PSD matrix Al(W ), and a fixed rank rl denote Gr(dl−1, rl) as
a Grassmannian (the collection of all rl-dimensional in Rdl−1 ). By (49) we have that there exists
a prior µl over Gr(dl−1, rl) such that for every W ∈ W such that reff(Al(W ), R, ϵ) = rl, and
ϵ1 ≤ λrl(Al(W )), we have

log
1

µl(V̄ : ϱproj,Al(W )(Veff(Al(W ), R, ϵ), V̄) ≤ ϵ1)
≤ 1

2
dl−1

rl∑
k=1

log
C1λk(Al(W ))

ϵ21
. (50)

By the sub-space decomposition property in Lemma 19, we have that for V̄ = (· · · , V̄l, · · · , V̄l︸ ︷︷ ︸
repeat dl times

, · · · ),

ϱproj,G(W )(Veff(G(W ), R, ϵ), V̄)
=ϱproj,G(W )(Π

L
l=1Veff(Al(W ), R, ϵ)dl ,ΠL

l=1V̄
dl

l )

=max
l
ϱproj,Al(W )(Veff(Al(W ), R, ϵ), V̄), (51)
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where the first equality is by Lemma 19, and the second equality is by the properties of the spectral
norm: ∥blockdiag(A,B)∥op = max{∥A∥op, ∥B∥op} and ∥A⊗ Id∥op = ∥A∥op.

Taking ϵ1 =
√
nϵ

4R , we see this choice satisfies the required condition to establish (50). Then for all
layers l = 1, · · · , L, given a fixed {r1, · · · , rL}, by (50), we have that there exists a prior

µ{rl}L
l=1

= µd1
1 × · · · × µdL

L = ΠL
l=1(µl × · · · × µl︸ ︷︷ ︸

dl times

) (52)

over the product Grassmannian Gr(d0, r1)d1 × · · · × Gr(dL−1, rL)
dL such that univerformly over

all W ∈ W such that reff(Al(W ), R, ϵ) = rl, ∀l ∈ [L] (here [L] is the notation of {1, 2, · · · , L}),
the “Grassmannian covering cost” term in (47) is bounded by

log
1

µ(V̄ : V̄ satisfies (44))

= log
1

µ{rl}L
l=1

(V̄ : ϱproj,G(W )(Veff(G(W ), R, ϵ), V̄) ≤
√
nϵ

4R = ϵ1)

≤ log
1

µ{rl}L
l=1

((· · · , V̄l, · · · , V̄l︸ ︷︷ ︸
dl times

, · · · ) : ϱproj,Al(W )(Veff(Al(W ), R, ϵ), V̄l) ≤ ϵ1, ∀l ∈ [L])

=

L∑
l=1

log
1

µ{rl}L
l=1

((· · · , V̄l, · · · , V̄l︸ ︷︷ ︸
dl times

, · · · ) : ϱproj,Al(W )(Veff(Al(W ), R, ϵ), V̄l) ≤ ϵ1)

≤
L∑

l=1

dl−1

rl∑
k=1

log
C1λk(Al(W ))

ϵ21

≤
L∑

l=1

dl−1deff(Al(W ),
√

2C1R, ϵ), (53)

where the first inequality is by restricting V to the from ΠL
l=1V̄

dl

l and using (51); the second equality
is by the choice of he product prior (52); the last inequality is by the layer-wise covering bound (50);
and the second inequality is by 1) dl−1 − rl ≤ dl−1 and C1λk(Al(W )) ≥ λrl ≥ ϵ1 (as stated in
(49)), 2) the choice ϵ1 =

√
nϵ/(4R), and 3) definition (8) of effective dimension.

Note that (53) is uniformly over all W ∈ W such that reff(Al(W ), R, ϵ) = rl, ∀l ∈ [L], not
uniformly over all W ∈ W . We would like to extend (53) to all W ∈ W over uniform prior over
possible integer values of rl. Now assign uniform prior over [dl−1] = {1, · · · , dl−1} for rl, we
obtain the “universal” prior π (as we have pursued in in our hierarchical covering argument (46))
defined by

µ(V) =ΠL
l=1 Unif([dl−1])︸ ︷︷ ︸

prior of rl

× µ{rk}L
k=1︸ ︷︷ ︸

prior over product Grassmannian in (52)

,

π(W ) = µ(V)︸ ︷︷ ︸
prior over sub-spaces defined above

× Unif(B2(0, 1.58R) ∩ V̄ )︸ ︷︷ ︸
uniform prior constrained in sub-space

. (54)
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Then we have that uniformly over all W ∈ W ,

log
1

π(BϱG(W )
(W,

√
nϵ))

≤ log
1

µ(V̄ : V̄ satisfies (44))
+

L∑
l=1

dl · deff(Al(W ),
√
5R, ϵ))

≤
L∑

l=1

log dl−1 + log
1

µ{rk}L
k=1

(V̄ : V̄ satisfies (44))
+

L∑
l=1

dl · deff(Al(W ),
√
5R, ϵ))

≤
L∑

l=1

log dl−1 +

L∑
l=1

dl−1 · deff(Al(W ),
√

2C1R, ϵ) + +

L∑
l=1

dl · deff(Al(W ),
√
5R, ϵ)),

where C1 > 1 is an absolute constant. Here the first inequality is by the hierarchical covering
argument (47); the second inequality is by the prior construction (54); and the third inequality is by
the Grassmannian covering bound (53) for fixed {rk}Lk=1. This shows that the NN-type manifold
(W, G) admits Riemannian Dimension

log
1

π(BϱG(W )
(W,

√
nϵ))

≤
L∑

l=1

(dl + dl−1) · deff(Al(W ), CR, ϵ) + log dl−1),

where C is a positive absolute constant. This finishes the proof of Lemma 20 with R in effective
dimension being a global upper bound of ∥W∥F.

□

Proof of Theorem 3: Motivated by the “uniform pointwise convergence” principle (proposed in
Xu & Zeevi (2025) and illustrated in Lemma 8), we apply a peeling argument to adapt the Rieman-
nian Dimension to ∥W∥F. Given any R0 ∈ (0, R], we take Rk = 2kR0 for k = 0, 1, · · · log2⌈Rn⌉.
Taking a uniform prior on these Rk, and set

π̃ = Unif({R0, · · · , 2log2⌈R/R0⌉R0})︸ ︷︷ ︸
prior over upper bound R̃ of ∥W∥F

× πR̃︸︷︷︸
prior defined via (54)

,

where πR is the prior defined via (54) in the proof of Lemma 20. Then for every W ∈ W where
∥W∥F > R0, denote k(W ) to be the integer such that 2k(W )R0 < ∥W∥F ≤ 2k(W )+1R0, then

log
1

π̃(BϱG(W )
(W,

√
nϵ))

≤ log log2⌈R/R0⌉︸ ︷︷ ︸
density of 2k(W )+1R0

+ log
1

π2k(W )+1R0
(BϱG(W )

(W,
√
nϵ))︸ ︷︷ ︸

π is constructed via (54), with global radius taken to be 2k(W )+1R0

≤ log log2⌈Rn⌉+
L∑

l=1

(dl + 2dl−1) · deff(Al(W ), C12
k0+1R0, ϵ) log dl−1)

≤ log log2⌈Rn⌉+
L∑

l=1

(dl + 2dl−1) · deff(Al(W ), C1 · 2∥W∥F, ϵ) + log dl−1)

where the first inequality is due to the product construction of π̄; the second inequality is due to
Lemma 20, with C1 > 0 being an absolute constant; and the last inequality uses the fact ∥W∥F ≤
2k0+1R0 ≤ 2∥W∥F, with C1 > 0.
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The above bound assumes ∥W∥F > R0. When ∥W∥ ≤ R0, we directly apply Lemma 20 and obtain

log
1

π̃(BϱG(W )
(W,

√
nϵ))

≤ log log2⌈R/R0⌉︸ ︷︷ ︸
density of R0

+ log
1

πR0
(BρG(W )

(W,
√
nϵ))︸ ︷︷ ︸

π is constructed via (54), with global radius taken to be R0

≤ log log2⌈Rn⌉+
L∑

l=1

(dl + 2dl−1) · deff(Al(W ), C1 ·R0, ϵ) + log dl−1).

Combining the two cases discussed above, we conclude that the NN-type manifold (W, G) admits
Riemmanin Dimension

dR(W, ϵ)

=

L∑
l=1

(dl + 2dl−1) · deff(Al(W ), Cmax{∥W∥F, R0}) + log(dl−1 log2⌈R/R0⌉),

where C = 2C1 is a positive absolute constant. Taking R0 = R/2n proves Theorem 3.

□

D ELLIPSOIDAL COVERING OF THE GRASSMANNIAN

The central goal of this section is to prove the following result on the ellipsoidal metric entropy of
the Grassmannian manifold. The definition for Gr (Grassmannian manifold), St (Stiefel parameter-
ization manifold) are temporarily deferred to Section D.1.

Definition 4 (Ellipsoidal Projection Metric) For two sub-spaces V, V̄ ∈ Gr(d, r), and a positive
semidefinite matrix Σ, define the ellipsoidal projection metric ϱproj,Σ by

ϱproj,Σ(V, V̄) = ∥Σ 1
2 (PV − PV̄)∥op,

where PV and PV̄ are orthogonal projectors to sub-space V and V̄ , respectively.

We view orthogonal projectors as matrices (see the definition via the Stiefel parameterization in
(58)), consistent with the earlier operator notation characterized by ℓ2–distance in Lemma 14. In the
isotropic case Σ = Id, the ellipsoidal projection metric reduces to the standard isotropic projection
metric

ϱproj(V, V̄) =
∥∥PV − PV̄

∥∥
op.

We now state our main result in this section (Lemma 3 in the main paper).

Consider the Grassmannian Gr(d, r). For uniform prior µ = Unif(Gr(d, r)), we have that for every
V ∈ Gr(d, r), every ϵ > 0 and every PSD matrix Σ, we have the pointwise dimension bound

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ 1

2
(d− r)

r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
+ r

d−r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
,

where C > 0 is an absolute constant.

Recall that the traditional covering number bound for the Grassmannian manifold states that(c
ϵ

)r(d−r)

≤ N(Gr(d, r), ϱproj, ϵ) ≤
(
C

ϵ

)r(d−r)

. (55)

Here N(F , ϱ, ε) is the standard covering number— the smallest size of an ε-net that covers F under
the metric ϱ; see Definition 4.2.2 in Vershynin (2009) for details. In comparison, Lemma 3 is much
more challenging than proving classical isotropic covering number bounds (55) because
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• 1) we consider ellipsoidal metric;
• 2) we require the prior µ to be independent with Σ(V) and ϵ.

We need to firstly understand how such classical results are proved, and then proceed to generalized
them. This suggests that deep mathematical insights are necessary for the purpose to study neural
networks generalization, as we will introduce below.

From Pure Mathematics to Machine Learning Language. Understanding the classical proof
for the Grassmannian and generalizing them to prove Lemma 3 necessitate the a deep dive in
to the geometry and algebra of sub-spaces and Grassmannians. In fact, traditional treatments to
study Grassmannian manifold often invoke advanced machinery—ranging from differential geome-
try Bendokat et al. (2024) and Lie-group theory Szarek (1997) to algebraic geometry Devriendt et al.
(2024), and the seminal covering number proof Szarek (1997) is particularly stated in Lie-algebra
and differential-geometry language.

Motivated by the subsequent covering number proof Pajor (1998) that uses relatively more elemen-
tary language, we give an exposition that is elementary and entirely self-contained, relying only
on matrix-analysis and learning-theoretic techniques familiar from machine-learning. In particu-
lar, every “advanced” fact is derived by elementary means (careful matrix parameterizations and
basic spectral arguments) while preserving high-level intuition. We hope that this versatile frame-
work—and our novel contributions (e.g., Definition 4 and Lemma 3), which are new even in a pure-
mathematics setting—will establish subspaces, the Grassmannian, and their underlying algebraic
structures as powerful tools for future machine-learning applications.

D.1 GRASSMANNIAN MANIFOLD, STIEFEL PARAMETERIZATION, AND ORTHOGONAL
GROUPS

Fix integers r ≤ d. Define

Gr(d, r) :=
{
r–dimensional linear subspaces of Rd

}
as the Grassmann manifold. Write

St(d, r) :=
{
V ∈ Rd×r : V ⊤V = Ir

}
for the Stiefel manifold of r orthonormal columns in Rd. St(n,m) is a convenient parameterization
of that class Gr(d, r).

If for sub-space V ∈ Gr(d, r) and matrix V ∈ St(d, r) we have V = span(V ), then we say V
is a parameterization matrix of V . Though such parameterization is not unique, the associated
orthogonal projector and projection metric are both unique. Moreover, the anisometric projection
we define in Definition 4 is also unique. We will prove these shortly.

Write
O(r) := {Q ∈ Rr×r : Q⊤Q = QQ⊤ = Ir}

to be the orthogonal group. Optionally, we also state that (in the real setting)
Gr(d, r) ∼= O(d)

/(
O(r)×O(d− r)

) ∼= Gr
(
d, d− r

)
, (56)

where “/” denotes the quotient and “∼=” denotes a canonical isomorphism (indeed, a diffeomorphism
of smooth manifolds or a homeomorphism of topological manifolds; see, e.g., Chapter 1.5 in Awodey
(2010)). Moreover, Gr(d, r) can be regarded as a standard algebraic variety Devriendt et al. (2024).
We do not aim to explain these notions in detail, but merely note that:

1. The geometric properties of Gr(d, r) coincide with those of Gr(d, d − r) under this iso-
morphism (geometric equivalence).

2. The number of degrees of freedom of Gr(d, r) is
d(d− 1)

2︸ ︷︷ ︸
dimO(d)

− r(r − 1)

2︸ ︷︷ ︸
dimO(r)

− (d− r)(d− r − 1)

2︸ ︷︷ ︸
dimO(d−r)

= r(d− r), (57)

which also appears as the dimension factor in the precise covering-number bounds (55).

We now define the orthogonal projector and the projection metric on the Grassmannian manifold.
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Definition of Orthogonal Projector. For V ∈ St(d, r) and its column-space V = span(V ), define
the rank-r orthogonal projector1

PV := V V⊤ ∈ Rd×d. (58)

Then PV depends only on the sub-space V . Indeed, ifQ ∈ O(r) then (V Q)(V Q)⊤ = V QQ⊤V ⊤ =
V V ⊤, so V and V Q represent the same subspace. Hence the map

Ψ : St(n,m) −→ Gr(n,m), V 7→ span(V ),

is an O(r)−quotient: two frames give the same subspace iff they differ by a right orthogonal factor.

Ellipsoidal Projection Metric. Following Definition 4, for V, V̄ ∈ Gr(d, r),

ϱproj,Σ(V, V̄) := ∥Σ 1
2 (PV − PV̄)∥op, (59)

where PV := V V⊤ for any V such that span(V ) = V (similarly PV̄ ). Because PV is unique for
each subspace, ϱproj,Σ is well defined (independent of the chosen V ). The metric can be pulled back
to St(n,m):

ϱproj,Σ(V, V̄ ) := ϱproj,Σ
(
span(V ), span(V̄ )

)
= ∥Σ 1

2 (V V ⊤ − V̄ V̄ ⊤)∥op. (60)

D.2 PRINCIPAL ANGLES BETWEEN SUB-SPACES

W study how metrics and angles between images V and V̄ affect their spectral properties. We
introduce principal angles and the cosine–sine (CS) decomposition—standard tools for analyzing
subspaces (see, e.g., Chapter 6.4.3 in Golub & Van Loan (2013)).

Principle Angles and Cosine-Sine representation. Let U and Ū be two d×d orthogonal matrix,
and V and V̄ be the first r columns of U and Ū , respectively. We are interested in studying the
metrics and angles between r−dimensional sub-spaces V = span(V ) and V̄ = span(V̄ ). Formally,
denote

U, Ū ∈ O(d), U =
[
V V⊥

]
, Ū =

[
V̄ V̄⊥

]
,

where
V, V̄ ∈ R d×r, V ⊤V = Ir, V̄ ⊤V̄ = Ir,

and
V⊥, V̄⊥ ∈ R d×(d−r), V ⊤

⊥ V⊥ = I d−r, V̄ ⊤
⊥ V̄⊥ = I d−r.

Since U, Ū ∈ O(d), their product U⊤Ū is itself orthogonal. Writing

U⊤ Ū =

(
V ⊤

V ⊤
⊥

) [
V̄ V̄⊥

]
=

(
V ⊤V̄ V ⊤V̄⊥

V ⊤
⊥ V̄ V ⊤

⊥ V̄⊥

)
,

define the four blocks

C︸︷︷︸
r×r

= V ⊤V̄ , C⊥︸︷︷︸
r×(d−r)

= V ⊤V̄⊥, (61)

S︸︷︷︸
(d−r)×r

= V ⊤
⊥ V̄ , S⊥︸︷︷︸

(d−r)×(d−r)

= V ⊤
⊥ V̄⊥. (62)

Thus

U⊤Ū =

(
C C⊥

S S⊥

)
∈ O(d).

Now we introduce principal angles between V = span(V ) and V̄ = span(V̄ ) by writing

C = V ⊤V̄ = Q1 diag(cos θ1, · · · , cos θr)W⊤
1 , Q1,W1 ∈ O(r), (63)

1By elementary linear algebra, the matrix definition of the orthogonal projector P here coincides with the
ℓ2−projection characterized in Lemma 14; thus the notation is consistent.
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where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π/2

are called the principle angles between sub-spaces V and V̄ . Simultaneously, we have that the
eigenvalues of S, C⊥, S⊥ are (notation sepc means spectrum, the set of singular values)

spec(S) = {− sin θ1, · · · ,− sin θmin{r,d−r}, 0, · · · , 0︸ ︷︷ ︸
max{d−2r,0}

},

spec(C⊥) = {sin θ1, · · · , sin θmin{r,d−r}, 0, · · · , 0︸ ︷︷ ︸
max{d−2r,0}

}

spec(S⊥) = {cos θ1, · · · , cos θmin{r,d−r}, 1, · · · , 1︸ ︷︷ ︸
max{d−2r,0}

}. (64)

The above representation in (63) and (64) are without loss of generality: if r ≤ d − r, then all the
four spectrum contain all r principal angles; if r > d − r, then only first d − r principal angles
{θk}d−r

k=1 can be smaller than π/2 and θk = 0 for all d− r + 1 ≤ k ≤ r.

The cosine–sine representation of the eigenvalues in (63) and (64) motivates our notation C and S
when defining block matrices in (61) and (62). This representation is an immediate consequence
of the classical CS decomposition for orthogonal matrices Paige & Wei (1994); Golub & Van Loan
(2013), and we henceforth regard the resulting eigenvalue characterization as given.

Projection Metric via Principal Angles. For subspaces V and V̄ , recall that for orthogonal pro-
jectors

PV = V V ⊤, PV̄ = V̄ V̄ ⊤,

It is known that the projection metric defined in (59) and (60) are equal to sin θr, sine of the largest
principal angle between the two sub-spaces. Formally, there is the fact (see, e.g., the last equation
in Section 6.4.3 in Golub & Van Loan (2013))

ϱproj = ∥PV − PV̄∥op = max
1≤k≤r

sin θk = sin θr. (65)

Here θi is the i-th principal-angle between V and V̄ , and the spectral norm of the difference of two
projectors equals the largest of these sines.

D.3 LOCAL CHARTS AND GLOBAL ATLAS OF THE GRASSMANNIAN

We present some facts about Grassmannian under the isotropic projection metric. These understand-
ing will help us to establish Lemma 3 with the more challenging ellipsoidal projection metric.

In differential geometry, a chart is a single local coordinate map. An atlas is the whole collection
of charts that covers the manifold. We introduce a useful atlas that consists of finite graph charts,
which only rely on elementary linear algebra and avoid more advanced Lie algebra and exponential
map techniques in Szarek (1997).

Choose a reference sub-space V̄ ∈ Gr(d, r) and its parameterization matrix V̄ ∈ St(d, r). Denote
X ∈ R(d−r)×r to be mappings from r−dimensional subspace V̄ to (d− r)−dimensional subspace
V̄⊥. Every r–dimensional sub-space close to V̄ can be written as the graph

V(X) := span
{
[V̄ V̄⊥]

(
Ir
X

)}
, X ∈ R(d−r)×r, (66)

where is invariant to which parameterization matrix V̄ has been chosen. Given an appropriate local
radius 1, define the local graph chart from {X ∈ R(d−r)×r : ∥X∥op ≤ 1} to Gr(d, r) by

ϕV̄ : X 7−→ V(X) ∈ Gr(d, r). (67)

Note that for the (d− r)× r zero matrix (denoted as 0), we have ϕV̄(0) = V̄ .

We will show that there is equivalence (up to absolute constant) between ∥X∥op and ϱproj(V, V̄). To
be specific, we have the following lemma.
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Lemma 21 (Sine-Tangent Representation in Graph Chart) Denote θr is the maximal principal
angle between the sub-spaces V(X) and V̄ , defined in (63). For the graph chart (67), we have

ϱproj(V(X), V̄) = sin θr, ∥X∥op = tan θr.

The above relationship immediately implies that

ϱproj = ∥X∥op/
√

1 + ∥X∥op.

We call X the graph parameterization of V(X) in this image.

Proof of Lemma 21: Given the fact ϱproj(V(X), V̄) = sin θr (which is already shown in (65)),
where θr is the largest principal angle between the subspaces V(X) and the reference subspace V̄ ,
we want to show ∥X∥op = tan θr.

Step 1: Setup and Simplification. The projection metric is invariant under orthogonal transfor-
mations of the ambient space Rd. We can therefore choose a coordinate system that simplifies the
calculations without loss of generality. We choose a basis such that the reference frame V̄ and its
orthogonal complement V̄⊥ are represented as:

V̄ =

(
Ir
0

)
∈ St(d, r), V̄⊥ =

(
0

Id−r

)
∈ St(d, d− r).

In this basis, the reference subspace is V̄ = span(V̄ ). The parameterization matrix (orthonormal
basis) V (X) for the subspace V(X) simplifies to (here (Ir +X⊤X)−1/2 normalize V (X) to be an
orthogonal matrix):

V (X) = [V̄ V̄⊥]

(
Ir
X

)
(Ir+X

⊤X)−1/2 = Id

(
Ir
X

)
(Ir+X

⊤X)−1/2 =

(
Ir
X

)
(Ir+X

⊤X)−1/2.

Step 2: Projection Metric and Principal Angles. A fundamental result in matrix analysis, our
equation (63), states that the cosines of the principal angles, cos θi, between two subspaces spanned
by orthonormal bases V and V̄ are the singular values of V ⊤V̄ . In our case, the principal angles
between V(X) and V̄ are determined by the singular values of V (X)⊤V̄—which are, equivalently,
the singular values of V̄ ⊤V (X).

Step 3: Calculation of cos θi. Let’s compute the matrix product V̄ ⊤V (X) using our simplified
forms:

V̄ ⊤V (X) = (Ir 0)

[(
Ir
X

)
(Ir +X⊤X)−1/2

]
=

(
(Ir 0)

(
Ir
X

))
(Ir +X⊤X)−1/2

= Ir · (Ir +X⊤X)−1/2

= (Ir +X⊤X)−1/2.

To find the singular values of this matrix, we use the Singular Value Decomposition (SVD) of X .
Let X = UΣW⊤, where U ∈ R(d−r)×(d−r) and W ∈ Rr×r are orthogonal, and Σ ∈ R(d−r)×r

is a rectangular diagonal matrix with the singular values λ1 ≥ λ2 ≥ · · · ≥ 0 on its diagonal. The
spectral norm is ∥X∥op = λ1.

Then, X⊤X = (UΣW⊤)⊤(UΣW⊤) = WΣ⊤U⊤UΣW⊤ = WΣ2
rW

⊤, where Σ2
r is the r × r

diagonal matrix with entries λ2i . So, the matrix Ir +X⊤X = W (Ir + Σ2
r)W

⊤. Its inverse square
root is: (Ir +X⊤X)−1/2 =W (Ir +Σ2

r)
−1/2W⊤.

The singular values of V̄ ⊤V (X) are the diagonal entries of (Ir+Σ2
r)

−1/2, which are: si = 1√
1+λ2

i

.

These singular values are the values of cos θi. The largest principal angle, θr, corresponds to the
smallest cosine value. This occurs when the singular value λi is largest, i.e., for λ1 = ∥X∥op. Thus,

cos θr =
1√

1 + ∥X∥2op

.
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Step 4: Deriving tan θr. Using the fundamental trigonometric identity sin2 θ + cos2 θ = 1 and
the fact that principal angles lie in [0.π/2], we have:

tan θr = ∥X∥op.

We have shown that for graph charts, there is the relationship ϱproj(V(X), V̄) = sin θr and ∥X∥op =
tan θr. This suggests

ϱproj(V(X), V̄) =
∥X∥op√
1 + ∥X∥2op

.

□

Global Finite Atlas of Graph Charts The following lemma proved in Pajor (1998) implies that
an atlas consists of finite number of graph charts covers the entire Grassmannian manifold.

Lemma 22 (Finite atlas for Gr(d, r) and pointwise dimension consequence) For the Grassman-
nian Gr(d, r) we have that for all ϵ > 0, we have the coarse covering number bound
N(Gr(d, r), ϱproj, ϵ) ≤ C

r(d−r)
ϵ , where C > 0 is an absolute constant. This suggests that, a fi-

nite O(er(d−r)) number of graph charts are sufficient to cover the entire Gr(d, r) such that every
sub-space V ∈ Gr(d, r) is contained in the image of a graph chart with its graph parameterization
X satisfies ∥X∥op ≤ 1. From this intuition, we have that the uniform prior µ = Unif(Gr(d, r))
satisfies that for every PSD Σ and ϵ > 0,

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ C1r(d− r) + sup

X∈X̄
log

1

Unif(X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ϵ)
,

where X = {X ∈ R(d−r)r : ∥X∥op ≤ 1} and X̄ = {X ∈ R(d−r)r : ∥X∥op ≤ 2} (we make X̄
slightly larger for later technical derivation), and C1 > 0 is an absolute constant.

Proof of Lemma 22: The preliminary, coarse covering number bound

N(Gr(d, r), ϱproj, ϵ) ≤ C
r(d−r)

ϵ

is stated as Proposition 6 in Pajor (1998), where C > 0 is an absolute constant. By the definition of
covering number (Definition 4.2.2 in Van Handel (2014)), we have that

N(Gr(d, r), ϱproj, ϵ) · Vol(ϵ− ϱproj−ball) ≥ Vol(Gr(d, r)),

then for the uniform prior ν = Unif(Gr(d, r)), we have that for every V̄ ∈ Gr(d, r),

log
1

ν(Bϱproj(V̄, ϵ))
= log

Vol(Gr(d, r))
Vol(ϵ− ϱproj− ball)

≤ r(d− r)
logC

ϵ
.

Taking ϵ = 1/
√
2, we obtain:

log
1

ν(Bϱproj(V̄,
√
2))

≤ C1r(d− r),

where C1 > 0 is an absolute constant. By Lemma 21, we have that inside the ball Bϱproj(V̄, 1/
√
2),

by choosing V̄ as the reference sub-space, the graph parameterization X of V (see (66) for the
definition) satisfies

∥X∥op ≤ 1.

Furthermore, X = {X ∈ R(d−r)r : ∥X∥op ≤ 1} satisfies (again by Lemma 21)

X = Bϱproj(V̄, 1/
√
2) ⊆ X̄ = Bϱproj(V̄, 2/

√
5).

Let

µV̄ = Unif(Bproj(V̄, 2/
√
5)), µ(V) =

∫
ν(V̄)µV̄(V)dV̄ = Unif(Gr(d, r)).
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Then we have

log
1

µ(Bϱproj,Σ(V, ϵ))
= log

1∫
ν(V̄)µV̄(Bϱproj,Σ(V, ϵ))dV̄

= log
1∫

ν(V̄)µV̄(Bϱproj,Σ(V, ϵ) ∩Bproj(V̄, 2/
√
5))dV̄

≤ log
1

ν(Bϱproj(V, 1/
√
2)) min

V̄∈Bϱproj (V,1/
√
2)
µV̄(X

′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ϵ)

≤C1r(d− r) + sup
X∈X

log
1

Unif(X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ϵ)
,

where the first inequality is by restricting V̄ to Bϱproj(V, 1/
√
2). Note that we use different radius

here than in µV̄ to enusre that the set X̄ for X ′, which is inside the uniform distribution in the final
bound, to be larger than the domain X for X to take sup. This will help later technical derivation. □

D.4 LIPCHITZ OF GRAPH CHART

We have the following Lipchitz property of graph chart.

Lemma 23 (Lipchitz of Graph Chart) Let X,X ′ ∈ R(d−r)×r be matrices that satisfies ∥X∥ ≤ 1
and ∥X ′∥ ≤ 2. Define the function A : R(d−r)×r → Rd×r and M : R(d−r)×r → Rr×r by

A(X) =

(
Ir
X

)
, M(X) = (Ir +X⊤X)−1/2.

Then the ellipsoidal projection metric is Lipschitz to ellipsoidal metrics as follows: for every rank-r
PSD Σ1 ∈ Rd×d,

ϱproj(V(X),V(X ′))

=∥Σ 1
2 (A(X)M(X)A(X)⊤ −A(X ′)M(X ′)A(X ′)⊤)∥op

≤
√
5∥
(
(0 Id−r) Σ

(
0

Id−r

)) 1
2

(X −X ′)∥op +
√
5∥Σ 1

2A(X)M(X)X⊤(X ′ −X)∥op

+ (1 +
√
5)∥Σ 1

2A(X)M(X)(X ′ −X)⊤∥op.

We continue to present the following lemma, which shows that the A(X) and M(X) factors in
Lemma 23 only reduces the effecetive dimensions of the ellipsoidal map, and does not increase the
eigenvalues (up to absolute constants).

Proof of Lemma 23: We use the triangle inequality:
A(X)M(X)A(X)−A(X ′)M(X ′)A(X ′)

=(A(X)−A(X ′))M(X ′)A(X ′) +A(X)(M(X)−M(X ′))A(X ′) +A(X)M(X)(A(X)−A(X ′)).

Therefore,

∥Σ 1
2 (A(X)M(X)A(X)⊤ −A(X ′)M(X ′)A(X ′)⊤)∥op

≤∥Σ 1
2

(
0

X −X ′

)
M(X ′)A(X ′)⊤∥op + ∥Σ 1

2A(X)(M(X)−M(X ′))A(X ′)⊤∥op

+ ∥Σ 1
2A(X)M(X)

(
0 X⊤ −X ′⊤

)
∥op. (68)

We will bound each term.

First, by singular decomposition ofX ′ and ∥X ′∥op ≤ 2, we know ∥A(X ′)∥op ≤
√
5, ∥M(X ′)∥op ≤

1, and

∥Σ 1
2

(
0

X −X ′

)
M(X ′)A(X ′)⊤∥op ≤

√
2∥Σ 1

2

(
0

X −X ′

)
∥op

=
√
5∥Σ 1

2

(
0

Id−r

)
(X −X ′)∥op =

√
2∥
(
(0 Id−r) Σ

(
0

Id−r

)) 1
2

(X −X ′)∥op.
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Second, because

M(X)−M(X ′)

=(Ir +X⊤X)−1
(
(Ir +X ′⊤X ′)− (Ir +X⊤X)

)
(Ir +X ′⊤X ′)−1

=(Ir +X⊤X)−1
(
X ′⊤X ′ −X⊤X

)
(Ir +X ′⊤X ′)−1

=(Ir +X⊤X)−1
(
X⊤(X ′ −X) + (X ′⊤ −X⊤)X ′

)
(Ir +X ′⊤X ′)−1

=M(X)X⊤(X ′ −X)M(X ′) +M(X)(X ′⊤ −X⊤)X ′M(X ′),

we have

∥Σ 1
2A(X)(M(X)−M(X ′))A(X ′)⊤∥op

≤
√
5∥Σ 1

2A(X)M(X)X⊤(X ′ −X)∥op +
√
2∥Σ 1

5A(X)M(X)(X ′ −X)⊤∥op.

Third, we have

∥Σ 1
2A(X)M(X)

(
0 X⊤ −X ′⊤

)
∥op = ∥Σ 1

2A(X)M(X)(X −X ′)⊤∥op,

Substituting these bounds back into (68), we prove the desired result.

□

Lemma 24 (Spectral domination under contractions) Let Σ ⪰ 0 be a d × d PSD matrix with
ordered eigenvalues λ1(Σ) ≥ · · · ≥ λd(Σ). Let A ∈ Rd×r and write s := ∥A∥op. Denote by
µ1 ≥ · · · ≥ µr the eigenvalues of A⊤ΣA. Then, for every k = 1, . . . , r,

µk ≤ s2 λk(Σ).

Proof of Lemma 24: By the Courant–Fischer–Weyl max-min characterization (see, e.g.,
Wikipedia contributors (b)), we have

λk(A
⊤ΣA) = min

S⊂Rd

dimS=d−k+1

sup{∥A⊤Σ
1
2x∥22 : x ∈ S, ∥x∥2 = 1}

≤ s2 · min
S⊂Rd

dimS=d−k+1

sup{∥Σ1/2x∥2 : x ∈ S, ∥x∥2 = 1}

=s2λk(Σ).

□

D.5 PROOF OF THE MAIN RESULT

From Lemma 22, to cover Gr(d, r) it suffices to cover the unit ball of (d − r) × r matrices under
the ellipsoidal spectral metric. We are now ready to prove Lemma 3, our main result for ellipsoidal
Grassmannian covering.

Proof of Lemma 3: Define X =
{
X ∈ R(d−r)×r : ∥X∥op ≤ 1

}
and X̄ ={

X ∈ R(d−r)×r : ∥X∥op ≤ 2
}

. By Lemma 22 (Global Property about Finite Atlas), we have
that for all ϵ > 0,

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ C1r(d− r) + sup

X∈X
log

1

Unif(X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ϵ)
, (69)

where C1 > 0 is an absolute constant.

Given a PSD matrix H ∈ Rp×p and an eigenvalue threshold α, assume its eigendecomposition is
H = U diag(β1, · · · , βp)U⊤, define the thresholding function Tα by

Tα(H) = U diag(max{β1, α}, · · · ,max{βp, α})U⊤.
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Clearly this function only increases the metric. Consider the d × (d − r) matrix A(X) =

(
Ir
X

)
and the r × e matrix M(X) = (Ir +X⊤X)−1, we are interested in the following four ellipsoidal
metric, where

ϱ21(X,X
′) =6(X ′ −X)⊤Tϵ2/42

(
(0 Id−r) Σ

(
0

Id−r

))
(X ′ −X),

ϱ22(X,X
′) =6(X ′ −X)⊤Tϵ2/21

(
XM(X)A(X)⊤ΣA(X)M(X)X⊤) (X ′ −X),

ϱ33(X,X
′) =12(X ′ −X)Tϵ2/21

(
M(X)A(X)⊤ΣA(X)M(X)

)
(X −X ′)⊤.

By Lemma 23 (Lipchitz of Graph Chart), ellipsoidal projection metric is bounded by ϱ1 + ϱ2 + ϱ3,
so for any X ∈ X ,

log
1

Unif(X ′ ∈ X : ϱproj,Σ(V(X),V(X ′)) ≤ ϵ)

≤ log
1

Unif(X ′ ∈ X̄ : ϱ1(X,X ′) + ϱ2(X,X ′) + ϱ3(X,X ′) ≤ ϵ)

≤ log
1

Unif(X ′ ∈ X̄ : ϱ1(X,X ′) ≤ ϵ√
7
) · Unif(X ′ ∈ X : ϱ2(X,X ′) ≤

√
2ϵ√
7
)) · Unif(X ′ ∈ X̄ : ϱ3(X,X ′) ≤

√
4ϵ√
7
)))

= log
1

Unif(Bϱ1
(X, ϵ/

√
7))

+ log
1

Unif(Bϱ2
(X,

√
2ϵ/

√
7))

+ log
1

Unif(Bϱ3
(X,

√
4ϵ/

√
7))

, (70)

where the last equality is due to the fact that all the three balls Bϱ1
(X, ϵ/

√
7), Bϱ2

(X,
√
2ϵ/

√
7),

Bϱ3
(X,

√
4ϵ/

√
7) are contained in X̄ , as we have applied the thresholding function to ensure this

inclusion. For example, for the first ball, from

X ′ −X =

√
6Tϵ2/42

(
(0 Id−r) Σ

(
0

Id−r

))
︸ ︷︷ ︸

denoted as H1


−1/2

√
6Tϵ2/42

(
(0 Id−r) Σ

(
0

Id−r

)) 1
2

(X ′ −X)

we have (combining with λmin(H1) ≥ ϵ2/7)

∥X ′ −X∥op ≤ λmin(H1)
−1/2 · ϵ/

√
7 ≤ 1,

which resulting in ∥X ′∥op ≤ ∥X ′ −X∥op + ∥X∥op ≤ 2.

A classical volume-ratio argument (e.g., display (1) in Pajor (1998); see also Milman & Schechtman
(1986); Pisier (1999)) states the following result on the covering number of balls in general normed
space: for a p-dimensional normed space Y equipped with the metric associated to its norm ∥·∥, we
denote by B(0, R) the ball in Y centered at origin with radius R, and by N(B(0, R), ∥ · ∥, ϵ) the
covering number of this ball. Then for every ε ∈ (0, R],(

R

ε

)p

≤ N
(
B(0, R), ∥·∥, ε

)
≤
(
3R

ε

)p

.

Note that this result is for general normed space, not only for the ℓ2 norm in Euclidean space. By the
definition of the covering number (Definition 4.2.2 in Van Handel (2014)), we have that for every
X ∈ X and every ϵ ∈ (0, 1],

Vol(X̄ )

Vol(Bop(X, ϵ))
≤ N

(
Bop(X, ϵ), ∥·∥op, ε

)
≤
(
6

ε

)p

.

Applying the standard change of variable argument Y = H
1
2
1 X and Jacobian determinant calcula-

tion, we have

Vol
(
Bϱ1

(X, ε/
√
7)
)

= Vol
(
Bop(X, ε/

√
7)
)
(detH1)

−1/2 = Vol
(
Bop(X, ε/

√
7])
) p∏

k=1

λk(H1)
−1/2,
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which gives (again using the fact Bϱ1
(X, ϵ/

√
7) ⊆ X̄ )

log
1

Unif(Bϱ1(X, ϵ/
√
7)

≤ r

d−r∑
k=1

log
42λk(H)

ϵ2
≤ 1

2
r

d−r∑
k=1

log
C2 max{λk(Σ), ϵ2/42}

ϵ2
,

where the last inequality uses Lemma 24, and C2 > 0 is an absolute constant. Similarly, we have

log
1

Unif(Bϱ2
(X,

√
2ϵ/

√
7)

≤ 1

2
r

d−r∑
k=1

log
C3 max{λk(Σ), ϵ2/42}

ϵ2
,

where C3 > 0 is an absolute constant, and

log
1

Unif(Bϱ3(X,
√
4ϵ/

√
7)

≤ 1

2
(d− r)

r∑
k=1

log
C4 max{4λk(Σ), ϵ2/42}

ϵ2
,

where C4 > 0 is an absolute constant.

Combining the above three inequalities with (69) (70), we have that for all ϵ > 0, we have

log
1

µ(Bϱproj,Σ(V, ϵ))
≤ 1

2
(d− r)

r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
+ r

d−r∑
k=1

log
Cmax{λk, ϵ2/42}

ϵ2
,

(71)

where C > 0 is an absolute constant.

□

E PROOFS FOR GENERALIZATION BOUNDS AND COMPARISON (SECTION 4)

E.1 PROOF OF THEOREM 4 IN SECTION 4.1

The proof consists of two steps: 1. Obtaining the Integral Bound on Generalization Gap; and 2.
Obtaining the Expression of Riemannian Dimension.

Step 1: Obtaining the Integral Bound on Generalization Gap. As presented in (6), we construct
the metric tensor

GNP(W ) := blockdiag
(
· · · , LM2

l→L(W, ϵ) · Fl−1(W,X)F⊤
l−1(W,X)⊗ Idl

, · · ·
)
.

By Lipchitz property of the loss function we have

ϱn,ℓ(W
′,W ) =

√
Pn(ℓ(W ′; (x, y))− ℓ(W ; (x, y)))2

≤ β
√
Pn∥f(W ′, x)− f(W,x)∥22 = βϱn(W

′,W )

By Lemma 1 we have the metric dominating relationship: for every W ∈ W ,
√
nϱn(W

′,W ) ≤ ϱGNP(W )(W
′,W ), ∀W ′ ∈ W.

Combining the above two inequalities we have

ϱn,ℓ(W
′,W ) ≤ β√

n
ϱGNP(W )(W

′,W ), ∀W ′ ∈ W.

By the metric domination lemma (Lemma 13), we have the pointwise dimension bound: for every
w ∈ W ,

log
1

π(Bϱn,ℓ
(W,

√
nϵ/β))

≤ log
1

π(BGNP(W )(W,
√
nϵ/β))

.

By definition of Riemannian dimension, if the manifold (W, G) admits Riemannian dimension dR,
then we have that for every W ∈ W ,

log
1

π(Bϱn,ℓ
(W,

√
nϵ/β))

≤ log
1

π(BGNP(W )(W,
√
nϵ/β))

≤ dR(W, ϵ/β). (72)
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By Theorem 2, we have that there exists an absolute constant C1 such that with probability at least
1− δ, uniformly over all W ∈ W ,

(P− Pn)ℓ(f(W,x), y) ≤C1

 1√
n

∫ ∞

0

√
log

(
1

π(Bϱn,ℓ
(W, ϵ))

)
dϵ+

√
log log(2n)

δ

n


≤C1

 1√
n

∫ ∞

0

√
dR(W, ϵ/β)dϵ+

√
log log(2n)

δ

n


=C1

 β√
n

∫ ∞

0

√
dR(W, ϵ)dϵ+

√
log log(2n)

δ

n

 . (73)

where C1 is an absolute constant; the first inequality uses Theorem 2; and the second inequality uses
(72). This finishes the first part of Theorem 4 (integral upper bound).

Step 2: Obtaining the Expression of Riemannian Dimension. It remains to express the Rie-
mannian dimension dR by Theorem 3 and prove the second part of Theorem 4. By Theorem 3, we
have that the manifold (W, G) admits the Riemannian dimension

dR(W, ϵ) =

L∑
l=1

(
(dl + dl−1) · deff(LM

2
l→L(W, ϵ) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, 1/n}, ϵ)

+ log(dl−1n)
)
, (74)

where R = supW ∥W∥F, C2 is an absolute constant, and the effective dimension (defined via (8))
is

deff(LM
2
l→L(W, ϵ) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, 1/n}, ϵ)

=
1

2

reff[W,l]∑
k=1

log
8C2

2 max{∥W∥2F, R2/4n}LM2
l→L(W, ϵ)λk(Fl−1Fl−1)

⊤

nϵ2
, (75)

where Fl−1 is the abbreviation of Fl−1(W,X) and reff[W, l] is the abbreviation of
reff(LM

2
l→L(W, ϵ) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2

n}, ϵ).
Combining the identities (74) and (75), we have the pointwise dimension bound

dR(W, ϵ)

=

L∑
l=1

(dl + dl−1)

reff[W,l]∑
k=1

log
8C2

2λk(Ft−1F
⊤
t−1) ·max{∥W∥2F, R2/4n}LMl→L(W, ϵ)

nϵ2
+ log(dl−1n)

 ,

(76)

where Fl−1 is the abbreviation of Fl−1(W,X); reff[W, l] is the abbreviation of reff(LM
2
l→L(W, ϵ) ·

Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, 1/n}, ϵ); and C2 is an absoutant.

This finishes the second part of Theorem 4 (expression of Riemannian dimension).

Combining the integral upper bound (73) and the Riemannain dimension expression (76) concludes
the proof of Theorem 4.

□
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E.2 PROOF OF IMPLICIT BIAS IN SECTION 4.2

For the regularized ERM f̂ = argminf{Pnℓ(f ; z) + C
√

d(f)+log(1/δ)
n }, with probability at least

1− δ

Pℓ(f̂ ; z) ≤ inf
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(1/δ)

n

}

≤ inf
f∈F

{
Pℓ(f ; z) + 2C

√
d(f) + log(1/δ)

n

}
, (77)

where the first inequality uses the bound of the form (3) and the second inequality uses the following
result of (78). Define ℓ′(f ; z) := 1 − ℓ(f ; z) ∈ [0, 1]. Applying the bound in (3) with ℓ′, we get a
generalization error bound

(Pn − P)ℓ(f, z) ≤ C

√
d(f) + log(1/δ)

n
, (78)

where the complexity measure remains unchanged, which can be verified by the pointwise dimen-
sion. The bound in (77) then implies

Pℓ(f̂ ; z)− Pℓ(f∗; z) ≤ inf
f∈F

{
Pℓ(f ; z) + 2C

√
d(f) + log(1/δ)

n

}
− Pℓ(f∗; z),

which, in turns, means that

Pℓ(f̂ ; z)− Pℓ(f∗; z) ≤ 2C

√
d(f∗) + log(1/δ)

n
.

□

E.3 PROOF OF THE IMPROVEMENT OVER NORM BOUNDS IN SECTION 4.3

We now provide norm-constrained bound from Theorem 4 without any expression reff and deff in
the bound. Invoking the elementary bound log x ≤ log(1 + x) ≤ x, the effective dimension factor
in Theorem 4 can be relaxed to the dimension-independent bound

∞∑
k=1

log
(

λk

(
Fl−1F

⊤
l−1

)
∥W∥2

F LM2
l→L(W,ε)

n ε2

)
≤
∑∞

k=1 λk(Fl−1F
⊤
l−1) ∥W∥2F LM2

l→L(W, ε)

n ε2

≤
∥Fl−1(W,X)∥2F ∥W∥2F LM2

l→L(W, ε)

n ε2
,

and one arrives at the following rank–free consequence.

Corollary 1 (Norm-constrained bound) Theorem 4 is never worse than: uniformly over all W ∈
W , the generalization gap (P− Pn) ℓ

(
f(W,x), y

)
is bounded by

O

β
√∑L

l=1(dl + dl−1)L∥Fl−1(W,X)∥2F∥W∥2F supϵ>0M
2
l→L(W, ϵ)

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 .

(79)
Furthermore, (79) implies the spectrally normalized bound: uniformly over W , the generalization
gap (P− Pn) ℓ

(
f(W,x), y

)
is bounded by

O

β∥X∥F∥W∥F ·
√∑L

l=1 L(dl + dl−1) Πi ̸=l∥Wi∥2op

n
+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n

 .

(80)
Here in both (79) and (80), O hides multiplicative absolute constants and two ignorable high-

order terms: β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supϵ>0 Ml→L2(W,ϵ)

n2n ; and in (80),

O additionally hides an ignorable high-order term β
√

L∥W∥2
F∥X∥2

F
∑L

l=1(dl+dl−1)(R/
√
L−1)L−1

nmax{R,2}n .
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Remark: in (79) and (80), the feature matrices Fl−1(W ;X) and X contain n features vectors so
their Frobenius norms scales with

√
n, making the order of both bounds to be n−1/2.

Proof of Corollary 1. Riemannain Dimension can be expressed in the following equivalent form∫ ∞

0

√
dR(W, ϵ)dϵ = inf

α>0

(∫ α

0

√
dR(W, ϵ)dϵ+

∫ 1

α

√
dR(W, ϵ)dϵ

)
.

We organize the proof with four steps.

Step 1: Bounding the Dominating Integral. As we will take α to be very small so that the∫ α

0

√
dR(W, ϵ) will be not exceed the order of

∫∞
α

√
dR(W, ϵ), we firstly prove

∫ 1

α

√
dR(W, ϵ)dϵ.

By the basic inequality log x ≤ log(1 + x) ≤ x for x > 0, we have

reff[W,l]∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2

)

≤
reff[W,l]∑
k=1

8C2
2λk(Fl−1F

⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2

≤
dl−1∑
k=1

32C2
2λk(Fl−1F

⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2

=
8C2

2∥Fl−1∥2F{∥W∥2F, R2/4n}LM2
l→L(W, ϵ)

nϵ2
, (81)

where Fl−1 is the abbreviation of Fl−1(W,X); reff[W, l] is the abbreviation of reff(LM
2
l→L(W, ϵ) ·

Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, 1/n}, ϵ); and C2 is a positive absolute constant. Here
the second inequality uses the definition that reff[W, l] as the effective rank of a dl−1 × dl−1 matrix,
is no larger than the matrix width dl−1; the first equality is because

dl−1∑
k=1

λk(Fl−1F
⊤
l−1) = Tr(Fl−1F

⊤
l−1) = ∥Fl−1∥2F, (82)

a well-known property of the Frobenius norm (the squared Frobenius norm ∥Fl−1∥2F equals trace of
Fl−1F

⊤
l−1). By (81) and Theorem 4 we have the Riemannian Dimension upper bound

dR(W, ϵ) ≤ 8C2
2

L∑
l=1

(dl + 2dl−1)
∥Fl−1∥2F max{∥W∥2F, R2/4n}LM2

l→L(W, ϵ)

nϵ2
+

L∑
l=1

log(dl−1n),

(83)

where C2 is a positive absolute constant.

Taking (83) to the integral
∫ 1

α

√
dR(W, ϵ)dϵ, we have∫ 1

α

√
dR(W, ϵ)dϵ

≤2
√
2C2

∫ 1

α

√√√√ L∑
l=1

(dl + 2dl−1)
∥Fl−1∥2F max{∥W∥2F, R2/4n}LM2

l→L(W, ϵ)

nϵ2
dϵ+ (1− α)

√√√√ L∑
l=1

log(dl−1n)

≤C3

√∑L
l=1(dl + dl−1)L∥Fl−1∥2F max{∥W∥2F, R2/4n} supϵ>0M

2
l→L(W, ϵ)

n
log

1

α
+ (1− α)

√√√√ L∑
l=1

log(dl−1n),

where C3 > 0 is an absolute constant.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Step 2: Bounding the Rest Integral. We then prove
∫ α

0

√
dR(W, ϵ)dϵ. Again, by the basic

inequality log x ≤ log(1 + x) ≤ x for x > 0, we have

reff[W,l]∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2

)

≤
dl−1∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nϵ2

)

=

dl−1∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nα2

)
+ dl−1 log

α2

ϵ2

≤
8C2

2

∑dl−1

k=1 λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ϵ)

nα2
+ dl−1 log

α2

ϵ2

=
8C2

2∥Fl−1(W,X)∥2F ·max{||W ||2F , R2/4n}LM2
l→L(W, ϵ)

nα2
+ dl−1 log

α2

ϵ2
. (84)

Taking (84) to the integral
∫ α

0

√
dR(W, ϵ)dϵ, we have∫ α

0

√
dR(W, ϵ)dϵ

≤2
√
2C2

∫ α

0

√√√√ L∑
l=1

(dl + dl−1)
∥Fl−1∥2F∥W∥2FLM2

l→L(W, ϵ)

nα2
dϵ+

∫ α

0

√√√√ L∑
l=1

(dl + dl−1)dl−1 log
α2

ϵ2
dϵ

≤C4

√∑L
l=1(dl + dl−1)∥Fl−1∥2F max{∥W∥2F, R2/4n}L supϵ>0M

2
l→L(W, ϵ)

n
+ α

√√√√ L∑
l=1

(dl + dl−1)dl−1

 ,

where the second inequality holds by calculating the integral
∫ α

0

√
log
(
α2

ϵ2

)
dϵ = α

√
π
2 , andC4 > 0

is an absolute constant. Taking α = 1
n5 , the high-order term α

√∑L
l=1(dl + dl−1)dl−1 will be

√∑L
l=1(dl+dl−1)dl−1

n5 and is ignorable.

Step 3: Combing the Two Integrals. Combining Step 1 and Step 2, we get the full Riemannian
Dimension integral upper bound

1√
n

∫ ∞

0

√
dR(W, ϵ)dϵ ≤ O


√∑L

l=1(dl + dl−1)L∥Fl−1∥2F∥W∥2F supϵ>0M
2
l→L(W, ϵ)

n
+

√∑L
l=1 log(dl−1n)

n

 ,

where O hides multiplicative absolute constants and two ignorable high-order terms:
β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supϵ>0 Ml→L2(W,ϵ)

n2n .

Put this bound into Theorem 4 (or (73) in its proof), we have with probability at least 1−δ, uniformly
over all w ∈ W ,

(P− Pn)ℓ(f(W,x), y)

≤O

β
√∑L

l=1(dl + dl−1)L∥Fl−1∥2F∥W∥2F supϵ>0M
2
l→L(W, ϵ)

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 ,

(85)

where O hides multiplicative absolute constants and two ignorable high-order terms:
β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supϵ>0 Ml→L2(W,ϵ)

n2n Note that here
Fl−1(W ;X) ∈ Rdl−1×n contains n features vectors in dimension dl−1 so its Frobenius norm
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∥Fl−1∥F scales with
√
n with respect to sample size; and supϵ>0Ml→L(W, ϵ) is the “one-point”

Lipchitz constant at W in the sense that

||FL(Fl(W
′, X), {W ′

i}Li=l+1)− FL(Fl(W,X), {W ′
i}Li=l+1)||F

≤
(
sup
ϵ
Ml→L(W, ε)

)
||Fl(W

′, X)− Fl(W,X)||F, ∀W ′ ∈ W.

This concludes the first generalization bound in Corollary 1.

Step 4: Prove the Second Generalization Bound. Now we continue to show that the bound in
Corollary 1 is strictly better than the spectrally normalized bound. To see this, as we presented under
Corollary 1, we have

∥Fl−1(W,X)∥F

=∥σl−1(Wl−1 · · ·W2σ1(W1X))∥F

≤Πi<l∥Wi∥op · ∥X∥F, (86)

by the property of spectral norm (∥AB∥F ≤ ∥A∥op∥B∥F)), and the fact that all activation functions
are 1−Lipchitz in column.

In the meanwhile, we know that(
sup
ϵ
Ml→L(W, ε)

)
≤ sup

ϵ
Πi>l∥W ′

i∥op,

again by the property of spectral norm (∥AB∥F ≤ ∥A∥op∥B∥F)) and the fact that all activation
functions are 1−Lipchitz in column. This results in

sup
ϵ

Πi>l∥W ′
i∥op ≤ sup

w∈W
Πi>l∥Wi∥op. (87)

Combining (86) and (87) together with (85), we have that for any δ ∈ (0, 1), with probability at least
1− δ, uniformly over every w ∈ W , we have

(P− Pn)ℓ(f(W,x), y)

≤O

β
√
L∥W∥2F∥X∥2F ·

∑L
l=1(dl + dl−1)Πi<l∥Wi∥2op supw∈W Πi>l∥Wi∥2op

n

+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 , (88)

where O hides multiplicative absolute constants and two ignorable high-order terms:
β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supϵ>0 Ml→L2(W,ϵ)

n2n .

The next step is to use Lemma 8 (the “uniform pointwise convergence” principle Xu & Zeevi (2025))
to give a conversion from the uniform convergence to the pointwise convergence. Denote the func-
tional Tl : W → (0, Rl] is defined by

Tl(W ) = Πi ̸=l∥Wi∥2op.

Since
∑

i ̸=l ∥Wi∥2F ≤ ∥W∥2F ≤ R2, we have Tl(W ) = Πi ̸=l∥Wi∥ ≤ (R/
√
L− 1)L−1 ac-

cording to the AM-GM inequality. The bound in (88) implies that for any l = 1, · · · , L,
∀tl ∈ (0, (R/

√
L− 1)L−1)], with probability at least 1− δ,

sup
W :Tl(W )≤tl,∀l∈[L]

(P− Pn)ℓ(W ; z)

≤O

β
√
L∥W∥2F∥X∥2F ·

∑L
l=1(dl + dl−1)t2l

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 . (89)

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

The inequality (89) precisely match the condition in Lemma 8 for each functional dl(w). Thus
applying Lemma 8 by L times, with the smallest radius r0 in the statement of Lemma 8 chosen to
be r0 = (R/

√
L− 1)L−1)/max{R, 2}n, we have that for any δ ∈ (0, 1), with probability at least

1− δ, uniformly over every w ∈ W ,

(P− Pn)ℓ(f(W,x), y)

≤O

β
√
L∥W∥2F∥X∥2F

∑L
l=1(dl + dl−1)max{4T 2

l (W ), (R/
√
L−1)2L−2

max{R,2}2n }
n

+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n


=O

β
√
L∥W∥2F∥X∥2F ·

∑L
l=1(dl + dl−1)Πi ̸=l∥Wi∥2op

n
+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n

 ,

(90)

where O hides multiplicative absolute constants and three ignorable high-order

terms: β
√∑L

l=1(dl+dl−1)dl−1

n5.5 ,
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supϵ>0 Ml→L2(W,ϵ)

n2n and
β
√

L∥W∥2
F∥X∥2

F
∑L

l=1(dl+dl−1)(R/
√
L−1)L−1

nmax{R,2}n .

Now we see from (86) and (87) that the derived norm-constraint bound (85) implies the spectrally
normalized bound (90). This completes the proof.

□

Discussion of Corollary 1. We proceed in three paragraphs of discussion. First, we show that the
Riemannian–Dimension bound in Theorem 4 is exponentially tighter than the spectrally normalized
bound in (80). Second, we offer a metric–tensor interpretation that clarifies the source of this im-
provement. Finally, we position (80) relative to the most representative SNB bounds in the existing
literature.

I: Why the improvement is exponential. Empirically one observes

∥Fl−1∥F ≪ Πi<l∥Wi∥op ∥X∥F, Ml→L(W, ε) ≤ sup
W ′∈Bϱn (W,ε)

Πi>l∥W ′
i∥op,

so Theorem 4 is exponentially tighter than (80). Therefore, Theorem 4 improves on Corollary 1 by
an exponential factor.

II: Metric tensor interpretation. For understand the improvement deeper, we highlight that the
spectral norm bound (80) can be equivalently viewed as replacing the metric tensor GNP (6) used in
Theorem 4 by the diagonal metric tensor

GSNB(W ) = blockdiag
(
. . . , L sup

W ′∈W
Πk ̸=l∥W ′

k∥op ∥X∥2F ⊗ Idl×dl−1
, . . .

)
,

which is a far coarser relaxation that completely discards the learned feature Fl(W,X).

III: Relation to existing spectrally normalised bounds. The bound in (80) is structurally close
to the classical SNB results of Bartlett et al. (2017) and Neyshabur et al. (2018); the three bounds
differ only in the global ball used to constraint the hypothesis class.

(a) Our bound (80) controls all layers simultaneously via the global Frobenius norm ∥W∥F,
hence the factor ∥W∥F in the numerator.

(b) Neyshabur et al. (2018) bounds each layer l separately by its Frobenius norm ∥Wl∥.
Strengthening their argument with Dudley’s entropy integral (one-shot optimization in the
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original paper) gives

(P−Pn) ℓ
(
f(W,x), y

)
≤ Õ

(β ∥X∥F

√∑L
l=1 L

2(dl + dl−1) ∥Wl∥2F Πi ̸=l∥Wi∥2op

n
+

√
log 1

δ

n

)
.

(91)
Neither (80) nor (91) strictly dominates the other, since factors of the form (

∑
l al)(

∑
l bl)

in (80) vs. factors of the form L
∑

l albl in (91) can swap their relative order.
(c) Bartlett et al. (2017) replaces each Frobenius norm by the ∥ · ∥2,1 norm, obtaining the tighter

(P−Pn) ℓ
(
f(W,x), y

)
≤ Õ

(β ∥X∥F
[∑

l∥Wl∥2/32,1

∑
l

(
Πi ̸=l∥Wi∥2op

)2/3]3/2
n

+

√
log 1

δ

n

)
,

(92)
which improves on (80) and (91) thanks to the sharper 2, 1 norm. Extending our
Riemannian-dimension analysis to the 2, 1 norm setting is an interesting direction for future
work.

(d) Size-independent SNB bounds (pioneered by Golowich et al. (2020)) remove all
depth/width dependence at the price of a worse scaling in n; incorporating their technique
is left for future research.

In any case, (80) is a representative SNB bound, and the key message in this subsection is that our
Riemannian-Dimension result in Theorem 4 is exponentially sharper than (80).

53


	Introduction
	Contributions

	The Nature of Generalization
	Pointwise Generalization as BEST PAC-Bayes Optimization
	Generalization IS Finite-Scale Dimension

	Deep Neural Networks and Riemannian Dimension
	Non-Perturbative Expansion and Layer-wise Correlation
	Hierarchical Covering from Local Chart to Global Atlas

	Generalization Bounds and Comparison
	Generalization Bound for DNNs
	Implicit Bias and Algorithmic Implication
	Comparison with Norm bound, VC, and NTK

	Experiments at a Glance and Conclusions
	Experiments
	Riemannian Dimension Explains Overparameterization
	Feature Learning Compresses Effective Rank
	SGD Finds Low Riemannian Dimension Point

	Proofs for The Nature of Generalization (Section 2)
	Proof of Theorem 1 (One-Shot Generalization Bound)
	Symmetrized Losses and Conditional PAC-Bayes
	Original Losses

	Proof for Theorem 2 (Generic Chaining Upper and Lower Bounds)
	Background on Gaussian Processes
	Proof of Theorem 2

	Auxiliary Lemmas for Section 2

	Proofs for Deep Neural Networks and Riemannian Dimension (Section 3)
	Proof of Lemma 1 in Section 3.1
	Metric Domination Lemma
	Auxiliary Lemmas for Volumetric Arguments

	Pointwise Dimension Bound with Approximate Effective Sub-Space
	Proof for NN-type Manifold (Theorem 3)
	Decomposition Properties of NN-type Manifold
	Proof of Theorem 3


	Ellipsoidal Covering of the Grassmannian
	Grassmannian Manifold, Stiefel Parameterization, and Orthogonal Groups
	Principal Angles between Sub-Spaces
	Local Charts and Global Atlas of the Grassmannian
	Lipchitz of Graph Chart
	Proof of the Main Result

	Proofs for Generalization Bounds and Comparison (Section 4)
	Proof of Theorem 4 in Section 4.1
	Proof of Implicit Bias in Section 4.2
	Proof of the Improvement over Norm Bounds in Section 4.3


