
Switchable Token-Specific Codebook Quantization For
Face Image Compression

Yongbo Wang∗

East China Normal University
Shanghai, China

Haonan Wang∗

Tencent Youtu Lab
Shanghai, China

Guodong Mu
Tencent Youtu Lab
Shanghai, China

Ruixin Zhang
Tencent Youtu Lab
Shanghai, China

Jiaqi Chen
East China Normal University

Shanghai, China

Jingyun Zhang
Tencent WeChat Pay Lab33

Shenzhen, China

Jun Wang
Tencent WeChat Pay Lab33

Shenzhen, China

Yuan Xie
East China Normal University

Shanghai, China

Zhizhong Zhang†
East China Normal University

Shanghai, China

Shouhong Ding
Tencent Youtu Lab
Shanghai, China

{51265901105,51275901135}@stu.ecnu.edu.cn, {yxie,zzzhang}@cs.ecnu.edu.cn
{quinnhnwang,gordonmu,ruixinzhang,naskyzhang,earljwang,ericshding}@tencent.com

Abstract

With the ever-increasing volume of visual data, the efficient and lossless transmis-
sion, along with its subsequent interpretation and understanding, has become a
critical bottleneck in modern information systems. The emerged codebook-based
solution utilize a globally shared codebook to quantize and dequantize each to-
ken, controlling the bpp by adjusting the number of tokens or the codebook size.
However, for facial images—which are rich in attributes—such global codebook
strategies overlook both the category-specific correlations within images and the
semantic differences among tokens, resulting in suboptimal performance, espe-
cially at low bpp. Motivated by these observations, we propose a Switchable
Token-Specific Codebook Quantization for face image compression , which learns
distinct codebook groups for different image categories and assigns an independent
codebook to each token. By recording the codebook group to which each token
belongs with a small number of bits, our method can reduce the loss incurred when
decreasing the size of each codebook group. This enables a larger total number of
codebooks under a lower overall bpp, thereby enhancing the expressive capability
and improving reconstruction performance. Owing to its generalizable design, our
method can be integrated into any existing codebook-based representation learn-
ing approach and has demonstrated its effectiveness on face recognition datasets,
achieving an average accuracy of 93.51% for reconstructed images at 0.05 bpp.

∗Equal contribution. This work was done by Yongbo Wang during an internship at Tencent Youtu Lab.
†Corresponding author.
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Figure 1: Storage cost comparison between previous latent space models and our method. (a)
Previous latent space model: Global-shared codebook requiring storage cost of T ⌈log2 N⌉ bits. (b)
Our method: Token-specific codebook selection reduces storage to T ⌈log2 K⌉+ ⌈log2 M⌉ bits.

1 Introduction

The volume of image data produced daily by smart device has skyrocketed. However, due to
bandwidth limitations and storage costs, such data are typically stored and transferred in lossy
compressed formats instead of raw RGB data. While lossy compression can greatly reduce storage
requirements, it inevitably leads to a drop in visual quality and significantly impairs the performance
of certain machine perception tasks, such as face recognition (1; 2).

In recent years, numerous solutions have been proposed with the aim of achieving high-fidelity
image reconstruction and maintaining recognition capabilities with extremely low bpp. For instance,
traditional compression techniques such as JPEG (3), GIF (4), and WebP (5) remain widely adopted
due to their strong compatibility to trade off computational complexity, storage size, and visual
quality. Meanwhile, with advancements in deep learning, neural network-based compression methods
have gained increasing traction. VQ-VAE (6) transforms images into discrete indices mapped to a
codebook, enabling the compression of 2D pixel spaces into compact latent spaces. Despite their
expressive feature representation, these methods are constrained by the requirement to maintain 2D
structural correspondence, which prevents them from fully leveraging spatial redundancy in images
and limits further reduction of bpp. To address this limitation, TiTok (7) introduced a latent code
framework that encodes images into a 1D latent space, achieving high-efficiency compression of
256× 256 images with only 32 tokens.

However, when targeting even lower bpp, these methods primarily rely on reducing the number
of tokens or decreasing the size of the codebook. Unfortunately, both strategies result in severe
degradation of visual quality for compressed images and significant drops in machine recognition
performance. Through a detailed analysis, we identify a pivotal bottleneck in existing VQ-VAE-style
methods: all tokens share a single global codebook. To ensure that the codebook accommodates
the diverse features of all images, it must be sufficiently large. Consequently, reducing the size of
the codebook leads to a drastic performance decline. This raises an important question: Can we
reorganize the codebook to simplify the problem into smaller, more manageable subproblems?

Taking face images as an example, variations in attributes such as gender, age, and ethnicity suggest
that images with similar attributes often share similar features. Therefore, the global shared codebook
can be replaced with multiple codebooks, each designed for images with specific attributes. By
enabling images to selectively use a suitable codebook, the complexity of each codebook’s task can
be reduced. Furthermore, within a single image, regardless of the feature extraction architecture
used (i.e., CNN or ViT), different tokens explicitly or implicitly represent semantic information
pertaining to different aspects of the image. For example, some tokens may correspond to facial
regions, while others may be associated with the image’s category. Forcing all tokens to share the
same codebook increases learning difficulty. To this end, we propose a token-specific codebook
quantization mechanism, where each token is assigned its own unique sub-codebook, significantly
reducing the capacity requirements of individual sub-codebooks.
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Based on the above analysis, we propose a switchable token-specific codebook quantization mech-
anism that combines image-level and token-level segmentation and has been verified on multiple
face datasets. In our method, a codebook routing module determines which codebook within the
codebook pool is appropriate for a given image. Within the selected codebook, each token is assigned
a sub-codebook tailored for its specific characteristics. In this way, the entire codebook pool can
offer greater capacity, enabling improved compression and reconstruction performance. Additionally,
as illustrated in Figure 1, due to our hierarchically dynamic structure, the actual storage overhead
decreases from T ×⌈log2 N⌉ to T ×⌈log2 K⌉+ ⌈log2 M⌉, enabling stronger feature representations
under the same or even lower bpp. This ultimately results in substantial performance improvements.

We summarize our main contributions as follows:

1. We first introduce a switchable codebook quantization mechanism. By adjusting the bit width of
the routing module and the size of the codebooks, our method supports flexible bpp configurations
and increases total codebook capacity under the approximation of bpp, thereby enhancing overall
performance.

2. We analyze intra-image token characteristics and propose a token-specific codebook quantization
mechanism , thereby reducing the complexity of each codebook and improving overall performance.

3. We propose a hierarchically dynamic codebook structure that incorporates both image-level and
token-level codebook partitioning. This module is plug-and-play and can be seamlessly integrated
with state-of-the-art codebook-based compression methods.

4. We evaluate our method on the face recognition task and demonstrate its effectiveness with
extensive experiments. Compared to the state-of-the-art method (TiTok), our approach achieves
higher accuracy at the same bpp (e.g., improving accuracy from 87.56% to 91.66% at 0.0234 bpp) or
reduces bpp at the same accuracy (e.g., from 0.0234 to 0.0157 at 87% accuracy).

2 Related Works

2.1 Lossy Image Compression

Traditional lossy image compression frameworks typically employ manually crafted pipelines, as
exemplified by standards such as JPEG (3), JPEG2000 (8), HEVC (9), and VVC (10). However,
isolated module optimizations prevent partial improvements from translating into global performance
gains, inherently limiting the evolvability of such frameworks. Building upon advances in neu-
ral networks, Ballé et al. (11) pioneered convolutional neural networks (CNN)-based end-to-end
optimized nonlinear transform coding framework, in which the analysis/synthesis transforms and
entropy models are jointly trained to outperform traditional codecs in rate-distortion performance,
and further extended this approach using a variational autoencoder formulation (12). Subsequent
studies have advanced neural image compression by exploring improvements in network archi-
tectures (13; 14; 15), quantization methods (16; 17), entropy modeling techniques (18; 19), and
optimization objectives (20; 21).

Beyond neural image compression, Agustsson et al. (22) introduced generative image compression
to address blurred reconstructions at low bitrates inherent in prior methods, leveraging perceptual
loss optimization for realistic synthesis. While early generative image compression frameworks
primarily employed generative adversarial networks (GANs) (22; 23; 24), recent work has explored
text/sketch-guided diffusion models (25), non-binary discriminator with quantized conditioning (26),
and VQ-VAE-based latent-space transform coding (27), achieving high-fidelity and high-realism
reconstructions under ultra-low bitrate constraints (28; 29). In addition, some specialized image
compression frameworks have emerged for domain-specific tasks. For facial image compression,
studies (30; 31) investigate racial bias induced by lossy compression in face recognition. Others
develop frameworks tailored for facial images by utilizing edge maps (32) or semantic priors (33).
However, these approaches either struggle to achieve effective compression under ultra-low bitrate
constraints, or overlook the critical role of identity information in facial recognition tasks, resulting
in insufficient exploration of recognition accuracy and identity consistency.
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Figure 2: (a) Overview of the proposed architecture. (b) Dynamic switching mechanism for token-
specific codebook selection. (c) Composition of the i-th token-specific codebook. (d) Token-specific
quantization and dequantization process for the j-th token. Sample face images are from the FFHQ
dataset (44).

2.2 Latent Space Model

Latent space model, initially developed for visual generation tasks, compresses high-dimensional
raw pixels into compact latent representations for image synthesis. While variational autoencoders
(VAEs) (34) map images into a continuous latent space, vector-quantized VAEs (VQ-VAEs) (6; 35)
learn discrete latent representations via codebook learning, offering enhanced controllability and
compression capability. Extending this framework, VQGAN (36) integrates perceptual loss and
adversarial training to maintain high perceptual quality at elevated compression rates, further bridging
generative modeling with discrete latent space compression. Recent advances have demonstrated
the potential of latent space model: Rombach et al.(37) implement high-resolution image synthesis
by performing diffusion processes in the latent space of VQGAN; Yu et al. (7) break away from
conventional 2D latent grids by learning 1D token sequences for more flexible latent representations;
and Shi et al. (38) pioneer scalable training paradigms to enable large-scale high-dimensional
codebooks, significantly improving the utilization of large-scale codebooks.

Latent space modeling has also shown significant promise in facial processing tasks. Wang et
al. (39)achieve high-fidelity and generalizable talking face generation by leveraging a pre-trained
codebook to encode target faces. Tan et al. (40) further advance this domain by designing a unified
codebook capable of representing diverse identities and expressions. Similarly, works (41; 42; 43)
employ VQGAN for blind face restoration, using codebooks pretrained on high-quality facial images
as priors to guide degraded image reconstruction. However, prior research predominantly focuses
on spatial token compression within fixed codebook frameworks, where further reduction of token
counts has reached diminishing returns. Our work pioneers a codebook-centric methodology by
proposing a universal switchable token-specific codebook quantization. This innovation enhances
compression efficiency through dynamic codebook specialization while maintaining reconstruction
fidelity.

3 Method

3.1 Preliminary

The key idea of the latent space model lies in learning discrete latent representations to establish a
compressed semantic space for image compression and generation. A typical latent space model
comprises three fundamental components: an encoder Enc, a vector quantizer Quant, and a decoder
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Dec. The encoder hierarchically compresses high-resolution images into compact latent vectors. The
quantizer, rather important in compression, maintains an embedding codebook C ∈ RN×d with N
learnable latent vectors that defines a discrete projection space. Through vector quantization, the
continuous latent vectors produced by the encoder are discretized into codebook indices, thereby
converting the image into a sequence of symbolic tokens. Specifically, given an input image x ∈
RH×W×3, the corresponding discrete feature map can be formulated as follows:

ze = Enc(x), (1)

zq = Quant
C

(ze) = argmin
e∈C

∥ze − e∥22, (2)

where ze, zq ∈ Rh×w×d. The quantizer vias substituting continuous latent vectors with their nearest
neighbors in a learnable codebook, thereby reformulating the input image as a compressed index
sequence. This transformation achieves significant storage efficiency while preserving critical visual
fidelity. For example, for the codebook C ∈ RN×d, each token requires only ⌈log2 N⌉ bits. Thus,
bpp is determined by both the codebook size and the token count.

The decoder operates on these discrete latent embeddings to reconstruct the input image x̂ = Dec(zq).
The training objective of the latent space model harmonizes three critical aspects: reconstructing
error minimization, quantization error minimization, and perceptual quality preservation. The loss
function can be formulated as:

LVQ = ∥x− x̂∥22 + ∥sg(ze)− zq∥22 + ∥sg(zq)− ze∥22 + λpLper, (3)

where Lper indicates the perceptual loss, and sg(·) refers to the stop-gradient operation. As illustrated
in Figure 2, our method adheres to the latent space model but introduces a critical innovation:
replacing conventional static codebooks with switchable token-specific codebooks, achieving superior
rate-distortion performance compared to prior latent space models.

3.2 Switchable Codebook Quantization

The above analysis illustrates that the bpp is influenced by both the number of tokens and the bit-width
of token indices. Since the number of tokens corresponds to the model architecture, a viable strategy
is to reduce the bit-width of token indices. The bit-width of token indices L is determined by the
codebook size N , following the relation L = ⌈log2 N⌉. However, simply decreasing the codebook
size will negatively impact the reconstruction performance by limiting the diversity of codes available.
Moreover, even halving the codebook size only reduces each index by one bit, which significantly
diminishes the representational capacity of the latent space.

The inherent variations in facial attributes (e.g., gender, age, ethnicity) suggest that samples sharing
common attributes exhibit analogous feature distributions. To mitigate the diminished codebook
diversity caused by codebook compression, we propose Switchable Codebook Quantization (SCQ).
Given an original codebook Corig ∈ RN×d, we replace it with M learnable codebooks {Ci ∈
R N

2s ×d}Mi=1, where s ≤ M . This design ensures that code diversity remains comparable to or exceeds
that of Corig while allowing storage compression.

Specifically, the original latent space model requires n×b bits (for n tokens with b-bit width), whereas
SCQ reduces per-token bit-width by s and introduces only log2 M additional bits to switch codebook.
The multiplicative reduction in bit-width (∝ n(b− s)) dominates the additive overhead (+ log2 M).
For instance, when an image is represented by 256 tokens, replacing the original 4096-entry codebook
with 256 codebooks (each containing 256 entries) reduces total bit allocation from 3072 bits to 2056
bits, achieving a 33% reduction in bpp.

During quantization, as shown in Figure 2(b) each image selects a codebook via a router G that maps
encoded features ze to their optimal codebook partition. The selected codebook then quantizes ze
into discrete indices through the nearest-neighbor search, preserving constrained bpp.

k =G(ze), (4)

zq = Quant
Ci

(ze) = argmin
e∈Ci

∥ze − e∥22. (5)
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3.3 Codebook Routing

Increasing the number of codebooks introduces a corresponding selection challenge, as it becomes
necessary to determine which codebook is most appropriate for a given input or context. To minimize
quantization error, the most straightforward routing strategy is to compute quantization errors across
all codebooks and select the one with minimal error:

Gnaive(ze) = argmin
i∈{1,...,M}

∥ze − Quant
Ci

(ze)∥22. (6)

However, direct error-based routing may lead to preferential optimization of better-optimized code-
books, thereby compromising codebook diversity. Inspired by Mixture-of-Experts (45; 46) (MoE),
we design a differentiable routing network Gθ composed of probabilistic sub-routers:

Gθ(ze) = argmax
i∈{1,...,M}

giθ(ze), (7)

where giθ computes the selection probability for the i-th codebook. To ensure full codebook utilization,
we introduce three loss functions:

Lent =

M∑
i=1

ḡθ(ze) log ḡθ(ze), (8)

Ldec = − 1

M

M∑
i=1

giθ(ze) log g
i
θ(ze), (9)

Lqua =
1

M

M∑
i=1

giθ(ze) · sg(∥ze − Quant
Ci

(ze)∥22 − ē), (10)

where ḡθ(ze) denotes the average probability of the current codebook group across samples in the
batch, and ē = 1

M

∑M
i=1 ∥ze − QuantCi(ze)∥22. Lent maximizes the entropy of selection distribution

to enforce balanced utilization across all codebooks, preventing preferential collapse to dominant
codebooks. This promotes full parameter space exploration during training. Ldec reduces prediction
ambiguity by concentrating probability mass on the optimal codebook index. Lqua guides the router
towards codebooks producing below-average reconstruction errors. The composite loss function
becomes:

Lrouter = Lqua + λ1Lent + λ2Ldec. (11)

Although the learnable router Gθ provides adaptive codebook selection during training, its stochastic
nature cannot guarantee persistent global optimality in routing decisions. This limitation stems from
the exploration-exploitation dilemma inherent in entropy-regularized optimization. Consequently, we
only employ Gθ for training. For inference, we only employ Gnaive to ensure quantization fidelity
through guaranteed minimal-error codebook assignment.

3.4 Token-Specific Codebook Quantization

Previous vector quantization methods employ a global codebook Cglobal ∈ RK×d where all tokens
share the same quantization space. However, within individual facial images, local regions (e.g.,
ocular vs. nasal areas) exhibit significant feature-space divergence due to domain-specific texture and
geometric variations.Therefore, individual tokens cannot effectively span the entire feature space,
leading to incomplete utilization of the full codebook. Besides, token features may partially overlap,
perfect alignment rarely occurs. As shown in Figure 2(c), we propose decomposing the global
codebook into token-specific sub-codebooks:

Ctsc = [C1 ⊕ C2 ⊕ · · · ⊕ CT ] ∈ RT×K×d, (12)

where T denotes the number of tokens, each sub-codebook Ct ∈ RK×d independently learns the
distribution of the t-th token. The token-specific codebook quantization becomes:
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Figure 3: Illustration of the training strategy. (a) Training stage 1: Optimization of the switchable
token-shared codebook. (b) Training stage 2: Optimization of switchable token-specific codebooks,
initialized from the Stage 1 token-shared codebook. (c) Training stage 3: Exclusive latent decoder
optimization with frozen switchable token-specific codebooks. Sample face images are from the
FFHQ dataset (44).

ztq = Quant
Ct

(zte) = argmin
e∈Ct

∥zte − e∥22. (13)

Despite increased total codebook size (T × K vs K), per-token bit-width remains b = ⌈log2 K⌉
identical to previous methods. Besides, by dedicating individualized sub-codebooks to model token-
specific feature distributions, our method achieves higher sampling density within each token’s
characteristic subspace, which directly translates to improved reconstruction fidelity.

3.5 Training Strategy

Building upon our foundational innovations in Switchable Codebook and Token-Specific Codebook,
we synergistically combine these components to formulate STSCQ — a novel architecture that
leverages multiple token-specific codebooks to simultaneously reduce per-token index bit-width and
mitigate quantization errors. To maximize synergistic advantages, as shown in Figure 3, we introduce
a three-stage progressive training paradigm.

Firstly, we initialize our model with a pre-trained latent space model and implement Switchable
Codebook Quantization — replacing the original single codebook with multiple learnable codebooks.
After routing, all tokens within an image share a unified codebook for quantization. During this stage,
we freeze all parameters except codebooks and routing network, focusing optimization on:

LStage1 = ∥ze − Quant
Ci

(ze)∥22 + Lrouter,where i = Gθ(ze). (14)

The first stage crucially establishes codebook diversity and routing policy initialization for subsequent
token-specific adaptation. Building upon this foundation, the second stage implements progressive
codebook refinement by leveraging the pre-trained codebooks as initialization vectors for token-
specific codebooks. Following the same parameter freezing protocol as Stage 1, we exclusively update
token-specific codebooks and routing network. The training objective during codebook refinement is:

LStage2 =

T∑
j=1

∥zje − Quant
Ci
j

(zje)∥22 + Lrouter,where i = Gθ(ze). (15)

As the codebook’s feature space evolves through training iterations, the pre-trained decoder becomes
suboptimally aligned with the updated codebook representations. To maintain precise latent-to-pixel
space mapping, we perform decoder fine-tuning on the original training dataset, ensuring accurate
image reconstruction from the transformed latent features. Furthermore, given the critical requirement
for high-fidelity preservation of facial attributes in compression systems, we integrate an identity
conservation mechanism during decoder refinement. Specifically, we leverage the widely-adopted
ArcFace (47) loss to impose semantic consistency between original and reconstructed faces. The
decoder can be supervised by the image-level loss:
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LStage3 =∥x− x̂∥22 + λpLper + λfLface, (16)

where Lper denotes perception loss, Lface denotes face loss.

4 Experiments

4.1 Setups

Dataset. We train our models on the CASIA-WebFace dataset (48), a large-scale face image dataset
widely used in the field of face recognition research, which contains approximately 500K images of
10,575 individuals, collected from the Internet. In the test stage, we evaluate the reconstruction quality
of our method on five face recognition datasets: LFW (2), CFP-FP (49), AgeDB (50), CPLFW (51),
CALFW (52). They all have 6-7K pairs of images that are used to determine whether they belong to
the same person. Note that all images for training and evaluating are resized to 256× 256, and data
augmentation strategies such as random cropping and random flipping are applied during training.

Training Details. We adopt our Switchable Token-Specific Codebook Quantization on both CNN-
based and ViT-based VQ-tokenizers. In our training pipeline, the encoder remains fixed throughout
the process. During stage 1 and stage 2, only the codebook is learnable, with its initial size set to
4096. In stage 3, only the decoder is trained to adapt to the quantized representations produced by the
updated codebook. For the training dataset CASIA-WebFace, we train 100K steps for stage 1, 400K
steps for stage 2, and 100K steps for stage 3. Our models are optimized by AdamW with the initial
learning rate of 1e− 4. Our methods are implemented on eight NVIDIA V100 GPUs with nearly 2
days for training.

Evaluation Metrics. We evaluate the level of image compression using bits per pixel (bpp),
and assess the impact of compression on facial images using a pre-trained face recognition model.
Specifically, we compute the Mean Accuracy (MeanAcc) and the Identity Similarity (IDS). MeanAcc
refers to the average recognition accuracy across five face recognition benchmark datasets after
compression and reconstruction, while IDS measures the cosine similarity between the features of
the original and reconstructed images.

4.2 Main Results

We evaluate our proposed method on two representative baselines, TiTok (7) and VQGAN (36). For
TiTok, we conduct experiments under two different scales, where each image is represented by either
128 or 32 discrete indices. For VQGAN, we follow the experimental setup of MASKGIT (53). We
conduct comparisons with a variety of state-of-the-art methods, encompassing both traditional com-
pression algorithms (e.g., JPEG2000 (8)) and codebook-based learning approaches (e.g., MaskGIT
and TiTok), as shown in Table 1. In comparison with other methods, our proposed approach pre-
serves outstanding recognition effectiveness for compressed facial images, maintaining a recognition
accuracy of around 70% even at extremely low bit rates (bpp < 0.01). Specifically, compared with
traditional compression algorithms, our approach achieves higher recognition accuracy and IDS at
approximately half the bit rate. However, at a compression rate of 0.01 bpp, JPEG2000 exhibits
considerable limitations, as its capacity to retain essential facial details for reliable recognition is
substantially reduced. For codebook learning-based methods, our approach also demonstrates out-
standing performance. By learning token-specific codebooks for each token, we significantly enhance
the representational capacity of the latent space. For example, on MaskGit-VQGAN, our method
achieves a recognition accuracy of 93.51% and the IDS of 0.6659, while on TiTok-s, we obtain the
accuracy of 91.66% and the IDS of 0.6120. These results represent a substantial improvement over
the baseline methods.

4.3 Ablation Studies

Generalization Ability of Our Method. With the help of proposed Switchable Token-Specific
Codebook Quantization, we can flexibly adjust the compression rate by reducing the size of codebooks
while maximizing the retention of its latent space encoding capacity. To show generalizable design
of our methods, we conduct generalization experiments on three baseline models, each evaluated
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Table 1: Quantitative comparison with state-of-the-art methods.

Method Model Type # Tokens MeanAcc(%) IDS bpp

JPEG 2000 (8) / / 56.98 0.0312 0.0100
JPEG 2000 (8) / / 85.64 0.3551 0.0500
CodeFormer (41) 2D 256 89.99 0.6210 0.0390
MaskGit-VQGAN (53) 2D 256 90.70 0.6314 0.0469
TiTok-S (7) 1D 128 87.56 0.5764 0.0234
TiTok-L (7) 1D 32 65.07 0.1812 0.0059

Ours(MaskGit-VQGAN) 2D 256 93.51 (+2.81↑) 0.6659 0.0469
Ours(TiTok-S) 1D 128 91.66 (+4.10↑) 0.6120 0.0234
Ours(TiTok-L) 1D 32 73.13 (+8.06↑) 0.2583 0.0059
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Figure 4: Comparisons of different baselines and our methods.

under three different bpp configurations. The results are shown in Table 2 and Figure 4. Our method
demonstrates superior rate-distortion performance compared to conventional baselines across both
1D and 2D latent-space modeling frameworks. For 1D modeling (TiTok-S), we reduce the bitrate by
32.9% (from 0.0234 → 0.0157 bpp) while maintaining comparable recognition accuracy (87.56% →
87.60%). In 2D latent-space architectures (MaskGit-VQGAN), our approach achieves a 16.6%
bitrate reduction (0.0469 → 0.0391 bpp) coupled with a 1.53% absolute accuracy improvement
(90.70% → 92.23%), validating that codebook specialization simultaneously enhances compression
efficiency and feature representation fidelity.

To better evaluate the efficiency of our method, we evaluate the inference latency and storage overhead
introduced by our method, as shown in Table 2. The expansion of the overall codebook size does
indeed incur additional storage costs, along with a slight increase in inference latency. However, we
explore a routing-based inference: only the codebook group selected by the router needs to be loaded,
rather than searching with the minimum error across all codebooks. With this improvement, both
inference latency and storage overhead are substantially alleviated, while the performance remains
competitive with the baselines.

Effectiveness of Switchable Codebook Quantization. We conduct ablation studies about our
proposed method with the codebook size of 1024 and show results in Table 3, where Idx0 indicates
the original single codebook without any modifications, and NN means the nearest-neighbor search.
The results for Idx0 and Idx1 indicate that employing a routing mechanism to select among multiple
codebooks can further enhance the representational capacity of the codebooks under a fixed bpp, as
evidenced by an improvement in recognition accuracy from 88.11% to 88.24%.

Effectiveness of Codebook Routing and Token-Specific Codebook. As shown in Table 3, the
results for Idx2 and Idx4 suggest that the presence of multiple codebooks, together with the routing
mechanism, can further alleviate the learning difficulty in the feature quantization process and
improve model performance. In addition, the comparison between Idx1 and Idx4 demonstrates that
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Table 2: Switchable Token-Specific Codebook Quantization on different baselines. #Tks and #Cbs
indicates the number of tokens and codebooks respectively. NCb refers to the size of each codebook.
‘SP’ means selection policy, where ‘NN’ means Nearest-Neighbor search, ‘CR’ means proposed
Codebook Routing search. tinf indicates the inference time per image tested on a V100.

Backbone #Tks #Cbs NCb bpp SP MeanAcc(%) IDS tinf (s) Storage (MB)

MaskGit-VQGAN (53)
256 1 4096 0.0469 NN 93.51 0.6659 0.1554 1122.70
256 16 1024 0.0391 NN 92.23 0.6264 0.1771 4194.70
256 16 1024 0.0391 CR 92.22 0.6253 0.1544 354.70

TiTok-S (7)
128 1 4096 0.0234 NN 91.66 0.6120 0.1437 122.68
128 256 256 0.0157 NN 87.60 0.5180 0.1496 482.71
128 256 256 0.0157 CR 87.54 0.5125 0.1450 100.21

TiTok-L (7)
32 1 4096 0.0059 NN 73.13 0.2583 0.1744 1163.47
32 256 256 0.0040 NN 66.02 0.1885 0.1750 1253.50
32 256 256 0.0040 CR 65.65 0.1864 0.1741 1157.87

Table 3: Ablation studies.
Idx Tok-shared Tok-specific NN CR MeanAcc(%) IDS bpp

0 - - - - 88.11 0.5361 0.0195
1 ✓ - - ✓ 88.24 0.5412 0.0196
2 - ✓ ✓ - 89.28 0.5701 0.0196
3 - ✓ - ✓ 89.89 0.5740 0.0196

learning a specific codebook for each token enhances the representational capacity of each token in
the latent space, as evidenced by improvements in recognition accuracy. Furthermore, token-specific
codebook quantization is able to solve the uneven distribution of codebook utilization due to the
original strategy of using a global-shared codebook across all tokens. As shown in Table 4, the
proposed approach enables more effective utilization of the codebook, with an average increase of
approximately 20% in per-token codebook usage, thereby reducing quantization errors caused by
codebook utilization imbalance.

Table 4: Codebook utilization rates (%) per token on LFW dataset.
Method bpp Min Max Mean STD

Global-shared 0.0234 3.49 78.12 54.17 14.71
Ours 0.0234 17.90 83.89 74.02 9.14

5 Conclusion and Limitation

In this paper, we propose a switchable token-specific codebook quantization mechanism. Specifically,
we design a codebook routing algorithm that assigns each image to its own small codebook, and
further allocate an independent codebook to each token within the image. Our approach supports
flexible bpp (bits-per-pixel) settings and enables the codebook to better exploit its representational
capacity under the same bpp configuration. We validate the effectiveness of our method on face
recognition tasks, demonstrating that facial images can maintain competitive recognition accuracy
even when compressed to extremely low bpp.

However, our method still has certain limitations. Since our approach focuses on flexible configuration
of codebook size without introducing special designs for the encoder or decoder, its performance is
highly dependent on the underlying autoencoder used as the baseline. We leave these extensions for
future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our approach is to further enhance the face compression by our proposed
switchable token-specific codebook.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have already written the limitation of our method in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have thoroughly introduced our method in the Method section and detailed
our training process in the Experiments section. Additionally, we plan to release our code
and checkpoints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will submit our codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and testing protocols are comprehensively detailed in the Experi-
ments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not include error bars in the presented results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have already provide information on the computer resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have already discussed societal impacts of the work performed in Section
1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have such risks because it is based on open source datasets
and works.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have already cite the original paper that produced the code package or
dataset in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM has no influence on the core methodology, scientific rigor or originality
of this study.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Image-level and Token-level Analysis

Due to the unique characteristics of facial images, images sharing the same attributes (such as
ethnicity, gender, etc.) often exhibit many common features at the image level. At the token level,
tokens corresponding to different facial regions also tend to have distinct feature representations.
To address the attribute distribution characteristics at the image level, we design multiple groups of
codebooks with a routing mechanism to capture both the differences and commonalities among image
attributes. As illustrated in Figure 5a, we visualize the activation patterns of 16 codebook groups with
respect to the ethnicity attribute. It can be observed that, for African faces, the 5th and 14th codebook
groups are frequently activated, whereas for Asian faces, the 9th and 3rd codebook groups are more
likely to be activated. This observation supports our hypothesis that designing separate codebooks for
different attributes is beneficial.

At the token level, we conducted a statistical analysis comparing two approaches: sharing a single
codebook among all tokens versus learning a separate codebook for each token, as shown in Figure
5b. The results indicate that when all tokens share a single codebook, tokens at different positions
are unable to fully exploit the representational capacity of the codebook’s latent space. This is
reflected in the low utilization rate and large standard deviation for individual tokens. In contrast,
with our proposed token-specific codebook approach, the utilization of the codebook by each token is
significantly improved, with consistently high utilization rates across all tokens.
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(a) Visualization analysis of codebook routing on
different ethnics.
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Figure 5: Visualization analysis from image-level and token-level.

A.2 Alleviating the Trade-off between Compression and Recognition Accuracy

Directly reducing the codebook size to lower the bpp often leads to significant performance degra-
dation. In contrast, our method effectively mitigates the loss in recognition performance associated
with decreasing bpp. As shown in Figure 6, we conducted experiments on the TiTok-s128 baseline
under three different bpp settings. The results demonstrate that our approach consistently improves
recognition performance across all bpp levels. Moreover, as bpp decreases, our method better pre-
serves recognition accuracy. For example, at bpp = 0.0235, our method achieves improvements of
0.97% in recognition accuracy and 0.019 in IDS compared to the baseline. At an even lower bpp of
0.0157, the improvements increase to 1.32% in accuracy and 0.043 in IDS. These results confirm the
robustness of our method to changes in bpp.

A.3 Impact of the Number of Routing Codebooks

Our method employs multiple small codebooks and utilizes a routing mechanism to assign each image
to its respective codebook. This approach enables a reduction in codebook size while maximally
preserving the representational capacity of the codebooks’ latent space. To investigate the impact of
the number of codebooks on final recognition performance, we conducted further experiments. As
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Figure 6: Comparison of recognition performance degradation with decreasing bpp between our
method and the baseline.

shown in Figure 7, with the codebook size fixed at 1024, increasing the number of codebooks from 1
to 16 leads to a noticeable improvement in recognition accuracy. This suggests that increasing the
number of codebooks can indeed mitigate the performance degradation caused by directly reducing
codebook size. However, we also observed that when the number of codebooks is further increased to
128, recognition performance begins to decline. We speculate that this is due to the increased learning
difficulty associated with a large number of codebooks. Fully leveraging the vast representational
capacity of such a large latent space is beyond the scope of this work.
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Figure 7: Effect of routing codebook quantity on recognition accuracy.
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