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ABSTRACT

We address the fundamental question of why deep neural networks generalize by
establishing a pointwise generalization theory for fully connected networks. For
each trained model, we characterize the hypothesis via a pointwise Riemannian
Dimension, derived from the eigenvalues of the learned feature representations
across layers. This approach establishes a principled framework for deriving tight,
hypothesis-dependent generalization bounds that accurately characterize the rich,
nonlinear regime, systematically upgrading over approaches based on model size,
products of norms, and infinite-width linearizations, yielding guarantees that are
orders of magnitude tighter in both theory and experiment. Analytically, we iden-
tify the structural properties and mathematical principles that explain the tractabil-
ity of deep networks. Empirically, the pointwise Riemannian Dimension exhibits
substantial feature compression, decreases with increased over-parameterization,
and captures the implicit bias of optimizers. Taken together, our results indicate
that deep networks are mathematically tractable in practical regimes and that their
generalization is sharply explained by pointwise, spectrum-aware complexity.

1 INTRODUCTION

Deep learning has ushered in a new era of AI, delivering striking generalization across scientific
tasks. Yet, a fundamental paradox remains: while classical theory predicts severe overfitting for
massive models, practice exhibits strong generalization. This gap has fueled a prevailing view that
neural networks are opaque “black boxes” resistant to principled explanation (Goodfellow et al.,
2016). We narrow this gap by addressing the generalization problem for the canonical fully con-
nected Deep Neural Network (DNN). We demonstrate that, under minimal and verifiable spectral
conditions on the learned feature representations, deep neural networks fall into a tractable regime
with tight generalization guaranties. Methodologically, our characterization leverages a pointwise
generalization paradigm that fundamentally transcends classical uniform-convergence approaches
and pure weight-space compressions, reshaping the theoretical foundation for representation learn-
ing. To our knowledge, this offers one of the first fully rigorous treatments that establishes the
tractability of deep neural networks by contemporary machine-learning standards.

We study standard fully connected (feed-forward) networks on a dataset X = [x1, . . . , xn] ∈
Rd0×n, where each column is one input example. The network has widths d1, . . . , dL, and weight
matrices Wl ∈ Rdl×dl−1 for l = 1, . . . , L. We define the feature matrix at layer l by the recursion

Fl(W,X) := σl
(
Wl Fl−1(W,X)

)
∈ Rdl×n, l = 1, . . . , L, (1)

where F0 := X and the nonlinear activation σl acts columnwise. Each column of Fl is the feature
vector of one data point at layer l; each row of Fl is the activation of one neuron across the dataset.

Our focus is the generalization gap—the difference between test and training loss at the learned
weights W . Informally—up to universal constants, mild logarithmic factors, and reasonable simpli-
fication (made precise in Theorem 4 with discussion on the feasibility of this simplification)—we
prove that this gap is controlled by the effective dimension of the learned features: uniformly over
every W ∈ R

∑
l dl·dl−1 ,

Ltest(W )− Ltrain(W ) <∼

√√√√ 1

n

L∑
l=1

(
dl + dl−1

)
deff

(
Fl−1(W,X)Fl−1(W,X)⊤

)
. (2)
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Here deff(·) denotes the (layerwise) effective dimension—a smoothed, spectrum-aware notion of
rank—of the feature Gram matrix Fl−1(W,X)Fl−1(W,X)⊤, i.e., the number of meaningful di-
rections the feature data actually occupies at that layer. Intuitively, each layer contributes a term
proportional to its size (dl+dl−1) multiplied by how many directions its features Fl−1(W,X) truly
use, deff . When features are correlated, low rank, or exhibit a rapidly decaying spectrum (a few large
eigenvalues dominating many small ones), deff is small, so the bound remains tight even for very
wide/deep networks. Such “feature compression” phenomena is widely observed in modern deep
learning (Huh et al., 2021; Wang et al., 2025; Parker et al., 2023). Strikingly, in our experiments,
increasing overparameterization often induces pronounced feature-rank compression: the bound (2)
decreases as model size grows (Section 5); for example, in ResNet trained on CIFAR-10, a majority
of layers compress to (near-)zero effective rank.

Inequality (2) yields a strong uniform, hypothesis- and data-dependent guarantee, which we term
pointwise generalization. It tracks how features evolve across layers of the trained model and
explains overparameterization in practice. Under minimal spectral conditions on the learned fea-
ture representations, our theory renders fully connected networks tractable. The spectrum-aware
effective-dimension notion we adopt is standard and minimax-sharp in linear and kernel settings
(Even & Massoulié, 2021). In contrast, existing bounds either (i) rely on infinite–width lineariza-
tions (the NTK line of work, e.g., Jacot et al. (2018)), (ii) blow up exponentially with products of
norms (e.g., Bartlett et al. (2017); Neyshabur et al. (2018)), or (iii) scale with model size (e.g., VC
dimension (Bartlett et al., 2019)). Our bounds avoid these pathologies, delivering tight, pointwise
guarantees via unified principles and systematic methodologies. By directly addressing the nonlin-
ear, feature-learning regime—emphasized in Bartlett et al. (2021); Zhang et al. (2021); Nagarajan &
Kolter (2019); Wilson (2025)—we show that generalization in deep neural networks is mathemati-
cally tractable.

Contributions: The paper is organized into three parts: (i) pointwise generalization framework;
(ii) structural principles of deep networks; and (iii) empirical validation. Related work, further
explanations, discussions and details, and all proofs are deferred to the appendices. We summarize
the main novelties in each part below.

A Tight Pointwise Generalization Framework. We develop a pointwise framework that analyzes
the trained hypothesis and yields generalization bounds with (qualified) matching upper and lower
rates via a finite-scale notion of pointwise dimension. This fundamentally upgrades generic chaining
and all covering–number approaches by assigning each hypothesis its own complexity that directly
controls its error. The bounds can also be read as an optimally tuned PAC–Bayes objective special-
ized to deterministic predictors. This framework reframes generalization as a study of pointwise
geometry at finite scale, clarifying why nonlinear models generalize without uniform convergence.

Structural Principles and Tight Bounds for Neural Networks. We develop a non-perturbative
approach that uses exact telescoping decompositions (rather than Taylor linearizations) to preserve
the finite-scale geometry of deep networks. This yields our first structural principle: cross-layer cor-
relations factor through the feature matrices and approximately preserve a pointwise linear struc-
ture. We then show that bounding the pointwise dimension reduces to the gold standard of effective
dimension on local charts, and we extend this to a global statement by constructing an ellipsoidal
covering over the set of subspaces (Grassmannian). This extension—novel beyond the classical dif-
ferential–geometric/Lie–algebraic treatments—establishes our second structural principle: the com-
plexity of the global atlas (covering reference eigenspaces) remains commensurate with that of the
local charts. Building on these principles, we introduce Riemannian Dimension—a spectrum-aware,
pointwise effective complexity—that governs generalization at the trained model and yields tight,
analyzable bounds. We review each step and argue that the resulting bounds are tight in a qualified
sense; moreover, they exponentially sharpen spectral–norm bounds (see Appendix F.5.1).

Empirical Findings and Evidences. The experiments are designed to systematically examine three
central questions in modern deep learning: (i) why does overparameterization often improve gener-
alization? (ii) how does feature learning evolve during training? and (iii) what implicit regulariza-
tion is encoded by the baseline optimizer? Across the experimental results, we observe that (i) the
overparameterization impressively leads to decreasing Riemannian Dimension; (ii) feature learning
compresses the effective ranks of learned features during the training; and (iii) SGD with momentum
implicitly regularizes the Riemannian Dimension.
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2 A POINTWISE FRAMEWORK OF GENERALIZATION

Let F be a hypothesis class, z be random data drawn from an unknown distribution P (e.g., input-
label pair z = (x, y)), and ℓ(f ; z) be real-valued loss function. Denote by Pn the empirical distribu-
tion supported on an i.i.d. sample S = {zi}ni=1 ∼ Pn. Our goal is to control the generalization gap
(P − Pn)ℓ(f ; z) in the following manner: for δ ∈ (0, 1), with probability at least 1 − δ, uniformly
over every f ∈ F ,

(P− Pn)ℓ(f ; z) := Ez∼P
[
ℓ(f ; z)

]
− 1

n

n∑
i=1

ℓ(f ; zi) ≤ C

√
d(f) + log 1

δ

n
, (3)

where d(f) is a hypothesis-dependent complexity measure that aims to characterize the intrinsic
complexity of every trained hypothesis f , in contrast to class-wide, uniformly defined complexity
measures. Further details are provided in the appendix.

In the spirit of (3), we introduce the central notion of this section—the pointwise dimension: a finite-
scale analogue of ideas from fractal geometry (Falconer, 1997) and a pointwise counterpart distilled
from generic chaining (Fernique, 1975). Throughout, “metric” ϱ means a pseudometric: all metric
axioms hold except that ϱ(f1, f2) = 0 need not imply f1 = f2.

Definition 1 (Pointwise Dimension) Given a function class F , a metric ϱ on F , and a prior π
over F , the local dimension at f with scale ε is defined as the log inverse density of the ε− ball
Bϱ(f, ε) = {f ′ ∈ F : ϱ(f, f ′) ≤ ε} centered at f :

log
1

π(Bϱ(f, ε))
. (4)

We define the loss-induced empirical L2(Pn) metric ϱn,ℓ as ϱn,ℓ(f1, f2) =√
1
n

∑n
i=1(ℓ(f1; zi)− ℓ(f2; zi))2. Equipped with this data–dependent metric, we now state

the following unified pointwise dimension generalization upper bound.

Theorem 1 (Pointwise Dimension Generalization Bound) Let ℓ(f ; z) ∈ [0, 1]. There exists an
absolute constant C > 0 such that for any prior π on F and any δ ∈ (0, 1), with probability at least
1− δ, uniformly over every f ∈ F

(P− Pn)ℓ(f ; z) ≤ C

 inf
α>0

{
α+

1√
n

∫ 1

α

√
log

1

π(Bϱn,ℓ
(f, ε))

dε

}
+

√
log log(2n)

δ

n

 .

The concept of pointwise dimension and the unified generalization bound in Theorem 1 strengthen
several established methodologies such as PAC-Bayesian analysis, Kolmogorov complexity, chain-
ing, and generic chaining. We elaborate on this unified strengthening in the next two paragraphs.

Theorem 1 sharpens best PAC–Bayes optimization. By the monotonicity of the pointwise di-
mension in ε, a direct relaxation of Theorem 1 yields the one–shot bound

(P− Pn) ℓ(f ; z) ≤ C

 inf
α>0

 α︸︷︷︸
bias (approximate f )

+

√
log 1

π(Bϱn,ℓ
(f,α))

n︸ ︷︷ ︸
variance (PAC–Bayes term)

+

√
log
(
log(2n)/δ

)
n

 .

(5)
Intuitively, the pointwise dimension uses prior mass over a ball around f , so it applies to gen-
eral (uncountable) classes, overcoming limitations of hypothesis–by–hypothesis bounds such as Oc-
cam/description–length and Kolmogorov complexity (Lotfi et al., 2022). Additionally, our perspec-
tive brings the best possible PAC-Bayesian mechanism: generalization is recasted as a bias–variance
tradeoff optimized over a user–chosen posterior, applies to deterministic hypotheses, and shows that
the pointwise dimension optimally governs the complexity (see Section C.3 for this perspective).
This clarifies and strengthens earlier PAC–Bayes approaches that adopt linear-in-parameter Gaus-
sian approximations, i.e., they linearize f in the weights and thereby ignore its nonlinearity, to ob-
tain computable, non-vacuous generalization bounds (e.g., (Hinton & Van Camp, 1993; Dziugaite
& Roy, 2017); see the second part of Section C.1 for details)).
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Theorem 1 upgrades generic chaining to a pointwise form. The theorem extends generic
chaining (notably the majorizing measure integral (Fernique, 1975; Talagrand, 1987)) to pointwise
bounds, and is therefore strictly stronger than entropy–integral bounds based on uniform covering
numbers (e.g., Dudley’s integral), whose integrand takes a supremum over the entire class F rather
than localizing at the realized hypothesis; see Section 3 of Block et al. (2021) and Section 4.1 of
Chen et al. (2024). In particular, (34) in Appendix C.4 shows that

inf
π

sup
f∈F

1

π(Bϱ(f, ε))
(6)

is (up to absolute constants) equivalent to the canonical covering number of F with metric ϱ at
scale ε. Consequently, Theorem 1 goes beyond classical covering analyses by (i) recasting covering-
number complexity as the inverse-prior-density objective (6), and (ii) localizing this complexity
pointwise in f . We view this “prior-density + localization” perspective as a paradigm shift for future
statistical complexity analysis. The multiscale integral is particularly valuable: it applies to rich
classes where the pointwise dimension can grow as O

(
d(f) ε−2

)
yet still yields a

√
d(f)/n rate; by

contrast, the one–shot relaxation (5) typically requires growth no worse than O
(
d(f) log(1/ε)

)
to

achieve the same rate.

Finally, the integral upper bound in Theorem 1 is tight in the following qualified worst-case sense:
no uniform improvement valid simultaneously for all hypotheses and all priors is possible. This is
witnessed by a matching lower bound.

Theorem 2 (Worst-Case Lower Bound) Let ℓ(f ; z) ∈ [0, 1]. There exists absolute constants
c, c′ > 0 so that

E

[
sup

π∈∆(F),f∈F

(
(P− Pn)ℓ(f ; z)−

c√
n log n

∫ 1

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε

)
+
c′ supF E[ℓ(f ; z)]√

n log n

]
≥ 0,

where notation E means taking expectation over sample.

The lower bound certifies the worst-case tightness of our pointwise-dimension upper bound in The-
orem 1 (noting that fixing α = 0 relative to Theorem 1 only increase the lower bound), analogous
to minimax optimality in frequentist statistics (Wald, 1945). This worst-case tightness does not pre-
clude sharper guarantees for a fixed hypothesis f . However, a strictly pointwise lower bound—one
that conditions on the realized hypothesis f without the outer supf∈F—is generally unattainable,
because any admissible prior π must be chosen independently of f (a “no free lunch” constraint).

3 DEEP NEURAL NETWORKS AND RIEMANNIAN DIMENSION

In this section we develop a systematical pointwise dimension analysis for deep neural networks.
Section 3.1 formalizes the standard fully connected architecture and notation. Section 3.2 introduces
a non-perturbative calculus (avoiding infinitesimal Taylor expansions) to analyze finite-scale behav-
ior—the scale at which generalization is actually governed, and which is intrinsically captured by the
pointwise-dimension framework. Section 3.3 introduces a hierarchical covering scheme—our key
technical innovation—that overcomes the well-known linear/kernel bottleneck in classical statistical
learning and enables a principled treatment of genuinely nonlinear models.

3.1 NEURAL NETWORK SETUP

We consider fully connected (feed-forward) networks that map an input x ∈ Rd0 to an output
fL(W,x) ∈ RdL . The architecture is specified by widths d0, . . . , dL and weight matrices W =
{W1, . . . ,WL} with Wl ∈ Rdl×dl−1 for l = 1, . . . , L. Let σ1, . . . , σL be nonlinear activations (e.g.,
ReLU), acting componentwise on column vectors, and each σl : Rdl → Rdl is assumed 1-Lipschitz.
The network’s forward map is the composition

fL(W,x) := σL

(
WL σL−1

(
WL−1 · · · σ1(W1x)

))
.

Let X = [x1, . . . , xn] ∈ Rd0×n collect the n training inputs as columns. For each layer l ∈
{1, . . . , L}, define the depth-l map and the corresponding feature matrix

fl(W,x) := σl

(
Wl σl−1

(
Wl−1 · · · σ1(W1x)

))
, Fl(W,X) :=

[
fl(W,x1) · · · fl(W,xn)

]
∈ Rdl×n.

4
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Equivalently (full, non-recursive form consist with (1)),

Fl(W,X) = σl

(
Wl σl−1

(
Wl−1 · · · σ1(W1X)

))
,

where for a matrix A = [a1, . . . , an] we write σl(A) := [σl(a1), . . . , σl(an) ]. Thus FL(W,X)
collects the network outputs on the dataset X .

We denote ∥ · ∥F for the Frobenius norm, ∥ · ∥op for the spectral norm, and ∥ · ∥2 for the Euclidean
norm on vectors. We abbreviate norm balls by BF(R), Bop(R), and B2(R) (all centered at 0; radius
beingR). The empirical L2(Pn) distance between two hypothesesW,W ′ is (a 1/

√
n scaling is used

to keep consistency with Section 2)

ϱn(W,W
′) :=

√∥∥FL(W,X)− FL(W ′, X)
∥∥2

F/n .

The function-level empirical metric and generalization statements in Section 2 for the loss x 7→
ℓ(fL(W,x), y) at data–label pairs z = (x, y) specialize, on the dataset X , to the metric ϱn defined
above. We assume the loss ℓ(·, y) is β-Lipschitz in its first argument with respect to fL(W,x), which
bridges the metric ϱn,ℓ studied in Section 2 to ϱn defined on the weight space.

3.2 NON-PERTURBATIVE EXPANSION AND LAYER-WISE CORRELATION

Throughout, our finite-scale analysis relies on non-perturbative expansions. Borrowing terminology
from theoretical physics, “non-perturbative” here means we avoid Taylor/derivative expansions and
instead use exact, telescoping algebraic identities that hold at finite scale. For example,

W ′
2W

′
1 −W2W1 =W ′

2(W
′
1 −W1) + (W ′

2 −W2)W1, Σ′−1 − Σ−1 = Σ′−1
(Σ− Σ′)Σ−1,

with analogous decompositions used throughout. This viewpoint preserves the full finite-scale ge-
ometry of deep networks, rather than linearizing around an infinitesimal neighborhood.

To present our non-perturbative expansion for DNN, we define local Lipchitz constantMl→L(W, ε),
which characterizes the sensitivity of the layer L output, FL, to variations in layer l’s output, within
a neighborhood around Fl. Formally, we assume that for every W ′ ∈ Bϱn(W, ε)

||FL(Fl(W
′, X), {W ′

i}Li=l+1)− FL(Fl(W,X), {W ′
i}Li=l+1)||F ≤Ml→L(W, ε)||Fl(W

′, X)− Fl(W,X)||F.
Local Lipschitz constants are typically much smaller than products of spectral norms and can be
computed by formal–verification toolchains (Shi et al., 2022). In our bounds these constants appear
only inside logarithmic factors, so they do not affect the leading rates. For completeness, we discuss
them carefully in Appendix F.5.1. We propose a telescoping decomposition to replace conventional
Taylor expansion, where in each summand the only difference lie in W ′

l and Wl.

FL(W
′, X)− FL(W,X)

=

L∑
l=1

[σL(W
′
L · · ·W ′

l+1︸ ︷︷ ︸
controled byMl→L

σl︸︷︷︸
by1

(W ′
l Fl−1(W,X)︸ ︷︷ ︸

learned feature

))− σL(W
′
L · · ·W ′

l+1σl(Wl Fl−1(W,X)︸ ︷︷ ︸
learned feature

))]. (7)

Note that this is a non-perturbative expansion that holds unconditionally and does not rely on in-
finitesimal approximation, and crucially keeps the learned feature Fl−1(W,X) at the trained weight
W . From this decomposition and applying basic inequalities, we have the following key lemma.

Lemma 1 (Non-Perturbative Feature Expansion) For all W ′ ∈ Bϱn
(W, ε),

||F (W ′, X)− F (W,X)||2F ≤
L∑

l=1

L ·Ml→L[W, ε]
2 · ||(W ′

l −Wl)Fl−1(W,X)||2F. (8)

The lemma captures the first structural principle of fully connected DNN: cross-layer correlations
mostly pass through the feature matrices, preserving an approximate pointwise linear structure.

Since enlarging the metric only shrinks metric balls and hence increases the pointwise dimension
(4) we analyze in Section 2 (formalized as Lemma 19; metric domination lemma), it suffices to
analyze pointwise dimension under the pointwise ellipsoidal metric that appears on the right-hand

5
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side of Lemma 1. Concretely, Fl−1(W,X)Fl−1(W,X)⊤, the feature Gram matrix from layer l−1,
faithfully encodes the spectral information induced by the network–data geometry at layer l. Work-
ing with the corresponding pointwise ellipsoidal metric yields sharp, pointwise, spectrum-aware
bounds with the desired properties for deep networks, and underpins our tractability results (with
the structural principles and technical innovations to developed in the next subsection).

3.3 HIERARCHICAL COVERING FROM LOCAL CHART TO GLOBAL ATLAS

Lemma 1 suggests that the following pointwise ellipsoidal metric dominates n ·ϱn at everyW (here,
NP stands for “non-perturbative”):

GNP(W ) = blockdiag
(
· · · , LM2

l→L(W, ε) · Fl−1(W,X)F⊤
l−1(W,X)⊗ Idl

, · · ·
)

ϱGNP(W )(W,W
′) = vec(W ′ −W )⊤GNP(W )vec(W ′ −W ). (9)

We are therefore interested in bounding the enlarged pointwise dimension under the pointwise ellip-
soidal metric ϱGNP(W ):

log
1

π(Bϱn
(f(W, ·), ε)) ≤ log

1

π(BϱGNP(W )
(W,

√
nε))

.

This section offers a deep dive past classical effective dimension, shifting to hierarchical covering
and a global geometric analysis.

3.3.1 GOLDEN STANDARD: EFFECTIVE DIMENSION

Classical studies of static ellipsoidal metrics suggest that if π is chosen to be uniformly constrained
on the top-r eigenspace of a PSD matrix G(W ), and the vectorized weights W ∈ Rp are restricted
to the Euclidean ball B2(R) := {w ∈ Rp : ∥w∥2 ≤ R}, then one can achieve a tight effective
dimension as follows: define the effective rank

reff(G(W ), R, ε) := max{k : λk(G(W ))R2 ≥ nε2/2}, (10)

where the eigenvalues {λk(G(W ))} are ordered nonincreasingly; and define the spectrum-aware
effective dimension

deff(G(W ), R, ε) :=
1

2

reff(G(W ),R,ε)∑
k=1

log

(
8R2λk(G(W ))

nε2

)
. (11)

This definition serves as a gold standard for static ellipsoidal metrics and is asymptotically tight,
as established by the covering number of the unit ball with ellipsoids in Dumer et al. (2004). For
brevity, we write r for reff(G(W ), R, ε), and denote by V ⊆ Rp the r-dimensional subspace corre-
sponding to the top-reff eigenspace of G(W ).

3.3.2 KEY CHALLENGE: PRIOR INDEPENDENCE FROM W .

However, the main challenge is that the prior π must be chosen independently of the training data.
This means that the construction of π cannot rely on knowledge of the learned weightsW , including
their top-reff eigenspace, yet still capture the underlying geometric structure. The next lemma ex-
tends classical results on static ellipsoidal metrics by showing that a uniform prior over a reference
subspace V̄ suffices to bound the pointwise dimension for all W whose top-r eigenspace of G(W )
can be approximated by V̄ .

Lemma 2 (Pointwise Dimension via Reference Subspace) Consider the weight space B2(R) ⊂
Rp for vectorized weights, and a pointwise ellipsoidal metric defined via PSD G(W ). Let V̄ ⊆ Rp

be a fixed r-dimensional subspace. Define the prior πV̄ = Unif
(
B2(1.58R) ∩ V̄

)
. Then, uniformly

over all (W, ε) such that the top-r eigenspace V of G(W ) can be approximated by V̄ to precision

ϱproj,G(W )(V, V̄) :=
∥∥G(W )1/2

(
PV − PV̄

) ∥∥
op ≤

√
nε

4R , (12)

we have

log
1

πV̄(BϱG(W )
(W,

√
nε))

≤ 1

2

reff(G(W ),R,ε)∑
k=1

log

(
40R2λk(G(W ))

nε2

)
= deff(G(W ),

√
5R, ε).

6
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In (12), PV denotes the orthogonal projector onto the subspace V , and ϱproj,G(W ) thus defines an
ellipsoidal projection metric between subspaces. Further details are provided in the appendix.

3.3.3 HIERARCHICAL COVERING (MIXTURE PRIOR OVER SUBSPACES).

We introduce a hierarchical covering framework that pushes learning beyond classical linear and
kernel paradigms, providing a principled toolkit for genuinely nonlinear models—one of the central
innovations of this work. It operates on two levels: a bottom-level local-chart covering that captures
spectrum-aware behavior within a fixed subspace, and a top-level global geometric analysis over
the Grassmannian. (i) For each reference subspace V̄ , placing a uniform prior on V̄ yields a tight
pointwise-dimension bound for all “local” weights W whose top−r eigenspace of G(W ) is well
approximated by V̄ (see Lemma 2). (ii) At the top level, we place a prior over reference subspaces
V̄ and average the local priors, producing a data-independent prior and the final bound.

By combining these two levels of priors, we obtain a pointwise dimension bound using a prior π
that is completely blind to the choice of W . To formalize this, we introduce a top-level distribution
µ over the Grassmannian

Gr(p, r) :=
{
r–dimensional linear subspaces of Rp

}
the collection of all r-dimensional subspaces, and define π(W ) =

∑
V µ(V)πV(W ). We refer

to this two-stage construction as the hierarchical covering argument. Under the resulting prior π,
the following bound holds uniformly over all (vectorized) W ∈ B2(R), the pointwise dimension
log 1

π(BϱG(W )
(W,

√
nε))

is bounded by two parts:

log
1

µ(Bϱproj,G(W )
(V,
√
nε/4R))︸ ︷︷ ︸

covering Grassmannian (global atlas)

+ sup
V̄∈Bϱproj,G(W )

(V,
√

nε/4R)

log
1

πV̄(BϱG(W )
(W,

√
nε))︸ ︷︷ ︸

covering local charts

, (13)

In differential–geometric terms, our argument has two components.

• Local (chart) analysis: fixing a reference subspace V̄ , we use effective dimension as the
gold standard to determine the metric entropy of the corresponding local chart.

• Global (atlas) covering: we cover the Grassmannian by such reference subspaces, i.e., we
bound the metric entropy of the global atlas and account for the cost of transitioning across
local charts.

Lemma 2 controls the local part, while the following new result (Lemma 3) on the ellipsoidal cov-
ering of the Grassmannian controls the global part.1

Lemma 3 (Ellipsoidal Covering of the Grassmannian manifold) Consider the Grassmannian
Gr(d, r). For uniform prior µ = Unif(Gr(d, r)), we have that for every V ∈ Gr(d, r), every ε > 0
and every PSD matrix Σ with eigenvalues λ1 ≥ · · · ≥ λd, we have the pointwise dimension bound

log
1

µ(Bϱproj,Σ(V, ε))
≤ d− r

2

r∑
k=1

log
Cmax{λk, ε2}

ε2
+
r

2

d−r∑
k=1

log
Cmax{λk, ε2}

ε2
,

where C > 0 is an absolute constant.

The result above is mathematically significant in its own right. It extends the classical metric-entropy
(covering number) theory for the Grassmannian—where log covering number ≍ r(d− r) log(C/ε)
under the isotropic projection metric— to an ellipsoidal (anisotropic) metric that captures feature–

1Since the effective rank r of V̄ can take any value in {1, . . . , p}, the top-level Grassmannian covering must
range over all Gr(p, r). This adds only a negligible O(log p) overhead to the global-level cost. Accordingly,
we construct a data-independent prior in three prior hierarchy: (“global-r”) choose the rank r (paying the log p
overhead), (“global-V̄”) choose a reference subspace V̄ ∈ Gr(p, r), and (“local”) sample within V̄ using the
local chart prior; see Figure 3 in the Appendix for an illustration. For conceptual clarity, Lemma 3 focuses
on the Grassmannian covering cost at a fixed rank r; and we defer the layer–specific specialization (to each
dl−1× dl−1 feature–matrix block) to the calculation in (15).
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and model–induced geometry. This generalization translates the traditional differential-geometric
and Lie-algebraic treatments (see Appendix E) and, we believe, illustrates a two–way exchange:
deep mathematical structure is essential to understanding generalization in modern neural networks,
and, conversely, generalization theory can motivate new questions and results in pure mathematics.

Leveraging the block–decomposable structure in (9), the l–th block is

Gl(W ) = Al(W ) ⊗ Idl
, where Al(W ) = LM2

l→L(W, ε)·Fl−1(W,X)Fl−1(W,X)⊤ ∈ Rdl−1×dl−1 .

Since the Kronecker factor is Idl
, the spectrum of Gl consists of the eigenvalues of the feature

Gram matrix Fl−1F
⊤
l−1 (scaled by LM2

l→L), each repeated dl times. Consequently, the local–chart
(within–subspace) covering cost at layer l scales as

dl · deff
(
LM2

l→L(W, ε) · Fl−1(W,X)Fl−1(W,X)⊤
)
, (14)

while the atlas (subspace–selection) cost is the Grassmannian term over Gr
(
dl−1, reff [W, l]

)
, where

reff [W, l] is the effective rank of Al(W ) ∈ Rdl−1×dl−1 . By Lemma 3 (and the footnote preceding
it), the global-atlas (choosing-subspace) covering cost at layer ℓ scales as

dl−1 · deff
(
LM2

l→L(W, ε) · Fl−1(W,X)Fl−1(W,X)⊤
)
+ log(dl−1). (15)

Together, (14) and (15) yield a clean layerwise decomposition: the width dl multiplies the spec-
tral complexity of incoming features (local charts), whereas the input dimension dl−1 governs the
Grassmannian covering (global atlas). This complementary, seemingly magical “duality” underlies
the calculation below.

Theorem 3 (Riemannian Dimension for DNN) Consider the weight space BF(R), and a point-
wise ellipsoidal metric defined via the ellipsoidal metric GNP(W ) defined in (9). Define the point-
wise Riemannian Dimension

dR(W, ε) =

L∑
l=1

(
dl · deff(Al(W ))︸ ︷︷ ︸

covering local charts

+ dl−1 · deff(Al(W ))︸ ︷︷ ︸
covering global atlas

+ log(dl−1)︸ ︷︷ ︸
covering discrete reff

+ log n
)
,

where Al(W ) is the the feature matrix LM2
l→L(W, ε) · Fl−1(W,X)F⊤

l−1(W,X); and deff(Al(W ))
is abbreviation of deff(Al(W ), Cmax{∥W∥F, R/2

n}, ε) with C > 0 an absolute constant. Then we
have the pointwise dimension bound: there exists a prior π such that uniformly over allW ∈ BF(R),

log
1

π(Bϱn
(f(W, ·), ε)) ≤ dR(W, ε).

This concludes our program for fully connected networks: we establish Riemannian Dimension as
a principled complexity measure that explains—and sharply bounds—generalization. We summa-
rize the second structural principle of fully connected DNN: The complexity of the global atlas
(covering the space of reference top eigenspaces) remains commensurate with the layerwise, spec-
trum–aware complexity of covering the local charts. On closer inspection, the effect hinges on the
block–decomposable structure in (9). This structure is intrinsic to layered neural networks and typ-
ically absent in generic nonlinear models, which helps explain why DNN are particularly amenable
to sharp generalization analysis.

4 GENERALIZATION BOUNDS FOR DNN

We are now ready to state our generalization bound for fully connected DNN here. Combining
Theorem 3 and Theorem 1, we establish the following theorem.

Theorem 4 (Generalization Bound for DNN) Let the loss ℓ(f(W,x), y) be bounded in [0, 1] and
β−Lipschitz with respect to f(W,x), for every δ ∈ (0, 1), with probability at least 1− δ, uniformly
over all W ∈ BF(R),

(P− Pn)ℓ(f(W,x), y) ≤ C1

 inf
α>0

{
α+

β√
n

∫ 1

α

√
dR(W, ε)dε

}
+

√
log log(2n)

δ

n

 ,
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where the Riemannian Dimension is defined by

dR(W, ε) =

L∑
l=1

(
(dl + dl−1)

reff[W,l]∑
k=1

log
8C2

2λk(Fl−1F
⊤
l−1)

nε2︸ ︷︷ ︸
spectrum of inner layers 1:l−1

+ (dl + dl−1)reff[W, l] · log
(
M2

l→L(W, ε)Lmax{||W ||2F, R2/4n}
)

︸ ︷︷ ︸
spectrum of outer layers l+1:L

+ log(dl−1n)

)
, (16)

where Fl−1 is learned feature Fl−1(W,X); and the effective rank reff[W, l] is the abbreviation
of reff(LM

2
l→L(W, ε)Fl−1F

⊤
l−1, C2 max{||W ||F, R/2n}, ε), where C1, C2 > 0 are absolute con-

stants.

Interpreting (16) to the informal rate (2). Although reff [W, l] incorporates local Lipschitz fac-
tors—specifically, the effective rank is computed for LM2

l→L(W, ε)Fl−1F
⊤
l−1 rather than Fl−1F

⊤
l−1

alone—when Fl−1F
⊤
l−1 exhibits rapidly decaying eigenvalues this dependence is strongly sup-

pressed; it disappears entirely under strict low rank (as also observed in our experiments). Con-
sequently, under mild low-rank or spectral-decay conditions, the bound aligns with the informal rate
(2). In (16), the first and second parts correspond to the inner and outer layers, respectively. For each
layer. For each layer l, the first (“log–eigenvalues”) term in (16) quantifies the contribution of the
inner layers 1:l−1 via the feature Gram Fl−1F

⊤
l−1, while the second (“log–Lipschitz”) term captures

the influence of the outer layers l+1:L through Ml→L—making explicit how the outer layers enter
the bound and restoring inner/outer symmetry. Together, these terms provide a complete layerwise
account of the effective dimension in the informal rate (2).

Tightness of each step and resulting bounds. We conclude by reviewing our comprehensive theory
for generalization in fully connected networks and justifying the tightness of the resulting bounds.
First, in Section 2 we develop a framework based on pointwise dimension. The upper and lower
bounds match in a qualified (non-uniform) sense (see remarks after Theorem 1), and the frame-
work has a profound connection to finite-scale geometry—evidence that this is the right organizing
principle. Second, Section 3 introduces a non-perturbative expansion. Lemma 1 applies Cauchy–
Schwarz layerwise (treating each layer as a block). While there may be room to improve depth
dependence, the telescoping decomposition (7) is an exact equality, so the expansion is generally
sharp (and fully avoid linearization). Third, the hierarchical covering argument shows that the re-
sulting Riemannian Dimension bound matches the gold standard of effective dimension. Thus our
pointwise, spectrum-aware bounds achieve the optimal form dictated by static ellipsoid theory.

Comparison with Norm Bounds, VC, and NTK. Our framework yields exponentially tighter rates
than norm–product bounds, refines VC–type statements into hypothesis– and data–dependent guar-
antees, and replaces infinitesimal linearization with a finite-scale, non-perturbative analysis that
holds simultaneously for every trained hypothesis. For space, we defer further explanations to Ap-
pendix F.1 and the recovery of representative norm bounds and comparisons to Appendix F.5.1.

5 EXPERIMENTS

We evaluate the proposed Riemannian Dimension (RD) on two standard settings: (i) width sweeps
for fully connected networks (FCNs) on MNIST (LeCun et al., 1998); and (ii) depth sweeps for
ResNets on CIFAR-10 (Krizhevsky, 2009). FCNs use a 9-hidden-layer architecture with shared
hidden width h ∈ {26, 27, . . . , 212}; ResNets follow the canonical three-stage, basic-block designs
(ResNet-20/32/44/56/74/110) (He et al., 2016). We organize results around three questions: (Q1)
why overparameterization can improve generalization; (Q2) how feature learning compresses intrin-
sic dimension over training; and (Q3) whether baseline optimizers exhibit low-RD implicit bias.
Full setup and additional plots are deferred to the appendix.

RD Explains the Blessing of Overparameterization. We compare RD against classical capacity
surrogates (spectral-norm bounds (Bartlett et al., 2017) and VC-dimension proxies (Bartlett et al.,
2019)). Final-epoch metrics of FCNs on MNIST and ResNets on CIFAR-10 are reported in Table 1
and Table 2, respectively. In these Tables, the train error quickly collapses to zero for sufficiently
large models, confirming their expressive capacity. Consistently, the generalization can continue to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 1: Final-epoch FCN results on MNIST. “Gen” is test minus train error. Spectral-norm column
reports the spectrally normalized margin bound of Bartlett et al. (2017). VC uses the near-tight
proxy of Bartlett et al. (2019) (reported as P L logP ). RD is our Riemannian Dimension.

Model Train Gen Spectral Norm #Params VC dim RD

Width-26 0.0002 0.0205 3.146×1015 5.961×106 9.299×108 6.433×107

Width-27 0.0002 0.0187 2.695×1015 6.167×106 9.641×108 6.097×107

Width-28 0.0000 0.0191 2.093×1015 6.726×106 1.057×109 5.589×107

Width-29 0.0000 0.0186 2.401×1015 8.434×106 1.345×109 5.316×107

Width-210 0.0000 0.0215 4.816×1015 1.421×107 2.340×109 5.266×107

Width-211 0.0000 0.0160 1.001×1016 3.520×107 6.116×109 4.972×107

Width-212 0.0000 0.0210 1.466×1016 1.149×108 2.133×1010 4.803×107

Table 2: Final-Epoch Metrics of ResNets on CIFAR-10
Model Train Error Gen Gap # Parameters VC dimension R-D

ResNet-20 0.0016 0.0752 2.690× 105 6.727× 107 8.801× 106

ResNet-32 0.0003 0.0695 4.630× 105 1.933× 108 9.992× 106

ResNet-44 0.0001 0.0627 6.570× 105 3.872× 108 6.339× 106

ResNet-56 0.0000 0.0637 8.510× 105 6.507× 108 5.200× 106

ResNet-74 0.0000 0.0615 1.142× 106 1.179× 109 3.237× 106

ResNet-110 0.0000 0.0576 1.724× 106 2.723× 109 2.583× 106

be improved as parameters increase, especially on ResNets (Table 2). This phenomenon means the
overfitting does not appear and reflects a paradoxical truth of deep learning: over-parameterization
is not a curse, but can benefit the generalization. However, classical complexity measures—e.g.,
the spectral norm and the VC dimension, often scale exponentially as the parameter count grows.
Notably, the spectral norm is about 106 times larger than the VC dimension and seems to be a worse
complexity measure (see Table 1). The two measures therefore struggle to explain the general-
ization of modern overparameterized networks. In contrast, our Riemannian Dimension exhibits a
consistent downward trend as model size grows—both under width scaling (last column of Table 1)
and depth scaling (last column of Table 2), and it is about 103 times smaller than the VC dimen-
sion, suggesting that the effective dimension—not raw parameter count—is the true indicator of
generalization in deep learning. In summary, increased parameterization is associated with reduced
effective model complexity, and Riemannian Dimension faithfully characterizes this phenomenon.

Feature Learning Compresses Effective Rank. We track the effective ranks of layerwise feature
Gram matrices Fl−1F

⊤
l−1 (scaled by L∥W∥2F

∏
i>l∥Wi∥2op per our theory). Across both FCN-width

and ResNet-depth sweeps, effective ranks drop sharply after a brief transient and compress more
with larger width/depth. On the largest FCN, the total effective rank shrinks by up to ∼300×; for the
deepest ResNets, most layers compress near zero. This progressive, spectrum-aware compression
explains why RD falls with capacity while test error improves. (Appendix: layerwise trajectories
and ablations; we use the conservative spectral-product proxy for local Lipschitz terms.)

SGD Finds Low-RD Solutions. Finally, we examine optimizer bias. With standard
SGD+momentum, RD consistently decreases by orders of magnitude during training (after an early
transient), while VC-style proxies remain essentially unchanged. Thus, beyond driving the loss
to zero, the optimizer preferentially selects low-RD interpolating solutions, aligning optimization
dynamics with our complexity measure. (Appendix: training-time RD curves and robustness to
optimizer hyperparameters.)

6 CONCLUSION

We establish a principled foundation for generalization in deep neural networks. Key innovations in-
clude a pointwise generalization framework, a non-perturbative calculus, and a hierarchical covering
theory. Empirical validations confirm our predictions in deep learning practice.
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Table 3: Final-epoch Effective Ranks for FCNs on MNIST, where Width−2⋆ means h = 2⋆, and
where for the form A/B, A represents the effective rank and B represents the original dimension,
and where Layer-1 means the input layer.

Metric Width-26 Width-27 Width-28 Width-29 Width-210 Width-211 Width-212

Layer-1 713/763 712/763 710/763 710/763 707/763 707/763 704/763
Layer-2 2048/2048 2044/2048 2042/2048 2048/2048 2047/2048 2048/2048 2048/2048
Layer-3 2048/2048 2045/2048 2037/2048 2019/2048 1925/2048 1460/2048 1009/2048
Layer-4 61/64 97/128 92/256 85/512 79/1024 79/2048 59/4096
Layer-5 23/64 43/128 34/256 33/512 28/1024 26/2048 22/4096
Layer-6 20/64 24/128 20/256 21/512 19/1024 18/2048 15/4096
Layer-7 15/64 18/128 17/256 15/512 15/1024 14/2048 13/4096
Layer-8 15/64 14/128 15/256 11/512 13/1024 13/2048 12/4096
Layer-9 14/64 14/128 15/256 13/512 13/1024 12/2048 12/4096
Layer-10 13/64 13/128 12/256 14/512 12/1024 13/2048 14/4096
Total 4970 5024 4994 4969 4858 4390 3908

Table 4: Final-epoch Effective Ranks for ResNets on CIFAR-10, where for the form A/B, A rep-
resents the effective rank and B represents the original dimension, and where Layer-0% means the
input layer.

Metric ResNet-20 ResNet-32 ResNet-44 ResNet-56 ResNet-74 ResNet-110

Layer-0% 384/3072 384/3072 17/3072 0/3072 0/3072 0/3072
Layer-25% 2048/16384 2048/16384 7/16384 1/16384 0/16384 0/16384
Layer-50% 1024/8192 1024/8192 1024/8192 227/8192 0/8192 0/8192
Layer-75% 512/4096 512/4096 512/4096 512/4096 58/4096 0/4096
Layer-100% 8/64 8/64 8/64 8/64 8/64 8/64
Total 23432 37768 27564 16294 11401 6925

A FURTHER EXPLANATIONS OF EXPERIMENTAL RESULTS

A.1 FEATURE LEARNING COMPRESSES EFFECTIVE RANK

We investigate the dynamics of feature learning by monitoring the effective rank of the feature Gram
matrices Fl−1F

⊤
l−1, with the normalization ·L||W ||2F

∏
i>l ∥Wi∥2op dictated by our theory. Here,

replacing the local Lipschitz constant Ml→L(W, ε) by the spectral-norm product
∏

i>l ∥Wi∥op is
conservative: state-of-the-art formal-verification toolchains (Shi et al., 2022) can compute local Lip-
schitz constants much more sharply—with well-developed packages and rigorous numerical guaran-
tees—than this crude product bound, and could therefore further strengthen all our empirical results
(an active research area). On the other hand, this relaxation—dropping the ε−dependence when
making the conservative substitution—can be justified rigorously (see Appendix F.5.2, especially
Step 4 in the proof of Corollary 1), and we adopt this simplification in our experiments. We report
our empirical results in Tables 3, 4 and Figure 1.

Experimental results reveal some clear patterns: (1) As training proceeds, the effective ranks of
feature grams decreases sharply after a short transient; refer to Figure 1. (2) Increased parameter
counts, both under width scaling (FCNs) and depth scaling (ResNets), foster compressing effective
ranks of feature grams in both the rate and the degree; refer to Figure 1. (3) On the largest FCN,
the degree of effective rank compression can reach as much as 1/300, which explains why the Rie-
mannian Dimension can achieve such a significant improvement over the VC dimension; refer to
Table 3. While on the largest ResNet, the effective ranks of the vast majority of layers compress
to zero, which explains why deeper networks can, paradoxically, exhibit a smaller Riemannian Di-
mension; refer to Table 4. These experimental results indicates that feature learning steadily reduces
the intrinsic dimensionality of features over training and aim to learn a lower-dimensional feature
manifold, and the overparameterization intensifies this reduction.
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Figure 1: Effective Rank evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10 (right)
across the training
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Figure 2: Riemannian Dimension evolutions of FCNs on MNIST (left) and ResNets on CIFAR-10
(right) across the training

A.2 SGD FINDS LOW RIEMANNIAN DIMENSION POINT

Related literature has shown that various norms are implicit bias of optimizers, but typically limited
to linear models (Vardi, 2023). This section studies whether SGD with momentum, in modern
deep learning, implicit regularized Riemannian Dimension across training dynamics. We examine
whether this optimizer preferentially converge to solutions with lower Riemannian Dimension point,
and the experimental results are presented in Figure 2.

Empirical results show a repeatable pattern across the architectures: SGD with momentum drives
the networks toward solutions with lower intrinsic Riemannian Dimension complexity, after an early
transient; refer to Figure 2. Notably, Riemannian Dimension drops by orders of magnitude, whereas
VC dimension remains essentially unchanged. The alignment between optimization dynamics and
complexity control supports the view that SGD with momentum implicitly regularizes the Rieman-
nian Dimension. Therefore, optimization is not merely as a mechanism for convergence; it is a
primary driver of generalization through its systematic preference for low-complexity solutions.
Riemannian Dimension provides a practical and theoretically grounded lens through which the im-
plicit bias of optimizes in machine learning can be quantitatively assessed.

A.3 EXPERIMENTAL SETUP

We introduce detailed experimental setups. We evaluate our Riemannian Dimension bound on
two standard architectures—Fully Connected Networks (FCNs) and ResNets, using two bench-
mark datasets—MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009), respectively.
The architecture of FCNs: we consider a 9-hidden-layer FCN in which the first two hidden
layers have width 211 and the remaining seven hidden layers share a common width h, with
h ∈ {26, 27, 28, 29, 210, 211, 212}. The output layer is a linear classifier mapping to 10 logits, and we
use ReLU as the activation and use PyTorch’s default initialization (Kaiming uniform for ReLU).
Increasing h monotonically enlarges both layer widths and the total parameter count, yielding a
clean capacity sweep at fixed depth. The architecture of ResNets: we adopt the canonical ResNet
architectures, ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-74, and ResNet-110, which
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differ only in the number of residual blocks per stage while maintaining the same overall architec-
ture (three-stage, basic-block design) as introduced by (He et al., 2016). Following the practice of
(He et al., 2016), we apply BatchNorm and ReLU after each convolution, with shortcut connec-
tions added as needed, and a global average pooling layer precedes the final linear classifier. These
ResNet architectures provides a clean capacity sweep via depth.

We adopt standard training pipelines widely used in the benchmarks. (1) The training Protocol
of FCNs is: SGD with momentum optimizer where momentum = 0.9, learning rate = 0.01, and
weight decay = 5×10−4; 200 epochs and 128 batch size; a step decay at epochs {100, 170}, where
the learning rate is scaled by ×0.1. (2) The training Protocol of ResNets is: SGD with momentum
optimizer where momentum = 0.9, learning rate = 0.1, and weight decay = 5× 10−4; 250 epochs
and 128 batch size; a step decay at epochs {50, 150, 200}, where the learning rate is scaled by ×0.1;
Following practical training conditions, we apply standard data augmentation on CIFAR-10: random
horizontal flips and 4-pixel random crops with zero-padding.

In the experiments of FCNs and ResNets, to enable layerwise analysis of the evolving fea-
ture representations and support our computation of Riemannian Dimension, we register for-
ward hooks on all nonlinearity layers. For layers followed by pooling, we replace the last
recorded ReLU activation with the corresponding pooled output. We also pre-register the in-
put hook to capture the feature matrix of the data. These hooks ensures precise extraction of
nonlinearity activations at each depth throughout training. We set the hyper-parameter ε via a
one–dimensional ternary-search procedure: at the end of each training stage we perform a 500-
step ternary search for FCNs and a 50-step ternary search for ResNets over the admissible interval

[
√

1/n, maxl=1,...,L

√
2Lλmax(Fl−1F⊤

l−1)·||W ||2F
∏

i>l ∥Wi∥2
op

n ]. The search selects the value that min-
imizes our one-shot Riemannian Dimension-based generalization bound (5). We note that tighter
bounds could be achieved with more refined optimization procedures on ε. For FCNs, we com-
pute full feature gram matrices. While for ResNets, the feature matrix F is formed by flattening
each activation map into a vector of dimension d = C · H ·W , where C,H,W are the channel,
height, and width of the feature map respectively. To align with our theory, we simplify ResNets
to fully connected (feed-forward) networks when computing our bound; we apply the same simpli-
fication to the associated VC-dimension and parameter-count calculations to maintain consistency.
To avoid out-of-memory in computing full feature gram matrices in high-dimensional convolutional
layers, we use the standard Gaussian sketching approximation, where each feature gram matrix
uses a Gaussian sketch with parameter r = min(8192, ⌊d/8⌋) (Woodruff et al., 2014). By stan-
dard subspace-embedding guarantees, such Gaussian sketches preserve Gram quadratic forms—and
hence the spectra—of the feature matrices with high probability, introducing only negligible distor-
tion and leaving our conclusions unchanged (Woodruff et al., 2014).

B RELATED WORKS

Given the breadth of work on generalization and its empirical proxies, the mathematical grounding
of our approach, and its conceptual relevance to vision and language practice, we streamline the
exposition by concentrating on the most relevant prior results.

Theoretical Generalization Bounds for DNN. A significant lineage of research anchors gener-
alization bounds to various norms of network weights (e.g., path (Neyshabur et al., 2015a), spectral
(Neyshabur et al., 2018; Bartlett et al., 2017; Arora et al., 2018), Frobenius (Neyshabur et al., 2015b;
Golowich et al., 2020)). While offering conceptual insights, these bounds, often derived from glob-
ally uniform complexity measures like covering numbers or Rademacher complexity, frequently
suffer from exponential dependencies on depth or layer norms, rendering them vacuous for practi-
cal, deep architectures. Compelling empirical evidence (Farhang et al., 2022; Razin & Cohen, 2020)
further suggests that norm-based bounds alone are insufficient to fully elucidate the generalization
phenomenon in deep learning. The kernel perspective (Belkin et al., 2018), epitomized by NTK
theory (Jacot et al., 2018; Arora et al., 2019; Golikov et al., 2022), yields sharp guarantees by lin-
earizing a network around its initialization—effectively casting training as kernel ridge regression
with a fixed kernel. Within this linear/lazy regime, precise calculations explain both double de-
scent (Belkin et al., 2019) and benign overfitting (Bartlett et al., 2020), and an eigenspace-projection
viewpoint provides dimension-reduction and feature-compression insights (Bartlett et al., 2017). In-
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vestigations beyond the lazy regime exist, but most analyses either study the two-layer infinite-width
(mean-field) limit (e.g., (Mei et al., 2018; Chizat & Bach, 2018)) or remain in a neighborhood of
initialization (Woodworth et al., 2020). While insightful, these settings are idealized and struggle to
capture the behavior of finite, deep networks (see Chapter 6 of (Misiakiewicz & Montanari, 2023)).
More broadly, linear, lazy, or infinite-width approximations fail to reflect the feature learning that
arises when parameters move far from initialization and representations evolve. This omission is
widely viewed as a central bottleneck in current theory; indeed, the rich, representation-learning
regime is often argued to be the key phenomenon distinguishing modern deep learning from long-
standing frameworks (see, e.g., Wilson (2025)). Building on these directions, we establish—to our
knowledge—the first pointwise generalization bounds for nonlinear DNN that are comparable in
sharpness to prior linearization results and, crucially, remain valid in the practical feature-learning
regime.

Other Theoretical Perspectives of Generalization. A growing line of work connects generaliza-
tion to geometric notions of fractal dimension (Birdal et al., 2021; Dupuis et al., 2023; Simsekli et al.,
2020; Andreeva et al., 2024; Camuto et al., 2021), typically through Hausdorff– or Minkowski–type
dimensions of optimization trajectories or invariant measures. However, these fractal dimensions
are globally uniform, infinitesimal-scale (ε → 0) notions of complexity. In contrast, our theory is
built on a pointwise, finite-scale notion of geometric dimension. Section C.1 is precisely devoted
to this distinction: we move from globally uniform to pointwise dimension and show that general-
ization is governed by the finite-scale pointwise dimension rather than its asymptotic limit. Several
PAC–Bayesian approaches operate directly in parameter space W , endowing the weights with an
explicit stochastic model and directly computing the KL divergence between a hand–designed prior
and a posterior overW (Hinton & Van Camp, 1993; Dziugaite & Roy, 2017; Lotfi et al., 2022; 2024);
e.g., Gaussian distribution in Dziugaite & Roy (2017). These parameter-space bounds are valuable
for certifying that certain trained weight configurations admit non-vacuous PAC-Bayes guarantees,
but they largely treat the network as a black box and do not directly capture how architecture and
feature geometry control generalization. Alternative theoretical frameworks include algorithmic
stability analyses, which are used primarily for one-hidden-layer networks and connected to the
NTK/lazy-training viewpoint (Richards & Kuzborskij, 2021; Lei et al., 2022); and VC-dimension
methods (Bartlett et al., 2019), which has been discussed in Section F.1.

Pointwise and Non-Perturbative Foundations. Our use of “pointwise” draws inspiration from
several threads that emphasize hypothesis-specific complexity: the asymptotic pointwise dimen-
sion in fractal geometry (Falconer, 1997), PAC-Bayes analyses that tailor complexity to the chosen
random posterior (McAllester, 1998; Alquier, 2024), and the Fernique–Talagrand integral in the
majorizing-measure formulation of generic chaining (Fernique, 1975; Talagrand, 1987; Block et al.,
2021). The synthesis of PAC-Bayes bounds with generic chaining dates back to Audibert & Bous-
quet (2003); Audibert & Bousquert (2007), and mutual information based bounds have also been
combined with chaining (Russo & Zou, 2016; Xu & Raginsky, 2017; Asadi et al., 2018; Liu, 2025).
To the best of our knowledge, this paper is the first work to establish a sharp pointwise bound for
deterministic hypotheses in an uncountable class via localization to metric balls, explicitly connect-
ing the result to pointwise dimension. A generic conversion from classical (subset-homogeneous)
uniform convergence to pointwise generalization bounds, established in Xu & Zeevi (2020; 2025),
serves as a guiding principle and plays a central role in our proof of Theorem 1. The adjective
“non-perturbative,” borrowed from physics (nLab contributors, 2025a) and central to the study of
strongly correlated systems (nLab contributors, 2025b), underscores that our theory remains valid
far beyond infinitesimal neighborhoods of initialization—an essential property for deeply nonlinear,
feature-learning DNN.

Connections to Differential Geometry and Lie Algebra. From a geometric perspective, Haus-
dorff dimension provides an asymptotic, covering-based notion of capacity (fundamental in geomet-
ric measure theory (Simon, 2018)), while differential and Riemannian geometry (Jost, 2008) develop
the use of local charts and global atlases to analyze non-Euclidean manifolds. Our results motivate
viewing generalization as a finite-scale problem in geometric analysis. The Grassmannian and fam-
ilies of orthogonal subspaces are traditionally studied via Lie groups; using differential-geometric
tools, Szarek (1997); Pajor (1998) established finite-scale isotropic metric-entropy characterizations,
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which motivate our hierarchical covering viewpoint from local charts to a global atlas and our ellip-
soidal entropy framework.

Empirical Indicators of Generalization. Complementing theory, much research has focused on
empirical indicators that explain the generalization of deep learning. Phenomena like Neural Col-
lapse (Papyan et al., 2020; Parker et al., 2023; Kothapalli, 2022) reveals the emergence of low-rank
geometric structures in last-layer features. Studies on Intrinsic Dimension (Li et al., 2018; Huh
et al., 2021) similarly suggest that deeper models exhibit an inductive bias toward low-rank last-
layer feature representations. A line of work focuses on Dynamic NTK variants (Atanasov et al.,
2021; Baratin et al., 2021; Fort et al., 2020; Kopitkov & Indelman, 2020) or related feature-gradient
kernels (Radhakrishnan et al., 2024), where the kernels evolve along optimization trajectories, has
empirically shown that the dynamic kernel evolution is linked to generalization behaviour. Other
probes, examining Fisher information (Karakida et al., 2019; Jastrzebski et al., 2021), Hessian spec-
tral properties (Ghorbani et al., 2019; Rahaman et al., 2019), and output-input Jacobians (Novak
et al., 2018), offer another lens. Collectively, existing empirical probes offer valuable, though of-
ten partial, insights—typically from a specific layer perspective, or through a constructed similarity
analysis—without a unifying formalism and a theory foundation. Our proposed empirical indicator,
rooted in a mathematically sharp theory, resonates with their goals (our theory is in fact supported
by many of their experiments) while advancing them. It provides a principled, formal measure for
characterizing the generalization of neural networks.

Feature Compression in Deep Models for Vision and Language. Across vision and language,
deep networks exhibit a robust layer–wise compression of representations. In computer vision,
Ansuini et al. (2019) measure intrinsic dimensionality across convolutional layers and find early ex-
pansion followed by sharp reduction, with lower late–stage dimensionality correlating with stronger
generalization; Feng et al. (2022) likewise show that feature matrices in CNNs and vision trans-
formers become progressively low–rank with depth, at fixed width, indicating active compression
of task–relevant information. Parallel trends appear in NLP: Cai et al. (2021) demonstrate that
contextual embeddings (e.g., BERT) occupy narrow, anisotropic cones despite high nominal dimen-
sion, and Razzhigaev et al. (2024) document a two–phase training trajectory—initial expansion,
then sustained compression. A complementary line grounded in the Information Bottleneck (Tishby
& Zaslavsky, 2015) interprets these findings as the selective removal of task–irrelevant variability:
Shwartz-Ziv & Tishby (2017) observe that networks spend most of training compressing internal
features toward a prediction–compression trade–off, while Patel & Shwartz-Ziv (2024) show gra-
dient descent reduces the local rank of intermediate activations. Balzano et al. (2025) provide a
complementary tutorial on low-rank structures arising during the training and adaptation of large
models, emphasizing how gradient-descent dynamics and implicit regularization generate low-rank
representations. Taken together, these phenomena motivate our investigation: compression is not
merely qualitative, but admits precise, hypothesis–specific complexity that governs generalization.

C FURTHER EXPLANATIONS AND PROOFS FOR POINTWISE
GENERALIZATION FRAMEWORK (SECTION 2)

In section C.1, we bring new understandings on the nature of generalization, providing further ex-
planations of Section 2. The rest of this section is mainly devoted to a full proof of Theorem 1
(the integral upper bound). Conceptually, the pointwise–dimension principle already follows from
elementary PAC–Bayes arguments—see Lemma 6 and the subsequent remark in Appendix C.3.
We present the full derivation to make explicit structural properties (e.g., unified blueprint, subset
homogeneity, population–empirical isomorphism) that a rigorous proof requires.

C.1 NECESSITY OF FINITE-SCALE POINTWISE GEOMETRY AND STRUCTURAL ANALYSIS

The transition from uniform convergence to the “prior-density + localization” (pointwise dimension)
perspective offers a fundamental tightening over standard covering number approaches. However,
translating this theoretical advantage into a practical framework for deep learning requires address-
ing two distinct challenges. First, we will distinguish the geometric nature of generalization from
classical infinitesimal geometry: relevance lies not in the limit ε→ 0, but motivates a new program
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of finite-scale geometric analysis. Second, we must overcome the computational intractability of
evaluating the pointwise dimension directly, which necessitates a dedicated structural analysis for
deep neural networks.

Asymptotic vs. Finite-Scale Dimension. Although powerful in mathematics, standard
differential-geometric tools (e.g., pointwise metrics and subspace angles) have not been system-
atically used in generalization theory, largely because they define dimension in infinitesimal no-
tions. For instance, the asymptotic pointwise dimension—central to fractal and Riemannian geom-
etry (Falconer, 1997; Jost, 2008) and used to characterize Hausdorff and packing dimensions (e.g.,
Theorem 3 of Lutz (2016))—is defined via a limit:

lim
ε→0

log π(Bϱ(f, ε))

log ε
.

We argue that generalization is distinct from, and in some ways more challenging than, infinitesimal
geometry: the nature of generalization in deep models lies in reducing geometric dimension at a
finite scale of precision for each hypothesis. Crucially, the pointwise dimension log 1

π(Bϱ(f,ε))
is

monotonic: it naturally decreases as the resolution ε increases. Therefore, a finite-scale analysis
reveals significant dimension reduction that infinitesimal analysis misses. In our one-shot bound
(5), the objective is to identify the optimal finite scale ε⋆ where the trade-off between precision
and pointwise complexity is minimized. At this scale, the effective dimension can be orders of
magnitude smaller than the asymptotic dimension, explaining the tractability of overparameterized
models. To the best of our knowledge, this distinction is novel; prior uses of geometric dimension in
generalization (e.g., Birdal et al. (2021)) have largely emphasized globally uniform and infinitesimal
notions. And the Neural Tangent Kernel (NTK) (Jacot et al., 2018) and Gaussian-process (Lee et al.,
2018) viewpoints are valid only in an infinitesimal neighborhood of initialization (equivalently, in
the infinite-width regime). A precise account of deep-model generalization thus calls for a shift from
infinitesimal calculus to finite-scale, pointwise geometry.

Computation and the Necessity of Structural Analysis. Although tight, Theorem 1—like many
abstract bounds (PAC-Bayes, mutual-information, generic chaining)—is generally not computation-
ally tractable on its own; practical use requires adapting it to the function class at hand and intro-
ducing suitable relaxations. If we denote an effective dimension by d(f) = log 1

π(Bϱn,ℓ
(f,ε⋆)) (ε⋆

tuned in the one-shot bound (5)), a brute-force Monte Carlo estimator using i.i.d. draws f ′ ∼ π
would require on the order of ed(f) samples to obtain a single hit f ′ ∈ Bϱn,ℓ

(f, ε) with constant
probability. For high-dimensional deep networks, where d(f) should be moderate to large, this is
computationally prohibitive.

This intractability helps explain why much of the PAC–Bayes literature pivoted to inherent lin-
earization via closed-form calculations under Gaussian priors/posteriors on the parameter space: by
relaxing the search over general posteriors on the nonlinear hypothesis class F to Gaussians over
weights W ∈ Rp, one obtains tractable objectives (Hinton & Van Camp, 1993; Dziugaite & Roy,
2017); see Sections 3 and 6 in Dziugaite & Roy (2017) for these objectives. However, this strat-
egy implicitly imposes a uniform linearization that discards the distinctive pointwise geometry of
deep networks, effectively flattening a curved manifold. To retain the sharpness of pointwise dimen-
sion without incurring the simulation barrier, we therefore avoid black-box sampling and instead
develop explicit structural principles of deep networks that allow analytic control of the pointwise
dimension—yielding generalization guarantees that are both theoretically rigorous and practically
computable.

C.2 THE “UNIFORM POINTWISE CONVERGENCE” PRINCIPLE

In this section, we present a unified blueprint for establishing pointwise generalization bounds. We
state necessary and sufficient conditions for pointwise generalization and show that, when applied
carefully, the resulting pointwise bounds are no harder to obtain than classical uniform-convergence
guarantees.

We begin by citing a general principle for converting subset-homogeneous uniform convergence
guarantees—i.e., bounds in which the same pointwise complexity applies for every fixed subset
H ⊆ F—into pointwise generalization bounds. This conversion, introduced by the name “uniform
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localized convergence” principle in (Xu & Zeevi, 2020) (short conference version) and Xu & Zeevi
(2025) (full journal version), provides a direct mechanism for obtaining the type of pointwise gen-
eralization bounds central to our work. We state this result as “uniform pointwise convergence”
principle.

Lemma 4 (“Uniform Pointwise Convergence” Principle) (Proposition 1 in Xu & Zeevi (2020;
2025)). For a function class F and functional d : F → [0, R], assume there is a function ψ(r; δ),
which is non-decreasing with respect to r, non-increasing with respect to δ, and satisfies that ∀δ ∈
(0, 1), ∀r ∈ [0, R], with probability at least 1− δ,

sup
f∈F :d(f)≤r

(P− Pn)ℓ(f ; z) ≤ ψ(r; δ). (17)

Then, given any δ ∈ (0, 1) and r0 ∈ (0, R], with probability at least 1−δ, uniformly over all f ∈ F ,

(P− Pn)ℓ(f ; z) ≤ ψ

(
max{2d(f), r0}; δ

(
log2

2R

r0

)−1
)
. (18)

This lemma provides a succinct proof that serves as a unifying principle to sharpen classical lo-
calization, building on Section 2 of Xu & Zeevi (2025). A key advantage of this framework is
its level of abstraction: it establishes subset homogeneity as the necessary and sufficient condition
for pointwise generalization when the complexity functional d(·) is data–independent, and likewise
when d(·) is swap–invariant and depends on both the observed sample S = {zi}ni=1 and an i.i.d.
ghost sample S′ = {z′i}ni=1. It also provides a clean treatment of data–dependent functionals and
their induced (random) sublevel sets {f ∈ F : d(f) ≤ r), as outlined before Section 4 of Xu &
Zeevi (2025). Crucially, this approach circumvents the circularities that often arise when combining
symmetrization with localization or offset arguments.

C.2.1 NECESSARY AND SUFFICIENT CONDITIONS FOR POINTWISE GENERALIZATION

We leverage this “uniform pointwise convergence” principle to streamline the derivation of our
bounds. Let d(·) denote a pointwise complexity functional, which we categorize into data-
independent forms and data-dependent forms. Let ψ(·; δ) be a non-decreasing function (typically
ψ(r; δ) ≍

√
(r + log(1/δ))/n). We provide a clean characterization of pointwise generalization.

Necessary Condition: Subset Homogeneity. A valid pointwise generalization guarantee (i.e.,
(3)) necessitates subset homogeneity. That is, if the pointwise inequality

(P− Pn)ℓ(f ; z) ≤ ψ(d(f); δ) (19)

holds with probability at least 1−δ, then (19) must imply that for every fixed (i.e., data-independent)
subset H ⊆ F ,

sup
f∈H

(
P− Pn

)
ℓ(f ; z) ≤ sup

f∈H
ψ
(
d(f); δ

)
.

Crucially, the complexity evaluation d(f) must not depend on the chosen subset H. For instance, for
the pointwise dimension log 1

π(Bϱ(f,ε))
, the prior π (in particular, its support) should be independent

of H. This contrasts with classical empirical-process techniques—e.g., naive uses of Rademacher
complexity and generic chaining—where the pre-specified index sets dictate the proxy d(·) via the
chosen Rademacher expectation, admissible tree construction, or prior.

Subset homogeneity is thus the primary eligibility check for any candidate pointwise complexity
functional. In Appendix C.4, we complete this check by establishing that the pointwise dimension
is ambiently equivalent: using a prior π ∈ ∆(F) or its restriction π ∈ ∆(H) produces complexities
that agree in order (up to absolute constants).

Sufficient Condition: Subset Homogeneity + Data-Independent (or Symmetrized) d(·). As-
suming the following subset-homogeneity uniform convergence condition: for every fixed (i.e., data-
independent) subset H ⊆ F and δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈H

(P− Pn)ℓ(f ; z) ≤ sup
f∈H

ψ
(
d(f); δ

)
. (20)
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By taking the sublevel set

H = {f ∈ F : d(f) ≤ r},
the condition (20) (applied to this fixed sublevel set) directly implies the surrogate conditions (17)
in Lemma 4, and hence the pointwise bound (18). Thus, subset homogeneity is a necessary and
sufficient condition for a data-independent d(·) to imply a pointwise generalization bound.

Likewise, in Appendix C.5, we show that when the complexity d(·) may depend on both the observed
sample S = {zi}ni=1 and an i.i.d. ghost sample S′ = {z′i}ni=1, provided it is swap–invariant in
(S, S′) (i.e., invariant under any exchange zi↔z′i), subset homogeneity suffices to yield a pointwise
generalization bound via a final swap–symmetrization argument. This establishes Theorem 5: a
pointwise generalization result in which the complexity is evaluated using both the observed sample
S and the ghost sample S′.

Toward pointwise bounds using only observed sample. If one seeks bounds that are fully com-
putable from the observed data {zi}ni=1 alone (e.g., Theorem 1), without ghost sample or sample
splitting, the analysis is more involved. A practical route is two–step: (i) first derive a symmetrized
pointwise bound using a complexity functional based on (S, S′) (which is already valid and sharp);
(ii) then prove an isomorphism between the L2(PS)– and L2(PS′)–induced pointwise complexities
(following Appendix A.4 of Xu & Zeevi (2025)) so as to replace population or ghost–dependent
terms by empirical ones, yielding a fully data–dependent bound. Theorem 1 will be fully proved in
Appendix C.6.

C.3 THE PAC-BAYES OPTIMIZATION PROBLEM

We illustrate why pointwise dimension is a natural consequence of best PAC-Bayes optimization.

Lemma 5 (PAC–Bayes Bound (Catoni, 2003); see also Theorem 2.1 in Alquier (2024)) Let π
be a prior on a hypothesis class F independent to the data, and let ℓ : F ×Z → [0, 1] be a bounded
loss. Fix confidence δ ∈ (0, 1) and sample size n. Then for every η > 0, with probability at least
1− δ over n i.i.d. draws z1, . . . , zn ∼ P, for every distribution µ on F simultaneously,

(P− Pn)⟨µ, ℓ(f ; z)⟩ ≤ inf
η>0

{
KL
(
µ, π

)
+ log 1

δ

ηn
+
η

8

}
=

√
KL
(
µ, π

)
+ log 1

δ

8n
.

We now use the PAC-Bayes bound (which holds uniformly for every random posterior µ) to ap-
proximate a deterministic hypothesis f . On the event that the above PAC-Bayes bound holds, with
probability at least 1− δ, we have that uniformly over every random µ ∈ ∆(F) every deterministic
f ∈ F , for every η > 0, the following uniform “deterministic hypothesis” bound holds:

(P− Pn)ℓ(f ; z)

=⟨µ, (P− Pn)ℓ(·; z)⟩+ ⟨µ, (Pn − P)[ℓ(·; z)− ℓ(f ; z)]⟩

≤η
8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ, 1

n

n∑
i=1

|ℓ(·; z)− ℓ(f ; z)|⟩+ ⟨µ,E|ℓ(·; z)− ℓ(f ; z)|⟩

=
η

8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ, ϱ̃(·, f)⟩, (21)

where the metric ϱ̃ is defined as the sum of loss-induced L1(Pn) metric and L1(P) metric:

ϱ̃(f ′, f) =
1

n

n∑
i=1

|ℓ(f ′; z)− ℓ(f ; z)|+ E|ℓ(f ′; z)− ℓ(f ; z)|. (22)

In (21), the inequality uses the PAC-Bayes bound (Lemma 5) to bound the first term, which we term
the “variance” term, and use absolute values to bound the second term, which we term the “bias”
term.
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Motivated by the above bias-variance optimization (21) via PAC-Bayes, for a given prior π, metric
ϱ, and confidence δ ∈ (0, 1) we define the PAC-Bayes optimization objective

V (µ, η, f, ϱ) :=
η

8
+

KL(µ, π) + log 1
δ

ηn︸ ︷︷ ︸
Variance

+ ⟨µ, ϱ(·, f)⟩︸ ︷︷ ︸
Bias

, (23)

where η > 0, n is the sample size, µ is a posterior over hypotheses. Here, the “Variance” term
arises from a PAC-Bayes bound (Lemma 5) applied to µ, and the “Bias” term ⟨µ, ϱ(·, f)⟩ :=
Eh∼µ

[
ϱ(h, f)

]
measures how well the randomized µ approximates the target f .

Optimizing the Posterior µ for the Objective (23) The intuitive analysis (21) explains how the
PAC-Bayesian optimization objective naturally bounds the generalization gap. We now minimize
the posterior µ in (23). It is straightforward that (23) is minimized by the Gibbs posterior. To obtain
a closed-form characterization of the optimized value, we proceed in two steps: (i) derive an explicit
pointwise-dimension upper bound by taking µ to be the π-normalized distribution on the metric ball
Bϱ(f, ε) (Lemma 6), and (ii) show that this choice is near-optimal (Lemma 7).

C.3.1 POINTWISE DIMENSION BOUND VIA METRIC BALL

Given any prior π on F and any f ∈ F , take µ to be the π−normalized distribution on the metric
ball Bϱ(f, ε), i.e.,

µ(A) =
π(A ∩Bϱ(f, ε))

π(Bϱ(f, ε))
for all measurable A ⊆ F . (24)

This simple choice is essentially optimal in that it yields the same analytical upper bound as the
Gibbs posterior that minimizes the bound (later presented in Lemma 7).

Lemma 6 (Pointwise Dimension and Pointwise Generalization Upper Bound) For the
PAC–Bayes objective (23), let µ be π−normalized on Bϱ(f, ε), i.e.

dµ

dπ
(h) =


1

π
(
Bϱ(f, ε)

) , h ∈ Bϱ(f, ε),

0, h /∈ Bϱ(f, ε).

Then, with η⋆ =
√

8
(
KL(µ, π) + log(1/δ)

)
/n ,

V
(
µ, η⋆, f, ϱ

)
≤
√

KL(µ, π) + log(1/δ)

2n
+ ε =

√
log 1

π(Bϱ(f,ε))
+ log(1/δ)

2n
+ ε. (25)

Combining the upper bound (25) with (21) yields the pointwise generalization bound: for every
δ ∈ (0, 1), with probability at least 1− δ, uniformly over every f ∈ F ,

(P− Pn)ℓ(f ; z) ≤ inf
ε>0


√

log 1
π(Bϱ̃(f,ε))

+ log(1/δ)

2n
+ ε

 ,

where ϱ̃ is the mixed L1(Pn) + L1(P) metric defined by ϱ̃(f ′, f) = 1
n

∑n
i=1 |ℓ(f ′; z) − ℓ(f ; z)| +

E|ℓ(f ′; z)− ℓ(f ; z)|.

Remark (why this intuition matters). Since the mixedL2–metric dominates the sum of empirical
and population L1–metrics, consider

ϱ̄(f ′, f) :=

(
1

n

n∑
i=1

(
ℓ(f ′; zi)− ℓ(f ; zi)

)2
+ E

[(
ℓ(f ′;Z)− ℓ(f ;Z)

)2])1/2

. (26)

By Lemma 19, pointwise dimension is monotone in the underlying metric; hence replacing ϱ̃ by
the larger metric

√
2ϱ̄ yields a valid pointwise generalization bound. For a trained predictor f̂ , this
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means we may estimate the bound using the observed sample S = {zi}ni=1 together with an i.i.d.
ghost sample S′ = {z′i}ni=1 to evaluate balls in the mixed metric (26).

Theorem 1 then sharpens this picture: it turns the one–shot PAC–Bayes bound into a chain-
ing–integral and removes the need for the ghost sample by working solely with the empirical
L2(Pn)–metric. The core spirit of Theorem 1 remains the same with the PAC–Bayes bias–variance
optimization; the practical differences are (i) integral vs. one–shot control and (ii) using S alone
instead of (S, S′).

Proof of Lemma 6: For the choice (24),

KL(µ, π) =
∫
F
log
(dµ
dπ

(h)
)
µ(dh) =

∫
Bϱ(f,ε)

log
(

1
π(Bϱ(f,ε))

)
µ(dh) = log

1

π(Bϱ(f, ε))
. (27)

Moreover, by construction,

⟨µ, ϱ(·, f)⟩ =
∫
Bϱ(f,ε)

ϱ(h, f)µ(dh) ≤ ε.

Plugging (27) into (23) and minimizing η
8 + KL(µ,π)+log(1/δ)

ηn over η > 0 gives√
(KL(µ, π) + log(1/δ))/(2n), which together with the bias bound ⟨µ, ϱ(·, f)⟩ ≤ ε yields the

claimed bound (25).

□

C.3.2 LOWER BOUND AND OPTIMALITY OF PAC-BAYES OPTIMIZATION

The following lemma indicates that the uniform-ball posterior is optimal up to the min–max gap:
the lower bound min{a, ε} and the upper bound max{a, ε} bracket the optimum, coincide when
a = ε, and have the same order whenever a and ε are comparable.

Lemma 7 (Optimality of Pointwise Dimension in PAC-Bayes Optimization) For the PAC–
Bayes optimization objective V (µ, η, f, ϱ) defined in (23), we have that for every f ∈ F , η > 0,
and ε > 0,

inf
µ
V (µ, η, f, ϱ) ≥ η

8
+

log 1
δ

ηn
+min

{ 1

ηn
log

1

π(Bϱ(f, ε))
, ε
}

− log 2

ηn
. (28)

Consequently, for every f ∈ F , η > 0, and ε > 0,

η

8
+
log 1

δ

ηn
+min

{ log 1
π(Bϱ(f,ε))

ηn
, ε
}
− log 2

ηn
≤ inf

µ
V (µ, η, f, ϱ) ≤ η

8
+
log 1

π(Bϱ(f,ε))
+ log 1

δ

ηn
+ε.

(29)

Proof of Lemma 7 The upper bound in (29) is already proved in Lemma 6, so we only need to
prove the lower bound (28). The Donsker–Varadhan variational identity states that for any measur-
able h,

− log

∫
eh dπ = inf

µ

{
KL(µ, π) −

∫
h dµ

}
.

Apply it with h = −ηnϱ(·, f) to obtain

− log

∫
e−ηnϱ(·,f) dπ = inf

µ

{
KL(µ, π) +

∫
ηnϱ(·, f) dµ

}
,

which implies that

η

8
+

log 1
δ

ηn
− 1

ηn
log

∫
e−ηnϱ(·,f) dπ = inf

µ

{η
8
+

KL
(
µ, π

)
+ log 1

δ

ηn
+ ⟨µ, ϱ(·, f)⟩

}
. (30)

By splitting the dual integral,∫
e−ηnϱ(·,f) dπ =

∫
Bϱ(f,ε)

e−ηnϱ(·,f) dπ +

∫
Bϱ(f,ε)

c

e−ηnϱ(·,f) dπ

≤ π(Bϱ(f, ε)) + e−ηnε(1− π(Bϱ(f, ε)))

≤ π(Bϱ(f, ε)) + e−ηnε,
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where Bϱ(f, ε)
c is complement of Bϱ(f, ε); and we have used e−ηnϱ(·,f) ≤ 1 on Bϱ(f, ε) and

e−ηnϱ(·,f) ≤ e−ηnε on Bϱ(f, ε)
c. Hence

inf
µ
V (µ, η, f, ϱ) ≥ η

8
+

log 1
δ

ηn
− 1

ηn
log
(
π(Bϱ(f, ε)) + e−ηnε

)
. (31)

The simplified form (28) follows from a+b ≤ 2max{a, b} or equivalently − log(a+b) ≥ − log 2+
min{− log a,− log b} on (31). Combining (23), (27) and (28) yields the sandwich (29).

□

C.4 SUBSET HOMOGENEITY OF POINTWISE DIMENSION

We show that, for any f ∈ H ⊆ F , the pointwise–dimension functional defined with a prior π is
unchanged in order (up to absolute constants) whether π is supported on H or on the ambient class
F . Hence one may take π ∈ ∆(F) without restricting it to any particular subset, which suffices to
meet the subset–homogeneity condition in Appendix 2.

Lemma 8 (Ambient Equivalence of Pointwise Dimension) Let (F , ϱ) be a metric space and let
H ⊆ F be a subset. Consider a nearest-point selector p : F → f satisfying ϱ(f, p(f)) =
minh∈H ϱ(f, h) for all f ∈ F , and the pushforward measure induced by the nearest-point selector:

πH(h) :=

∫
π(f)1{p(f) = h}df.

Then for every ε > 0 we have

πH(Bϱ(f, 2ε)) ≥ π(Bϱ(f, ε)), log
1

πH(Bϱ(f, 2ε))
≤ log

1

π(Bϱ(f, ε))
.

Consequently, for a > 0, b > 0, µ ∈ ∆(F), f ∈ H, define the majorizing measure integral

I(π, f, ϱ, r) := inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

π
(
Bϱ(f, ε)

) dε}
Then we have

1

2
inf

µ∈∆(H)
sup
f∈H

I(µ, f, ϱ, 4r) ≤ inf
π∈∆(F)

sup
f∈H

I(π, f, ϱ, r) ≤ inf
µ∈∆(H)

sup
f∈H

I(µ, f, ϱ, r). (32)

Proof of Lemma 8: The upper bound in (32) is immediate since ∆(H) ⊂ ∆(F): taking µ sup-
ported on H gives infπ∈∆(F) supf∈H I(π, f, ϱ, r) ≤ infµ∈∆(H) supf∈H I(µ, f, ϱ, r).

For the lower bound in (32), take πH to be the pushforward induced by the nearest-point selector.
For any f ∈ H and ε > 0, if f ′ ∈ Bϱ(f, ε) then

ϱ
(
p(f ′), f

)
≤ ϱ

(
p(f ′), f ′

)
+ ϱ(f ′, f) = min

f∈H
ϱ(f ′, f) + ϱ(f ′, f) ≤ 2ε,

hence p(f ′) ∈ Bϱ(f, 2ε) and

πH
(
Bϱ(f, 2ε)

)
≥ π

(
Bϱ(f, ε)

)
, log

1

πH(Bϱ(f, 2ε))
≤ log

1

π(Bϱ(f, ε))
. (33)

Therefore,

I(π, f, ϱ, r) = inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

π(Bϱ(f, ε))
dε

}

≥ inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

πH(Bϱ(f, 2ε))
dε

}

= 1
2 inf
0≤α≤√

r

{
2α+

1√
n

∫ 2
√
r

2α

√
log

1

πH(Bϱ(f, ε))
dε

}

=
1

2
I(πH, f, ϱ, 4r),
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where the first inequality is by (33); the second equality is by the change of variables. Taking
supf∈H and then infπ∈∆(F), infµ∈∆(H) yields the desired lower bound.

□

Relationship to Fractional Covering Number Additionally, note that the minimax quantity

N′(H, ϱ, ε) := inf
π∈∆(F)

sup
f∈H

1

π
(
Bϱ(f, ε)

)
is the fractional covering number; see Section 3 of Block et al. (2021) for its role in chaining; see
also Chen et al. (2024) for connections to information-theoretic lower bounds (e.g., Fano’s method,
the Yang–Barron method, and local packing). In particular, with N(H, ϱ, ε) denoting the (internal)
covering number from Definition 5, we have the order equivalence (Lemma 8 in Block et al. (2021);
Lemma 14 in Chen et al. (2024))

log N(H, ϱ, 2ε) ≤ log N′(H, ϱ, ε) = inf
π∈∆(F)

sup
f∈H

log
1

π
(
Bϱ(f, ε)

) ≤ log N(H, ϱ, ε). (34)

The covering number in Definition 5 does not depend on the ambient set F , which in turn suggests
that the pointwise dimension enjoys favorable ambient–equivalence properties.

Collapsing the Distinction between Chaining and Generic Chaining. A simple illustration of
the strength of our pointwise blueprint is the multi–dimensional setting. Let (d(1), . . . , d(k)) : F →
(0, R]k be coordinatewise nondecreasing complexities and let ψ(·; δ) be monotone. Our blueprint
makes no essential distinction between the two uniform forms

(sup–inside) sup
f∈H

(P− Pn) ℓ(f ; z) ≤ ψ
(
sup
f∈H

d(1)n (f), . . . , sup
f∈H

d(k)n (f); δ
)
,

(sup–outside) sup
f∈H

(P− Pn) ℓ(f ; z) ≤ sup
f∈H

ψ
(
d(1)n (f), . . . , d(k)n (f); δ

)
,

in the sense that either one leads to the same pointwise conclusion after peeling.

More precisely, fix a base scale r0 ∈ (0, R]. Then with probability at least 1− δ, for every f ∈ F ,

(P− Pn) ℓ(f ; z) ≤ ψ

((
· · · ,max

{
2d(j)(f), r0

}
, · · ·

)
; δ
(
log2

2R

r0

)−k
)
. (35)

The most straightforward proof uses essentially the same peeling argument as in Lemma 4, with the
only change that we use a grid of size (log2(2R/r0))

k (partition each coordinate into log2(2R/r0)
dyadic scales); see the short proof of Proposition 1 in Xu & Zeevi (2025). Alternatively, this can
proved by applying Lemma 4 for k times, where at each step we remove one dimension functional
and divided confidence by log2(2R/r0). Moreover, the multi–dimensional pointwise bound (35)
shows that its right–hand side, viewed as a scalar complexity, yields an equally tight pointwise
bound. Hence the multi–dimensional formulation does not improve the best-achievable rates beyond
a suitably defined one–dimensional complexity (as in generic chaining).

Conceptually, this shows that the apparent gap between classical chaining (entropy inte-
gral; sup–inside), generic chaining (majorizing measures; sup–outside), and our pointwise
generic–chaining bound (Theorem 1) disappears within the blueprint: each is just a sub-
set–homogeneous uniform statement that implies the same pointwise bound up to absolute constants
and minor logarithms.

C.5 POINTWISE GENERALIZATION BOUND VIA GHOST SAMPLE

In this section, we prove an easier variant of Theorem 1 that permits swap-invariant random-
ized priors depending on both the observed sample and its ghost counterpart. This setting sub-
sumes—and strengthens—the conditional mutual information (CMI) framework of Steinke & Za-
kynthinou (2020).

Let S = (z1, . . . , zn) and S′ = (z′1, . . . , z
′
n) be two i.i.d. samples drawn from Pn, independent of

each other. For each index i ∈ {1, . . . , n}, define the coordinate–swap map

τi(S, S
′) :=

(
(z1, . . . , zi−1, z

′
i, zi+1, . . . , zn), (z

′
1, . . . , z

′
i−1, zi, z

′
i+1, . . . , z

′
n)
)
.
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A randomized, data-dependent prior is a mapping π(·,·) : Z2n → ∆(F); we write π(S,S′) ∈ ∆(F)
for the realized prior over F (a distribution on F that may depend on (S, S′)). We say that π is
swap–invariant on (S, S′), if

π(S,S′) = πτi(S,S′) for all i = 1, . . . , n and for P2n-a.e. (S, S′).

Equivalently, π depends only on the unordered multiset {{(zi, z′i)}ni=1} and not on which element
of each pair is designated as “observed” versus “ghost.”

Connection to CMI. This notion covers the conditional–mutual–information (CMI) framework of
Steinke & Zakynthinou (2020). In the CMI setup, one draws paired data Z = ((Z

(0)
i , Z

(1)
i ))ni=1

i.i.d.∼
(P × P)n and an independent selector U ∈ {0, 1}n. The training and ghost sets are SU =

(Z
(U1)
1 , . . . , Z

(Un)
n ) and SŪ = (Z

(1−U1)
1 , . . . , Z

(1−Un)
n ). Any prior π that is a function of Z only

(independent of U ) is swap–invariant, since flipping Ui implements τi. Conversely, swap–invariance
for all i is equivalent to invariance under all coordinatewise flips of U , hence independence from U .

Throughout, let S = {zi}ni=1 be the observed sample and S′ = {z′i}ni=1 an i.i.d. ghost sample,
independent of S. We write PS for the empirical measure Pn based on S, and ϱS,ℓ for the metric
ϱn,ℓ from the main paper. Let PS′ denote the empirical measure based on S′. For any integrable
function g : Z → R (we write g(z) when convenient; e.g., g(z) = ℓ(f ; z)), define the empirical
averaging operators

PSg :=
1

n

n∑
i=1

g(zi), PS′g :=
1

n

n∑
i=1

g(z′i).

We use the shorthand (PS±PS′)g := PSg±PS′g for the sum/difference of the two sample–average
operators, and the same notation when PS ± PS′ appear inside norms or distances.

Theorem 5 (Pointwise Generalization via Ghost Sample) Let ℓ(f ; z) ∈ [0, 1]. There exists an
absolute constant C > 0 such that for any swap-invariant prior π(·,·) on (S, S′), and any δ ∈ (0, 1),
with probability at least 1− δ over (S, S′), uniformly in f ∈ F ,

(PS′ − PS) ℓ(f ; z)

≤ C

 inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )ℓ(f ;z)2

α

√
log

1

π(S,S′)

(
Bϱ(S,S′),ℓ(f, ε)

) dε}+

√
log
(
log(2n)/δ

)
n

 ,

where ϱ(S,S′),ℓ(f1, f2) =

√
(PS + PS′)

(
ℓ(f1; z)− ℓ(f2; z)

)2
.

Proof of Theorem 5: The proof of the upper bound in Theorem 5 consists of three steps: 1.
Subset-Homogeneous Uniform Convergence; 2. Generic Conversion to Pointwise Generalization
Bound; 3. High-Probability Symmetrization.

Step 1: Subset-Homogeneous Uniform Convergence. Let S = {zi}ni=1 be the observed sample,
and S′ = {z′i}ni=1 be an i.i.d. ghost sample. We consider the symmetrized loss

ℓ̃(f ; (z, z′)) = ℓ(f ; z′)− ℓ(f ; z). (36)

Since ℓ(f ; z) is uniformly bounded in [0, 1], ℓ̃(f ; (z, z′)) is uniformly bounded in [−1, 1]. We adopt
the notation

ϱS,ℓ(f1, f2) = ϱn,ℓ(f1, f2) =

√
PS

(
ℓ(f1; z)− ℓ(f2; z)

)2
.

from the main paper. Furthermore, we define the loss-induced L2 metrics ϱS′,ℓ and ϱ(S,S′),ℓ by

ϱS′,ℓ(f1, f2) =
√
PS′(ℓ(f1; z)− ℓ(f2; z))2,

ϱ(S,S′),ℓ(f1, f2) =
√
(PS + PS′) (ℓ(f1; z)− ℓ(f2; z))2.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

By Minkowski’s inequality (see, e.g., Wikipedia contributors (2025c)) and
√
a+

√
b ≤

√
2(a+ b),

we have√√√√ 1

n

n∑
i=1

(ℓ̃(f1; (zi, z′i))− ℓ̃(f2; (zi, z′i)))
2 ≤ ϱS,ℓ(f1, f2) + ϱS′,ℓ(f1, f2) ≤

√
2ϱ(S,S′),ℓ(f1, f2).

(37)

For every fixed R ∈ [0, 2], we define

FR = {f ∈ F : (PS + PS′)ℓ(f ; z)2 ≤ R}.
The goal of setting R is to further localize the integrand upper limit as in Theorem 5.

Now applying the truncated integral bound (Lemma 14) to the empirical Rademacher complexity:
let {ξi}ni=1 be i.i.d. Rademacher variables, then conditioned on (S, S′), given any subset H ⊆ FR,
we have that for all δ ∈ (0, 1), with probability at least 1 − δ (the randomness all comes from
{ξi}ni=1),

sup
f∈H

1

n

n∑
i=1

ξiℓ̃(f ; (zi, zi)) ≤ Eξ

[
sup
f∈H

1

n

n∑
i=1

ξiℓ̃(f ; (zi, zi))

]
+

√
2 log 1

δ

n

≤C0 inf
α≥0

{
α+

1√
n

inf
µ∈∆(H)

sup
f∈H

∫ 2
√
2R

α

√
log

1

µ(Bϱ̃(f, ε))
dε

}
+

√
2 log 1

δ

n
,

where C0 > 0 is an absolute constant, and ϱ̃(f1, f2) :=√
1
n

∑n
i=1(ℓ̃(f1; (zi, z

′
i))− ℓ̃(f2; (zi, z′i)))

2. Here, the first inequality is by Mcdiarmid’s in-
equality (Lemma 16); and the second inequality is by Lemma 14; and the integral is capped at
2
√
2R because

sup
f1∈H,f2∈H

ϱ̃(f1, f2) ≤ sup
f1∈H,f2∈H

√
2ϱ(S,S′),ℓ(f1, f2) ≤ sup

f∈H
2
√
2
√

(PS + PS′) ℓ(f ; z)2 ≤ 2
√
2R,

where the first inequality is due to (37) and the second inequality is due to Minkowski’s inequality
(Wikipedia contributors, 2025c). By the ambient–equivalence of the pointwise–dimension func-
tional (Lemma 8), we have (note that we take the support of π to be F rather than H or FR)

inf
α≥0

{
α+

1√
n

inf
µ∈∆(H)

sup
f∈H

∫ 2
√
2R

α

√
log

1

µ
(
Bϱ̃(f, ε)

) dε}

≤ inf
α≥0

2

{
α+

1√
n

inf
π∈∆(F)

sup
f∈H

∫ √
2R

α

√
log

1

π
(
Bϱ̃(f, ε)

) dε} .
By (37) and the fact that pointwise dimension is monotone in the underlying metric (Lemma 19),
we have that for any π ∈ ∆(F),∫ √

2R

α

√
log

1

π
(
Bϱ̃(f, ε)

) dε ≤ ∫ √
2R

α

√
log

1

π
(
B√

2ϱ(S,S′),ℓ
(f, ε)

) dε = √
2

∫ √
R

α/
√
2

√
log

1

π
(
Bϱ(S,S′),ℓ(f, ε)

) dε,
where the equality follows by a change of variables. Combining the above three inequalities, we
prove the following subset-homogeneous uniform convergence argument when choosing an arbitrary
π ∈ ∆(F): conditioned on (S, S′), for any H ⊆ F and δ ∈ (0, 1), with probability at least 1 − δ
(the randomness all comes from {ξi}ni=1),

sup
f∈H

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi)) ≤ sup

f∈H
C1 inf

α≥0

{
α+

1√
n

∫ √
R

α

√
log

1

π
(
Bϱ(S,S′),ℓ(f, ε)

) dε}+

√
2 log 1

δ

n
,

(38)

where C1 = 2
√
2C0 > 0 is an absolute constant.
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Conditioned on (S, S′), for fixed π(S,S′) ∈ ∆(F) that is independent with {ξi}ni=1, define the
pointwise complexity

dS,S′(f) :=

(
inf
α≥0

{
√
nα+

∫ √
R

α

√
log

1

π(S,S′)

(
Bϱ(S,S′),ℓ(f, ε)

) dε})2

. (39)

Then, by (38), conditioned on (S, S′), for any H ⊆ FR and any δ ∈ (0, 1), with probability at least
1− δ (the randomness all comes from {ξi}ni=1),

sup
f∈H

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi)) ≤ sup

f∈H

C1

√
dS,S′(f)

n
+

√
2 log 2

δ

n

 . (40)

As discussed in Appendix C.2.1, this condition is both necessary and sufficient to establish pointwise
convergence when the complexity functional is the {ξi}ni=1-independent dS,S′(·) when conditioned
on (S, S′).

Step 2: Generic Conversion to Pointwise Generalization Bound. All the analysis in this step
is condition on (S, S′), thus all the randomness discussed here comes from {ξi}ni=1. Choosing
α =

√
R in (39) yields dS,S′(f) ≤ (

√
Rn)2 ≤ 2n for all f , so Lemma 4 applies with the upper

bound of d(f) being 2n. For every r ∈ [0, 2n], we take the subset

H = {f ∈ FR : dS,S′(f) ≤ r},
which, by (40), implies that ∀δ ∈ (0, 1) and ∀r ∈ [0, 32n], with probability at least 1− δ

sup
f :dS,S′ (f)≤r

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi)) ≤ C1

√
r

n
+

√
2 log 2

δ

n
, (41)

where and C1 is an absolute constant. The inequality (41) is precisely the condition (17) in the
generic conversion provided in Lemma 4 (here, the expectation (equal to 0) and the empirical aver-
age are taken for {ξi}ni=1). Thus applying Lemma 4 we have the pointwise generalization bound:
conditioned on (S, S′), for any δ ∈ (0, 1), by taking r0 = 1/n, with probability at least 1 − δ,
uniformly over all f ∈ FR,

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi)) ≤

C1√
n

√
max

{
2dS,S′(f),

1

n

}
+

√
2 log 2 log2(4n

2)
δ

n

≤C1

√
2dS,S′(f)

n
+
C1

n
+

√
2 log 4 log2(2n)

δ

n
.

≤C2

√dS,S′(f)

n
+

√
log log(2n)

δ

n

 , (42)

where C2 > 0 is an absolute constant, where the second inequality is because there exists C2 ≥√
2C1 such that for all positive integer n,

C1

n
+

√√√√2
(
log 1

δ + log(log 2 + log n) + log 4
log 2

)
n

≤ C2

√
log 1

δ + log(log 2 + log n)

n
.

Thus we prove the pointwise generalization bound (42) for the complexity functional dS,S′(·) de-
fined in (39), under the randomness of {ξi}ni=1.

Now we again apply the “uniform pointwise generalization” principle to further localize R in (42)
around the data–dependent quantity

d(f) := (PS + PS′)ℓ(f ; z)2 ∈ [0, 2].
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Applying Lemma 4 with R0 = 1/n (spirit: taking Rk = 2kR0, and then using an union bound
over these dyadic grid Rk to (42) uniformly over all k = 1, · · · , ⌈log2(2n)⌉), we have that for all
δ ∈ (0, 1), with probability at least 1− δ, for all f ∈ F ,

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi))

≤C2

 inf
α≥0

{
α+

1√
n

∫ √
max{2(PS+PS′ )ℓ(f ;z)2,R0}

α

√
1

π(S,S′)(Bϱ(S,S′),ℓ(f, ε))
dε

}
+

√
log log(2n)⌈log2(4n)⌉

δ

n

 .

If the maximum in max{2(PS + PS′)ℓ(f ; z)2, R0} is attained at R0 = 1/n, then the upper limit in
the integral equals to 4

√
1/n. In this case we may choose α = 4

√
1/n, so that the complexity mea-

sure term vanishes. The remaining contribution is then of order O(1/
√
n), which can be absorbed

into the absolute constant and the
√
log(2n)/n term. Thus we prove the following pointwise gener-

alization bound: there exists an absolute constant C3 > 0 such that for all π ∈ ∆(F), conditioned
on (S, S′), for any δ ∈ (0, 1), with probability at least 1− δ, uniformly over all f ∈ F ,

1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi))

≤C3

 inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )ℓ(f ;z)2

α

√
1

π(S,S′)(Bϱ(S,S′),ℓ(f, ε))
dε

}
+

√
log log(2n)

δ

n

 .

(43)

Step 3: High-Probability Symmetrization. Recall that S = {zi}ni=1 and S′ = {z′i}ni=1 are i.i.d.
samples, independent of each other, and {ξi}ni=1 are i.i.d. Rademacher signs, independent of (S, S′).
The mixed (ghost) metric

ϱ(S,S′),ℓ(f1, f2) =

√
(PS + PS′)

(
ℓ(f1; z)− ℓ(f2; z)

)2
,

is swap-invariant to the pair (zi, z′i) for each i = 1, · · · , n. By the definition of swap-invariant prior
before Theorem 5, the prior π(S,S′) ∈ ∆(F) is also swap-invariant to the pair (zi, z′i).

Denote the functionals

X(f ;S, S′; δ)

:=
1

n

n∑
i=1

(ℓ(f ; z′i)− ℓ(f ; zi))

− C3

 inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )ℓ(f ;z)2

α

√
1

π(S,S′)(Bϱ(S,S′),ℓ(f, ε))
dε

}
+

√
log log(2n)

δ

n

 ,

and

Y (f ;S, S′, {ξi}ni=1; δ)

:=
1

n

n∑
i=1

ξi(ℓ(f ; z
′
i)− ℓ(f ; zi))

− C3

 inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )ℓ(f ;z)2

α

√
1

π(S,S′)(Bϱ(S,S′),ℓ(f, ε))
dε

}
+

√
log log(2n)

δ

n

 .

Symmetry argument. We write d
= to denote equality in distribution (i.e., the random variables

have the same law, equivalently the same cumulative distribution function). For each i ∈ {1, . . . , n},
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let τi(S, S′) be the pair obtained by swapping zi and z′i. Since ϱ(S,S′),ℓ and π(S,S′) are invariant

under (S, S′) 7→ τi(S, S
′) and τi(S, S′)

d
= (S, S′), we have, for all t ∈ R,

Pr
(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t

)
= 1

2 Pr
(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t|ξi = 1

)
+ 1

2 Pr
(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t|ξi = −1

)
=Pr

(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t|ξi = 1

)
,

i.e., Y (f ;S, S′, {ξi}ni=1; δ)
d
= Y (f ;S, S′, {ξ1, · · · , ξi−1, 1, ξi+1, · · · , ξn}; δ). In the second equal-

ity, we have used the fact: conditioning on (S, S′), the transformation

(S, S′, {ξj}nj=1) 7−→
(
τi(S, S

′), {ξ1, . . . , ξi−1,−ξi, ξi+1, . . . , ξn}
)

leaves the value of Y unchanged (by the swap–invariance of ϱ(S,S′),ℓ and π(S,S′)) and preserves
the joint law of (S, S′, {ξj}nj=1), because (zi, z

′
i) are i.i.d. and ξi is a symmetric Rademacher sign;

hence the two conditional distributions coincide, and

Pr
(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t | ξi = 1

)
= Pr

(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t | ξi = −1

)
,

so
Pr
(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t

)
= Pr

(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ t | ξi = 1

)
.

Iterate over all indices i = 1, · · · , n, we obtain that

Y (f ;S, S′, {ξi}ni=1; δ)
d
= Y (f ;S, S′, {1, · · · , 1}; δ) = X(f ;S, S′; δ).

By the conclusion (43) in Step 2, for any δ ∈ (0, 1),

Pr
ξ

(
Y (f ;S, S′, {ξi}ni=1; δ) ≤ 0 for all f ∈ F

∣∣∣S, S′
)

≥ 1− δ.

By equality in distribution between Y and X (the symmetry argument above), this implies

Pr
ξ

(
X(f ;S, S′; δ) ≤ 0 for all f ∈ F

∣∣∣S, S′
)

≥ 1− δ for all (S, S′).

Let
A(S, S′) :=

{
X(f ;S, S′; δ) ≤ 0 for all f ∈ F

}
.

Note that A(S, S′) (and hence its indicator 1A(S, S
′)) depends only on (S, S′) and is independent

of the Rademacher signs {ξi}ni=1. Using the tower property of conditional expectation, we obtain

Pr
S,S′

(
A(S, S′)

)
= ES,S′

[
1A(S, S

′)
]

= ES,S′

[
Eξ

[
1A(S, S

′) | S, S′]]
= ES,S′

[
Pr
ξ

(
A(S, S′) | S, S′)]

≥ ES,S′ [1− δ] = 1− δ,

where the inequality uses the conditional bound above.

Hence, with probability at least 1− δ over the draw of (S, S′), we have, uniformly over all f ∈ F ,

1

n

n∑
i=1

(
ℓ(f ; z′i)− ℓ(f ; zi)

)
≤ C3

(
inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )ℓ(f ;z)2

α

√
log

1

π(S,S′)(Bϱ(S,S′),ℓ(f, ε))
dε
}
+

√
log(log(2n)/δ)

n

)
,

where ϱ(S,S′),ℓ(f1, f2) =

√
(PS + PS′)

(
ℓ(f1; z)− ℓ(f2; z)

)2
, and C3 > 0 is an absolute constant.

□
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C.6 PROOF OF THEOREM 1

Theorem 5 have established a pointwise generalization bound through both the observed sample S
and the ghost sample S′. In this section we build on Theorem 5 to a prove pointwise generalization
bound that only depends on the observed sample S. As outlined in Appendix C.2.1, the key is to
estalish pointwise isomorphism between the L2(PS) and L2(PS′) metrics.

From Ghost Sample to Observed Sample. Recall that we use PS to be the same notation as Pn

in the main paper; ϱS,ℓ to be the same notation as the ϱn,ℓ metric in the main paper; and PS′ to be
the empirical distribution and sample average operator actioned on the ghost sample S′, similar to
how PS actioned on S (see the comments before Theorem 5).

Let G ⊆ {g : Z → [0,M ]}, let ϱ be a semi-metric on G, and let µ ∈ ∆(G) be a prior. For g ∈ G and
r ≥ 0 define

I(µ, g, ϱ, r) := inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

µ(Bϱ(g, ε))
dε

}
. (44)

Under this definition, Theorem 5 implies that: there exists absolute constant C1 > 0 such that,
every fixed prior π ∈ ∆(F) independent of (S, S′) (such fixed prior clearly satisfies the condition
in Theorem 5) and every δ ∈ (0, 1), uniformly over all f ∈ F , we have

(PS′ − PS)ℓ(f ; z) ≤ C1

(
I
(
π, f, ϱ(S,S′),ℓ, 2(PS + PS′)ℓ(f ; z)2

)
+

√
log(log(2n)/δ)

n

)
. (45)

We have the following lemma that converts Theorem 5 to Theorem 1.

Lemma 9 (Ghost to Observed Conversion) For every fixed prior π ∈ ∆(F) independent of
(S, S′) and every δ ∈ (0, 1), if with probability at least 1− δ, uniformly for all f ∈ F ,

I
(
π, f, ϱ(S,S′),ℓ, 2(PS + PS′)ℓ(f ; z)2

)
≤ C2

(
I (π, f, ϱS,ℓ, 1) +

√
log(log(2n)/δ)

n

)
, (46)

where C2 > 0 is an absolute constant, then there exists an absolute constant C > 0 such that for all
δ ∈ (0, 1), with probability at least 1− δ, uniformly over all f ∈ F ,

(P− Pn)ℓ(f ; z) ≤ C

(
I(π, f, ϱS,ℓ, 1) +

√
log(log(2n)/δ)

n

)
,

and this is exactly Theorem 1.

Proof of Lemma 9: Setting the confidence parameter to δ/2 in (45) and to δ/2 in (46), a union
bound implies that both inequalities hold simultaneously with probability at least 1− δ. Combining
them yields Lemma 9.

□

We now verify condition (46) in Lemma 9, thereby completing the proof of Theorem 1. Condi-
tion (46) asserts a pointwise isomorphism: uniformly over all f ∈ F , an L2(PS′)–induced quantity
is controlled (up to absolute constants) by its fully L2(PS)–induced counterpart.

Such isomorphisms are a longstanding theme in empirical process theory. Our proof adopts a fixed-
point (localized Rademacher / generic-chaining) approach to transfer bounds from PS + PS′ to
purely PS , yielding the desired pointwise, uniform comparison over F . This route follows Section
4 in Bartlett et al. (2005) and Appendix A.4 of Xu & Zeevi (2025), but is developed here in the new
context of pointwise–dimension functionals.

For classical class-wide isomorphisms (where the deviation depends on a global complexity of the
class rather than a pointwise functional), see Klartag & Mendelson (2005) for bounded classes;
Mendelson et al. (2007); Mendelson (2010) for sub-Gaussian and heavy-tailed regimes; Mendelson
(2015) for weak small-ball conditions in unbounded settings; and Mendelson (2021) for a unified
synthesis of bounded and small-ball analyses. These works are now cornerstones of the field. Our
contribution refines this line by replacing global complexity with a purely pointwise complexity in
the isomorphism comparison.
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Basic properties of the truncated pointwise integral. We first state some basic properties of the
truncated pointwise integtal: it is sub-root in r and Lipchitz in g.

Lemma 10 (Basic properties of the truncated pointwise integral) For the truncated integral
I(µ, g, ϱ, r) defined in (44), the following hold.

(i) (Sub-root and fixed point) For each fixed g ∈ G, the map r 7→ I(µ, g, ϱ, r) is a sub-root
function. Consequently, by Definition 3.1 and Lemma 3.2 in Bartlett et al. (2005), there
exists a unique r⋆ ∈ (0,∞) such that I(µ, g, ϱ, r⋆) = r⋆, and for all r > 0,

r ≥ I(µ, g, ϱ, r) ⇐⇒ r ≥ r⋆.

(ii) (Lipschitz shift in g) For every g1 ∈ G, g2 ∈ G, r ≥ 0,

I(µ, g2, ϱ, r) ≤ I(µ, g1, ϱ, r) + ϱ(g1, g2).

Proof of Lemma 10: Fix g ∈ G and abbreviate

hg(ε) :=

√
log

1

µ
(
Bϱ(g, ε)

), Fg(u) :=

∫ u

0

hg(ε) dε, u ≥ 0.

Since ε 7→ Bϱ(g, ε) is increasing, µ(Bϱ(g, ε)) is nondecreasing, hence ε 7→ hg(ε) is nonincreasing;
therefore Fg is concave, nondecreasing and Fg(0) = 0.

(i) Sub-root. Write, for 0 ≤ α ≤ √
r,

Φg(r, α) := α+
1√
n

(
Fg(

√
r)− Fg(α)

)
so that I(µ, g, ϱ, r) = inf

0≤α≤√
r
Φg(r, α).

Nonnegativity is immediate. Monotonicity in r holds because Fg is nondecreasing. To prove the
sub-root property, consider for fixed α the function

r 7−→ Φg(r, α)√
r

=
α√
r
+

1√
n

Fg(
√
r)√
r

− 1√
n

Fg(α)√
r
.

The first and third terms are of the form c/
√
r and are thus nonincreasing in r. For the middle

term, set u =
√
r; by concavity of Fg and Fg(0) = 0, the map u 7→ Fg(u)/u is nonincreasing on

(0,∞). Hence r 7→ Fg(
√
r)/

√
r is nonincreasing. Therefore, for every fixed α, r 7→ Φg(r, α)/

√
r

is nonincreasing. Taking the infimum over α preserves this property: r 7→ I(µ, g, ϱ, r)/
√
r is

nonincreasing. Thus I(µ, g, ϱ, ·) is sub-root. The fixed-point and characterization then follow from
Lemma 3.2 in Bartlett et al. (2005).

(ii) Shift in g. Assume ϱ(g1, g2) = β. By the triangle inequality, for all ε ≥ 0,

Bϱ(g1, ε) ⊆ Bϱ(g2, ε+ β).

Hence µ(Bϱ(g2, ε+ β)) ≥ µ(Bϱ(g1, ε)) and therefore

√
log

1

µ
(
Bϱ(g2, ε+ β)

) ≤
√
log

1

µ
(
Bϱ(g1, ε)

).
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Using this, a change of variables u = ε+ β, and the constraint 0 ≤ α ≤ √
r, we obtain

I(µ, g2, ϱ, r) = inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

µ(Bϱ(g2, ε))
dε
}

≤ inf
0≤α≤√

r

{
α+

1√
n

∫ √
r

α

√
log

1

µ(Bϱ(g2, ε+ β))
dε
}

= inf
0≤α≤√

r

{
α+

1√
n

∫ √
r+β

α+β

√
log

1

µ(Bϱ(g2, u))
du
}

≤ inf
0≤α≤√

r

{
α+ β +

1√
n

∫ √
r

α

√
log

1

µ(Bϱ(g2, u))
du
}

≤ inf
0≤α≤√

r

{
α+ β +

1√
n

∫ √
r

α

√
log

1

µ(Bϱ(g1, u))
du
}

= I(µ, g1, ϱ, r) + β,

which proves the claim.

□

Pointwise Isomorphism via Fixed Point Analysis. Define ϱ̄(S,S′),ℓ to be the quadratic-loss-
induced L2 metric over the product space F × F , given by

ϱ̄(S,S′),ℓ((f
′
1, f

′
2), (f1, f2)) =

(
(PS + PS′)[(ℓ(f ′1, z)− ℓ(f ′2, z))

2 − (ℓ(f1, z)− ℓ(f2, z))
2]
)1/2

.

By Theorem 5, there exists an absolute constant C1 > 0 such that given a fixed, data-independent
prior µ ∈ ∆(F × F), for every δ ∈ (0, 1), with probability at least 1 − δ, uniformly over all
f1 ∈ F , f2 ∈ F ,∣∣(PS′ − PS)(ℓ(f1; z)− ℓ(f2; z))

2
∣∣

≤C1

(
inf
α≥0

{
α+

1√
n

∫ √
2(PS+PS′ )(ℓ(f1;z)−ℓ(f2;z))4

α

√
log

1

µ(Bϱ(S,S′)((f1, f2), ε)})
dε

}
+

√
log(log(2n)/δ)

n

)

≤C1

(
I(µ, (f1, f2), ϱ̄(S,S′),ℓ, 2(PS + PS′)(ℓ(f1; z)− ℓ(f2; z))

2) +

√
log(log(2n)/δ)

n

)
, (47)

where the first inequality applies Theorem 5 twice—once with g(z) = (ℓ(f1; z) − ℓ(f2; z))
2 at

confidence level δ/2 and once with g(z) = −(ℓ(f1; z) − ℓ(f2; z))
2 at confidence level δ/2—and

then takes a union bound; the second inequality uses the uniform bound |ℓ| ≤ 1, which implies
|ℓ(f1; z)−ℓ(f2; z)| ≤ 1 and hence (ℓ(f1; z)−ℓ(f2; z))4 ≤ (ℓ(f1; z)−ℓ(f2; z))2 pointwise, yielding
the L4–L2 comparison.

Given a fixed, data-independent π ∈ ∆(F), take µ to be the independent product measure π ⊗ π.
By Minkowski’s inequality (Wikipedia contributors, 2025c) and ℓ(f ; z) ∈ [0, 1] we have that for all
f1 ∈ F , f2 ∈ F ,

ϱ̄(S,S′),ℓ((f
′
1, f

′
2), (f1, f2)) ≤ 2ϱ(S,S′),ℓ(f

′
1, f1) + 2ϱ(S,S′),ℓ(f

′
2, f2).

Then we have the decomposition

log
1

µ(Bϱ̄(S,S′),ℓ((f1, f2), ε)

≤ log
1

π ⊗ π(f ′1 ∈ F , f ′2 ∈ F : ϱ(S,S′),ℓ(f
′
1, f1) ≤ ε

4 , ϱ(S,S′),ℓ(f
′
2, f2) ≤ ε

4 )

= log
1

π(Bϱ(S,S′),ℓ(f1, ε/4)
+ log

1

π(Bϱ(S,S′),ℓ(f2, ε/4)
. (48)
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Combining (47) and (48), we obtain that for all δ ∈ (0, 1), with probability at least 1 − δ, for all
f1 ∈ F , f2 ∈ F ,

ϱ2(S,S′),ℓ(f1, f2)− 2ϱ2S,ℓ(f1, f2)

=(PS′ − PS)(ℓ(f1; z)− ℓ(f2; z))
2

≤C2

(
I
(
π, f1, ϱ(S,S′),ℓ, (PS + PS′)(ℓ(f1; z)− ℓ(f2; z))

2/8
)

(49)

+ I
(
π, f2, ϱ(S,S′),ℓ, (PS + PS′)(ℓ(f1; z)− ℓ(f2; z))

2/8
)
+

√
log(log(2n)/δ)

n

)
, (50)

where C2 = 4C1 > 0 are absolute constants.

By Lemma 10,

ψS,S′(r; f) := sup
f ′∈F :ϱ2

(S,S′),ℓ(f
′,f)≤r

C2

(
I(π, f, ϱ(S,S′),ℓ, r/8) + I(π, f ′, ϱ(S,S′),ℓ, r/8) +

√
log(log(2n)/δ)

n

)
is a sub-root function, so there exists a unique fixed point r⋆S,S′ such that

r⋆S,S′(f) = ψS,S′(r⋆S,S′(f); f).

By the definition of sub-root function, for r ≥ 4r⋆S,S′(f), we have that

sup
(PS+PS′ )(ℓ(f ′;z)−ℓ(f ;z))2≤r

(ϱ(S,S′),ℓ(f1, f2)− 2ϱ2S,ℓ(f1, f2)) ≤ ψS,S′(r; f)

≤
√

r

r⋆S,S′(f)
ψS,S′(r⋆S,S′(f); f) =

√
r
√
r⋆S,S′(f) ≤ 1

2
r, (51)

where the first inequality is due to (50); the second inequality is by the definition of sub-root func-
tion; the equality is by the definition of fixed point; and the last inequality is by r ≥ 4r⋆S,S′(f). Com-
bining (47) and (51), we have the following: with probability at least 1 − δ, for all f ∈ F , f ′ ∈ F
such that (PS + PS′)(ℓ(f ′; z)− ℓ(f ; z))2 ≥ 4r⋆S,S′(f),∣∣(PS − PS′)(ℓ(f ′; z)− ℓ(f ; z))2

∣∣ ≤ 1

2
(PS + PS′)(ℓ(f ′; z)− ℓ(f ; z))2,

which implies that with probability at least 1 − δ, whenever (PS + PS′)(ℓ(f ′; z) − ℓ(f ; z))2 ≥
4r⋆S,S′(f),

4

3
PS(ℓ(f

′; z)− ℓ(f ; z))2 ≤ (PS + PS′)(ℓ(f ′; z)− ℓ(f ; z))2 ≤ 4PS(ℓ(f
′; z)− ℓ(f ; z))2. (52)

Therefore, with probability at least 1− δ, for all f ∈ F and r ≥ 4r⋆S,S′(f),

ψS(r; f) := sup
f ′∈F :2ϱ2

(S,S′),ℓ(f
′,f)≤3r/2

C2

(
I(π, f, 2ϱS,ℓ, r/8) + I(π, f ′, 2ϱS,ℓ, r/8) +

√
log(log(2n)/δ)

n

)
(53)

is a surrogate function of ψS,S′(r; f): with probability at least 1− δ,
ψS(r; f) ≥ ψS,S′(r; f), ∀r ≥ r⋆S,S′(f),∀f ∈ F .

Here replacing ϱ(S,S′),ℓ by 2ϱS inside the integral is by the metric monotonicity of pointwise dimen-
sion (Lemma 19) and the right hand side of (52); and replacing the constraint ϱ(S,S′),ℓ(f

′f) ≤ r by
the new constraint 2ϱS,ℓ(f ′f) ≤ 3r/2 outside the parentheses is due to the left hand side of (52)
and its implication: with probability at least 1− δ,

{f ′ ∈ F : ϱ(S,S′),ℓ(f
′f) ≤ r} ⊆ {f ′ ∈ F : 2ϱS,ℓ(f

′f) ≤ 3r/2}, ∀r ≥ r⋆S,S′(f),∀f ∈ F .
This means that with probability at least 1− δ, for all f ∈ F ,

ψS(r
⋆
S,S′(f); f) ≥ ψS,S′(r⋆S,S′(f); f) = r⋆S,S′(f).

Define the fixed point of ψS(f ; r) to be r⋆S(f). By the above inequality and the fact that sub-root
function has an unique fixed point (Lemma 10), we must have

r⋆S(f) ≥ r⋆S,S′(f). (54)
This implies that
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1. For all f ′ ∈ F , f ∈ F such that 2ϱ2S,ℓ(f
′, f) ≥ 3r⋆S(f)/2, by (52) and (54), we have that

(PS + PS′)(ℓ(f ′; z)− ℓ(f ; z))2 ≤ 4PS(ℓ(f
′; z)− ℓ(f ; z))2.

2. For all f ′ ∈ F , f ∈ F such that 2/3 · 2ϱ2S,ℓ(f ′, f) < r⋆S(f), we have that

2

3
· 2ϱ2S,ℓ(f ′, f) ≤ ψ

(
2

3
· 2ϱ2S,ℓ(f ′, f); f

)
≤C2

(
I(π, f, 2ϱS,ℓ, r/8) + I(π, f ′, 2ϱS,ℓ, r/8) +

√
log(log(2n))

n

)
,

where the first inequality is a simple consequence of the definition of fixed point: when
r ≤ r⋆S(f), r ≤ ψS(r; f); and the second inequality is be the definition of ψS(r; f) in (53).

Together, we obtain that with probability at least 1− δ, uniformly over all f ∈ F and f ∈ F ,

(PS + PS′)(ℓ(f ′; z)− ℓ(f ; z))2 − 4PS(ℓ(f
′; z)− ℓ(f ; z))2

≤C2

(
2I(π, f, 2ϱS,ℓ, ϱS,ℓ(f

′, f)/4) + 2ϱS,ℓ(f
′, f) +

√
log(log(2n)/δ)

n

)
By definition (53), we have

ψ(S,S′),ℓ(ϱ(S,S′),ℓ(f
′, f); f) ≤C2

(
2I(π, f, 2ϱS,ℓ, ϱS,ℓ(f

′, f)/4) + 2ϱS,ℓ(f
′, f) +

√
log(log(2n)/δ)

n

)
.

This is an inequality in the form of

r − 2r′ ≤ C2(a(r
′/8) + 2

√
r′),

where

a(r) = 2I(π, f, 2ϱS,ℓ, r) +

√
log(log(2n)/δ)

n
.

Solving the above inequality we have that there exists absolute constant C3 > 0, C4 > 0 such that
with probability at least 1− δ, uniformly over f ∈ F and f ′ ∈ F ,

ϱ(S,S′),ℓ(f1, f2) ≤ C3ϱS,ℓ(f1, f2) + C4

(
2I(π, f, 2ϱS,ℓ, ϱS,ℓ(f1, f2)/4) +

√
log(log(2n)/δ)

n

)
By the Lipchitz property in Lemma 10, we prove that there exists absolute constant C5 > 0 such
that

I(π, f, ϱ(S,S′),ℓ, 2(PS + PS′)ℓ(f ; z)2) ≤ C5

(
I(π, f, ϱS,ℓ, 1) +

√
log(log(2n)/δ)

n

)
This is exactly the condition (46) in Lemma 9, which enables us to prove Theorem 1 from Theorem
5.

□

C.7 PROOF OF THEOREM 2

We use the classical result that the expected uniform convergence is lower bounded by Gaussian
complexity of the centered class, up to a

√
log n factor, see Definition 2 and Lemma 15 in the

auxiliary lemma part for this classical result. To be specific, by Lemma 15 we have that

Ez

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≥ c1√

log n
Eg,z

[
sup
f∈F

1

n

n∑
i=1

gi(ℓ(f ; zi)− Ez[ℓ(f ; z)])

]

≥ c1√
log n

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)−
∣∣∣∣∣ 1n

n∑
i=1

gi

∣∣∣∣∣ · supF E[ℓ(f ; z)]

]

=
c1√
log n

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
− c1√

log n

√
2

πn
sup
F

E[ℓ(f ; z)], (55)
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where c1 > 0 is an absolute constant, and the equality use the fact that E[|Y |] =
√

2
πn for Y ∼

N(0, 1/n).

Now applying Lemma 12 to lower bounding the Gaussian process 1
n

∑n
i=1 giℓ(f ; zi) by the integral,

we have for any {zi}ni=1,

Eg

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
≥ c2 inf

π
sup
f∈F

∫ 1

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε,

taking expectation on both side yields

Eg,z

[
sup
f∈F

1

n

n∑
i=1

giℓ(f ; zi)

]
≥ c2E inf

π
sup
f∈F

∫ 1

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε. (56)

Combining (55) and (56), we have that there exist absolute constants c, c′ > 0 such that

E

[
sup
f∈F

(P− Pn)ℓ(f ; z)

]
≥ c√

n log n
E inf

π
sup
f∈F

∫ 1

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε− c′ supF E[ℓ(f ; z)]√
n log n

.

This inequality implies the following result

E

[
sup

π∈∆(F),f∈F

(
(P− Pn)ℓ(f ; z)−

c√
n log n

∫ 1

0

√
log

1

π(Bϱn,ℓ
(f, ε))

dε

)
+
c′ supF E[ℓ(f ; z)]√

n log n

]
≥ 0,

where we have used the facts that − infx h(x) = supx(−h(x)) and supx h1(x) − supx h2(x) ≤
supx(h1(x)− h2(x)).

□

C.8 BACKGROUND ON GAUSSIAN AND EMPIRICAL PROCESSES

It is now well understood that the supremum of Gaussian process can be tightly characterized by
the majorizing measure integral via matching upper and lower bounds up to absolute constants
(Fernique, 1975; Talagrand, 1987); the goal of this section is to extend this characterization to (1)
bounded empirical processes and (2) a truncated form of integral.

Background on Gaussian Processes. We begin by recalling several key results from a series
of seminal papers by Talagrand, Fernique, and others, which introduces the majorizing-measure
formulation of the generic chaining framework (Fernique, 1975; Talagrand, 1987). Note that generic
chaining have several equivament formulations (Talagrand, 2005), and the one closest to our purpose
is through majorizing measure.

A centered Gaussian random variableX is a real-valued measurable function on the outcome space
such that the law of X has density

(2πσ2)−1/2 exp
(
− x2

2σ2

)
.

The law of X is thus determined by σ = (E[X2])1/2. If σ = 1, X is called standard normal.

A Gaussian process is a family {Xt}t∈T of random variables indexed by some set T , such that every
finite linear combination

∑k
j=1 αjXtj is Gaussian. On the index set T , consider the semi-metric ϱ

given by

ϱ(u, v) =
√

E[(Xu −Xv)2]. (57)

Gaussian processes are thus a very rigid class of stochastic processes, with exceptionally nice prop-
erties that have been fully developed in the literature.

Fernique (1975) proved the following integral upper bound.
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Lemma 11 (Upper Bound of Gaussian Processes via Majorizing Measure, Fernique (1975))
Given a Gaussian process (Xt)t∈T with its metric ϱ defined by (57), we have

E
[
sup
t∈T

Xt

]
≤ C inf

π∈∆(T )
sup
t∈T

∫ ∞

0

√
log

1

π(Bϱ(t, ε))
dε,

where C > 0 is an absolute constant.

A prior π that makes the right hand side in Lemma 11 finite is called a majorizing measure. Fer-
nique conjectured as early as 1974 that the existence of majorizing measures might characterize
the boundedness of Gaussian processes. He proved a number of important partial results, and his
determination eventually motivated the Talagrand to attack the problem in 1987. Talagrand (1987)
proved that the integral in Lemma 11 is tight up to absolute constants; the upper bound in Lemma
11 is thus called the Fernique-Talagrand (majorizing measure) integral.

Lemma 12 (Lower Bound of Gaussian Processes via Majorzing Measure, Talagrand (1987))
Given a Gaussian process (Xt)t∈T with its metric ϱ defined by (57), we have

E
[
sup
t∈T

Xt

]
≥ c inf

π∈∆(T )
sup
t∈T

∫ ∞

0

√
log

1

π(Bϱ2
(t, ε))

dε,

where c > 0 is an absolute constant.

Thus the Fernique-Talagrand integral gives a complete characterization to the supremum of Gaussian
process.

Background on Empirical Processes. We now give several results on upper and lower bound-
ing empirical process by Rademacher and Gaussian complexities Giné & Zinn (1984); Bartlett &
Mendelson (2002).

Definition 2 (Rademacher and Gaussian complexities) For a function class F that consists of
mappings from Z to R, define the Rademacher complexity of F as

Rn(F) := Ez,ξ

[
sup
f∈F

1

n

n∑
i=1

ξif(zi)

]
,

where {ξi}ni=1 are i.i.d. Rademacher variables; and define the Gaussian complexity of F as

Gn(F) := Ez,g

[
sup
f∈F

1

n

n∑
i=1

gif(zi)

]
,

where {gi}ni=1 are i.i.d. standard Gaussian variables.

It is well-known that Rademacher and Gaussian complexities are upper bounds of empirical pro-
cesses (see, e.g., Lemma 7.4 in Van Handel (2014)):

Lemma 13 (Upper Bounds with Rademacher and Gaussian Complexities) For any function
class F that consists of mappings from Z to R, we have

E

[
sup
f∈F

(P− Pn)f(z)

]
≤ 2Rn(F) ≤

√
2πGn(F),

where Rn(F) and Gn(F) are (expected) Rademacher and Gaussian complexities defined in Defini-
tion 2.

We state a truncated form of the Fernique-Talagrand integral, adapted from Theorem 3 of Block
et al. (2021), and use it in the proof of Theorem 1. Up to absolute constants, this truncated form
is equivalent to the classical (nontruncated) Fernique-Talagrand integral; throughout, we interpret
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both forms as placing the infπ and supf∈F outside the integral.2 The truncated variant is often more
convenient for deriving tighter relaxations—for example, when fixing a particular prior π rather than
taking infπ , as used in Theorem 1.

Lemma 14 (Truncated integral bound) Given a function class F that consists of mappings from
Z to [0, 1]. Define the empirical L2(Pn) pseudometric

ρn(f1, f2) :=

√√√√ 1

n

n∑
i=1

(f1(zi)− f2(zi))
2
.

There exists an absolute constant C > 0 such that

Eξ

[
sup
f∈F

1

n

n∑
i=1

ξif(zi)

]
≤ C inf

α≥0

{
α +

1√
n

inf
π∈∆(F)

sup
f∈F

∫ 1

α

√
log

1

π
(
Bρn

(f, ε)
) dε} ,

where {ξi}ni=1 are i.i.d. Rademacher variables, and the left hand side of the above inequality is
called the empirical Rademacher complexity.

Remarks. (i) Because f ∈ [0, 1], the diameter of F with ρn is bounded by 1, which justifies
truncating the integral at 1 and adding the small–scale term α. (ii) An analogous bound holds for
Gaussian processes; we state the Rademacher version since it directly controls empirical processes
via symmetrization and is what we need for Theorem 1. (iii) The proof of Lemma 14 is a straight-
forward adaptation of Theorem 3 in Block et al. (2021), specializing their sequential argument to
the classical i.i.d. setting (with only minor notational changes).

The following result illustrate that Gaussian and Rademacher complexities can also be used to
lower bounding empirical processes.

Lemma 15 (Lower Bounds with Rademacher and Gaussian Complexities) For any function
class F that consists of mappings from Z to R, defined its centered class F̃ as {f − E[f(z)] :
f ∈ F}. We have

E

[
sup
f∈F

(P− Pn)f(z)

]
≥ 1

2
Rn(F̃) ≥ c√

log n
Gn(F̃),

where c > 0 is an absolute constant.

Proof of Lemma 15: Both the fact that uniform convergence admit a lower bound in terms of the
Rademacher complexity of the centered class, and the result that Rademacher complexity itself is
bounded below by Gaussian complexity up to a factor of

√
log n, are classical and admit simple

proofs. For a full proof of the first inequality, see Theorem 14.3 in Rinaldo & Yan (2016); for a
reference and proof sketch of the second inequality, see Problem 7.1 in Van Handel (2014).

□

Basic Concentration Inequalities. We state Mcdiarmid’s inequality, Hoeffding’s inquality, and
Bernstein’s inequality.

Lemma 16 (McDiarmid’s inequality (bounded differences), McDiarmid (1998)) Let
Z1, . . . , Zn be independent random variables with Zi ∈ Zi. Let h : Z1 × · · · × Zn → R
be a measurable function satisfying the bounded difference property: there are constants
c1, . . . , cn ≥ 0 such that for all i ∈ {1, · · · , n} and all Z1 ∈ Z1, · · · , Zn ∈ Zn,

sup
Z′

i∈Zi

∣∣h(Z1, · · · , Zi−1, Zi, Zi+1, · · · , Zn)− h(Z1, · · · , Zi−1, Z
′
i, Zi+1, · · · , Zn)

∣∣ ≤ ci.

2Sketch: for the γ2 functional, one may cap the chaining diameter at 1 at any scale α ∈ (0, 1], absorbing
finer scales into an additive α term. By the standard equivalences among the γ2 functional, admissible trees,
and the Fernique–Talagrand integral (see §6.2 of Talagrand (2014)), the truncated and nontruncated forms are
equivalent up to absolute constants.
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Step 1: Construction of data-independent priors

Prior on discrete rank set {1, . . . , p}
ρ(r) = Unif({1, ..., p})

data-independent

Prior on Grassmannian Gr(p, r)
µr = Unif(Gr(p, r))

data-independent

Prior on Subspace V̄ ∈ Gr(p, r)
πV̄,r = Unif(B2(1.58R) ∩ V̄)

data-independent

Step 2: Mixture, universal prior π (which is data-independent)

π(W ) =
∑
r ρ(r)

∫
Gr(p,r)

πV̄,r(W )µr(dV̄) ≥ ρ(r)
∫
Gr(W,ε)

πV̄,r(W )µr(dV̄)

Gr(W, ε): ’good’ subspaces that are close to Veff(G(W ), R, ε) by satisfying Eq. (3.6); Veff(G(W ), R, ε) is the subspace obtained from G(W ).

Step 3: Pointwise-dimension bound by Hierarchical covering and the prior π: for B := B%G(W )
(W,
√
nε)

log 1
π(B)

≤ log p︸︷︷︸
rank cost

+ log
1

µr(Gr(W, ε))︸ ︷︷ ︸
global Grassmannian cost (global atlas)

+ sup
V̄∈Gr(W,ε)

log
1

πV̄,r(B)
︸ ︷︷ ︸

local chart cost

where the rank cost is by the prior ρ(r); the local chart cost is bounded via Lemma 2; and the global atlas cost is bounded via Lemma 3.

Figure 3: Hierarchical construction of the data-independent prior π and its role in the pointwise-
dimension bound (one single-layer case).

Then for every t ≥ 0,

Pr
(
h(Z1, · · · , Zn)− E[h(Z1, · · · , Zn)] ≥ t

)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma 17 (Hoeffding’s inequality, Chapter 2 in Vershynin (2018)) Let Z1, · · · , Zn be inde-
pendent random variables with ai ≤ Zi ≤ bi almost surely. Then for every t ≥ 0,

Pr

(
n∑

i=1

Zi − E[Z] ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma 18 (Bernstein’s inequality, Chapter 2 in Vershynin (2018)) Let Z1, · · · , Zn be indepen-
dent mean–zero random variables with |Zi| ≤M almost surely. Then for every t ≥ 0,

Pr

(
n∑

i=1

Zi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1 E[Z2

i ] +
1
3 Mt

)
.

D FURTHER EXPLANATIONS AND PROOFS FOR DEEP NEURAL NETWORKS
AND RIEMANNIAN DIMENSION (SECTION 3)

D.1 ILLUSTRATIVE FIGURES

For intuition, we illustrate the construction of the prior π in the single-layer case—via the schematic
in Figure 3. From a top-down view, the prior π can be generated by first sampling the effective
rank r, then a subspace V̄ on the Grassmannian, and finally a weight W inside that subspace. The
general L-layer setting is then obtained by applying the same construction independently to each
layer and taking a product measure, which is enabled by the layer-wise decomposable structure of
neural networks (a consequence of our non-perturbative analysis).
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D.2 PROOF OF LEMMA 1 (NON-PERTURBATIVE FEATURE EXPANSION)

We start with the telescoping decomposition presented in the main paper, which serves as a non-
perturvative replacement of conventional Taylor expansion, where in each summand the only differ-
ence lie in W ′

l and Wl.

FL(W
′, X)− FL(W,X)

=

L∑
l=1

[σL(W
′
L · · ·W ′

l+1︸ ︷︷ ︸
controled byMl→L

σl︸︷︷︸
by1

(W ′
l Fl−1(W,X)︸ ︷︷ ︸

learned feature

))− σL(W
′
L · · ·W ′

l+1σl(Wl Fl−1(W,X)︸ ︷︷ ︸
learned feature

))],

Applying Cauchy-Schwartz inequality to the above identity, we have

||F (W ′, X)− F (W,X)||2F (58)

≤
L∑

l=1

L∥σL(W ′
L · · ·W ′

l+1σl(W
′
lFl−1(W,X)))− σL(W

′
L · · ·W ′

l+1σl(WlFl−1(W,X)))∥2F (59)

By the definition of local Lipschitz constant in Section 3, for all W ′ ∈ Bϱn
(W, ε),

∥σL(W ′
L · · ·W ′

l+1σl(W
′
lFl−1(W,X)))− σL(W

′
L · · ·W ′

l+1σl(WlFl−1(W,X)))∥F

≤Ml→L[W, ε]∥σl(W ′
lFl−1(W,X))− σl(WlFl−1(W,X))∥F. (60)

Because the activation function σl is 1−Lipschitz for each column, we have

∥σl(W ′
lFl−1(W,X))− σl(WlFl−1(W,X))∥F ≤ ∥(W ′

l −Wl)Ft−1(W,X)∥F. (61)

Combining (58) (60) and (61), we prove that

∥F (W ′, X)− F (W,X)∥2F ≤
L∑

l=1

L ·Ml→L[W, ε]
2 · ∥(W ′

l −Wl)Fl−1(W,X)∥2F.

□

D.3 METRIC DOMINATION LEMMA

Our non-perturbative expansion facilitates bounding the pointwise dimension of complex geometries
via metric comparison. By constructing a simpler, dominating metric (i.e., one that is pointwise
larger), we establish that the pointwise dimension of the original geometry is upper bounded by that
of this new, more structured geometry. This “enlargement” for analytical tractability, a concept with
roots in comparison geometry and majorization principles, is operationalized in Lemma 19.

Lemma 19 (Metric Domination Lemma) For two metrics ϱ1, ϱ2 defined on Rp, if ϱ1(W ′,W ) ≤
ϱ2(W

′,W ) for all W ′ ∈ Bϱ2
(W, ε), then for any prior π ∈ ∆(Rp) and any ε > 0, we have

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(W, ε))
.

Proof of Lemma 19: Because ϱ1(W ′,W ) ≤ ϱ2(W
′,W ) for all W ′ ∈ Bϱ2

(W, ε), we have that

Bϱ1
(W, ε) ⊇ Bϱ2

(W, ε).

So for any prior π on Rp, monotonicity of measures gives

π(Bϱ1
(W, ε)) ≥ π(Bϱ2

(W, ε)),

this implies

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(W, ε))
.

□

We then state an extension of the metric domination lemma, which turns pointwise dimension in a
high-dimensional space into a lower-dimensional subspace.
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Lemma 20 (Subspace Metric Domination Lemma) Given a metric ϱ1 defined on Rp a subspace
V ⊆ Rp, and a metric ϱ2 defined on V . Define the orthogonal projector to subspace V as PV(W ) :=

argminW̃∈V ∥W̃ −W∥2. If there exists ε1 ∈ (0, ε) such that for every W ′ ∈ V ,

(ϱ1(W
′,W ))2 ≤ (ϱ2(W

′,PV(W )))2 + ε21, (62)

then for any prior π ∈ ∆(V) , we have

log
1

π(Bϱ1(W, ε))
≤ log

1

π(Bϱ2(PV(W ),
√
ε2 − ε21))

. (63)

Proof of Lemma 20: By the condition (62), we know

Bϱ1
(W, ε) ⊇ Bϱ1

(W, ε) ∩ V ⊇ Bϱ2
(PV(W ),

√
ε2 − ε21),

and this gives the desired conclusion (63) in Lemma 20.

□

D.4 POINTWISE DIMENSION BOUND WITH REFERENCE SUBSPACE

Set Up of Reference Effective Subspace Consider the weight space B2(R) ⊂ Rp for vectorized
weights W , where B2(R) := {w ∈ Rp : ∥w∥2 ≤ R}. Given any fixed p × p PSD matrix G(W ),
order the eigenvalues λ1(G(W )), · · · , λp(G(W )) nonincreasingly. For notational convenience, we
suppress the dependence on G(W ) and write simply λk when no confusion can arise. We denote
Veff(G(W )), R, ε) to be the effective subspace—the true top-reff eigenspace—of G(W ). For noti-
aional convenience, we use reff as the abbreviation of reff(G(W ), R, ε), and V as an abbreviation of
Veff(G(W )), R, ε) when no confusion can arise.

Assume there is another r−dimensional subspace V̄ . We will show that if V̄ approximates V , then
using a prior supported on V̄ still yields a valid effective-dimension bound. This observation under-
pins the hierarchical covering argument in Theorem 3. For a self-contained introduction to subspaces
(collectively known as the Grassmannian) and their frame parameterizations (the Stiefel manifold);
see Section E.1, where we translate algebraic and differential-geometric insights into machine learn-
ing terminology.

Motivation of Approximate Effective Subspace. We can view the orthogonal projector to a sub-
space as a matrix (see the definition via the Stiefel parameterization in (87)), which is consistent with
the earlier operator notation characterized by ℓ2–distance in Lemma 20. Now define the projected
metric ϱV̄G(W ) as

ϱV̄G(W )(W1,W2) =
√
(PV̄(W1)− PV̄(W1))⊤G(W )(PV̄(W2)− PV̄(W2)) =

√
(W1 −W2)⊤P⊤

V̄ G(W )PV̄(W1 −W2).

By the subspace metric dominance lemma (Lemma 20), if P⊤
V̄ G(W )PV̄ approximates G(W ), we

can use prior over V̄ to bound the pointwise dimension and achieve dimension reduction.

We will require the following approximation error condition:

ϱproj,G(W )(V, V̄) = ∥G(W )
1
2 (PV − PV̄)∥op ≤

√
nε

4R
.

In Section E, we systematically study the ellipsoidal covering of Grassmannian, and establish that
we can always find V̄ that approximates V to the desired precision, with an additional covering cost
of the Grassmannain bound in the Riemannain Dimension. This generalizes the canonical projection
metric between subspaces into ellipsoidal set-up.

Effective Dimension Bound for Approximate Effective Subspace. We now present the lemma
that establish effective dimension bound using prior supported on approximate effective subspace
V̄ (not necessarily the true effective subspace Veff(G(W ), R, ε)). We state the main result of this
subsection (Lemma 2 in the main paper).
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Consider the weight space B2(R) ⊂ Rp for vectorized weights, and a pointwise ellipsoidal metric
defined via PSD G(W ). Let V̄ ⊆ Rp be a fixed r-dimensional subspace. Define the prior πV̄ =
Unif

(
B2(1.58R) ∩ V̄

)
. Then, uniformly over all (W, ε) such that the top-r eigenspace V of G(W )

can be approximated by V̄ to precision

ϱproj,G(W )(V, V̄) :=
∥∥G(W )1/2

(
PV − PV̄

) ∥∥
op ≤

√
nε

4R , (64)

we have

log
1

πV̄(BϱG(W )(W,
√
nε))

≤ 1

2

reff(G(W ),R,ε)∑
k=1

log

(
40R2λk(G(W ))

nε2

)
= deff(G(W ),

√
5R, ε).

Proof of Lemma 2: Given a fixed PSD matrix G(W ) with eigenvalues λ1 ≥ · · · ≥ λp, denote
reff = reff(G(W ), R, ε), and the projected metric ϱV̄G(W ) on V̄:

ϱV̄G(W )(W1,W2) =
√

(W1 −W2)⊤P⊤
V̄ G(W )PV̄(W1 −W2).

Since V is the top-reff eigenspace of G(W ), by the elementary property of eigendecomposition we
have that

G(W ) =P⊤
V G(W )PV + P⊤

V⊥
G(W )PV⊥

⪯P⊤
V G(W )PV + λreff+1 · P⊤

V⊥
PV⊥ , (65)

where V⊥ is orthogonal complement of V . It is also straightforward to see

P⊤
V G(W )PV ⪯ 2P⊤

V̄ G(W )PV̄ + 2(PV − PV̄)
⊤G(W )(PV − PV̄). (66)

Combining (65) and (66), we have the fundamental loewner order inequality

G(W ) ⪯ 2P⊤
V̄ G(W )PV̄ + 2(PV − PV̄)

⊤G(W )(PV − PV̄) + λreff+1 · P⊤
V⊥

PV⊥ . (67)

In order to apply the subspace metric domination lemma (Lemma 20), we hope to bound ∥W ′−W∥22
and apply that bound to the two last reminder terms in the right hand side of (67).

To bound ∥W ′ − W∥22, we firstly state the following lemma on the eigenvalue of P⊤
V̄ G(W )PV̄ ,

whose proof is deferred until after the current proof.

Lemma 21 (Eigenvalue Bound for Projected Metric Tensor) Assume V is the top-r eigenspace
of a PSD matrix Σ with eigenvalues λ1 ≥ · · · ≥ λp, then for a r−dimensional subspace V̄ we have
that for k = 1, 2, · · · , r,

λk ≥ λk(P⊤
V̄ ΣPV̄) ≥ λk/2− ∥Σ 1

2 (PV − PV̄)∥2op.

For every W ′ ∈ BϱV̄
G(W )

(PV̄(W ),
√
nε/4), we have ∀k = 1, · · · , reff,

∥W ′ − PV̄(W )∥22 ≤ (W ′ − PV̄(W ))⊤P⊤
V̄ G(W )PV̄(W

′ − PV̄(W ))

λreff(P⊤
V̄ G(W )PV̄)

≤ nε2

16λreff(P⊤
V̄ G(W )PV̄)

≤ nε2

8λreff − 16∥G(W )
1
2 (PV − PV̄)∥2op

≤ 1

3
R2, (68)

where the first inequality holds because if A is a symmetric positive definite matrix, then for all
vectors x, we have x⊤Ax ≥ λmin(A)∥x∥22; the second inequality used the condition of W ′ ∈
BϱV̄

G(W )
(PV̄(W ),

√
nε/4); the third inequality uses Lemma 21; and the last inequality uses λreff ≥

nε2

2R2 (by definition (10) of effective rank) and the approximation error condition (64). On the other
hand, we have that ∥W∥22 ≤ R2, so that for every W ′ ∈ BϱV̄

G(W )
(PV̄(W ),

√
nε/4)

∥W ′ −W∥22 = ∥W ′ − PV̄(W )∥22 + ∥PV̄⊥(W )∥22 ≤ 4

3
R2,
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combined with (68).

From the fundamental loewner order inequality (67), we establish the desired metric domination
condition: for all W ′ ∈ BϱV̄

G(W )
(PV̄(W ),

√
nε/4) and W ∈ B2(R),

(W ′ −W )⊤G(W )(W ′ −W )

≤(W ′ −W )⊤(2P⊤
V̄ G(W )PV̄)(W

′ −W ) + (2∥G(W )
1
2 (PV − PV̄)∥2op + λreff+1)∥W ′ −W∥22

≤2ϱV̄G(W )(W
′,PV̄(W ))2 +

5nε2

6
,

where the first inequality holds because of the loewner order inequality (67) and the property of
operator norm: x⊤Ax ≤ ∥A∥op · ∥x∥22 (one could also apply Lemma 21 to validate ∥P⊤

V⊥
PV⊥∥op ≤

1); and the last inequality uses the fact λreff+1 <
nε2

2R2 (by definition 10 of effective rank) and the
approximation error condition (64). Now we can apply the subspace metric domination lemma
(Lemma 20) and obtain: for any π ∈ ∆(V̄),

log
1

π
(
BϱG(W )

(W,
√
nε)
) ≤ log

1

π
(
B√

2ϱV̄
G(W )

(PV̄(W ),
√
nε/

√
6)
) ≤ log

1

π
(
BϱV̄

G(W )
(PV̄(W ),

√
nε/4)

) .
(69)

In particular, we choose π to be the uniform prior over V̄:

πV̄ = Unif(B2(1.58R) ∩ V̄).

Then we aim to prove that BϱV̄
G(W )

(PV̄(W ),
√
nε/4) ⊆ V̄ ∩ B2(1.58R). This is true because: 1)

for every W ′ ∈ BϱV̄
G(W )

(PV̄(W ),
√
nε/4), (68) suggests ∥W ′ − PV̄(W )∥22 ≤ 1

3R
2, and 2) for very

W ∈ B2(R), we have ∥PV̄(W )∥2 ≤ ∥W∥2 ≤ R. Combining this and the above inequality we have

∥W ′∥2 ≤ ∥W ′ − PV̄(W )∥2 + ∥PV̄(W )∥2 ≤ (
√
1/3 + 1)R < 1.58R.

This proves that BϱV̄
G(W )

(PV̄(W ),
√
nε/4) ⊆ V̄ ∩B2(1.58R), so we have

log
1

πV̄(BϱV̄
G(W )

(PV̄(W ),
√
nε/4)

=
Vol(V̄ ∩B2(1.58R))

Vol(BϱV̄
G(W )

(PV̄(W ),
√
nε/4))

. (70)

By the change–of–variables theorem in multivariate calculus (Wikipedia contributors, 2025a), the
linear map T = G(W )

1
2 implies the volume formula for ellipsoid E = BϱV̄

G(W )
(PV̄(W ),

√
nε/4)

with dimension reff, eigenvalues {λk(P⊤
V̄ G(W )PV̄)}reff

k=1 and radius
√
nε/4

Vol
(
E
)

= |detT |−1 Vol
(
T (E)

)
= (detG(W ))−1/2 Vol

(
B2(

√
nε/4)

)
=

(
reff∏
k=1

λk

)−1/2

Vol
(
B2(

√
nε/4)

)
,

Also by the change-of-variable theorem, we have that the volume of reff−dimensional isotropic ball
V ∩B2(2R) is

Vol(V̄ ∩B2(1.58R)) =

(
1.58R√
nε/4

)reff

Vol(B2(
√
nε/4)).

Hence, applying (69) (70) and combining it with the two above volume equalities, we have

log
1

πV̄
(
BϱG(W )

(W,
√
nε)
) ≤ log

1

πV̄(BϱV̄
G(W )

(PV̄(W ),
√
nε/4))

= log
Vol(V̄ ∩B2(1.58R))

Vol(BϱV̄
G(W )

(PV̄(W ),
√
nε/4))

≤ 1

2
log

(1.58R)2reff
∏reff

k=1 λk
(
√
nε/4)2reff

≤ 1

2

reff∑
k=1

log
40R2λk
nε2

= deff(G(W ),
√
5R, ε).
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Finally, since the prior construction πV̄ = Unif(B2(1.58R) ∩ V̄) only depends on V̄ rather than
W and ε, we have that uniformly over all (W, ε) ∈ B2(R) × [0,∞) such that V̄ approximates
Veff(G(W ), R, ε) to the precision (64),

log
1

πV̄(BϱG(W )
(W,

√
nε))

≤ deff(G(W ),
√
5R, ε),

which is the claimed bound. □

Proof of Lemma 21: The Courant–Fischer–Weyl max-min characterization (Wikipedia contribu-
tors, 2025b) states that for any Hermitian (i.e. symmetric for real matrices studying here) matrix,

λk(Σ) = max
S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤ΣW
∥W∥22

,

and we have that for any r−dimensional subspace V̄ ,

λk(P⊤
V̄ ΣPV̄) = max

S⊆V̄
dimS=k

min
W∈S
W ̸=0

W⊤P⊤
V̄ ΣPV̄W

∥W∥22
,

so we have λk(P⊤
V̄ ΣPV̄) ≤ λk for k = 1, 2, · · · , r.

Moreover, by the elementary property of eigendecomposition we have λk = λk(P⊤
V ΣPV), and by

the Courant–Fischer–Weyl max-min characterization we know that,

λk(P⊤
V ΣPV) = max

S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤(P⊤
V ΣPV)W

∥W∥22

≤ max
S⊆Rp

dimS=k

min
W∈S
W ̸=0

W⊤(2P⊤
V̄ ΣPV̄)W + ∥P⊤

V ΣPV − 2P⊤
V̄ ΣPV̄∥op∥W∥22

∥W∥22
=2λk(P⊤

V̄ ΣPV̄) + ∥P⊤
V ΣPV − 2P⊤

V̄ ΣPV̄∥op

≤2λk(P⊤
V̄ ΣPV̄) + 2∥(PV − PV̄)

⊤Σ(PV − PV̄)∥op,

where the first inequality is because for every fixed S and W we have W⊤(P⊤
V ΣPV)W ≤

W⊤(2P⊤
V̄ ΣPV̄)W + ∥P⊤

V ΣPV − 2P⊤
V̄ ΣPV̄∥op∥W∥22; and the last inequality is due to (66). There-

fore we have

λk(P⊤
V̄ ΣPV̄) ≥ λk/2− ∥Σ 1

2 (PV − PV̄)∥2op.

□

D.5 PROOF OF RIEMANNIAN DIMENSION BOUND FOR DNN (THEOREM 3)

In the language of Riemannian geometry (Jost, 2008), we regard a pointwise PSD, matrix-valued
function G(W ) as a (possibly degenerate) metric tensor; such a G(W ) endows the parameter space
R

∑L
l=1 dl−1dl with a (semi-)Riemannian manifold structure. The pointwise ellipsoidal metric in (9)

belongs to the following family of block-decomposable metric tensors.

Definition 3 (Metric Tensor of NN-surrogate Type) A metric tensor G(W ) (pointwise PSD-
valued function of size

∑L
l=1 dl−1dl ×

∑L
l=1 dl−1dl) is of “NN-surrogate” type if G(W ) is in the

form

G(W ) = blockdiag(A1(W )⊗ Id1 , · · · , Al(W )⊗ Idl
, · · · , AL(W )⊗ IdL

)

where Al(W ) ∈ Rdl−1×dl−1 .

By Lemma 1, the non-perturbative feature expansion gives rise to the metric tensorGNP(W ) defined
in (9); GNP(W ) belongs to the “NN-surrogate” class. We first record some elementary decomposi-
tion properties for this family of NN-surrogate metric tensors, and then prove Theorem 3.
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D.5.1 DECOMPOSITION PROPERTIES OF NN-SURROGATE METRIC TENSOR

The NN-surrogate metric tensor G(W ) in Definition 3 has decomposition properties described by
the next lemma.

Lemma 22 (Decomposition Properties of NN-surrogate Metric Tensor) Given a NN-surrogate
metric tensor G(W ) defined in Definition 3, for every W , we have the following decomposition
properties: First, the effective rank and dimension decompose to

reff(G(W ), R, ε) =

L∑
l=1

dl · reff(Al(W ), R, ε);

deff(G(W ), R, ε) =

L∑
l=1

dl · deff(Al(W ), R, ε).

Second, denote Veff(Al(W ), R, ε) the effective subspace (i.e., the top-reff(Al(W ), R, ε) eigenspace)
of Al(W ). Then the effective subspace of G(W ) is

Veff(G(W ), R, ε) = Veff(A1(W ), R, ε)d1 × · · · × Veff(AL(W ), R, ε)dL .

Proof of Lemma 22. It is straightforward to see that, first, the effective rank of the fixed matrix
G(W ) is

reff(G(W ), R, ε)

=max{k : 2λk(G(W ))R2 ≥ nε2}

=

L∑
l=1

max{k : 2λk(Al(W )⊗ Idl
)R2 ≥ nε2}

=

L∑
l=1

dl max{k : 2λk(Al(W ))R2 ≥ nε2}

=

L∑
l=1

dl · reff(Al(W ), R, ε);

and the effective dimension of the fixed matrix G(W ) is

deff(G(W ), R, ε)

=
1

2

reff(G(W ),R,ε)∑
k=1

log

(
8R2λk(G(W ))

nε2

)

=

L∑
l=1

1

2

reff(Al(W )⊗Idl ,R,ε)∑
k=1

log

(
8R2λk(Al(W )⊗ Idl

)

nε2

)

=

L∑
l=1

dl ·
1

2

reff(Al(W ),R,ε)∑
k=1

log

(
8R2λk(Al(W ))

nε2

)

=

L∑
l=1

dl · deff(Al(W ), R, ε).

Second, as the effective subspace of the matrix tensor product Al(W ) ⊗ Idl
is subspace ten-

sor product Veff(Al(W ), R, ε)dl , the effective subspace for NN-surrogate metric tensor G(W ) =
blockdiag(· · · ;Al(W )⊗ Idl

; · · · ) is

Veff(G(W ), R, ε) := Veff(A1(W ), R, ε)d1 × · · · × Veff(AL(W ), R, ε)dL .

□
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D.5.2 PROOF OF THEOREM 3

We firstly prove the following result, which is almost Theorem 3, with the only difference being
that the radius in the effective dimension depends on the global radius R rather than the pointwise
Frobenious norm ∥W∥F. Extending this result to Theorem 3 can be achieved via a simple application
of the “uniform pointwise convergence” principle (Xu & Zeevi, 2025) illustrated in Lemma 4.

Lemma 23 (Riemannian Dimension for NN-surrogate Metric Tensor—Global Radius Version)
Consider the NN-surrogate metric tensor in Definition 3, and the weight space BF(R). Then we
have that the pointwise dimension is bounded by the pointwise Riemannian Dimension as the
following: there exists a prior π such that uniformly over all W ∈ BF(R),

log
1

π(BϱG(W )
(W,

√
nε))

≤
L∑

l=1

(
dl · deff(Al(W ), CR, ε)︸ ︷︷ ︸

“must pay” cost at each W

+ dl−1 · deff(Al(W ), CR, ε)︸ ︷︷ ︸
covering cost of Grassmannian

+ log(dl−1)︸ ︷︷ ︸
covering cost of reff ∈ [dl−1]

)
,

where C > 0 is an absolute constant.

Proof of Lemma 23: The proof has two key steps: 1. Hierarchical covering argument, and 2.
Bound covering Cost of the Grassmannian. A crucial lemma about the ellipsoidal covering of the
Grassmannian, which is new even in the pure mathematics context, is deferred to Section E.

Step 1: Hierarchical Covering. As explained the main paper, the major difficulty is that the prior
measure πV it constructed, is defined over the effective subspace V , which itself encodes information
of the point W and ε > 0. The goal of our proof is to construct a “universal” prior π that does not
depend on V . This is achieved via a hierarchical covering argument (13), which we make rigorous
below.

The key idea of hierarchical covering is as follows: Firstly, for all W , we search for subspace V̄
that approximates the true effective subspace (top-reff eigenspace) Veff(G(W ), R, ε) to the precision
required by (64):

∥G(W )
1
2 (PV − PV̄)∥op ≤

√
nε

4R
, (71)

where G(W )
1
2 is the unique square root of PSD matrix G(W ) (see, e.g, (Wikipedia contributors,

2025d)). Then by Lemma 2 (Pointwise Dimension Bound for Nonlinear Manifold with Approximate
Effective Subspace), for every (W, ε) ∈ B2(R)× [0,∞) such that V̄ approximates Veff(G(W ), R, ε)
to the precision (71), the prior πV̄ = Unif(B2(1.58R) ∩ V̄) satisfies

log
1

πV̄(BϱG(W )
(W,

√
nε))

≤ deff(G(W ),
√
5R, ε) =

L∑
l=1

dl · deff(Al(W ),
√
5R, ε), (72)

where the first inequality is by Lemma 2 (see definition (11) of effective dimension); and the last
equality is by the decomposition property of NN-surrogate metric tensor (Lemma 22).

Secondly, we put a prior µ over all possible subspaces V and construct the “universal” prior

π(W ) =
∑
V
µ(V)× πV(W ), (73)

which implies that uniformly over all W ∈ BF(R),

log
1

π(BϱG(W )
(W,

√
nε))

= log
1∑

V µ(V)πV(BϱG(W )
(W,

√
nε))

≤ log
1

µ(V̄ : V̄ satisfies (71)) inf V̄ satisfies (71) πV̄(BϱG(W )
(W,

√
nε))

≤ log
1

µ(V̄ : V̄ satisfies (71)︸ ︷︷ ︸
covering cost of the Grassmannian

+

L∑
l=1

dl · deff(Al(W ),
√
5R, ε), (74)
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where the first equality is by definition (73) of the “universal” prior π; the first inequality is straight-
forward; and the last inequality is by (72) (the result of the “must pay” part in the hierarchical
covering) and the equivalence between B2(R) and BF(R).

The above hierarchical covering argument successfully gives a valid Riemannian Dimension, with
the cost of the additional covering cost given by the subspace prior µ. This explains our basic proof
idea. The remaining proof executes this basic proof idea.

Step 2: Bounding Covering Cost of the Grassmannian. Section E provides a systematical study
to the ellipsoidal metric entropy of Grassmannian manifold, which we detail the conclusion below.

Define
Gr(d, r) :=

{
r–dimensional linear subspaces of Rd

}
as the Grassmannian manifold.

Given a d × d PSD Σ, define the anisometric projection metric between two subspaces by (labeled
as Definition 4 in Section E)

ϱproj,Σ(V, V̄) = ∥Σ 1
2 (PV − PV̄)∥op, (75)

where Σ
1
2 is the square root of the PSD matrix Σ (see, e.g., (Wikipedia contributors, 2025d)).

Lemma 3 states that (note that we use ε1 and C0 here instead of ε and C in the original statement of
Lemma 3), given a Grassmannian Gr(d, r), for uniform prior µ = Unif(Gr(d, r)), we have that for
every V ∈ Gr(d, r), every ε1 > 0 and PSD matrix Σ ∈ Rd×d with eigenvalues λ1 ≥ · · ·λd ≥ 0, we
have the pointwise dimension bound

log
1

µ(Bϱproj,Σ(V, ε1))
≤ d− r

2

r∑
k=1

log
C0 max{λk, ε21}

ε21
+
r

2

d−r∑
k=1

log
C0 max{λk, ε21}

ε21
, (76)

where C0 > 0 is an absolute constant. We will use the result (76) and (74) to prove Theorem 3.

For a particular layer l, dl−1 × dl−1 PSD matrix Al(W ), and a fixed rank rl denote Gr(dl−1, rl) as
a Grassmannian (the collection of all rl-dimensional in Rdl−1 ). By (76) we have that there exists
a prior µl over Gr(dl−1, rl) such that for every (W, ε1) such that reff(Al(W ), R, ε1) = rl, and
λrl+1(Al(W )) ≤ cε21 ≤ λrl(Al(W )) where c ≥ 1 can be any absolute constants no smaller than 1
(later we will specialize to c = 8),

log
1

µl(V̄ : ϱproj,Al(W )(Veff(Al(W ), R, ε), V̄) ≤ ε1)
≤ dl−1

2

rl∑
k=1

log
C1λk(Al(W ))

ε21
, (77)

where C1 = cmax{C0, 1} ≥ 1 is an absolute constant depending only on the absolute constant c
(later we take c = 8 so C1 = 8max{C0, 1} is indeed an absolute constant). (77) is because: 1) all
eigenvalues with index at least rl + 1 (each no larger than c ε21) contribute only through the second
term in (76). Their cumulative effect is at most

1{dl−1 − rl > rl} ·
rl
2

dl−1−rl∑
k=rl+1

log
C0cε

2
1

ε21
=
rl max{dl−1 − 2rl, 0}

2
logC0c ≤

rl(dl−1 − rl)

2
logC0c

unaffected to the spectrum, and we absorb this into the absolute constant C1. And 2) all eigenvalues
with index at most rl’s contribution leads to at most

dl−1 − rl
2

rl∑
k=1

log
C0λk(Al(W ))

ε21
+
rl
2

max{rl,dl−1−rl}∑
k=1

log
C0λk(Al(W ))

ε21
≤ dl−1

2

rl∑
k=1

log
max{C0, 1}λk(Al(W ))

ε21
.

Summing up the contributions two parts of the spectrum together, we get the right hand side of (77).

By the subspace decomposition property in Lemma 22, we have that for V̄ = (· · · , V̄l, · · · , V̄l︸ ︷︷ ︸
repeat dl times

, · · · ),

ϱproj,G(W )(Veff(G(W ), R, ε), V̄)

=ϱproj,G(W )(

L∏
l=1

Veff(Al(W ), R, ε)dl ,

L∏
l=1

V̄dl

l )

=max
l
ϱproj,Al(W )(Veff(Al(W ), R, ε), V̄l), (78)
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where the first equality is by Lemma 22, and the second equality is by the properties of the spectral
norm: ∥blockdiag(A,B)∥op = max{∥A∥op, ∥B∥op} and ∥A⊗ Id∥op = ∥A∥op.

Taking ε1 =
√
nε

4R , by definition (10) on the threshold to determine effective rank, we obtain
λrl+1(Al(W )) ≤ 8ε21 = nε2/(2R2) ≤ λrl(Al(w)), thus this particular choice satisfies the re-
quired eigenvalue condition to establish (77) with c = 8. Then for all layers l = 1, · · · , L, given a
fixed {r1, · · · , rL}, by (77), we have that there exists a prior

µ{rl}L
l=1

= µd1
1 ⊗ · · · ⊗ µdL

L =

L∏
l=1

(µl ⊗ · · · ⊗ µl︸ ︷︷ ︸
dl times

) (79)

over the product Grassmannian Gr(d0, r1)d1 × · · · × Gr(dL−1, rL)
dL such that uniformly over all

W ∈ BF(R) such that reff(Al(W ), R, ε) = rl, ∀l ∈ [L] (here [L] is the notation of {1, 2, · · · , L}),
the “Grassmannian covering cost” term in (74) is bounded by

log
1

µ(V̄ : V̄ satisfies (71))

= log
1

µ{rl}L
l=1

(V̄ : ϱproj,G(W )(Veff(G(W ), R, ε), V̄) ≤
√
nε

4R = ε1)

≤ log
1

µ{rl}L
l=1

((· · · , V̄l, · · · , V̄l︸ ︷︷ ︸
dl times

, · · · ) : ϱproj,Al(W )(Veff(Al(W ), R, ε), V̄l) ≤ ε1, ∀l ∈ [L])

=

L∑
l=1

log
1

µ{rl}L
l=1

(· · · , V̄l, · · · ) : ϱproj,Al(W )(Veff(Al(W ), R, ε), V̄l) ≤ ε1)

≤
L∑

l=1

dl−1

2

rl∑
k=1

log
C1λk(Al(W ))

ε21

≤
L∑

l=1

dl−1deff(Al(W ),
√

2C1R, ε), (80)

where the first inequality is by restricting V̄ to the form
∏L

l=1 V̄dl

l and using (78); the second equality
is by the choice of the product prior (79); the second inequality is by the layer-wise covering bound
(77); and the last inequality is by the choice ε1 =

√
nε/(4R), and definition (11) of effective

dimension.

Note that (80) is uniformly over all W ∈ BF(R) such that reff(Al(W ), R, ε) = rl, ∀l ∈ [L], not
uniformly over all W ∈ BF(R). We would like to extend (80) to all W ∈ BF(R) over uniform prior
over possible integer values of rl. Now assign uniform prior over [dl−1] = {1, · · · , dl−1} for rl, we
obtain the “universal” prior π (as we have pursued in in our hierarchical covering argument (73))
defined by

µ(V) =
L∏

l=1

Unif([dl−1])︸ ︷︷ ︸
prior of rl

⊗ µ{rk}L
k=1︸ ︷︷ ︸

prior over product Grassmannian in (79)

,

π(W ) =
∑
V

µ(V)︸ ︷︷ ︸
prior over subspaces defined above

⊗ Unif(B2(1.58R) ∩ V̄)︸ ︷︷ ︸
uniform prior constrained in subspace

. (81)
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Then we have that uniformly over all W ∈ BF(R),

log
1

π(BϱG(W )
(W,

√
nε))

≤ log
1

µ(V̄ : V̄ satisfies (71))
+

L∑
l=1

dl · deff(Al(W ),
√
5R, ε))

≤
L∑

l=1

log dl−1 + log
1

µ{rk}L
k=1

(V̄ : V̄ satisfies (71))
+

L∑
l=1

dl · deff(Al(W ),
√
5R, ε))

≤
L∑

l=1

log dl−1 +

L∑
l=1

dl−1 · deff(Al(W ),
√

2C1R, ε) +

L∑
l=1

dl · deff(Al(W ),
√
5R, ε)),

where C1 > 0 is an absolute constant. Here the first inequality is by the hierarchical covering
argument (74); the second inequality is by the prior construction (81); and the third inequality is by
the Grassmannian covering bound (80) for fixed {rk}Lk=1. This shows that for NN-surrogate metric
tensor G(W ), the pointwise dimension is bounded by the Riemannian Dimension as the following:

log
1

π(BϱG(W )
(W,

√
nε))

≤
L∑

l=1

(dl + dl−1) · deff(Al(W ), CR, ε) + log(dl−1),

where C is a positive absolute constant. This finishes the proof of Lemma 23 with R in effective
dimension being a global upper bound of ∥W∥F.

□

Proof of Theorem 3: Motivated by the “uniform pointwise convergence” principle (proposed
in Xu & Zeevi (2025) and illustrated in Lemma 4), we apply a peeling argument to adapt the
Riemannian Dimension to ∥W∥F. Given any R0 ∈ (0, R], we take Rk = 2kR0 for k =
0, 1, · · · log2⌈R/R0⌉. Taking a uniform prior on these Rk, and set

π̃ = Unif({R0, · · · , 2log2⌈R/R0⌉R0})︸ ︷︷ ︸
prior over upper bound R̃ of ∥W∥F

⊗ πR̃︸︷︷︸
prior defined via (81)

,

where πR̃ is the prior defined via (81) in the proof of Lemma 23. Then for every W ∈ BF(R) where
∥W∥F > R0, denote k(W ) to be the integer such that 2k(W )R0 < ∥W∥F ≤ 2k(W )+1R0, then

log
1

π̃(BϱG(W )
(W,

√
nε))

≤ log log2⌈R/R0⌉︸ ︷︷ ︸
density of 2k(W )+1R0

+ log
1

π2k(W )+1R0
(BϱG(W )

(W,
√
nε))︸ ︷︷ ︸

π is constructed via (81), with global radius taken to be 2k(W )+1R0

≤ log log2⌈R/R0⌉+
L∑

l=1

((dl + dl−1) · deff(Al(W ), C12
k(W )+1R0, ε) + log dl−1)

≤ log log2⌈R/R0⌉+
L∑

l=1

((dl + dl−1) · deff(Al(W ), C1 · 2∥W∥F, ε) + log dl−1),

where the first inequality is due to the product construction of π̃; the second inequality is due to
Lemma 23, with C1 > 0 being an absolute constant; and the last inequality uses the fact ∥W∥F ≤
2k(W )+1R0 ≤ 2∥W∥F, with C1 > 0.
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The above bound assumes ∥W∥F > R0. When ∥W∥F ≤ R0, we directly apply Lemma 23 and
obtain

log
1

π̃(BϱG(W )
(W,

√
nε))

≤ log log2⌈R/R0⌉︸ ︷︷ ︸
density of R0

+ log
1

πR0
(BϱG(W )

(W,
√
nε))︸ ︷︷ ︸

π is constructed via (81), with global radius taken to be R0

≤ log log2⌈R/R0⌉+
L∑

l=1

(dl + dl−1) · deff(Al(W ), C1 ·R0, ε) + log dl−1).

Combining the two cases discussed above, we conclude that the pointwise dimension for NN-
surrogate metric tensor G(W ) in Definition 3 is bounded by the Riemmanin Dimension

log
1

π̃(BϱG(W )
(W,

√
nε))

≤ dR(W, ε)

=

L∑
l=1

(dl + dl−1) · deff(Al(W ), Cmax{∥W∥F, R0}) + log(dl−1 log2⌈R/R0⌉),

where C = 2C1 is a positive absolute constant.

Finally, by the sentence below (9) (which is a straightforward result from non-perturbative feature
expansion for DNN (Lemma 1) and the metric domination lemma (Lemma 19)), we know that there
exists a prior π̃ such that uniformly over all W ∈ BF(R),

log
1

π̃(Bϱn(f(W, ·), ε))
≤ log

1

π̃(BϱGNP(W )
(W,

√
nε))

≤ dR(W, ε) =

L∑
l=1

(dl + dl−1) · deff(Al(W ), Cmax{∥W∥F, R0}) + log(dl−1 log2⌈R/R0⌉),

where Al(W ) = LM2
l→L(W, ε) · Fl−1(W,X)F⊤

l−1(W,X) when taking G(W ) to be GNP(W ) de-
fined in (9). Taking R0 = R/2n proves Theorem 3.

□

E ELLIPSOIDAL COVERING OF THE GRASSMANNIAN (LEMMA 3)

The central goal of this section is to prove the following result on the ellipsoidal metric entropy of
the Grassmannian manifold. The definition for Gr (Grassmannian manifold), St (Stiefel parameter-
ization manifold) are temporarily deferred to Section E.1.

Definition 4 (Ellipsoidal Projection Metric) For two subspaces V, V̄ ∈ Gr(d, r), and a positive
semidefinite matrix Σ, define the ellipsoidal projection metric ϱproj,Σ by

ϱproj,Σ(V, V̄) = ∥Σ 1
2 (PV − PV̄)∥op,

where PV and PV̄ are orthogonal projectors to subspace V and V̄ , respectively.

We view orthogonal projectors as matrices (see the definition via the Stiefel parameterization in
(87)), consistent with the earlier operator notation characterized by ℓ2–distance in Lemma 20. In the
isotropic case Σ = Id, the ellipsoidal projection metric reduces to the standard isotropic projection
metric

ϱproj(V, V̄) =
∥∥PV − PV̄

∥∥
op.

We now state our main result in this section (Lemma 3 in the main paper).
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Consider the Grassmannian Gr(d, r) and the uniform prior µ = Unif(Gr(d, r)), then for every
V ∈ Gr(d, r), every ε > 0 and every PSD matrix Σ with eigenvalues λ1 ≥ · · ·λd ≥ 0, we have

log
1

µ(Bϱproj,Σ(V, ε))
≤ r

2

d−r∑
k=1

log
Cmax

{
λk, ε

2
}

ε2
+
d− r

2

r∑
k=1

log
Cmax

{
λk, ε

2
}

ε2
, (82)

where C > 0 is an absolute constant.

Recall that the traditional covering number bound for the Grassmannian manifold states that( c
ε

)r(d−r)

≤ N(Gr(d, r), ϱproj, ε) ≤
(
C

ε

)r(d−r)

. (83)

Here N(F , ϱ, ε) is the standard covering number— the smallest size of an ε-net that covers F under
the metric ϱ; see Definition 5 for details. In comparison, Lemma 3 is much more challenging than
proving classical isotropic covering number bounds (83) because

• 1) we consider ellipsoidal metric;
• 2) we require the prior µ to be independent with Σ and ε.

We need to firstly understand how such classical results are proved, and then proceed to generalized
them. This suggests that deep mathematical insights are necessary for the purpose to study neural
networks generalization, as we will introduce below.

From Pure Mathematics to Machine Learning Language. Understanding the classical proof
for the Grassmannian and generalizing them to prove Lemma 3 necessitate the a deep dive in
to the geometry and algebra of subspaces and Grassmannians. In fact, traditional treatments to
study Grassmannian manifold often invoke advanced machinery—ranging from differential geom-
etry (Bendokat et al., 2024) and Lie-group theory (Szarek, 1997) to algebraic geometry (Devriendt
et al., 2024), and the seminal covering number proof (Szarek, 1997) is particularly stated in Lie-
algebra and differential-geometry language.

Motivated by the subsequent covering number proof (Pajor, 1998) that uses relatively more elemen-
tary language, we give an exposition that is elementary and entirely self-contained, relying only
on matrix-analysis and learning-theoretic techniques familiar from machine learning. In particular,
every “advanced” fact—for example, the group theory of continuous symmetries traditionally han-
dled via Lie groups—is derived by elementary means (explicit matrix parameterizations, principal-
angle/cosine-sine representations, and basic spectral arguments) while preserving the high-level ge-
ometric intuition. We hope that this versatile framework—and our novel contributions (e.g., Defini-
tion 4 and Lemma 3), which are new even in a pure-mathematics setting—will establish subspaces,
the Grassmannian, and their underlying algebraic structures as powerful tools for future machine
learning applications.

Effective Rank vs. Full-Spectrum Complexity. Consider a covariance matrix Σ with eigenvalues
λ1 ≥ · · ·λd ≥ 0. By Definition 4, the ellipsoidal metric satisfies

ϱproj,Σ(V, V̄) ≤ λ
1
2
1 ϱproj(V, V̄).

If one is willing to accept a coarser complexity scaling, then one could invoke existing Grassmannian
covering results under the canonical isotropic metric (83) (taking µ = Unif(Gr(d, r))) and obtain

log
1

µ
(
Bϱproj,Σ(V, ε)

) ≤ log
1

µ
(
Bϱproj

(
V, ε/

√
λ1
)) ≤

(
d− reff(Σ, R, ε)

)
reff(Σ, R, ε) log

Cλ1
ε2

.

(84)

However, this makes the global atlas cost dominate the local chart cost, yielding a suboptimal
bound than the full–spectrum effective dimension in (82). The refined analysis in this section—also
simplifying and strengthening the isotropic route—establishes the correct structural principle: the
global–atlas cost must be balanced by the local–chart cost. Thus, while the effective–rank bound
(84) serves as a useful sanity check, the full–spectrum treatment is what delivers the sharpened
complexities required for our main results.
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E.1 GRASSMANNIAN MANIFOLD, STIEFEL PARAMETERIZATION, AND ORTHOGONAL
GROUPS

Fix integers r ≤ d. Define

Gr(d, r) :=
{
r–dimensional linear subspaces of Rd

}
as the Grassmann manifold. Write

St(d, r) :=
{
V ∈ Rd×r : V ⊤V = Ir

}
for the Stiefel manifold of r orthonormal columns in Rd. St(d, r) is a convenient parameterization
of that class Gr(d, r).

If for subspace V ∈ Gr(d, r) and matrix V ∈ St(d, r) we have V = span(V ), then we say V
is a parameterization matrix of V . Though such parameterization is not unique, the associated
orthogonal projector and projection metric are both unique. Moreover, the anisometric projection
we define in Definition 4 is also unique. We will prove these shortly.

Write

O(r) := {Q ∈ Rr×r : Q⊤Q = QQ⊤ = Ir}
to be the orthogonal group. Optionally, we also state that (in the real setting)

Gr(d, r) ∼= O(d)
/(
O(r)×O(d− r)

) ∼= Gr
(
d, d− r

)
, (85)

where “/” denotes the quotient and “∼=” denotes a canonical isomorphism (indeed, a diffeomor-
phism of smooth manifolds or a homeomorphism of topological manifolds; see, e.g., Chapter 1.5 in
(Awodey, 2010)). Moreover, Gr(d, r) can be regarded as a standard algebraic variety (Devriendt
et al., 2024). We do not aim to explain these notions in detail, but merely note that:

1. The geometric properties of Gr(d, r) coincide with those of Gr(d, d − r) under this iso-
morphism (geometric equivalence).

2. The number of degrees of freedom of Gr(d, r) is

d(d− 1)

2︸ ︷︷ ︸
dimO(d)

− r(r − 1)

2︸ ︷︷ ︸
dimO(r)

− (d− r)(d− r − 1)

2︸ ︷︷ ︸
dimO(d−r)

= r(d− r), (86)

which also appears as the dimension factor in the precise covering-number bounds (83).

We now define the orthogonal projector and the projection metric on the Grassmannian manifold.

Definition of Orthogonal Projector. For V ∈ St(d, r) and its column-space V = span(V ), define
the rank-r orthogonal projector3

PV := V V⊤ ∈ Rd×d. (87)

Then PV depends only on the subspace V . Indeed, if Q ∈ O(r) then (V Q)(V Q)⊤ = V QQ⊤V ⊤ =
V V ⊤, so V and V Q represent the same subspace. Hence the map

Ψ : St(d, r) −→ Gr(d, r), V 7→ span(V ),

is an O(r)−quotient: two frames give the same subspace iff they differ by a right orthogonal factor.

Ellipsoidal Projection Metric. Following Definition 4, for V, V̄ ∈ Gr(d, r),

ϱproj,Σ(V, V̄) := ∥Σ 1
2 (PV − PV̄)∥op, (88)

where PV := V V⊤ for any V such that span(V ) = V (similarly PV̄ ). Because PV is unique for
each subspace, ϱproj,Σ is well defined (independent of the chosen V ). The metric can be pulled back
to St(d, r):

ϱproj,Σ(V, V̄ ) := ϱproj,Σ
(
span(V ), span(V̄ )

)
= ∥Σ 1

2 (V V ⊤ − V̄ V̄ ⊤)∥op. (89)
3By elementary linear algebra, the matrix definition of the orthogonal projector P here coincides with the

ℓ2−projection characterized in Lemma 20; thus the notation is consistent.
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E.2 PRINCIPAL ANGLES BETWEEN SUBSPACES

W study how metrics and angles between images V and V̄ affect their spectral properties. We
introduce principal angles and the cosine–sine (CS) decomposition—standard tools for analyzing
subspaces (see, e.g., Chapter 6.4.3 in (Golub & Van Loan, 2013)).

Principle Angles and Cosine-Sine representation. Let U and Ū be two d×d orthogonal matrix,
and V and V̄ be the first r columns of U and Ū , respectively. We are interested in studying the
metrics and angles between r−dimensional subspaces V = span(V ) and V̄ = span(V̄ ). Formally,
denote

U, Ū ∈ O(d), U =
[
V V⊥

]
, Ū =

[
V̄ V̄⊥

]
,

where
V, V̄ ∈ R d×r, V ⊤V = Ir, V̄ ⊤V̄ = Ir,

and
V⊥, V̄⊥ ∈ R d×(d−r), V ⊤

⊥ V⊥ = I d−r, V̄ ⊤
⊥ V̄⊥ = I d−r.

Since U, Ū ∈ O(d), their product U⊤Ū is itself orthogonal. Writing

U⊤ Ū =

(
V ⊤

V ⊤
⊥

) [
V̄ V̄⊥

]
=

(
V ⊤V̄ V ⊤V̄⊥

V ⊤
⊥ V̄ V ⊤

⊥ V̄⊥

)
,

define the four blocks

C︸︷︷︸
r×r

= V ⊤V̄ , C⊥︸︷︷︸
r×(d−r)

= V ⊤V̄⊥, (90)

S︸︷︷︸
(d−r)×r

= V ⊤
⊥ V̄ , S⊥︸︷︷︸

(d−r)×(d−r)

= V ⊤
⊥ V̄⊥. (91)

Thus

U⊤Ū =

(
C C⊥

S S⊥

)
∈ O(d).

Now we introduce principal angles between V = span(V ) and V̄ = span(V̄ ) by writing

C = V ⊤V̄ = Q1 diag(cos θ1, · · · , cos θr)W⊤
1 , Q1,W1 ∈ O(r), (92)

where

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π/2

are called the principle angles between subspaces V and V̄; and where {cos θ1, · · · , cos θr} are the
singular values of C. Simultaneously, we have that the eigenvalues of S, C⊥, S⊥ are (notation sepc
means spectrum, the set of singular values)

spec(S) = {sin θ1, · · · , sin θmin{r,d−r}, 0, · · · , 0︸ ︷︷ ︸
max{d−2r,0}

},

spec(C⊥) = {sin θ1, · · · , sin θmin{r,d−r}, 0, · · · , 0︸ ︷︷ ︸
max{d−2r,0}

}

spec(S⊥) = {cos θ1, · · · , cos θmin{r,d−r}, 1, · · · , 1︸ ︷︷ ︸
max{d−2r,0}

}. (93)

The above representation in (92) and (93) are without loss of generality: if r ≤ d − r, then all the
four spectrum contain all r principal angles; if r > d − r, then only first d − r principal angles
{θk}d−r

k=1 can be smaller than π/2 and θk = 0 for all d− r + 1 ≤ k ≤ r.

The cosine–sine representation of the eigenvalues in (92) and (93) motivates our notation C and S
when defining block matrices in (90) and (91). This representation is an immediate consequence of
the classical CS decomposition for orthogonal matrices (Paige & Wei, 1994; Golub & Van Loan,
2013), and we henceforth regard the resulting eigenvalue characterization as given.
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Projection Metric via Principal Angles. For subspaces V and V̄ , recall that for orthogonal pro-
jectors

PV = V V ⊤, PV̄ = V̄ V̄ ⊤,

It is known that the projection metric defined in (88) and (89) are equal to sin θr, sine of the largest
principal angle between the two subspaces. Formally, there is the fact (see, e.g., the last equation in
Section 6.4.3 in (Golub & Van Loan, 2013))

ϱproj = ∥PV − PV̄∥op = max
1≤k≤r

sin θk = sin θr. (94)

Here θi is the i-th principal-angle between V and V̄ , and the spectral norm of the difference of two
projectors equals the largest of these sines.

E.3 LOCAL CHARTS OF THE GRASSMANNIAN

In differential geometry, a chart is a single local coordinate map. An atlas is the whole collection
of charts that covers the manifold. We introduce a useful atlas that consists of finite graph charts,
which only rely on elementary linear algebra and avoid more advanced Lie algebra and exponential
map techniques in Szarek (1997).

Choose a reference subspace V̄ ∈ Gr(d, r) and its parameterization matrix V̄ ∈ St(d, r). Denote
X ∈ R(d−r)×r to be mappings from r−dimensional subspace V̄ to (d− r)−dimensional subspace
V̄⊥. Every r–dimensional subspace close to V̄ can be written as the graph

V(X) := span
{
[V̄ V̄⊥]

(
Ir
X

)}
, X ∈ R(d−r)×r, (95)

where V(X) is the subspace spanned by the columns of [V̄ V̄⊥]

(
Ir
X

)
(the matrix multiplication).

Given the reference subspace V̄ , define the local graph chart from R(d−r)×r to Gr(d, r) by

ϕV̄ : X 7−→ V(X) ∈ Gr(d, r). (96)

Note that for the (d− r)× r zero matrix (denoted as 0), we have ϕV̄(0) = V̄ .

Intuition for the graph chart. If a subspace V is close to V̄—specifically, ϱproj(V, V̄) = sin θr <
1—then all principal angles between V and V̄ satisfy θi < π/2. Equivalently, the orthogonal pro-
jection PV̄ restricted to V is a bijection PV̄ |V : V → V̄ . In the orthonormal basis [V̄ V̄⊥], this means
every v ∈ V can be written uniquely as

v = [V̄ V̄⊥]

(
v̄
X v̄

)
,

(
v̄
0

)
∈ span

{(
Ir
0

)}
,

for a linear mapX ∈ R(d−r)×r. Thus, locally around V̄ (all principal angles< π/2), every r−plane
admits—and is uniquely determined by—its graph parameter X . We call X the graph parameteri-
zation of V(X) in this image. This is formalized as the following lemma.

Lemma 24 (Local Bijection of Graph Chart) Fix an orthonormal decomposition Rd = V̄ ⊕ V̄⊥
with basis [V̄ V̄⊥]. Then every r−dimensional subspace V such that ϱproj(V, V̄) < 1 (i.e., all
principal angles < π/2) can be written uniquely as a graph

V = ϕV̄(X) = span

{
[V̄ V̄⊥]

(
Ir
X

)}
, X ∈ R(d−r)×r.

Proof of Lemma 24: If V ∈ St(d, r) spans V , block it in the [V̄ V̄⊥] basis: denote(
A

B

)
:=

(
V̄ ⊤

V̄ ⊤
⊥

)
V (A ∈ Rr×r, B ∈ R(d−r)×r).

Then by the principal angle representation (92), A = V̄ ⊤V is invertible iff all principal angles
< π/2, and choosing

X = BA−1
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leads to

V = span(V ) = span
{
[V̄ V̄⊥]

(
A
B

)}
= span

{
[V̄ V̄⊥]

(
Ir
X

)}
,

where the last equality is because for invertible A one always have span(ZA) = span(Z) for any
matrix Z.

We have already shown existence. For uniqueness, assuming there are two different X1, X2 such
that ϕV̄(X1) = ϕV̄(X2). Because two bases of the same r–dimensional subspace differ by an
invertible change of coordinates, so there exists an invertible r × r matrix Y such that

[V̄ V̄⊥]

(
Ir
X1

)
Y = [V̄ V̄⊥]

(
Ir
X2

)
,

which results in Y = Ir and X1 = X2. Thus the parameterization X of V is unique.

□

Sine-tangent Relationship in Graph Chart. We will show that there is a sine-tangent relationship
between ϱproj(V, V̄) and ∥X∥op. To be specific, we have the following lemma.

Lemma 25 (Sine-Tangent Relationship in Graph Chart) Denote θr is the maximal principal an-
gle between the subspaces V(X) and V̄ , defined in (92). For the graph chart (96), we have

ϱproj(V(X), V̄) = sin θr, ∥X∥op = tan θr.

The above relationship immediately implies that

ϱproj(V(X), V̄) = ∥X∥op/
√
1 + ∥X∥2op.

Proof of Lemma 25: Given the fact ϱproj(V(X), V̄) = sin θr (which is already shown in (94)),
where θr is the largest principal angle between the subspaces V(X) and the reference subspace V̄ ,
we want to show ∥X∥op = tan θr.

Step 1: Setup and Simplification. The projection metric is invariant under orthogonal transfor-
mations of the ambient space Rd. We can therefore choose a coordinate system that simplifies the
calculations without loss of generality. We choose a basis such that the reference frame V̄ and its
orthogonal complement V̄⊥ are represented as:

V̄ =

(
Ir
0

)
∈ St(d, r), V̄⊥ =

(
0

Id−r

)
∈ St(d, d− r). (97)

In this basis, the reference subspace is V̄ = span(V̄ ). The parameterization matrix (orthonormal
basis) V (X) for the subspace V(X) simplifies to (here (Ir +X⊤X)−1/2 normalize V (X) to be an
orthogonal matrix):

V (X) = [V̄ V̄⊥]

(
Ir
X

)
(Ir +X⊤X)−1/2 = Id

(
Ir
X

)
(Ir +X⊤X)−1/2 =

(
Ir
X

)
(Ir +X⊤X)−1/2,

(98)

where the second equality follows from our choice of basis without loss of generality: the reference
frame V̄ and its complement V̄⊥ are represented as block identity matrices as in (97).

Step 2: Projection Metric and Principal Angles. A fundamental result in matrix analysis, our
equation (92), states that the cosines of the principal angles, cos θi, between two subspaces spanned
by orthonormal bases V and V̄ are the singular values of V ⊤V̄ . In our case, the principal angles
between V(X) and V̄ are determined by the singular values of V (X)⊤V̄—which are, equivalently,
the singular values of V̄ ⊤V (X).
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Step 3: Calculation of cos θi. Let’s compute the matrix product V̄ ⊤V (X) using our simplified
forms:

V̄ ⊤V (X) = (Ir 0)

[(
Ir
X

)
(Ir +X⊤X)−1/2

]
=

(
(Ir 0)

(
Ir
X

))
(Ir +X⊤X)−1/2

= Ir · (Ir +X⊤X)−1/2

= (Ir +X⊤X)−1/2.

To find the singular values of this matrix, we use the Singular Value Decomposition (SVD) of X .
Let X = UΣW⊤, where U ∈ R(d−r)×(d−r) and W ∈ Rr×r are orthogonal, and Σ ∈ R(d−r)×r

is a rectangular diagonal matrix with the singular values λ1 ≥ λ2 ≥ · · · ≥ 0 on its diagonal. The
spectral norm is ∥X∥op = λ1.

Then, X⊤X = (UΣW⊤)⊤(UΣW⊤) = WΣ⊤U⊤UΣW⊤ = WΣ2
rW

⊤, where Σ2
r is the r × r

diagonal matrix with entries λ2i . So, the matrix Ir +X⊤X = W (Ir + Σ2
r)W

⊤. Its inverse square
root is: (Ir +X⊤X)−1/2 =W (Ir +Σ2

r)
−1/2W⊤.

The singular values of V̄ ⊤V (X) are the diagonal entries of (Ir+Σ2
r)

−1/2, which are: si = 1√
1+λ2

i

.

These singular values are the values of cos θi. The largest principal angle, θr, corresponds to the
smallest cosine value. This occurs when the singular value λi is largest, i.e., for λ1 = ∥X∥op. Thus,

cos θr =
1√

1 + ∥X∥2op

.

Step 4: Deriving tan θr. Using the fundamental trigonometric identity sin2 θ + cos2 θ = 1 and
the fact that principal angles lie in [0, π/2), we have:

tan θr = ∥X∥op.

We have shown that for graph charts, there is the relationship ϱproj(V(X), V̄) = sin θr and ∥X∥op =
tan θr. This suggests

ϱproj(V(X), V̄) = ∥X∥op√
1 + ∥X∥2op

.

□

E.4 GLOBAL ATLAS OF GRAPH CHARTS

For the Grassmannian Gr(d, r) we have that for all ε > 0, we have the coarse covering number
bound N(Gr(d, r), ϱproj, ε) ≤ C

r(d−r)
ε , where C > 0 is an absolute constant. This is a coarse

bound—its dependence is exponential in 1/ε (hence not rate–optimal; the optimal dependence is
polynomial)—and we use it only as a preliminary supporting estimate. This coarse estimate sug-
gests that, a finite O(er(d−r)) number of graph charts are sufficient to cover the entire Gr(d, r)
such that every subspace V ∈ Gr(d, r) is contained in the image of a graph chart with its graph
parameterization X satisfies ∥X∥op ≤ 1. From this intuition, we have the following lemma.

Lemma 26 (Pointwise Dimension Consequence of Finite Global Atlas) The uniform prior µ =
Unif(Gr(d, r)) satisfies that for every V ∈ Gr(d, r), every PSD matrix Σ and every ε > 0,

log
1

µ(Bϱproj,Σ(V, ε))
≤ C1r(d− r) + sup

X∈X
log

1

Unif(X̄ ){X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)} ≤ ε)
,

where X = {X ∈ R(d−r)r : ∥X∥op ≤ 1} and X̄ = {X ∈ R(d−r)r : ∥X∥op ≤ 2} (we make X̄
slightly larger than X for later technical derivation), Unif(X̄ ){·} is the uniform measure over X̄ ,
and C1 > 0 is an absolute constant.
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Proof of Lemma 26: Proposition 6 in (Pajor, 1998) prove a coarse covering number bound

N(Gr(d, r), ϱproj, ε) ≤ C
r(d−r)

ε

where C > 0 is an absolute constant; this coarse estimate is exponential rather than polynomial in ε,
so it is used only for preliminary supporting purposes. For every V ∈ Gr(d, r), by the homogeneity
of the Grassmannian (under the action of O(d)), the ϱproj-ball Bproj(V, ε) has volume independent
of its center. We therefore refer to this common value as the volume of an ε–ϱproj ball, written
as Vol(ε− ϱproj ball). By the definition of covering number (see Definition 5 and the subsequent
inequality for background), we have that

N(Gr(d, r), ϱproj, ε) · Vol(ε− ϱproj ball) ≥ Vol(Gr(d, r)),

then for the uniform prior ν = Unif(Gr(d, r)), we have that for every V̄ ∈ Gr(d, r),

log
1

ν(Bϱproj(V̄, ε))
= log

Vol(Gr(d, r))
Vol(ε− ϱproj ball)

≤ r(d− r)
logC

ε
.

Note that ϱproj is not the target metric; our goal is the ellipsoidal metric ϱproj,Σ. Taking ε = 1/
√
2,

we obtain:

log
1

ν(Bϱproj(V̄, 1/
√
2))

≤ C1r(d− r), (99)

where C1 > 0 is an absolute constant. By Lemma 25, we have that inside the ball Bϱproj(V̄, 1/
√
2),

by choosing V̄ as the reference subspace, the graph parameterization X of V satisfies

∥X∥op ≤ 1,

which follows from that if ϱproj(V(X), V̄) ≤ 1/
√
2 (i.e., sin θr ≤ 1/

√
2), we have ∥X∥op ≤ 1.

See (95) for the definition of this graph chart parameterization; the existence and uniqueness of the
parameterization X is by Lemma 24 (local bijection of graph chart). Furthermore, again by Lemma
24 and Lemma 25, X = {X ∈ R(d−r)r : ∥X∥op ≤ 1} satisfies (∼= means isomorphism/bijection)

Bϱproj(V̄, 1/
√
2) ∼= X ⊂ X̄ ∼= Bϱproj(V̄, 2/

√
5). (100)

Let

µV̄ = Unif(Bproj(V̄, 2/
√
5)), µ(V) =

∫
ν(V̄)µV̄(V)dV̄ = Unif(Gr(d, r)).

Then we have

log
1

µ(Bϱproj,Σ(V, ε))
= log

1∫
ν(V̄)µV̄(Bϱproj,Σ(V, ε))dV̄

= log
1∫

ν(V̄)µV̄(Bϱproj,Σ(V, ε) ∩Bproj(V̄, 2/
√
5))dV̄

≤ log
1

ν(Bϱproj(V, 1/
√
2)) min

V̄∈Bϱproj (V,1/
√
2)
µV̄(X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ε)

≤C1r(d− r) + sup
X∈X

log
1

Unif(X̄ ){X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ε} ,

where the first inequality is by restricting V̄ to Bϱproj(V, 1/
√
2); and the second inequality is by (99)

as well as the bijection stated in (100) and Lemma 24. Note that we use different radius here than in
µV̄ to enusre that the set X̄ for X ′, which is inside the uniform distribution in the final bound, to be
larger than the domain X for X to take sup. This will help later technical derivation.

□
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E.5 DECOMPOSITION AND LIPSCHITZ PROPERTIES INSIDE GRAPH CHART

We apply a non-perturbative analysis to the ellipsoidal projection metric.

Lemma 27 (Non-Perturbative Decomposition of Projector Difference) Let X,X ′ ∈ R(d−r)×r

be two matrices. Given any reference subspace V̄ , consider the graph chart ϕV̄ : X 7→ V(X) defined
in (95). Then the difference between two projectors PV(X), PV(X′) be decomposed as follows:

PV(X) − PV(X′)

=PV(X)⊥

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′) + PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)PV(X′)⊥

.

Proof of Lemma 27: The projector is invariant under orthogonal transformations of the ambient
space Rd. We can therefore choose a coordinate system that simplifies the calculations without loss
of generality. By the matrix representation (98) (which, without loss of generality, uses a convenient
orthogonal basis specified by (97)), we denote

A(X) =

(
Ir
X

)
, M(X) = (Ir +X⊤X)−1,

and have the following facts:
V (X) =A(X)M(X)1/2,

PV(X) =A(X)M(X)A(X)⊤ = A(X)M(X)
(
Ir X⊤) (101)

PV(X) − PV(X′) =A(X)M(X)A(X)⊤ −A(X ′)M(X ′)A(X ′)⊤

A(X)M(X) =PV(X)

(
Ir
0

)
(102)

A(X)M(X)X⊤ =PV(X)

(
0

Id−r

)
, (103)

where (102) and (103) are straightforward consequences of (101).

We begin with a non-perturbative decomposition:
PV(X) − PV(X′)

=A(X)M(X)A(X)⊤ −A(X ′)M(X ′)A(X ′)⊤

=(A(X)−A(X ′))M(X ′)A(X ′)⊤ +A(X)(M(X)−M(X ′))A(X ′)⊤ +A(X)M(X)(A(X)−A(X ′))⊤.
(104)

We continue to decompose each term non-perturbatively. First,
(A(X)−A(X ′))M(X ′)A(X ′)⊤

=

(
0

X −X ′

)
M(X ′)A(X ′)⊤

=

(
0

Id−r

)
(X −X ′)M(X ′)A(X ′)⊤

=

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′), (105)

where the last equality uses the fact (102) and symmetry of PV(X).

Second, because we have the non-perturbative decomposition
M(X)−M(X ′)

=(Ir +X⊤X)−1
(
(Ir +X ′⊤X ′)− (Ir +X⊤X)

)
(Ir +X ′⊤X ′)−1

=(Ir +X⊤X)−1
(
X ′⊤X ′ −X⊤X

)
(Ir +X ′⊤X ′)−1

=(Ir +X⊤X)−1
(
X⊤(X ′ −X) + (X ′⊤ −X⊤)X ′

)
(Ir +X ′⊤X ′)−1

=M(X)X⊤(X ′ −X)M(X ′) +M(X)(X ′⊤ −X⊤)X ′M(X ′),
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we have

A(X)(M(X)−M(X ′))A(X ′)⊤

=A(X)M(X)X⊤(X ′ −X)M(X ′)A(X ′)⊤ +A(X)M(X)(X ′⊤ −X⊤)X ′M(X ′)A(X ′)⊤

=− PV(X)

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′) − PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)PV(X′),

(106)

where the last equality uses the fact (102) and the fact (103).

Third, we have

A(X)M(X)(A(X)−A(X ′))⊤

=A(X)M(X)
(
0 X⊤ −X ′⊤)

=PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r) , (107)

where the last equality uses the fact (102).

Substituting (105), (106), (107) back into (104), we have

PV(X) − PV(X′)

=

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′)

− PV(X)

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′) − PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)PV(X′)

+ PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)

=PV(X)⊥

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′) + PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)PV(X′)⊥

,

where the last equality uses Id − PV(X) = PV(X)⊥
and Id − PV(X′) = PV(X′)⊥

.

□

Building upon the non-perturbative decomposition in Lemma 27, we have the following Lipschitz
property of graph chart.

Lemma 28 (Lipschitz of Graph Chart) Let X,X ′ ∈ R(d−r)×r be two matrices. Given any refer-
ence subspace V̄ , consider the graph chart defined in (98). Then the ellipsoidal projection metric is
Lipschitz to ellipsoidal spectral metrics as follows: for every rank-r PSD Σ ∈ Rd×d,

ϱproj,Σ(V(X),V(X ′))

≤
∥∥∥∥∥
(
(0 Id−r)P⊤

V(X)⊥
ΣPV(X)⊥

(
0

Id−r

)) 1
2

(X −X ′)

∥∥∥∥∥
op

+

∥∥∥∥∥
(
(Ir 0)P⊤

V(X)ΣPV(X)

(
Ir
0

)) 1
2

(X⊤ −X ′⊤)

∥∥∥∥∥
op

.

Proof of Lemma 28: By Lemma 27, we have

ϱproj,Σ(V(X),V(X ′)) =
∥∥∥Σ 1

2 (PV(X) − PV(X′))
∥∥∥

op

=

∥∥∥∥Σ 1
2PV(X)⊥

(
0

Id−r

)
(X −X ′) (Ir 0)PV(X′) +Σ

1
2PV(X)

(
Ir
0

)
(X⊤ −X ′⊤) (0 Id−r)PV(X′)⊥

∥∥∥∥
op

≤
∥∥∥∥Σ 1

2PV(X)⊥

(
0

Id−r

)
(X −X ′)

∥∥∥∥
op
+

∥∥∥∥Σ 1
2PV(X)

(
Ir
0

)
(X⊤ −X ′⊤)

∥∥∥∥
op

=

∥∥∥∥∥
(
(0 Id−r)P⊤

V(X)⊥
ΣPV(X)⊥

(
0

Id−r

)) 1
2

(X −X ′)

∥∥∥∥∥
op

+

∥∥∥∥∥
(
(Ir 0)P⊤

V(X)ΣPV(X)

(
Ir
0

)) 1
2

(X⊤ −X ′⊤)

∥∥∥∥∥
op

.
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where the inequality follows from the triangle inequality and the facts that the spectral norms of
PV(X′), PV(X′)⊥

, and the two block–identity matrices are all at most 1 (the fact that spectral norms
of projectors are at most 1 can be proved via the first inequality in Lemma 21); and the last equality
is because for any matrices A, B we have

∥Σ 1
2AB∥op =

√
∥B⊤A⊤ΣAB∥op = ∥(A⊤ΣA)

1
2B∥op.

□

We continue to present the following lemma, which implies that the projectors and the block-identity
matrices in Lemma 28 only reduces the effective dimensions of the ellipsoidal map, and does not
increase the eigenvalues (up to absolute constants).

Lemma 29 (Spectral domination under contractions) Let Σ ⪰ 0 be a d × d PSD matrix with
ordered eigenvalues λ1(Σ) ≥ · · · ≥ λd(Σ). Let A ∈ Rd×m for some m ≤ d and write s := ∥A∥op.
Denote by µ1 ≥ · · · ≥ µm the eigenvalues of A⊤ΣA. Then, for every k = 1, . . . ,m,

µm ≤ s2 λm(Σ).

Proof of Lemma 29: By the Courant–Fischer–Weyl max-min characterization (see, e.g.,
(Wikipedia contributors, 2025b)), we have

λk(A
⊤ΣA) = min

S⊂Rd

dimS=d−k+1

sup{∥A⊤Σ
1
2x∥22 : x ∈ S, ∥x∥2 = 1}

≤ s2 · min
S⊂Rd

dimS=d−k+1

sup{∥Σ1/2x∥2 : x ∈ S, ∥x∥2 = 1}

=s2λk(Σ).

□

E.6 PROOF OF THE MAIN RESULT

From Lemma 26, to cover Gr(d, r) it suffices to cover the unit ball of (d − r) × r matrices under
the ellipsoidal spectral metric. We are now ready to prove Lemma 3, the main result for ellipsoidal
Grassmannian covering.

Proof of Lemma 3: We present the proof in multiple parts.

Part 1: Applying Lemma 26. Define X =
{
X ∈ R(d−r)×r : ∥X∥op ≤ 1

}
and X̄ ={

X ∈ R(d−r)×r : ∥X∥op ≤ 2
}

. By Lemma 26 (Pointwise Dimension Consequence of Finite Global
Atlas), for µ = Unif(Gr(d, r)), we have that for all V ∈ Gr(d, r) and all ε > 0,

log
1

µ(Bϱproj,Σ(V, ε))
≤ C1r(d− r) + sup

X∈X
log

1

Unif(X̄ ){X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ε} ,
(108)

where C1 > 0 is an absolute constant.

Define the (d− r)× (d− r) positive definite matrices H1(X) and the r× r positive definite matrix
H2(X) as the following

H1(X) = (0 Id−r)P⊤
V(X)⊥

ΣPV(X)⊥

(
0

Id−r

)
,

H2(X) = (Ir 0)P⊤
V(X)ΣPV(X)

(
Ir
0

)
.

By Lemma 28 (Lipschitz of Graph Chart), we have that

ϱproj,Σ(V(X),V(X ′)) ≤ ∥H1(X)
1
2 (X ′ −X)∥op + ∥H2(X)

1
2 (X ′ −X)⊤∥op.
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Part 2: Volumetric Arguments. We analyze the log density complexity in (108) via volumetric
arguments.

A technical step: ball inclusion via thresholding In order to compute the log density complexity
with the uniform prior, one needs the operator norm ball to be included in the support of the prior.
Given a PSD matrix H ∈ Rm×m and an eigenvalue threshold α, assume its eigendecomposition is
H = U diag(β1, · · · , βm)U⊤, define the thresholding function Tα by

Tα(H) = U diag(max{β1, α}, · · · ,max{βm, α})U⊤.

Clearly this function only increases the metric. We further define the following two ellipsoidal
metrics:

ϱ21(X,X
′) =∥(X ′ −X)⊤H̄1(X)(X ′ −X)∥op, H̄1(X) = Tε2 (H1(X))

ϱ22(X,X
′) =∥(X ′ −X)H̄2(X)(X −X ′)⊤∥op, H̄2(X) = Tε2 (H2(X))

We note that the two balls Bϱ1(X, ε), Bϱ2(X, ε) are contained in X̄ , as we have applied the thresh-
olding function to ensure this inclusion. For example, for the first ball, from

X ′ −X =
(
H̄1(X)

)−1/2 (
H̄1(X)

) 1
2 (X ′ −X)︸ ︷︷ ︸

spectral norm ≤ ε for X′ ∈ Bϱ1
(X, ε)

,

we have (by using the ε estimate from the second underbraced term above, and combining it with
the thresholding guarantee λmin(H̄1(X)) ≥ ε2)

∥X ′ −X∥op ≤ λmin(H̄1(X))−1/2 · ε ≤ 1,

which resulting in ∥X ′∥op ≤ ∥X ′ − X∥op + ∥X∥op ≤ 2 and thus Bϱ1(X, ε) ⊆ X̄ . Similarly, we
can show Bϱ2

(X, ε) ⊆ X̄ . this gives us the auxiliary ball-inclusion result:

Bϱ1+ϱ2
(X, ε) ⊆ Bϱ1

(X, ε) ∩Bϱ2
(X, ε) ⊆ Bϱ1

(X, ε) ∪Bϱ2
(X, ε) ⊆ X̄ . (109)

Now we are ready to proceed with the main part of the proof. By Lemma 28 (Lipschitz of Graph
Chart) and the fact that threholding only increase the spectral norm, the ellipsoidal projection metric
is bounded by ϱ1 + ϱ2, so for any X ∈ X ,

log
1

Unif(X̄ ){X ′ ∈ X̄ : ϱproj,Σ(V(X),V(X ′)) ≤ ε}

≤ log
1

Unif(X̄ ){X ′ ∈ X̄ : ϱ1(X,X ′) + ϱ2(X,X ′) ≤ ε}

= log
1

Unif(X̄ ){Bϱ1+ϱ2
(X, ε)} (110)

=
Vol(X̄ )

Vol(Bϱ1+ϱ2
(X, ε))

, (111)

where the first equality uses the ball-inclusion result (109).

Background on covering number. Classical volume-ratio arguments give the following results
on the covering number of balls in general normed space Y . For a p-dimensional normed space
equipped with the metric associated to its norm ∥·∥, we denote by B(y,R) the ball in Y centered at
y ∈ Y with radius R, and by N(Z, ∥ · ∥, ε) the covering number of a subset Z ⊆ Y . Formally, we
give the definition of covering number as follows.

Definition 5 (Covering numbers) Let (Y, ∥ · ∥) be a normed space and let Z ⊆ Y . For ε > 0, a
set N ⊆ Z is an internal ε–cover of Z if for every z ∈ Z there exists y ∈ N ⊆ Z with ∥z− y∥ ≤ ε.
The (internal) covering number is

N(Z, ∥ · ∥, ε) := min{m : ∃ internal ε–cover of Z with size m }.
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A set Next ⊆ Y (not necessarily inside Z) is an external ε–cover of Z if for every z ∈ Z there exists
y ∈ Next with ∥z − y∥ ≤ ε. The external covering number is

Next(Z, ∥ · ∥, ε) := min{m : ∃ external ε–cover of Z with size m }.
Internal covering numbers depend only on the metric induced on Z , while external covering num-
bers also depend on the ambient space Y . Throughout the paper, “covering number” means the
internal one unless otherwise stated.

We now relate the internal and external covering numbers, showing they are equivalent up to a
constant factor in the radius—and thus interchangeable for our purposes.

Lemma 30 (Properties of External Covering Number) For every ε > 0 and Z ⊆ Y ,

Next(Z, ∥ · ∥, ε) ≤ N(Z, ∥ · ∥, ε) ≤ Next(Z, ∥ · ∥, ε/2). (112)

And the external covering number enjoys monotonicity under set inclusion: if Z1 ⊆ Z2 then
Next(Z1, ∥ · ∥, ε) ≤ Next(Z2, ∥ · ∥, ε).

Proof of Lemma 30: The left inequality in (112) is immediate since any internal cover is also an
external cover. For the right inequality in (112), let {y1, . . . , ym} ⊆ Y be an external (ε/2)–cover
of Z . For each i, define the (possibly empty) cell Vi := {z ∈ Z : ∥z − yi∥ ≤ ε/2}. By the very
definition of external (ε/2)-cover, every z ∈ Z is within distance ε/2 of some yi; hence

m⋃
i=1

Vi = Z.

If Vi ̸= ∅, pick a representative zi ∈ Vi. Then for any z ∈ Vi,

∥z − zi∥ ≤ ∥z − yi∥+ ∥yi − zi∥ ≤ ε/2 + ε/2 = ε,

so the selected {zi} ⊆ Z form an internal ε–cover. Hence N(Z, ∥ · ∥, ε) ≤ m = Next(Z, ∥ · ∥, ε/2).
Lastly, the monotonicity under set inclusion for the external covering number is a straightforward
consequence of its definition.

□

Proposition 4.2.10 in Vershynin (2018) (the proof is elementary and clearly holds true for general
metric in a normed space) states that for Z ⊆ Y and general metric ∥ ·∥, we have that for any y ∈ Y ,

Vol(Z)

Vol(B(y, ε))
≤ N(Z, ∥ · ∥, ε) ≤ Vol(Z +B(y, ε2 ))

Vol(B(y, ε2 ))
,

where the set A + B := {a + b : a ∈ A, b ∈ B}. When Z is convex and B(y, ε) ⊆ Z , we further
have

Vol(Z)

Vol(B(y, ε))
≤ N(Z, ∥ · ∥, ε) ≤ Vol(Z +B(y, ε2 ))

Vol(B(y, ε2 ))
≤ Vol( 32Z)

Vol(B(y, ε2 ))
= 3p

Vol(Z)

Vol(B(y, ε))
, (113)

where λA := {λa : a ∈ A} for λ > 0. Lastly, when the normed space Y is p−dimensional, for
every ε ∈ (0, R], setting Z = B(0, R) turns the above inequality (113) into the optimal covering
number bound (

R

ε

)p

≤ N
(
B(0, R), ∥·∥, ε

)
≤
(
3R

ε

)p

. (114)

Note that this result is for general normed space, not only for the ℓ2 norm in Euclidean space (see,
e.g., display (1) in Pajor (1998); see also Milman & Schechtman (1986); Pisier (1999)).

A technical step–lifting to product space. Consider the product space R(d−r)×r ×R(d−r)×r (of
dimension 2 × (d − r) × r). Given any (d − r) × (d − r) positive definite matrix H1 and r × r
positive definite matrix H2, define the modified spectral norm by

∥(X1, X2)− (X ′
1, X

′
2)∥op,H1,H2

:= ∥H
1
2
1 (X1 −X ′

1)∥op + ∥H
1
2
2 (X

⊤
2 −X ′

2
⊤
)∥op.
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Consider the constrained set

S := {(X1, X2) ∈ R(d−r)×r × R(d−r)×r : X1 = X2} = {(X,X) : X ∈ R(d−r)×r},
which is a normed space with dimension (d − r) × r (isomorphic to R(d−r)×r), equipped with the
modifed spectral norm

∥(X,X)− (X ′, X ′)∥op,H1,H2 = ∥H
1
2
1 (X −X ′)∥op + ∥H

1
2
2 (X

⊤ −X ′⊤)∥op.

Denote BS
op,H1,H2

((X,X), R) = {(X ′, X ′) ∈ S : ∥(X ′, X ′) − (X,X)∥op,H1,H2 ≤ R} (the
ball constrained in S). Because there is a bijective, distance-preserving (isometric) map between
Bϱ1+ϱ2

(X, ε) and BS
op,H̄1(X),H̄2(X)

((X,X), ε), and likewise BS
op,Id−r,Ir

((0, 0), 4) and X̄ (here 0

denotes the (d− r)× r 0 matrix), we obtain

Vol(X̄ )

Vol(Bϱ1+ϱ2(X, ε))
=

Vol(BS
op,Id−r,Ir

((0, 0), 4))

Vol(BS
op,H̄1(X),H̄2(X)

((X,X), ε))
, (115)

where the volume on S is defined via the surface area measure. (115) is exactly the objective we
need to bound in (110).

Given ε > 0, by the property (113) of covering number, we have that for every X ∈ X and ε > 0,

Vol(BS
op,Id−r,Ir

((0, 0), 4))

Vol(BS
op,H̄1(X),H̄2(X)

((X,X), ε))
≤ N

(
BS

op,Id−r,Ir
((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε

)
. (116)

Remark on why lifting to product space double the degree of freedom. We now lift the
S−constrained ball BS

op,Id−r,Ir
((0, 0), 4) to the product space X̄ × X̄ , using the covering num-

ber of the lifted product space to bound the covering number of the original space, in order to obtain
an upper bound on (116) and (115). This is the reason why our final bound will scale (in the isotropic
case) in the order O((d − r)r log 1

ε2 ) = O(2(d − r)r log 1
ε ) rather than the classical optimal order

Θ((d− r)r log 1
ε )—the lifting to product space increase the number of freedom by a multiplicative

factor of 2. Nevertheless, such difference is negligible in our theory.

For every (X1, X2) ∈ R(d−r)×r × R(d−r)×r, every (d − r) × (d − r) matrix H1 ≻ 0, and every
r × r matrix H2 ≻ 0, and radius R, denote Bop,H1,H2

((X1, X2), R) to be the unconstrained ball in
R(d−r)×r × R(d−r)×r:

Bop,H1,H2
((X1, X2), R) := {(X ′

1, X
′
2) ∈ R(d−r)×r × R(d−r)×r : ∥(X1, X2)− (X ′

1 −X ′
2)∥op,H1,H2

≤ R}.
Lifting to the product space can only increase the external covering number (monotonicity under set
inclusion), and the external covering number is equivalent to the internal covering number up to a
constant factor in the radius. To be specific, by Lemma 30, we have

N
(
BS

op,Id−r,Ir
((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε

)
≤Next

(
BS

op,Id−r,Ir
((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε/2

)
≤Next

(
Bop,Id−r,Ir ((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε/2

)
≤N
(
Bop,Id−r,Ir ((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε/2

)
. (117)

For every X ∈ X , the ball-inclusion argument (109) is strong enough to imply that the uncon-
strained ball Bop,H̄1(X),H̄2(X)((X,X), ε) ⊆ R(d−r)×r ×R(d−r)×r is also included in the lifted ball
Bop,Id−r,Ir ((0, 0), 4), which gives that

Bop,H̄1(X),H̄2(X)((X,X), ε/2) ⊂ Bop,H̄1(X),H̄2(X)((X,X), ε) ⊆ Bop,Id−r,Ir ((0, 0), 4).

This satisfies the inclusion condition required to establish (113), and we have

N
(
Bop,Id−r,Ir ((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε/2

)
≤32(d−r)r Vol(Bop,Id−r,Ir ((0, 0), 4))

Vol(Bop,H̄1(X),H̄2(X)((X,X), ε/2))

=62(d−r)r Vol(Bop,Id−r,Ir ((0, 0), 4))

Vol(Bop,H̄1(X),H̄2(X)((X,X), ε))
.

(118)
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Part 3: Applying Change of Variable and Calculating the Jacobian Determinant. Applying
the standard change of variables

Y1 = H̄1(X)1/2X1, Y2 = X2 H̄2(X)1/2,

the map on vectorized variables is

vec(Y1) = (Ir ⊗ H̄1(X)1/2) vec(X1), vec(Y2) = (H̄2(X)⊤1/2 ⊗ Id−r) vec(X2),

and the total Jacobian is

J(X) =

(
Ir ⊗ H̄1(X)1/2 0

0 H̄2(X)⊤1/2 ⊗ Id−r).

)
The two block–diagonal Jacobian determinants are∣∣∣det(Ir ⊗ H̄1(X)1/2

)∣∣∣ = (det H̄1(X)1/2
) r

= det
(
H̄1(X)

) r/2
,∣∣∣det(H̄2(X)⊤1/2 ⊗ Id−r

)∣∣∣ = (det H̄2(X)1/2
) d−r

= det
(
H̄2(X)

) (d−r)/2
.

Multiplying the two factors, the total Jacobian of the linear change of variables is

det(J(X)) = det
(
H̄1(X)

) r/2
det
(
H̄2(X)

) (d−r)/2
.

(We used det(B⊤) = det(B) and that H̄1(X), H̄2(X) ≻ 0, so determinants are positive.) By the
change of variable formula in integration (see, e.g., Wikipedia contributors (2025a)), we have

Vol
(
Bop,H̄1(X),H̄2(X)((X,X), ε)

)
= Vol

(
Bop,Id−1,Ir ((X,X), ε)

)
(det(J(X)))−1

= Vol
(
Bop,Id−1,Ir ((X,X), ε)

) d−r∏
k=1

λk(H̄1(X))−r/2
r∏

k=1

λk(H̄2(X))−(d−r)/2,

which implies

Vol(Bop,Id−r,Ir ((0, 0), 4))

Vol(Bop,H̄1(X),H̄2(X)((X,X), ε))
=

d−r∏
k=1

λk(H̄1(X))r/2
r∏

k=1

λk(H̄2(X))(d−r)/2 Vol(Bop,Id−r,Ir ((0, 0), 4))

Vol(Bop,Id−r,Ir ((X,X), ε))
.

(119)

Part 4: Proving the Final Bound. For all X ∈ X and ε ≤ 1, we have that
Bop,Id−r,Ir ((X,X), ε) ⊆ Bop,Id−r,Ir ((0, 0), 4) and thus by (113) and (114), we have

Vol(Bop,Id−r,Ir ((0, 0), 4))

Vol(Bop,Id−r,Ir ((X,X), ε))
≤
(
12

ε

)2(d−r)r

. (120)

Combining the above inequality (120) with (118) and (119), we have

log N
(
Bop,Id−r,Ir ((0, 0), 4), ∥·∥op,H̄1(X),H̄2(X), ε/2

)
≤2(d− r)r log

72

ε
+
r

2

d−r∑
k=1

log λk(H̄1(X)) +
d− r

2

r∑
k=1

log λk(H̄2(X))

=
r

2

d−r∑
k=1

log
722λk(H̄1(X))

ε2
+
d− r

2

r∑
k=1

log
722λk(H̄2(X))

ε2
. (121)

Combing the above inequality (121) with (115), (116) and (117), we have that for all X ∈ X ,

log
Vol(X̄ )

Vol(Bϱ1+ϱ2
(X, ε)

≤ r

2

d−r∑
k=1

log
722λk(H̄1(X))

ε2
+
d− r

2

r∑
k=1

log
722λk(H̄2(X))

ε2
. (122)

70



3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Finally, combine the above inequality (122) with (108) and (110), we prove that for µ =
Unif(Gr(d, r)), we have that for all V ∈ Gr(d, r) and all ε > 0,

log
1

µ(Bϱproj,Σ(V, ε))
≤C1r(d− r) +

r

2

d−r∑
k=1

log
722λk(H̄1(X))

ε2
+
d− r

2

r∑
k=1

log
722λk(H̄2(X))

ε2

=
r

2

d−r∑
k=1

log
Cλk(H̄1(X))

ε2
+
d− r

2

r∑
k=1

log
Cλk(H̄2(X))

ε2
, (123)

where C > 0 is an absolute constant.

We end the proof by applying Lemma 29 and Lemma 21: since

λk(H1(X)) ≤ λk(P⊤
V(X)⊥

ΣPV(X)⊥
) ≤ λk, k = 1, · · · , d− r;

λk(H2(X)) ≤ λk(P⊤
V(X)ΣPV(X)) ≤ λk, k = 1, · · · , r,

we have

λk(H̄1(X)) ≤ max{λk, ε2}, k = 1, · · · , d− r;

λk(H̄2(X)) ≤ max{λk, ε2}, k = 1, · · · , r.
Substituting this bound to (123), we prove that for µ = Unif(Gr(d, r)), we have that for all V ∈
Gr(d, r) and all ε > 0,

log
1

µ(Bϱproj,Σ(V, ε))
≤ r

2

d−r∑
k=1

log
Cmax

{
λk, ε

2
}

ε2
+
d− r

2

r∑
k=1

log
Cmax

{
λk, ε

2
}

ε2
,

where C > 0 is an absolute constant.

□

F FURTHER EXPLANATIONS AND PROOFS FOR GENERALIZATION BOUNDS
(SECTION 4)

F.1 COMPARISON WITH NORM BOUNDS, VC, AND NTK

We compare our generalization bound for fully connected DNN (Theorem 4) with three established
lines of work: (i) bounds based on products of spectral norms, (ii) VC–dimension–type capacity
bounds, and (iii) Neural Tangent Kernel (NTK) linearizations that are valid only in an infinitesimal
neighborhood of initialization. Our framework yields exponentially tighter rates than norm–product
bounds, refines VC–type statements into hypothesis– and data–dependent guarantees, and replaces
infinitesimal linearization with a finite-scale, non-perturbative analysis that holds simultaneously
for every trained hypothesis. For space, we defer the recovery of representative norm bounds to
Appendix F.5.1 and a broader literature review to Appendix B.

Norm Bounds: Starting from the Riemannian–dimension term in Theorem 4, apply the elemen-
tary inequality

log x ≤ log(1 + x) ≤ x, ∀x > 0

together with
∑

k≥1 λk(Fl−1F
⊤
l−1) = ∥Fl−1(W,X)∥2F, we obtain: for each layer l,

∑
k≥1

log

(
λk
(
Fl−1F

⊤
l−1

)
∥Wl∥2F LM2

l→L(W, ε)

n ε2

)
≤ ∥Fl−1(W,X)∥2F ∥Wl∥2F LM2

l→L(W, ε)

n ε2
.

Aggregating over layers and controlling Ml→L(W, ε) through
∏

i>l ∥Wi∥op, Theorem 4 yields the
following rank–free, spectrally normalized consequence: uniformly over all W ∈ BF(R)

(P− Pn)ℓ(f(W,x), y) ≤ O

β∥W∥F

n

√√√√ L∑
l=1

L(dl + dl−1)
∏
i ̸=l

∥Wi∥2op

 , (124)
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where the O(·) notation hides only nonessential terms (see Corollary 1 in Appendix F.5.1); more-
over, since ∥X∥F ≤ √

n max1≤i≤n ∥xi∥2, the bound in (124) typically scales as n−1/2. Therefore,
we illustrate that the Riemannian–dimension bound in Theorem 4 is exponentially tighter than (124),
a representative spectral-norm bound in the style of Bartlett et al. (2017); Neyshabur et al. (2018);
Golowich et al. (2020); Pinto et al. (2025); Ledent et al. (2025). Appendix F.5.1 provides the full
derivation and a detailed, side-by-side comparison.

VC Dimension: Let L be the number of layers and P =
∑L

l=1 dldl−1 be the total number of
weights, Bartlett et al. (2019) prove a nearly tight VC–dimension bound VCdim ≤ O (PL logP ),
supported by a lower bound VCdim ≥ Ω (PL log(P/L)). This VC dimension bound is roughly
equivalent to be L

∑L
l=1 dldl−1.4 Our Riemannian Dimension bound, by contrast, substantially

sharpens this rate: it removes the explicit dependence on depth L and replaces the crude width
factor with a (layerwise) effective-rank term.

Neural Tangent Kernel (NTK): Our approach uses an exact, non-perturbative expansion that
preserves the finite-scale geometry of deep networks, going beyond NTK’s Taylor linearizations,
which remain valid only in an infinitesimal neighborhood around initialization (or equivalently, in
the infinite-width “lazy” regime) (Jacot et al., 2018; Arora et al., 2019). Outside this regime the
NTK approximation typically breaks down, limiting its explanatory power for practical networks.
From a generalization standpoint, the initialization-centric, infinitesimal view suppresses the feature
learning that actually drives generalization, and thus cannot account for why modern deep networks
generalize well. In contrast, our results provide a finite-scale, pointwise theory that operates directly
in practical regimes and explicitly captures feature learning through the spectra of the learned feature
matrices.

F.2 ALGORITHMIC IMPLICATIONS AND EXCESS RISK BOUND

Pointwise Dimension as Regularization and Excess Risk Bound. Our bounds imply a natural
regularization strategy for algorithm design. Given the pointwise generalization inequality (3) (e.g.,
the Riemannian Dimension bound in Theorem 4), we consider a regularized ERM objective that
explicitly minimizes this complexity measure:

f̂ = argmin
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(2/δ)

n

}
. (125)

With probability at least 1− δ, its excess risk is bounded by (compared to any benchmark f⋆ ∈ F):

Pℓ(f̂ ; z)− Pℓ(f⋆; z)

≤ inf
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(2/δ)

n

}
− Pℓ(f⋆; z) (126)

≤(C +
√
1/2)

√
d(f⋆) + log(2/δ)

n
;

see Appendix F.4 for full proof. Thus we obtain a problem–dependent oracle bound of order√
d(f⋆)/n that adapts to the optimal hypothesis f⋆.

From Explicit Regularization to Implicit Bias of Practical Algorithms. Since modern optimiz-
ers like SGD routinely drive empirical risk to near-zero, convergence analysis alone offers limited
insight into generalization. The central theoretical challenge is therefore not determining whether a
minimum is reached, but identifying which of the infinite interpolating solutions the optimizer se-
lects. Plain ERM is insufficient for this task: without constraints on pointwise dimension, an empiri-
cal risk minimizer yields no guarantee of controlled excess risk. In contrast, our RD–regularized ob-
jective (125) explicitly enforces the low-complexity structure required for the generalization bound

4The extra factor L beyond parameter count in VCdim is essentially unavoidable: for nonlinear composi-
tional models, VC/packing dimensions depend on the logarithm of a global worst-case Lipschitz constant, and
in depth−L networks that constant grows multiplicatively across layers, yielding an additional linear depen-
dence on L.
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in (126). Although this intuition is rooted in the earliest practices of deep learning, our pointwise
theory rigorously articulates the underlying mathematical reasoning.

This motivates a concrete agenda for optimization in deep learning: characterize algorithms whose
implicit bias drives iterates toward solutions with low pointwise complexity, in particular low Rie-
mannian Dimension (RD). Analogous phenomena are well documented in linear and kernel set-
tings: gradient descent converges to max–margin (logistic loss) or minimum–norm (least squares)
solutions (Soudry et al., 2018; Gunasekar et al., 2018), iterate–averaged SGD behaves like ridge re-
gression (Neu & Rosasco, 2018), and “ridgeless” kernel regression can generalize with an optimally
zero ridge parameter (Liang & Rakhlin, 2020); see Vardi (2023) for a survey. Our regularizer in
(125), based on pointwise dimension and, in particular, the RD from Theorem 4, is strictly more
informative than any single norm, making it a natural target for such analyses.

Empirically, we say an algorithm exhibits Riemannian–Dimension implicit bias if it preferentially
returns solutions with small RD despite RD’s large dynamic range; in Section 5 we observe that
SGD indeed finds low-RD solutions.

F.3 PROOF OF THEOREM 4 IN SECTION 4

The proof consists of two steps: 1. Obtaining the Integral Bound on Generalization Gap; and 2.
Obtaining the Expression of Riemannian Dimension.

Step 1: Obtaining the Integral Bound on Generalization Gap. As presented in (9), we construct
the metric tensor

GNP(W ) := blockdiag
(
· · · , LM2

l→L(W, ε) · Fl−1(W,X)F⊤
l−1(W,X)⊗ Idl

, · · ·
)
.

By Lipschitz property of the loss function we have

ϱn,ℓ(f(W
′, ·), f(W, ·)) =

√
Pn(ℓ(f(W ′, x), y)− ℓ(f(W,x), y))2

≤ β
√
Pn∥f(W ′, x)− f(W,x)∥22 = βϱn(W

′,W )

By Lemma 1 we have the metric dominating relationship: for every W ∈ BF(R),√
nϱn(f(W

′, ·), f(W, ·)) ≤ ϱGNP(W )(W
′,W ), ∀W ′ ∈ BF(R).

Combining the above two inequalities we have

ϱn,ℓ(f(W
′, ·), f(W, ·)) ≤ β√

n
ϱGNP(W )(W

′,W ), ∀W ′ ∈ BF(R).

By the metric domination lemma (Lemma 19), we have the pointwise dimension bound: for every
W ∈ BF(R),

log
1

π(Bϱn,ℓ
(f(W, ·), ε)) ≤ log

1

π(BϱGNP(W )
(W,

√
nε/β))

,

By Theorem 3 (Riemannian Dimension Bound for DNN), we have that there exists a prior π such
that uniformly over every W ∈ BF(R),

log
1

π(Bϱn,ℓ
(f(W, ·), ε)) ≤ log

1

π(BϱGNP(W )
(W,

√
nε/β))

≤ dR(W, ε/β), (127)

where the definition of Riemannian Dimension dR can be found in Theorem 3. By Theorem 1, we
have that there exists an absolute constant C1 such that with probability at least 1 − δ, uniformly
over all W ∈ BF(R),

(P− Pn)ℓ(f(W,x), y) ≤C1

 inf
α≥0

{
α+

1√
n

∫ 1

α

√
log

(
1

π(Bϱn,ℓ
(f(W, ·), ε))

)
dε

}
+

√
log log(2n)

δ

n


≤C1

 inf
α≥0

{
α+

1√
n

∫ 1

α

√
dR(W, ε/β)dε

}
+

√
log log(2n)

δ

n


=C1

 inf
α≥0

{
α+

β√
n

∫ 1

α

√
dR(W, ε)dε

}
+

√
log log(2n)

δ

n

 . (128)
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where C1 is an absolute constant; the first inequality uses Theorem 1; and the second inequality uses
(127). This finishes the first part of Theorem 4 (integral upper bound).

Step 2: Obtaining the Expression of Riemannian Dimension. It remains to express the Rie-
mannian Dimension dR by Theorem 3 and prove the second part of Theorem 4. By Theorem 3, we
have that the expression of Riemannian Dimension is

dR(W, ε) =

L∑
l=1

(
(dl + dl−1) · deff(LM

2
l→L(W, ε) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2

n}, ε)

+ log(dl−1n)
)
, (129)

where R = supW ∥W∥F, C2 is an absolute constant, and the effective dimension (defined via (11))
is

deff(LM
2
l→L(W, ε) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2

n}, ε)

=
1

2

reff[W,l]∑
k=1

log
8C2

2 max{∥W∥2F, R2/4n}LM2
l→L(W, ε)λk(Fl−1F

⊤
l−1)

nε2
, (130)

where Fl−1 is the abbreviation of Fl−1(W,X) and reff[W, l] is the abbreviation of
reff(LM

2
l→L(W, ε) · Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2

n}, ε).
Combining the identities (129) and (130), we have the pointwise dimension bound
dR(W, ε)

=

L∑
l=1

(dl + dl−1)

reff[W,l]∑
k=1

log
8C2

2λk(Fl−1F
⊤
l−1) ·max{∥W∥2F, R2/4n}LM2

l→L(W, ε)

nε2
+ log(dl−1n)


=

L∑
l=1

(
(dl + dl−1)

reff[W,l]∑
k=1

log
8C2

2λk(Fl−1F
⊤
l−1)

nε2

+ (dl + dl−1)reff[W, l] · log
(
M2

l→L(W, ε)Lmax{||W ||2F, R2/4n}
)
+ log(dl−1n)

)
(131)

where Fl−1 is the abbreviation of Fl−1(W,X); reff[W, l] is the abbreviation of reff(LM
2
l→L(W, ε) ·

Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2
n}, ε); and C2 is an absolute constant.

This finishes the second part of Theorem 4 (expression of Riemannian Dimension).

Combining the integral upper bound (128) and the Riemannain dimension expression (131) con-
cludes the proof of Theorem 4.

□

F.4 PROOF FOR REGULARIZED ERM IN SECTION F.2

Lemma 31 (Excess Risk Bound for Regularized ERM) Assume we have high-probability point-
wise generalization bound in the form of (3), and the loss ℓ(f ; z) is uniformly bounded by [0, 1].
Then for the regularized ERM

f̂ = argminf

{
Pnℓ(f ; z) + C

√
d(f) + log(2/δ)

n

}
,

we have the excess risk bound against the population risk minimizer f⋆ := argminF Pℓ(f ; z): with
probability at least 1− δ,

Pℓ(f̂ ; z)− Pℓ(f⋆; z) ≤ inf
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(2/δ)

n

}
− Pℓ(f⋆; z)

≤(C +
√
1/2)

√
d(f⋆) + log(2/δ)

n
.
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Proof of Lemma 31: By (3), for every δ ∈ (0, 1), take δ1 = δ2 = δ/2, we have that with
probability at least 1− δ1 − δ2 = 1− δ, we have

Pℓ(f̂ ; z) ≤ inf
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(1/δ1)

n

}

≤Pnℓ(f
⋆; z) + C

√
d(f⋆) + log(1/δ1)

n

≤Pℓ(f⋆; z) +
√

log(1/δ2)

2n
+ C

√
d(f⋆) + log(1/δ1)

n

=Pℓ(f⋆; z) +
√

log(2/δ)

2n
+ C

√
d(f⋆) + log(2/δ)

n

≤Pℓ(f⋆; z) + (C +
√
1/2)

√
d(f⋆) + log(2/δ)

n
.

where the first inequality uses the bound of the form (3); the second inequality uses definition of
f̂ ; and the third inequality is an application of the Hoeffding’s inequality (Lemma 17) at f⋆; the
equality is by δ1 = δ2 = δ/2; and the last inequality follows from the monotonicity of the square
root function. Thus we have that the excess risk is bounded by

Pℓ(f̂ ; z)− Pℓ(f⋆; z) ≤ inf
f∈F

{
Pnℓ(f ; z) + C

√
d(f) + log(2/δ)

n

}
− Pℓ(f⋆; z)

≤(C +
√
1/2)

√
d(f⋆) + log(2/δ)

n
.

□

F.5 IMPROVEMENT OVER NORM BOUNDS IN SECTION F.1

F.5.1 EXPONENTIAL IMPROVEMENT TO A NORM BOUND AND COMPARISON

We now provide norm-constrained bound from Theorem 4 without any expression reff and deff in
the bound. Invoking the elementary bound log x ≤ log(1 + x) ≤ x, the effective dimension factor
in Theorem 4 can be relaxed to the dimension-independent bound

∞∑
k=1

log
(

λk

(
Fl−1F

⊤
l−1

)
∥W∥2

F LM2
l→L(W,ε)

n ε2

)
≤
∑∞

k=1 λk(Fl−1F
⊤
l−1) ∥W∥2F LM2

l→L(W, ε)

n ε2

≤∥Fl−1(W,X)∥2F ∥W∥2F LM2
l→L(W, ε)

n ε2
,

and one arrives at the following rank–free consequence.

Corollary 1 (Norm-constrained bound) Theorem 4 is never worse than: uniformly over all W ∈
BF(R), the generalization gap (P− Pn) ℓ

(
f(W,x), y

)
is bounded by

O

β
√∑L

l=1(dl + dl−1)L∥Fl−1(W,X)∥2F∥W∥2F supε>0M
2
l→L(W, ε)

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 .

(132)
Furthermore, (132) implies the spectrally normalized bound: uniformly over W ∈ BF(R), the
generalization gap (P− Pn) ℓ

(
f(W,x), y

)
is bounded by

O

β∥X∥F∥W∥F ·
√∑L

l=1 L(dl + dl−1)
∏

i̸=l ∥Wi∥2op

n
+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n

 .

(133)
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Here in both (132) and (133), O hides multiplicative absolute con-

stants and two ignorable high-order terms: β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and
β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supε>0 Ml→L2(W,ε)

n2n ; and in (133), O additionally hides an ignor-

able high-order term β
√

L∥W∥2
F∥X∥2

F
∑L

l=1(dl+dl−1)(R/
√
L−1)L−1

nmax{R,2}n .

Note that (132) and (133), the data matrix X contain n features vectors so their Frobenius norms
scales with

√
n, making the order of both bounds to be n−1/2.

Discussion of Corollary 1: We proceed in three paragraphs of discussion. First, we show that the
Riemannian Dimension bound in Theorem 4 is exponentially tighter than the spectrally normalized
bound in (133). Second, we offer a metric–tensor interpretation that clarifies the source of this
improvement. Finally, we position (133) relative to the most representative spectrally normalized
bounds (SNB) in the existing literature.

I: Why the improvement is exponential. Empirically one observes

∥Fl−1∥F ≪
∏
i<l

∥Wi∥op ∥X∥F, Ml→L(W, ε) ≤ sup
W ′∈Bϱn (W,ε)

∏
i>l

∥W ′
i∥op.

Combining this dramatic improvement with the already–exponential gain that comes solely from
the elementary inequality log x ≤ log(1 + x) ≤ x (for x ≥ 0), we conclude that Theorem 4 is
exponentially tighter than (133). Therefore, Theorem 4 improves on Corollary 1 by an exponential
factor.

II: Metric tensor interpretation. For understand the improvement deeper, we highlight that the
spectral norm bound (133) can be equivalently viewed as replacing the metric tensor GNP (9) used
in Theorem 4 by the diagonal metric tensor

GSNB(W ) = blockdiag
(
. . . , L sup

W ′∈BF(R)

∏
k ̸=l

∥W ′
k∥op ∥X∥2F ⊗ Idl×dl−1

, . . .
)
,

which is a far coarser relaxation that completely discards the learned feature Fl(W,X).

III: Relation to existing spectrally normalized bounds. The bound in (133) is structurally close
to the classical SNB results of Bartlett et al. (2017) and Neyshabur et al. (2018); the three bounds
differ only in the global ball used to constraint the hypothesis class.

(a) Our bound (133) controls all layers simultaneously via the global Frobenius norm ∥W∥F,
hence the factor ∥W∥F in the numerator.

(b) Neyshabur et al. (2018) bounds each layer l separately by its Frobenius norm ∥Wl∥F.
Strengthening their argument with Dudley’s entropy integral (one-shot optimization in the
original paper) gives

(P−Pn) ℓ
(
f(W,x), y

)
≤ Õ

(β ∥X∥F

√∑L
l=1 L

2(dl + dl−1) ∥Wl∥2F
∏

i̸=l∥Wi∥2op

n
+

√
log 1

δ

n

)
.

(134)
Neither (133) nor (134) strictly dominates the other, since factors of the form
(
∑

l al)(
∑

l bl) in (133) vs. factors of the form L
∑

l albl in (134) can swap their rela-
tive order.

(c) Bartlett et al. (2017) replaces each Frobenius norm by the ∥ · ∥2,1 norm, obtaining the tighter

(P−Pn) ℓ
(
f(W,x), y

)
≤ Õ

(β ∥X∥F
(∑

l∥Wl∥2/32,1

∑
l

(∏
i̸=l∥Wi∥op

)2/3)3/2
n

+

√
log 1

δ

n

)
,

(135)
which improves on (133) and (134) thanks to the sharper 2, 1 norm. Extending our
Riemannian-dimension analysis to the 2, 1 norm setting is an interesting direction for future
work.
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(d) Size-independent SNB bounds (pioneered by Golowich et al. (2020)) remove all
depth/width dependence at the price of a worse scaling in n; incorporating their technique
is left for future research.

(e) Pinto et al. (2025) impose explicit per-layer rank constraints on the weight matrices, thereby
replacing the width factors in (134) with the corresponding ranks while leaving the product
of spectral norms unchanged. Their bound includes an additional CL factor, which is sub-
sequently removed by Ledent et al. (2025). Moreover, Ledent et al. (2025) seek to bridge
the spectral–norm and parameter–count regimes by leveraging the Schatten–p framework
of Golowich et al. (2020), which interpolates between the product-of-spectral-norm regime
(p → ∞) and layerwise low-rank scalings (p → 0). In the extreme p → 0 limit, a repre-
sentative consequence (Theorem E.8 of Ledent et al., 2025) yields

(P− Pn)ℓ
(
f(W,x), y

)
≤ Õ

 supi ∥xi∥22√
n

√√√√ L∑
l=1

L(dl + dl−1) rank(Wl)

 .

Notably, the explicit dependence on the ranks of the weight matrices—rather than on
spectrum-aware or feature-rank quantities—renders this result structurally similar to VC-
dimension bounds (indeed, the proof proceeds via uniform covering numbers, and pack-
ing/VC dimensions for matrices are known to adapt to explicit rank constraints (Srebro
et al., 2004)). As the authors acknowledge, this is a principal limitation: empirical evidence
suggests that deep networks exhibit low rank in their features rather than their weights, a
phenomenon this bound does not capture.

In any case, (133) is a representative SNB bound, and the key message in this subsection is that our
Riemannian-Dimension result in Theorem 4 is exponentially sharper than (133).

F.5.2 PROOF OF COROLLARY 1

The bound in Theorem 4 (or (128) in its proof) can be further upper bounded by the following form

(P− Pn)ℓ(f(W,x), y) ≤ C1

 1√
n

∫ 1

0

√
dR(W, ε)dε+

√
log log(2n)

δ

n

 , (136)

where the integral∫ 1

0

√
dR(W, ε)dε = inf

α≥0

(∫ α

0

√
dR(W, ε)dε+

∫ 1

α

√
dR(W, ε)dε

)
.

Building on this inequality, we structure the proof in four steps.

Step 1: Bounding the Dominating Integral. As we will take α to be very small so that the∫ α

0

√
dR(W, ε) will be not exceed the order of

∫ 1

α

√
dR(W, ε), we firstly prove

∫ 1

α

√
dR(W, ε)dε.

By the basic inequality log x ≤ log(1 + x) ≤ x for x > 0, we have

reff[W,l]∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F, R2/4n}LM2

l→L(W, ε)

nε2

)

≤
reff[W,l]∑
k=1

8C2
2λk(Fl−1F

⊤
l−1) ·max{||W ||2F, R2/4n}LM2

l→L(W, ε)

nε2

≤
dl−1∑
k=1

8C2
2λk(Fl−1F

⊤
l−1) ·max{||W ||2F, R2/4n}LM2

l→L(W, ε)

nε2

=
8C2

2∥Fl−1∥2F{∥W∥2F, R2/4n}LM2
l→L(W, ε)

nε2
, (137)

where Fl−1 is the abbreviation of Fl−1(W,X); reff[W, l] is the abbreviation of reff(LM
2
l→L(W, ε) ·

Fl−1(W,X)Fl−1(W,X)⊤, C2 max{∥W∥F, R/2
n}, ε); andC2 is a positive absolute constant. Here
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the second inequality uses the definition that reff[W, l] as the effective rank of a dl−1 × dl−1 matrix,
is no larger than the matrix width dl−1; the first equality is because

dl−1∑
k=1

λk(Fl−1F
⊤
l−1) = Tr(Fl−1F

⊤
l−1) = ∥Fl−1∥2F, (138)

a well-known property of the Frobenius norm (the squared Frobenius norm ∥Fl−1∥2F equals trace of
Fl−1F

⊤
l−1). By (137) and Theorem 4 we have the Riemannian Dimension upper bound

dR(W, ε) ≤ 8C2
2

L∑
l=1

(dl + dl−1)
∥Fl−1∥2F max{∥W∥2F, R2/4n}LM2

l→L(W, ε)

nε2
+

L∑
l=1

log(dl−1n),

(139)

where C2 is a positive absolute constant.

Taking (139) to the integral
∫ 1

α

√
dR(W, ε)dε, we have∫ 1

α

√
dR(W, ε)dε

≤2
√
2C2

∫ 1

α

√√√√ L∑
l=1

(dl + dl−1)
∥Fl−1∥2F max{∥W∥2F, R2/4n}LM2

l→L(W, ε)

nε2
dε+ (1− α)

√√√√ L∑
l=1

log(dl−1n)

≤C3

√∑L
l=1(dl + dl−1)L∥Fl−1∥2F max{∥W∥2F, R2/4n} supε>0M

2
l→L(W, ε)

n
log

1

α
+ (1− α)

√√√√ L∑
l=1

log(dl−1n),

where C3 > 0 is an absolute constant.

Step 2: Bounding the Rest Integral. We then prove
∫ α

0

√
dR(W, ε)dε. Again, by the basic in-

equality log x ≤ log(1 + x) ≤ x for x > 0, we have

reff[W,l]∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ε)

nε2

)

≤
dl−1∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ε)

nε2

)

=

dl−1∑
k=1

log
(8C2

2λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ε)

nα2

)
+ dl−1 log

α2

ε2

≤8C2
2

∑dl−1

k=1 λk(Fl−1F
⊤
l−1) ·max{||W ||2F , R2/4n}LM2

l→L(W, ε)

nα2
+ dl−1 log

α2

ε2

=
8C2

2∥Fl−1(W,X)∥2F ·max{||W ||2F , R2/4n}LM2
l→L(W, ε)

nα2
+ dl−1 log

α2

ε2
. (140)

Taking (140) to the integral
∫ α

0

√
dR(W, ε)dε, we have∫ α

0

√
dR(W, ε)dε

≤2
√
2C2

∫ α

0

√√√√ L∑
l=1

(dl + dl−1)
∥Fl−1∥2F max{∥W∥2F, R2/4n}LM2

l→L(W, ε)

nα2
dε+

∫ α

0

√√√√ L∑
l=1

(dl + dl−1)dl−1 log
α2

ε2
dε

≤C4

√∑L
l=1(dl + dl−1)∥Fl−1∥2F max{∥W∥2F, R2/4n}L supε>0M

2
l→L(W, ε)

n
+ α

√√√√ L∑
l=1

(dl + dl−1)dl−1

 ,
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where the second inequality holds by calculating the integral
∫ α

0

√
log
(
α2

ε2

)
dε = α

√
π
2 , andC4 > 0

is an absolute constant. Taking α = 1
n5 , the high-order term α

√∑L
l=1(dl + dl−1)dl−1 will be√∑L

l=1(dl+dl−1)dl−1

n5 and is ignorable.

Step 3: Combing the Two Integrals. Combining Step 1 and Step 2, we get the full Riemannian
Dimension integral upper bound

1√
n

∫ ∞

0

√
dR(W, ε)dε ≤ O


√∑L

l=1(dl + dl−1)L∥Fl−1∥2F∥W∥2F supε>0M
2
l→L(W, ε)

n
+

√∑L
l=1 log(dl−1n)

n

 ,

where O hides multiplicative absolute constants and two ignorable high-order terms:√∑L
l=1(dl+dl−1)dl−1

n5.5 and
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supε>0 M2
l→L(W,ε)

n2n .

Put this bound into Theorem 4 (or (136)), we have with probability at least 1− δ, uniformly over all
W ∈ BF(R),

(P− Pn)ℓ(f(W,x), y)

≤O

β
√∑L

l=1(dl + dl−1)L∥Fl−1∥2F∥W∥2F supε>0M
2
l→L(W, ε)

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 ,

(141)

where O hides multiplicative absolute constants and two ignorable high-order terms:
β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supε>0 M2
l→L(W,ε)

n2n . Note that here
Fl−1(W ;X) ∈ Rdl−1×n contains n features vectors in dimension dl−1 so its Frobenius norm
∥Fl−1∥F scales with

√
n with respect to sample size; and supε>0Ml→L(W, ε) is the “one-point”

Lipschitz constant at W in the sense that

||FL(Fl(W
′, X), {W ′

i}Li=l+1)− FL(Fl(W,X), {W ′
i}Li=l+1)||F

≤
(
sup
ε
Ml→L(W, ε)

)
||Fl(W

′, X)− Fl(W,X)||F, ∀W ′ ∈ BF(R).

This concludes the first generalization bound in Corollary 1.

Step 4: Prove the Second Generalization Bound. Now we continue to show that the bound in
Corollary 1 is strictly better than the spectrally normalized bound. To see this, as we presented under
Corollary 1, we have

∥Fl−1(W,X)∥F

=∥σl−1(Wl−1 · · ·W2σ1(W1X))∥F

≤
∏
i<l

∥Wi∥op · ∥X∥F, (142)

by the property of spectral norm (∥AB∥F ≤ ∥A∥op∥B∥F)), and the fact that all activation functions
are 1−Lipschitz in column.

In the meanwhile, we know that(
sup
ε
Ml→L(W, ε)

)
≤ sup

ε

∏
i>l

∥W ′
i∥op,

again by the property of spectral norm (∥AB∥F ≤ ∥A∥op∥B∥F)) and the fact that all activation
functions are 1−Lipschitz in column. This results in

sup
ε

∏
i>l

∥W ′
i∥op ≤ sup

W∈BF(R)

∏
i>l

∥Wi∥op. (143)
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Combining (142) and (143) together with (141), we have that for any δ ∈ (0, 1), with probability at
least 1− δ, uniformly over every W ∈ BF(R), we have

(P− Pn)ℓ(f(W,x), y)

≤O

β
√
L∥W∥2F∥X∥2F ·∑L

l=1(dl + dl−1)
∏

i<l ∥Wi∥2op supW∈BF(R)

∏
i>l ∥Wi∥2op

n

+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 , (144)

where O hides multiplicative absolute constants and two ignorable high-order terms:
β
√∑L

l=1(dl+dl−1)dl−1

n5.5 and β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supε>0 M2
l→L(W,ε)

n2n .

The next step is to use a multi-dimensional extension of the “uniform pointwise convergence” prin-
ciple (resulting in pointwise generalization bound (35) in this paper) to give a conversion from the
uniform convergence to the pointwise convergence. Denote the functional Tl : BF(R) → (0, Rl] is
defined by

Tl(W ) =
∏
i ̸=l

∥Wi∥2op.

Since
∑

i̸=l ∥Wi∥2F ≤ ∥W∥2F ≤ R2, we have Tl(W ) =
∏

i ̸=l ∥Wi∥2op ≤ (R/
√
L− 1)2(L−1)

according to the AM-GM inequality. The bound in (144) implies that for any l = 1, · · · , L,
∀tl ∈ (0, (R/

√
L− 1)2(L−1))], with probability at least 1− δ,

sup
W :Tl(W )≤tl,∀l∈[L]

(P− Pn)ℓ(f(W,x), y)

≤O

β
√
L∥W∥2F∥X∥2F ·∑L

l=1(dl + dl−1)tl

n
+

√
β2
∑L

l=1 log(dl−1n) + log log(2n)
δ

n

 . (145)

With the smallest radius r0 chosen to be r0 = (R/
√
L− 1)2(L−1))/max{R, 2}n, and a grid of size

(log2(2maxW,l{Tl(W )}/r0))k (partition each coordinate into log2(2maxW,ℓ{Tl(W )}/r0) dyadic
scales, we can prove that for any δ ∈ (0, 1), with probability at least 1 − δ, uniformly over every
W ∈ BF(R),

(P− Pn)ℓ(f(W,x), y)

≤O

β
√
L∥W∥2F∥X∥2F

∑L
l=1(dl + dl−1)max{4T 2

l (W ), (R/
√
L−1)2L−2

max{R,2}2n }
n

+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n


=O

β
√
L∥W∥2F∥X∥2F ·∑L

l=1(dl + dl−1)
∏

i ̸=l ∥Wi∥2op

n
+

√
β2
∑L

l=1 log(dl−1n) + L log n logmax{R,2}
δ

n

 ,

(146)

where O hides multiplicative absolute constants and three ignorable high-order

terms: β
√∑L

l=1(dl+dl−1)dl−1

n5.5 , β
√∑L

l=1(dl+dl−1)L∥Fl−1∥2
FR

2 supε>0 M2
l→L(W,ε)

n2n and
β
√

L∥W∥2
F∥X∥2

F
∑L

l=1(dl+dl−1)(R/
√
L−1)L−1

nmax{R,2}n . The proof of this multi-dimensional “uniform
pointwise convergence” is essentially the same peeling argument as in Lemma 4, with the only
change that we use multi-dimensional grid; alternatively, this can be proved by applying Lemma
4 for k times, where at each step we remove one dimension functional and divided confidence by
log2(2R/r0). We omit the repetitive proof details.
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Now we see from (142) and (143) that the derived norm-constraint bound (141) implies the spectrally
normalized bound (146). This completes the proof.

□
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