

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COT-PL: VISUAL CHAIN-OF-THOUGHT REASONING MEETS PSEUDO-LABELING FOR OPEN- VOCABULARY OBJECT DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Open-vocabulary object detection (OVD) seeks to recognize and localize object categories beyond those seen during training. Recent approaches typically leverage vision-language models (VLMs) to generate pseudo-labels using image-text alignment, allowing detectors to generalize to unseen classes without explicit supervision. However, these methods depend heavily on direct image–text matching, neglecting the intermediate reasoning steps essential for interpreting semantically complex scenes. This results in limited robustness when confronted with crowded or occluded visual contexts. In this paper, we introduce CoT-PL, a new framework that employs structured visual chain-of-thought (CoT) reasoning into the pseudo-labeling process. CoT-PL decomposes object understanding into three interpretable steps: (1) region perception even for unseen objects, (2) category recognition via zero-shot reasoning, and (3) background grounding to separate semantically complex objects. Crucially, the third step naturally motivates our contrastive background learning (CBL) that uses the pre-computed background cues as negatives to promote feature disentanglement between objects and background. In this way, CoT reasoning and CBL form an integrated pipeline tailored to robust pseudo-labeling in crowded or occluded scenes. Notably, in these two settings, our novel-class pseudo-label quality achieves relative improvements of 103.4% and 168.4% over the best prior, respectively. Our extensive experiments demonstrate that CoT-PL achieves +7.7 AP₅₀ on open-vocabulary COCO and +2.9 mask AP on LVIS for novel classes, setting a new state of the art.

1 INTRODUCTION

Open-vocabulary object detection (OVD) aims to localize both seen (base) and unseen (novel) categories at test time, using only base-class annotations during training. To bridge this supervision gap between seen and unseen categories, recent approaches leverage vision-language models (VLMs) pre-trained on large-scale image-text pairs (Radford et al., 2021). These VLMs map textual descriptions to visual representations, allowing OVD methods to recognize novel classes.

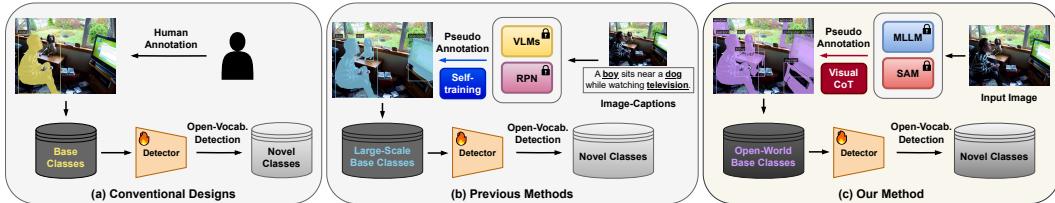


Figure 1: **Trends in pseudo-labeling for OVD.** (a) Manual pseudo-labels for novel classes are costly and do not scale. (b) Recent self-training methods automate pseudo-labeling by labeling region proposals via similarity with category text embeddings using vision-language models (VLMs), but degrade with VLMs’ poor object localization and caption-dependent vocabulary. (c) We employ visual chain-of-thought with Segment Anything Model (Kirillov et al., 2023) and multimodal large language models (Bai et al., 2023) for accurate object perception and zero-shot category recognition.

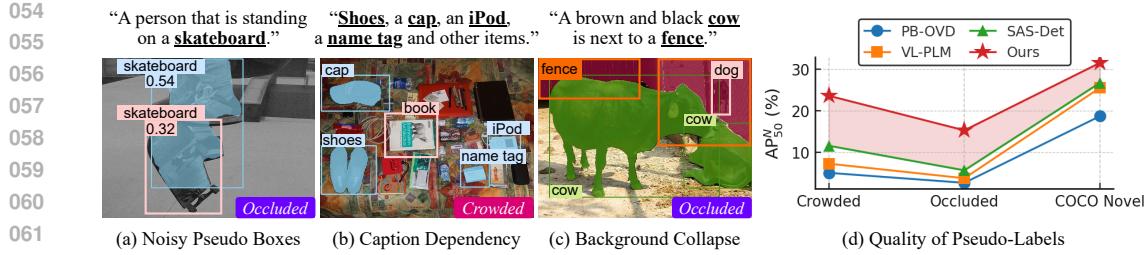


Figure 2: **Limitations and quality of pseudo-labels for complex scenes.** (a) Noisy pseudo boxes due to poor object localization by VLMs, (b) limited object coverage from captions, and (c) occluded objects treated as background. (d) Pseudo-label quality on the OV-COCO validation set: *Crowded* denotes images with many objects and *Occluded* denotes objects occluded by other objects.

Among such efforts, pseudo-labeling has emerged as a state-of-the-art approach for OVD by augmenting the base set with automatically generated annotations that partially cover novel classes (Gao et al., 2022; Pham et al., 2024). Early pseudo-labeling methods for OVD relied on manual annotation of novel classes, which was costly and lacked scalability (Figure 1-a). More recent approaches (Zhao et al., 2022; 2024) automate pipelines that generate pseudo-annotations for novel classes (Figure 1-b). This process involves generating pseudo-labels for region proposals during self-training using CLIP (Radford et al., 2021), based on the similarity between region features and text embeddings of potential object categories, typically derived from dataset class names or image captions.

Despite their strong performances in general scenes, state-of-the-art OVD approaches still struggle in challenging scenarios like crowded or occluded objects. A key reason is their reliance on direct image–text matching via CLIP, lacking the intermediate visual reasoning steps required for understanding complex scenes (Yüksekgün et al., 2023). Recent pseudo-labeling approaches also inherit the same limitation. We identify three key factors underlying their failure in complex settings. **(L1) Noisy pseudo boxes:** VLMs trained with image-level supervision exhibit co-occurrence bias, favoring crops with semantically related objects (Zhong et al., 2022). This inductive bias hinders object-level pseudo-box labeling in complex, occluded scenes. In Figure 2-a, CLIP incorrectly assigns the highest similarity to the token “skateboard” for a pseudo box with the person’s feet partially hidden behind the skateboard. **(L2) Caption dependency:** Captions lack detail particularly in complex, crowded scenes. As a result, objects not listed in captions remain unlabeled. Figure 2-b shows missing pseudo annotations for many stuff categories (e.g., book) which are absent from the caption. **(L3) Background collapse:** Detecting objects under occlusion is challenging. These instances are frequently unlabeled and learned as background in training (Li et al., 2024). As illustrated in Figure 2-c, a dog partially occluded by a fence was not detected and treated as background.

To directly tackle these three limitations associated with complex scenes, we argue that pseudo-labeling for OVD must be reformulated as an interpretable multi-step reasoning process rather than a single-step alignment. In the vision-language domain, visual chain-of-thought (CoT) prompting enhances VLM reasoning by encouraging step-by-step thinking (Wu et al., 2023a). Inspired by this, we design pseudo-label generation using a three-step CoT pipeline explicitly aligned with OVD challenges: (1) region perception with SAM (Kirillov et al., 2023) produces candidate masks, and a multimodal large language model (MLLM) verifies object existence to filter out spurious or partial boxes, mitigating (L1); (2) zero-shot category recognition assigns labels to each region without relying on captions, eliminating (L2); and (3) contextual background grounding distinguishes true objects from unlabeled background regions, resolving (L3). Importantly, the third step naturally leads to our contrastive background learning (CBL), which transforms grounded background cues into negative signals for training. This integration does more than relying on strong models because SAM and MLLMs alone produce noisy or inconsistent labels but our structured reasoning and background-aware learning transform their raw outputs into high-quality pseudo-labels. In this way, CoT reasoning and CBL form a single, integrated pipeline purpose-built for robust pseudo-labeling in complex scenes. In Figure 2-d, our method significantly outperforms prior works (Gao et al., 2022; Zhao et al., 2022; 2024) in generating pseudo-labels under challenging environments.

We conduct extensive experiments on two OVD benchmarks, OV-COCO (Lin et al., 2014) and OV-LVIS (Gupta et al., 2019). Under challenging conditions like crowding and occlusion, our method

108 demonstrates superior pseudo-label quality compared to prior state-of-the-art pseudo-labeling methods.
 109 Our method sets a new state of the art, improving box AP₅₀ for novel classes on OV-COCO
 110 by 7.7 and mask mAP on OV-LVIS by 2.9, compared to prior work (Wu et al., 2023c). We report
 111 pseudo-label statistics across OVD benchmarks, and our key contributions include:
 112

- 113 • To our knowledge, we are the first to reformulate pseudo-labeling in OVD as a visual
 114 chain-of-thought, decomposing complex-scene object understanding into an interpretable
 115 multi-step reasoning process beyond single-step VLM alignment.
- 116 • We introduce CoT-PL, a unified system for robust pseudo-labeling in complex scenes by
 117 integrating CoT reasoning and contrastive background learning (CBL) that uses grounded
 118 background cues as negative training signals.
- 119 • Performance steadily improves with stronger teacher MLLMs, achieving state-of-the-art
 120 results in OVD with high-quality pseudo-labels, even in challenging environments.

122 2 RELATED WORK

124 2.1 CHAIN-OF-THOUGHT (CoT) REASONING

126 Chain-of-thought (CoT) reasoning has emerged as a powerful approach in natural language pro-
 127 cessing, enabling models to tackle complex reasoning tasks by incrementally decomposing them
 128 into interpretable steps. Initial work (Wei et al., 2022) demonstrated that large language models
 129 produced more accurate outcomes by generating intermediate reasoning before arriving at a final
 130 answer. In the visual domain, multimodal chain-of-thought methods process visual inputs sequen-
 131 tially to reason about future states. These approaches have been applied to diverse tasks, including
 132 bounding box prediction (Shao et al., 2024), planning in autonomous driving (Tian et al., 2024), in-
 133 termediate image infillments (Rose et al., 2023), and CLIP embedding synthesis (Harvey & Wood,
 134 2023). In the vision-language-action setting, CoT reasoning has recently gained traction for guiding
 135 closed-loop robotic manipulation through sub-goal images as intermediate reasoning steps (Zhao
 136 et al., 2025). In this work, we extend visual chain-of-thought reasoning to generate high-quality
 137 pseudo-labels for open-vocabulary object detection, even in semantically complex scenes.

138 2.2 OPEN- VOCABULARY OBJECT DETECTION

140 Open-vocabulary object detection (OVD) aims to detect novel objects not seen during training by
 141 leveraging vision-language models (VLMs) (Radford et al., 2021) trained on large-scale image-text
 142 pairs. Recent OVD methods (Du et al., 2022; Wu et al., 2023d) employ prompt modeling to transfer
 143 knowledge through learned prompts, enabling more precise contextual descriptions of each class.
 144 Several studies (Gu et al., 2022; Wu et al., 2023c) use knowledge distillation to align detectors with
 145 VLM features for recognizing unseen objects. Other approaches (Jin et al., 2024; Liu et al., 2024a)
 146 reinforce the text modality using large language models (LLMs). Meanwhile, InstaGen (Feng et al.,
 147 2024) focuses on the image modality, improving novel class prediction via synthetic images from
 148 an image generation model. Furthermore, Grounding DINO (Liu et al., 2024b) introduces prompt-
 149 based object detection by facilitating cross-modal information exchange between VLMs and trans-
 150 formers. Another OVD approach is pseudo-labeling, which addresses the limited base classes by
 151 leveraging extended supervision. These approaches often generate pseudo-annotations or weak su-
 152 pervision through self-training using image captions (Gao et al., 2022; Zhao et al., 2022; 2024) or
 153 dataset class names (Zhao et al., 2024). However, they focus on direct image–text matching via
 154 CLIP, disregarding a reasoning process necessary for complex scenes (Yüksekgönül et al., 2023).
 155 We reformulate OVD pseudo-labeling as a sequence of interpretable reasoning steps using visual
 156 chain-of-thought (CoT), thereby enabling robust pseudo-labeling in challenging environments.

157 3 METHODOLOGY

159 We introduce CoT-PL, a structured visual chain-of-thought pipeline tailored to robust pseudo-
 160 labeling, even in two challenging scenarios. Captions in crowded scenes are underspecified, while
 161 simple CLIP matching lacks fine-grained visual perception under occlusion. To address these is-
 162 sues, CoT-PL recasts object understanding as three interpretable reasoning steps: (1) (Pseudo Box

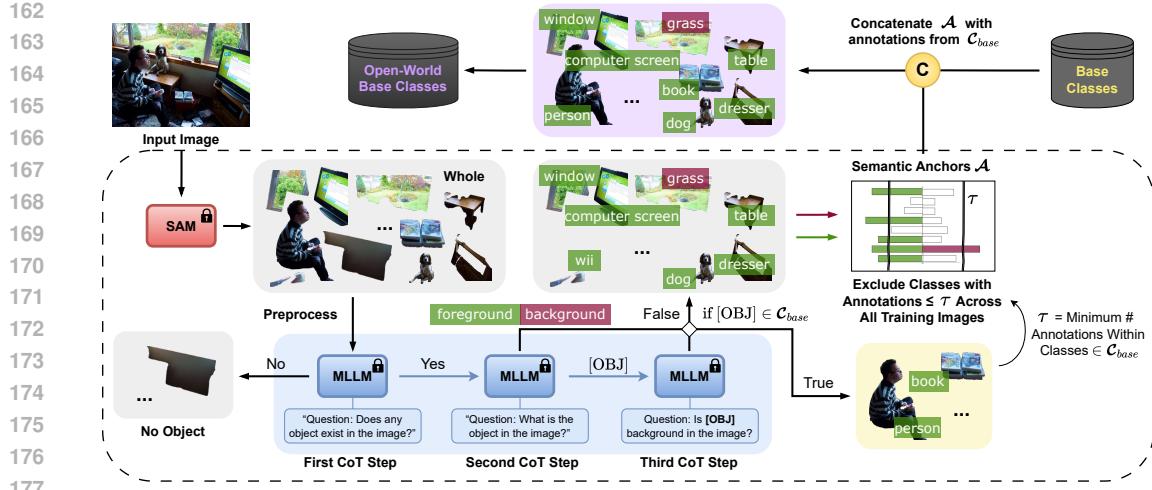


Figure 3: **Overview of the proposed visual chain-of-thought pipeline.** Our method first queries an MLLM about object existence inside SAM-generated pseudo boxes on preprocessed images, then performs zero-shot labeling, and finally extracts background representations nearby. Refined with semantic anchors for reliability, the resulting pseudo-annotations are merged into the base set.

Generation) We generate boxes for all instances using SAM (Kirillov et al., 2023) and verify if each box corresponds to a valid object. (2) (Pseudo Label Assignment) We assign a pseudo-label to each box through zero-shot object recognition using a multimodal large language model (MLLM). (3) (Background Extraction) We extract background representations by leveraging the MLLM’s grounding capability. Specially, the third step naturally leads to a contrastive background learning (CBL) strategy, which uses the identified background concepts as negative training signals to promote feature disentanglement between objects and background.

3.1 PSEUDO BOX GENERATION

First CoT step. We aim to generate accurate pseudo-bounding boxes for all potential objects in the train set. To this end, we leverage the strong generalization ability of SAM to produce segmentation masks for all object instances in each image. Relying on low-level visual cues such as edges and color contrasts, SAM is widely used in open-vocabulary settings to generalize beyond base classes to unseen objects (Zhang et al., 2023; Qin et al., 2024). However, applying class-agnostic SAM to OVD presents two key challenges: (1) it segments regions at varying semantic granularity (*i.e.* full objects vs. parts), and (2) it may include non-object regions such as background.

To address (1), we follow a similar approach to recent work (Qin et al., 2024), which utilizes SAM to extract accurate object-level masks at multiple semantic levels (*i.e.* whole, part, sub-part). As illustrated in Figure 3, our method selects whole-instance masks to generate precise object-level pseudo boxes that tightly enclose them. To address (2), we then use the zero-shot reasoning capability of a robust MLLM (Bai et al., 2023) to verify whether each box contains a valid object. For example, we prompt the model with: “Question: Does any object exist in the image?” and interpret the response (“Yes” or “No” or “Unsure”) as a ternary classification of object existence. Boxes classified as “No” or “Unsure” are discarded, whereas those classified as “Yes” are passed to the next stage of the CoT pipeline. For example, in Figure 3, regions lacking discernible objects (*i.e.* plain dark areas) are discarded. For “Unsure” responses—a rich source of long-tailed cases, we record the model’s rationale to support explainability. At this stage, we achieve region perception by generating accurate pseudo boxes that tightly enclose identifiable yet unlabeled objects.

3.2 PSEUDO LABEL ASSIGNMENT

Second CoT step. Most OVD methods rely on CLIP for pseudo-labeling, but it lacks fine-grained visual perception and requires predefined class names (Yüksekgün et al., 2023). These limitations inevitably lead to inaccurate or missing pseudo-labels, especially in complex scenes. This motivates

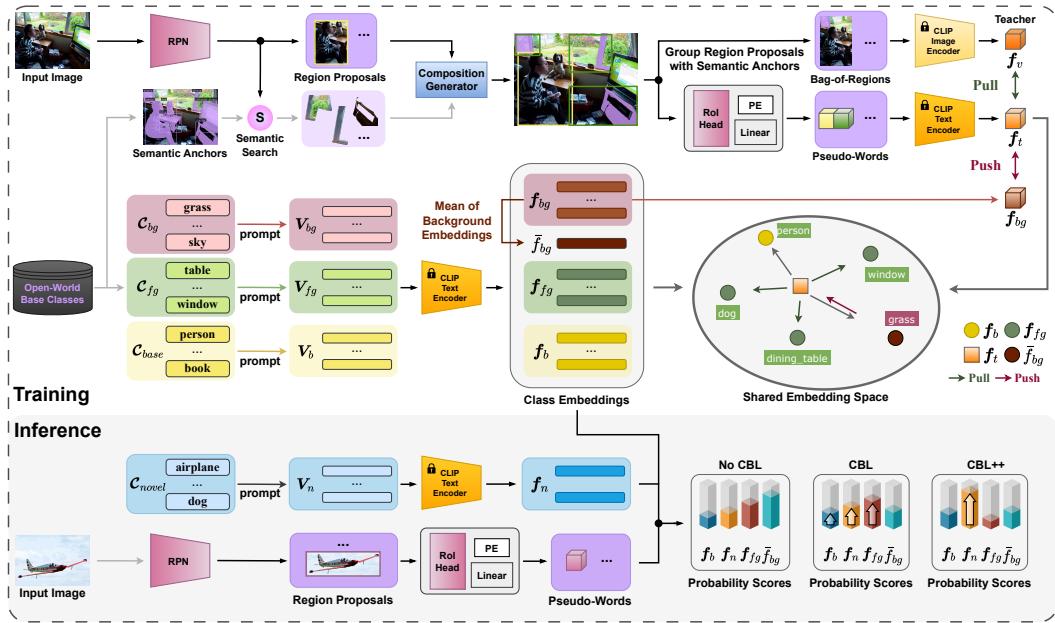


Figure 4: **Overall architecture of CoT-PL.** Built on BARON (Wu et al., 2023c) (See Appendix G), the proposed method encodes the open-world base set, partially including novel classes, using the CLIP text encoder. The CLIP embeddings of multiple background concepts are averaged to initialize a single learnable background embedding. These concepts are also used as negative samples in contrastive learning to encourage feature disentanglement between objects and background. At inference time, we apply CBL++ to mitigate class interference by removing pseudo-labels associated with the ground-truth novel classes.

the second CoT step, which assigns more accurate pseudo-labels to each box independently of image captions. To achieve this, we leverage an MLLM with strong zero-shot multi-class identification to infer the object category within each box (Wang et al., 2023a). As shown in Figure 3, during the second CoT stage, we prompt “Question: What is the object in the image?”, expecting a specific class label beyond the base set. This simple query lays the groundwork for caption-free, open-world pseudo-labeling in OVD.

However, MLLMs are sensitive to visual content and often produce irrelevant predictions when queried on pseudo boxes, as attention may leak beyond the target region (Zang et al., 2025; Zhang et al., 2025b; Fu et al., 2024). A common workaround applies hard masks to remove non-target regions, but this often induces errors from misleading visual content (Chang et al., 2023; Fontanini et al., 2023). For example, a masked giraffe’s silhouette may bias the model to misclassify a tree as a giraffe (See Appendix H.1). To mitigate this, we apply grayscaling and blurring as a soft mask to suppress non-target regions, helping the MLLM focus and produce more accurate pseudo labels (Yang et al., 2023). This preprocessing step is visualized in Appendix 6.

To further improve pseudo-label reliability, we add a post-processing step that filters out outlier labels, chiefly reducing false positives. We exclude pseudo-labels with fewer annotation counts than a threshold, as they are likely unreliable. For simplicity, the threshold is set to the minimum annotation count among base classes. The remaining high-confidence labels, or *semantic anchors*, are then integrated with the base class set to construct our open-world base set. Figure 3 highlights anchors with color bars: green (*foreground*), red (*background*), and white (*outlier*). Without predefined class names or image captions, the second CoT step yields robust and reliable pseudo-labels by integrating MLLM zero-shot reasoning with reliability-enhancing pre- and post-processing.

3.3 BACKGROUND EXTRACTION

Third CoT step. While stronger than VLM-based methods, our MLLM-based pseudo-labeling is not yet complete for long-tailed complex scenes because it hinges on MLLM capability. In such

cases, the model often returns “Unsure” for small or occluded objects (*i.e.* a mug hidden behind a laptop). For example, we observe that weaker models produce more “Unsure” responses and fewer valid labels across diverse objects (See Table 2). These regions remain unlabeled and are treated as background during training (Bansal et al., 2018; Li et al., 2024), since they match neither base nor pseudo-labeled classes, a phenomenon we call *background collapse*.

Unfortunately, explicitly identifying unlabeled, inherently unknown objects is nontrivial. Instead, we sidestep this by disentangling collapsed objects from background representations in the feature space. To this end, we use MLLM grounding as our third CoT step to verify whether a given “[OBJ]” belongs to background via a binary prompt (“Yes” or “No”). This simple binary query helps determine whether a given object category is background. For example, the model classifies “grass” as background and “drawer” as foreground (See Figure 3). These grounded background cues serve as negative supervision, encouraging object–background disentanglement in training.

3.4 CONTRASTIVE BACKGROUND LEARNING (CBL)

Our CBL instantiates the idea on BARON (Wu et al., 2023c) that performs competitively through online sampling of compositional structures (*i.e.*, co-occurrence of objects) as training signals. However, the sampling process is computationally expensive and time-consuming. In Figure 4, we design a composition generator that groups cached, pre-computed semantic anchors for each proposal into a *bag of regions*, reducing overall training time by $4\times$. Then, these sampled regions are projected into the word embedding space using the linear layer within Faster R-CNN (Ren et al., 2015), resulting in pseudo-words. The pseudo-words are passed through the text encoder \mathcal{T} to obtain the bag-of-regions embedding $f_t^i = \mathcal{T}(w_0^i + p_0^i, w_1^i + p_1^i, \dots, w_{N^i-1}^i + p_{N^i-1}^i)$, where N^i is the number of regions in the i -th bag, p_j^i represents the positional embedding of the j -th region in the i -th bag. Finally, this bag-of-regions embedding is aligned with the VLM’s image embeddings $f_v^i = \mathcal{V}(b_0^i, b_1^i, \dots, b_{N^i}^i)$, where b_j^i is the j -th region in the i -th bag. Further implementation details appear in Appendix G.

To alleviate the background collapse, we propose a contrastive background learning (CBL) strategy that explicitly disentangles objects, including unlabeled objects, from true background representations (*i.e.* grass or sky) in the feature space during training. As shown in Figure 4, we first encode the base categories \mathcal{C}_{base} , pseudo-labels \mathcal{C}_{fg} , and identified background concepts \mathcal{C}_{bg} using the CLIP text encoder with the prompt template “a photo of [OBJ]”. The averaged background embedding \bar{f}_{bg} serves as an initialization for a learnable background prior. To encourage feature discrimination, we apply a contrastive objective in which the background embeddings f_{bg} serve as negative samples, formulated as the alignment InfoNCE loss (Rusak et al., 2024):

$$\mathcal{L}_{\text{bag}} = \frac{1}{2} \sum_{k=0}^{G-1} (\log p_{t,v}^k + \log p_{v,t}^k), \quad (1)$$

where G is the number of bags, and the $p_{t,v}^k$ and $p_{v,t}^k$ can be calculated as:

$$p_{t,v}^k = \frac{\exp(\tau' \cdot \langle f_t^k, f_v^k \rangle)}{\sum_{l=0}^{G-1} \exp(\tau' \cdot \langle f_t^k, f_v^l \rangle) + \sum_{j=0}^{M-1} \exp(\tau'' \cdot \langle f_t^k, f_{bg}^j \rangle)}, \quad (2)$$

$$p_{v,t}^k = \frac{\exp(\tau' \cdot \langle f_v^k, f_t^k \rangle)}{\sum_{l=0}^{G-1} \exp(\tau' \cdot \langle f_v^k, f_t^l \rangle) + \sum_{j=0}^{M-1} \exp(\tau'' \cdot \langle f_v^k, f_{bg}^j \rangle)}, \quad (3)$$

where $\langle \cdot, \cdot \rangle$ denotes cosine similarity; M is the number of background concepts; τ' and τ'' are temperature scaling factors. The loss encourages alignment between matched text–image pairs (*e.g.*, dog and window) while pushing apart mismatched background representations (*e.g.*, grass).

4 EXPERIMENTS

Datasets and evaluation metrics. We evaluate our CoT-PL using two widely used OVD datasets: OV-COCO (Lin et al., 2014) and OV-LVIS (Gupta et al., 2019). We adopt the category split approach from OVR-CNN (Zareian et al., 2021) for the OV-COCO, dividing object categories into 48 base and 17 novel categories. For OV-LVIS, we follow ViLD Gu et al. (2022), separating the 337 rare

324
 325 Table 1: **Result comparisons on OV-COCO** (Lin et al., 2014). Methods are categorized into two
 326 groups based on whether additional supervision beyond instance-level labels in the base classes \mathcal{C}_B
 327 is utilized during training, *i.e.*, weak or pseudo labels. Note that \mathcal{C}_N is the novel class set; RN50-C4
 328 uses features from the fourth convolutional stage, and RN50-FPN uses a multi-scale feature pyramid.

329 Methods	330 Supervisions	331 Backbone	332 AP_{50}^N (%)	333 AP_{50}^B (%)
Annotation: Extra caption datasets, Weak/Pseudo Labels in $\mathcal{C}_B \cup \mathcal{C}_N$				
Detic (Zhou et al.)	ImageNet21K & CC3M	RN50-C4 (24M)	27.8	42.0
OV-DETR (Zang et al.)	Pseudo annotation	RN50 (24M)	29.4	52.7
CoDet (Ma et al.)	CC3M & COCO Caption	RN50 (24M)	30.6	46.4
PB-OVD (Gao et al.)	COCO Caption	RN50-C4 (24M)	30.8	46.4
VL-PLM (Zhao et al.)	Pseudo instance-level annotation	RN50 (24M)	34.4	60.2
RegionCLIP (Zhong et al.)	CC3M	RN50-C4 (24M)	35.2	57.6
OC-OVD (Rasheed et al.)	COCO Caption	RN50-FPN (24M)	36.6	49.4
SAS-DET (Zhao et al.)	COCO Caption	RN50-C4 (24M)	37.4	58.5
CoT-PL (Ours)	Pseudo annotation	RN50-FPN (24M)	41.7	59.4
Annotation: Instance-level labels in \mathcal{C}_B				
ViLD-ens (Gu et al.)	CLIP	RN50-FPN (24M)	27.6	51.3
BARON (Wu et al.)	CLIP	RN50-FPN (24M)	34.0	60.4
CFM-ViT (Kim et al.)	CLIP	ViT-L/16 (307M)	34.3	46.4
CORA (Wu et al.)	CLIP	RN50 (24M)	35.1	35.4
BIND (Zhang et al.)	CLIP	ViT-B/16 (86M)	36.3	50.2
CLIP-Self (Wu et al.)	CLIP	ViT-B/16 (86M)	37.6	-
LBP (Li et al.)	CLIP	RN50-FPN (24M)	37.8	58.7
CKKT-Det (Zhang et al.)	CLIP	RN50 (24M)	38.0	-
OV-DQUO (Wang et al.)	CLIP	RN50 (24M)	39.2	-

348
 349 Table 2: **Statistics of pseudo labels.** We report the number of pseudo class labels and annotations
 350 obtained from 118,287 training images across open-vocabulary benchmarks. The class count indicates
 351 how many classes in each benchmark are covered by pseudo-labels.

353 Model	354 Total			355 OV-COCO (65 classes)		356 OV-LVIS (1,203 classes)	
	# Classes	# Annotations	# Unsure	# Classes	# Annotations	# Classes	# Annotations
BLIP2 (2023)	6,036	395,052	1,528,251	31	197,086	105	137,353
InstructBLIP (2023)	3,106	566,619	1,132,179	30	379,528	93	315,346
Qwen2 (2023)	3,916	637,349	563,156	65	349,399	115	232,298

358
 359 categories as novel and consolidating the common and frequent categories into base categories. We
 360 follow OVR-CNN for evaluation: on OV-COCO, we report box AP at IoU 0.5 for novel categories
 361 (AP_{50}^N); on OV-LVIS, we report mask mAP over IoUs from 0.5 to 0.95 for rare categories (AP_r).
 362

363 **Implementation details.** We build CoT-PL on Faster R-CNN (Ren et al., 2015) with ResNet50-
 364 FPN. For a fair comparison, we initialize the backbone network with weights pre-trained by
 365 SOCO (Wei et al., 2021) and use synchronized Batch Normalization Zhang et al. (2018), following
 366 recent studies Wu et al. (2023c); Du et al. (2022). For the main experiments on OV-COCO and
 367 OV-LVIS, we choose the $1\times$ and $2\times$ schedules, respectively. We use the CLIP model based on
 368 ViT-B-16 (Dosovitskiy et al., 2021) as our pre-trained VLM. For the prompt of category names, we
 369 default to the hand-crafted prompts from ViLD (Gu et al., 2022) in all our experiments on OV-COCO
 and OV-LVIS. We follow the same hyperparameter settings as the baseline (See Appendix E).
 370

371 4.1 MAIN RESULTS

372
 373 **Comparison with state-of-the-art methods.** Most recent OVD methods utilize weak or pseudo-
 374 annotations during training. For instance, RegionCLIP (Gao et al., 2022) and CoDet (Ma et al.,
 375 2023) utilize additional caption datasets to discover novel concepts, while OV-DETR (Zang et al.,
 376 2022) further generates pseudo-annotations in a self-training manner. As shown in Table 1, on OV-
 377 COCO, our CoT-PL achieves the best performance (AP_{50}^N 41.7%) among methods using additional
 supervision, with the default ResNet50 (He et al., 2016) backbone. Furthermore, CoT-PL surpasses

378 **Table 3: Result comparisons on OV-
379 LVIS (2019).** Our CoT-PL achieves com-
380 petitive performance on instance segmentation.
381

382 Methods	383 AP_r (%)	384 AP (%)
385 ViLD-ens (Gu et al., 2022)	386 16.6	387 25.5
388 Detic (Zhou et al., 2022)	389 17.8	390 26.8
391 BARON (Wu et al., 2023c)	392 19.2	393 26.5
394 MIC (Wang et al., 2023c)	395 20.8	396 30.7
397 OADP (Wang et al., 2023b)	398 21.7	399 26.6
399 LBP (Li et al., 2024)	400 22.2	401 29.1
401 CoT-PL (Ours)	402 23.0	403 29.4

404 **Table 4: Pseudo-label quality on OV-COCO
405 validation.** Metrics on novel-class pseudo-
406 labels. *Crowded* denotes images with more ob-
407 jects than the average in this dataset. *Occluded*
408 denotes novel-class objects over 50% covered
409 by other ground-truth boxes.

410 Methods	411 COCO Novel	412 <i>Crowded</i>	413 <i>Occluded</i>
414 PB-OVD	415 18.7	416 5.1	417 2.7
418 VL-PLM	419 25.5	420 7.3	421 3.8
422 SAS-Det	423 26.7	424 11.6	425 5.7
426 Ours	427 31.5	428 23.6	429 15.3

430 instance-level label-based methods relying on distillation, such as BIND (Zhang et al., 2024a). Notably, it also outperforms several recent distillation-based methods, such as CCKT-Det (Zhang et al., 2025a) and OV-DQUO (Wang et al., 2025), under the same ResNet-50 backbone. On OV-LVIS (Table 3), CoT-PL achieves strong performance (23.0% AP_r) using our generated pseudo-annotations under hand-crafted prompts. It significantly outperforms ViLD (Gu et al., 2022), Detic (Zhou et al., 2022), and BARON (Wu et al., 2023c), and performs better than more recent methods such as LBP (Li et al., 2024) and MIC (Wang et al., 2023c), which utilize extra data with 100 class names. These results highlight the effectiveness of our pseudo-labeling framework across diverse settings.

431 **Statistics.** Table 2 provides detailed statistics of pseudo-labels generated by different MLLM variants on two benchmarks. Our pseudo-labels span around 4K diverse object classes, totaling 637,349 432 annotations across these benchmarks. While BLIP2 (Li et al., 2023) covers the most categories 433 (6,036), its relatively low annotation count (395K) suggests sparse predictions with lower per-class 434 confidence. In contrast, InstructBLIP (Dai et al., 2023) produces fewer categories (3,106) but more 435 annotations (566K), reflecting more confident labeling. Qwen2 (Bai et al., 2023) achieves the highest 436 annotation density, generating 637K annotations across 3,916 categories. Notably, as the quality 437 of teacher models improves, the number of “Unsure” responses from MLLMs decreases, yielding 438 more confident pseudo-labeling. These results show that stronger teacher models with higher anno- 439 tation density with fewer “Unsure” responses, producing high-quality pseudo-labels for OVD. 440

441 4.2 ABLATION ANALYSIS

442 **Quality of pseudo-labels for complex scenes.** We compare the quality of our pseudo-labels with 443 prior state-of-the-art methods (Gao et al., 2022; Zhao et al., 2022; 2024). For a fair comparison, 444 we adopt the same experimental setup and report AP_{50}^N on the COCO validation set. As shown 445 in Table 4, existing methods perform reasonably well on COCO Novel but degrade significantly 446 under challenging scenarios such as *Crowded* and *Occluded*. Following (Lin et al., 2014; Qi et al., 447 2022), we define *Crowded* as images with more than 8 objects (COCO average), and *Occluded* as 448 novel ground-truth (GT) boxes covered more than 50% by other GT boxes. These results suggest 449 that previous pseudo-labeling methods lack the reasoning capabilities necessary for fine-grained 450 visual understanding, resulting in noisy pseudo-labels. In contrast, our method achieves superior 451 performance in such challenging scenarios through visual chain-of-thought reasoning.

452 **Impact of the individual proposed modules.** We conduct an ablation study on OV-COCO to 453 assess the contribution of each component in our CoT-PL framework: pseudo-labeling with CoT 454 reasoning and contrastive background learning (CBL). As shown in Table 5, naïvely prompting 455 MLLMs with a single-step query for both class names and background grounding without image 456 preprocessing results in only a marginal 0.6% gain over the baseline (Wu et al., 2023c). In con- 457 trast, applying image preprocessing improves AP_{50}^N by 2.6%, while a three-step CoT (3 \times) further 458 increases the gain to 5.7%. Furthermore, incorporating CBL improves performance by 7.1% via 459 better feature disentanglement between objects and background. It also yields a 2.9% gain in the 460 single-step setting with more unlabeled objects. These findings demonstrate the effectiveness of our 461 pseudo-label generation pipeline and CBL in generating high-quality pseudo-labels.

462 **Impact of semantic anchors.** We assess the impact of semantic anchors under different thresholds 463 in Table 6. The ALL setting, which uses all pseudo-labels without filtering, results in a slight per-

432
 433 **Table 5: Ablation of the proposed individual modules.** CoT
 434 (K \times) refers to pseudo-labeling guided by K-step chain-of-
 435 thought (CoT) reasoning. \dagger denotes no image preprocessing.

CoT \dagger (1 \times)	CoT (1 \times)	CoT (3 \times)	CBL	AP $^N_{50}$ (%)
✓	-	-	-	34.6
-	✓	-	-	37.2
-	✓	-	✓	40.1
-	-	✓	-	40.3
-	-	✓	✓	41.7

Table 6: **Impact of semantic anchors.** MIN denotes the fewest base-class annotation, while ALL uses all pseudo labels. CoT-PL performs best under MIN with more reliable pseudo-labels on OV-COCO.

Thresholds	AP $^N_{50}$	AP $^B_{50}$
ALL	40.7	59.1
MIN	41.7	59.4

444
 445 **Table 7: Impact of proposal generators on**
 446 **pseudo-labeling.** The detector is trained on
 447 pseudo-labels from multiple proposal generators.

Proposal Generator	COCO Novel	LVIS
Mask R-CNN (2017)	39.7	21.6
MAVL (2022)	40.9	22.1
SAM (2023)	41.7	23.0

Table 8: Comparison of MLLM variants for pseudo-labeling. **Best** and second best results are highlighted.

Model	Size	AP $^N_{50}$	AP $^B_{50}$
BLIP2 (2023)	2.7B	37.6	59.5
InstructBLIP (2023)	7B	<u>40.1</u>	58.7
Qwen2 (2023)	7B	41.7	59.4

453
 454 formance drop due to the inclusion of noisy and uncertain predictions. In contrast, the MIN setting,
 455 which selects semantic anchors with the fewest base-class annotations, achieves improved per-
 456 formance. These results suggest that semantic anchors help filter out unreliable and sparse predictions
 457 while guiding training toward semantically consistent regions.

458 **Impact of pseudo-box generator quality.** The proposed pseudo-labeling pipeline uses region
 459 proposals generated by class-agnostic SAM (Kirillov et al., 2023). Following PB-OVD (Gao et al.,
 460 2022), we compare SAM with other proposal generators, such as Mask R-CNN (He et al., 2017) and
 461 MAVL (Maaz et al., 2022), for pseudo-labeling. Table 7 shows that SAM achieves the best results
 462 on both COCO Novel (41.7%) and LVIS (23.0%), highlighting its potential as a proposal generator
 463 for pseudo-labeling. Notably, our method achieves competitive performance even with different
 464 proposal generators, demonstrating the effectiveness of structured chain-of-thought reasoning.

465 **Comparison of MLLM variants.** We compare different MLLM variants used in our pseudo-
 466 labeling pipeline, as shown in Table 8. BLIP-2 (Li et al., 2023), with the smallest parameter size
 467 (2.7B), yields the lowest detection performance, partially due to frequent “Unsure” responses, in-
 468 dicating limited capability in generating reliable pseudo-labels. In contrast, both InstructBLIP (Dai
 469 et al., 2023) and Qwen2 (Bai et al., 2023) have a comparable model size (7B), but Qwen2 consis-
 470 tently outperforms InstructBLIP across standard multimodal benchmarks such as MMBench (Liu
 471 et al., 2024c). This performance gap suggests that stronger MLLMs generate higher-quality pseudo-
 472 labels, leading to a 1.6% improvement in AP $^N_{50}$ for novel object detection. These findings indicate
 473 that advances in MLLM capability can translate into roughly linear gains within our framework.

474 5 CONCLUSION

475 We introduce CoT-PL, a new pseudo-labeling framework for open-vocabulary object detection
 476 (OVD) that leverages structured visual chain-of-thought (CoT) reasoning. Harnessing the zero-shot
 477 reasoning capabilities of multimodal large language models (MLLMs), CoT-PL decomposes object
 478 understanding into three interpretable reasoning steps: (1) object recognition, (2) caption-free zero-
 479 shot labeling, and (3) background extraction. The third step further leads to our contrastive back-
 480 ground learning (CBL) that mitigates background collapse by disentangling object and background
 481 features. As a result, CoT-PL, a unified system integrating CoT reasoning with CBL, generates high-
 482 quality pseudo-labels in complex visual scenes and consistently improves performance with stronger
 483 teacher MLLMs. CoT-PL achieves state-of-the-art results across multiple OVD benchmarks. We
 484 hope our work inspires further exploration of visual CoT reasoning in downstream perception tasks.

486 REPRODUCIBILITY STATEMENT
487

488 All materials required to reproduce our results are documented in the main paper and the appendices.
489 Specifically, the skeleton code and scripts are described in Appendix A. To preserve anonymity, the
490 skeleton code only illustrates the methodological flow. The workable version will be provided upon
491 publication. The device specifications are provided in Appendix C, and the implementation details,
492 including the hyperparameters, schedules, and optimizer settings, are presented in Section 4 and
493 Appendix E. In addition, the dataset information is provided in Appendix F, the prompts used in
494 the CoT pipeline are specified in Appendix J, and the pre- and post-processing setup is detailed in
495 Appendix H.1. Finally, the pseudo-label statistics are reported in Table 2 and Appendix H.1.

496
497 USAGE OF LARGE LANGUAGE MODELS
498

499 We utilize large language models, such as ChatGPT (Hurst et al., 2024), to aid or polish writing only.
500 This process primarily includes spell-check and paraphrasing a few texts for clarity and brevity. We
501 do not use any pre-defined prompt to query the model. Rather, we simply ask from scratch with a
502 brief prompt (*i.e.*, {input_sentence} Question: Please polish this sentence
503 concisely.). All outputs are thoroughly human-reviewed before inclusion in the paper. All co-
504 authors participate in this review process.

505
506 REFERENCES
507

- 508 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
509 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
510 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
511 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
512 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan,
513 Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
514 Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. *CoRR*, 2023.
- 515 Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran. Zero-shot ob-
516 ject detection. In *Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
517 September 8-14, 2018, Proceedings, Part I*, 2018.
- 519 Shuo-En Chang, Yi Chen, Yi-Cheng Yang, En-Ting Lin, Pei-Yung Hsiao, and Li-Chen Fu. Se-psnet:
520 Silhouette-based enhancement feature for panoptic segmentation network. *J. Vis. Commun. Image
521 Represent.*, 2023.
- 523 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
524 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
525 language models? In *Advances in Neural Information Processing Systems 38: Annual Confer-
526 ence on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
527 December 10 - 15, 2024*, 2024.
- 528 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
529 Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
530 Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
531 lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
532 Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
533 Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
534 models. *J. Mach. Learn. Res.*, 2024.
- 536 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
537 Boyang Li, Pascale Fung, and Steven C. H. Hoi. Instructblip: Towards general-purpose vision-
538 language models with instruction tuning. In *Advances in Neural Information Processing Systems
539 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023*, 2023.

- 540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 542 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 543 scale. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event,*
 544 *Austria, May 3-7, 2021*, 2021.
- 545 Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt
 546 for open-vocabulary object detection with vision-language model. In *IEEE/CVF Conference on*
 547 *Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*,
 548 2022.
- 550 Chengjian Feng, Yujie Zhong, Zequn Jie, Weidi Xie, and Lin Ma. Instagen: Enhancing object
 551 detection by training on synthetic dataset. In *IEEE/CVF Conference on Computer Vision and*
 552 *Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, 2024.
- 553 Tomaso Fontanini, Claudio Ferrari, Giuseppe Lisanti, Leonardo Galteri, Stefano Berretti, Massimo
 554 Bertozzi, and Andrea Prati. Frankenmask: Manipulating semantic masks with transformers for
 555 face parts editing. *Pattern Recognit. Lett.*, 2023.
- 557 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A.
 558 Smith, Wei-Chiu Ma, and Ranjay Krishna. BLINK: multimodal large language models can see
 559 but not perceive. In *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy,*
 560 *September 29-October 4, 2024, Proceedings, Part XXIII*, 2024.
- 561 Mingfei Gao, Chen Xing, Juan Carlos Niebles, Junnan Li, Ran Xu, Wenhao Liu, and Caiming
 562 Xiong. Open vocabulary object detection with pseudo bounding-box labels. In *Computer Vision*
 563 *- ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings,*
 564 *Part X*, 2022.
- 565 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vi-
 566 sion and language knowledge distillation. In *The Tenth International Conference on Learning*
 567 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*, 2022.
- 569 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 570 Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An
 571 advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
 572 language models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*
 573 *2024, Seattle, WA, USA, June 16-22, 2024*, 2024.
- 574 Agrim Gupta, Piotr Dollár, and Ross B. Girshick. LVIS: A dataset for large vocabulary instance
 575 segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,*
 576 *Long Beach, CA, USA, June 16-20, 2019*, 2019.
- 578 Xumeng Han, Longhui Wei, Xuehui Yu, Zhiyang Dou, Xin He, Kuiran Wang, Yingfei Sun, Zhenjun
 579 Han, and Qi Tian. Boosting segment anything model towards open-vocabulary learning. In
 580 *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February*
 581 *25 - March 4, 2025, Philadelphia, PA, USA*, 2025.
- 582 William Harvey and Frank Wood. Visual chain-of-thought diffusion models. *CoRR*, 2023.
- 584 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 585 nition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las*
 586 *Vegas, NV, USA, June 27-30, 2016*, 2016.
- 587 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In *IEEE Inter-*
 588 *national Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017*, 2017.
- 590 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 591 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 592 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 593 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
 mali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya

- 594 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
 595 poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
 596 gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
 597 Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
 598 Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
 599 Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
 600 Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaressi, Carroll L. Wainwright,
 601 Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
 602 ger, Charlotte Burette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
 603 Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
 604 Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
 605 Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. *CoRR*, 2024.
- 606 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
 607 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 608 with noisy text supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th*
 609 *International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,*
 610 2021.
- 611 Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. Llms meet vlms: Boost open
 612 vocabulary object detection with fine-grained descriptors. In *The Twelfth International Confer-*
 613 *ence on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*, 2024.
- 614 Dahun Kim, Anelia Angelova, and Weicheng Kuo. Contrastive feature masking open-vocabulary
 615 vision transformer. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023,*
 616 *Paris, France, October 1-6, 2023*, 2023.
- 617 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
 618 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
 619 Segment anything. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023,*
 620 *Paris, France, October 1-6, 2023*, 2023.
- 621 Weicheng Kuo, Yin Cui, Xiuye Gu, A. J. Piergiovanni, and Anelia Angelova. F-VLM: open-
 622 vocabulary object detection upon frozen vision and language models. *CoRR*, 2022.
- 623 Jiaming Li, Jiacheng Zhang, Jichang Li, Ge Li, Si Liu, Liang Lin, and Guanbin Li. Learning
 624 background prompts to discover implicit knowledge for open vocabulary object detection. In
 625 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,*
 626 *USA, June 16-22, 2024*, 2024.
- 627 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
 628 image pre-training with frozen image encoders and large language models. In *International Con-*
 629 *ference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, 2023.
- 630 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 631 Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In *Computer*
 632 *Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014,*
 633 *Proceedings, Part V*, 2014.
- 634 Mingxuan Liu, Tyler L. Hayes, Elisa Ricci, Gabriela Csurka, and Riccardo Volpi. Shine: Semantic
 635 hierarchy nexus for open-vocabulary object detection. In *IEEE/CVF Conference on Computer*
 636 *Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, 2024a.
- 637 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 638 Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: marrying DINO with
 639 grounded pre-training for open-set object detection. In *Computer Vision - ECCV 2024 - 18th*
 640 *European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XLVII,*
 641 *2024b*.
- 642 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 643 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahu Lin. Mmbench: Is your multi-modal
 644 model an all-around player? In *Computer Vision - ECCV 2024 - 18th European Conference,*
 645 *Milan, Italy, September 29-October 4, 2024, Proceedings, Part VI*, 2024c.

- 648 Chuofan Ma, Yi Jiang, Xin Wen, Zehuan Yuan, and Xiaojuan Qi. Codet: Co-occurrence guided
 649 region-word alignment for open-vocabulary object detection. In *Advances in Neural Information
 650 Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
 651 NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023.
- 652
 653 Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad
 654 Anwer, and Ming-Hsuan Yang. Class-agnostic object detection with multi-modal transformer.
 655 In *Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27,
 656 2022, Proceedings, Part X*, 2022.
- 657 Chau Pham, Truong Vu, and Khoi Nguyen. LP-OVOD: open-vocabulary object detection by linear
 658 probing. In *IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024,
 659 Waikoloa, HI, USA, January 3-8, 2024*, 2024.
- 660
 661 Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge J. Belongie, Alan L.
 662 Yuille, Philip H. S. Torr, and Song Bai. Occluded video instance segmentation: A benchmark.
 663 *Int. J. Comput. Vis.*, 130:2022–2039, 2022.
- 664 Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
 665 guage gaussian splatting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition,
 666 CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, 2024.
- 667
 668 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 669 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 670 Sutskever. Learning transferable visual models from natural language supervision. In *Pro-
 671 ceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
 672 Virtual Event*, 2021.
- 673 Hanoona Abdul Rasheed, Muhammad Maaz, Muhammad Uzair Khattak, Salman H. Khan, and
 674 Fahad Shahbaz Khan. Bridging the gap between object and image-level representations for open-
 675 vocabulary detection. In *Advances in Neural Information Processing Systems 35: Annual Con-
 676 ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
 677 November 28 - December 9, 2022*, 2022.
- 678
 679 Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
 680 detection with region proposal networks. In *Advances in Neural Information Processing Systems
 681 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
 682 Montreal, Quebec, Canada*, 2015.
- 683 Daniel Rose, Vaishnavi Himakunthala, Andy Ouyang, Ryan He, Alex Mei, Yujie Lu, Michael
 684 Saxon, Chinmay Sonar, Diba Mirza, and William Yang Wang. Visual chain of thought: Bridging
 685 logical gaps with multimodal infillings. *CoRR*, 2023.
- 686
 687 Evgenia Rusak, Patrik Reizinger, Attila Juhos, Oliver Bringmann, Roland S. Zimmermann, and
 688 Wieland Brendel. Infonce: Identifying the gap between theory and practice. *CoRR*, 2024.
- 689
 690 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
 691 sheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset and
 692 benchmark for chain-of-thought reasoning. In *Advances in Neural Information Processing Sys-
 693 tems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
 694 Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.
- 695
 696 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 697 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *2019 IEEE/CVF
 698 International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
 699 November 2, 2019a*.
- 700
 701 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 702 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *2019 IEEE/CVF
 703 International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
 704 November 2, 2019b*.

- 702 Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Yang Wang, Zhiyong Zhao, Kun Zhan, Peng Jia,
 703 Xianpeng Lang, and Hang Zhao. Drivevml: The convergence of autonomous driving and large
 704 vision-language models. In *Conference on Robot Learning, 6-9 November 2024, Munich, Ger-*
 705 *many, 2024.*
- 706 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine*
 707 *Learning Research*, 9, 2008.
- 709 Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan S. Kankanhalli, and Ying Shan. What makes for
 710 good visual tokenizers for large language models? *CoRR*, 2023a.
- 712 Junjie Wang, Bin Chen, Bin Kang, Yulin Li, Weizhi Xian, Yichi Chen, and Yong Xu. OV-DQUO:
 713 open-vocabulary DETR with denoising text query training and open-world unknown objects su-
 714 pervision. In *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelli-*
 715 *gence, February 25 - March 4, 2025, Philadelphia, PA, USA, 2025.*
- 716 Luting Wang, Yi Liu, Penghui Du, Zihan Ding, Yue Liao, Qiaosong Qi, Biaolong Chen, and Si Liu.
 717 Object-aware distillation pyramid for open-vocabulary object detection. In *IEEE/CVF Conference*
 718 *on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24,*
 719 *2023, pp. 11186–11196, 2023b.*
- 720 Zhao Wang, Aoxue Li, Fengwei Zhou, Zhenguo Li, and Qi Dou. Open-vocabulary object detection
 721 with meta prompt representation and instance contrastive optimization. In *34th British Machine*
 722 *Vision Conference 2023, BMVC 2023, Aberdeen, UK, November 20-24, 2023, pp. 93, 2023c.*
- 724 Fangyun Wei, Yue Gao, Zhirong Wu, Han Hu, and Stephen Lin. Aligning pretraining for detection
 725 via object-level contrastive learning. In *Advances in Neural Information Processing Systems 34:*
 726 *Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December*
 727 *6-14, 2021, virtual, 2021.*
- 728 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 729 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 730 models. In *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*
 731 *Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -*
 732 *December 9, 2022, 2022.*
- 733 Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual
 734 chatgpt: Talking, drawing and editing with visual foundation models. *CoRR*, 2023a.
- 736 Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Llmdet: A third party
 737 large language models generated text detection tool. In *Findings of the Association for Compu-*
 738 *tational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, 2023b.*
- 740 Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, and Chen Change Loy. Aligning bag of regions
 741 for open-vocabulary object detection. In *IEEE/CVF Conference on Computer Vision and Pattern*
 742 *Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 2023c.*
- 743 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Xiangtai Li, Wentao Liu, and Chen Change Loy.
 744 Clipself: Vision transformer distills itself for open-vocabulary dense prediction. In *The Twelfth*
 745 *International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,*
 746 *2024, 2024.*
- 748 Xiaoshi Wu, Feng Zhu, Rui Zhao, and Hongsheng Li. CORA: adapting CLIP for open-vocabulary
 749 detection with region prompting and anchor pre-matching. In *IEEE/CVF Conference on Com-*
 750 *puter Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023,*
 751 *2023d.*
- 752 Lingfeng Yang, Yueze Wang, Xiang Li, Xinlong Wang, and Jian Yang. Fine-grained visual prompt-
 753 ing. *Advances in Neural Information Processing Systems*, 36:24993–25006, 2023.
- 754 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 755 multimodal large language models. *CoRR*, 2023.

- 756 Haobo Yuan, Xiangtai Li, Chong Zhou, Yining Li, Kai Chen, and Chen Change Loy. Open-
 757 vocabulary SAM: segment and recognize twenty-thousand classes interactively. In *Computer*
 758 *Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024,*
 759 *Proceedings, Part XLIII*, 2024.
- 760 Xiang Yue, Yuansheng Ni, Tianyu Zheng, Kai Zhang, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 761 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 762 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 763 Wenhui Chen. MMMU: A massive multi-discipline multimodal understanding and reasoning
 764 benchmark for expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 765 *nition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, 2024.
- 766 Mert Yüksekgönül, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 767 why vision-language models behave like bags-of-words, and what to do about it? In *The Eleventh*
 768 *International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,*
 769 *2023*, 2023.
- 770 Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary DETR
 771 with conditional matching. In *Computer Vision - ECCV 2022 - 17th European Conference, Tel*
 772 *Aviv, Israel, October 23-27, 2022, Proceedings, Part IX*, 2022.
- 773 Yuhang Zang, Wei Li, Jun Han, Kaiyang Zhou, and Chen Change Loy. Contextual object detection
 774 with multimodal large language models. *Int. J. Comput. Vis.*, 2025.
- 775 Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
 776 detection using captions. In *IEEE Conference on Computer Vision and Pattern Recognition,*
 777 *CVPR 2021, virtual, June 19-25, 2021*, 2021.
- 778 Chaoning Zhang, Sheng Zheng, Chenghao Li, Yu Qiao, Taegoo Kang, Xinru Shan, Chenshuang
 779 Zhang, Caiyan Qin, François Rameau, Sung-Ho Bae, and Choong Seon Hong. A survey on
 780 segment anything model (SAM): vision foundation model meets prompt engineering. *CoRR*,
 781 2023.
- 782 Chuhuan Zhang, Chaoyang Zhu, Pingcheng Dong, Long Chen, and Dong Zhang. Cyclic contrastive
 783 knowledge transfer for open-vocabulary object detection. *CoRR*, 2025a.
- 784 Hang Zhang, Kristin J. Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
 785 and Amit Agrawal. Context encoding for semantic segmentation. In *2018 IEEE Conference on*
 786 *Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,*
 787 *2018*, 2018.
- 788 Heng Zhang, Qiuyu Zhao, Linyu Zheng, Hao Zeng, Zhiwei Ge, Tianhao Li, and Sulong Xu. Explor-
 789 ing region-word alignment in built-in detector for open-vocabulary object detection. In *IEEE/CVF*
 790 *Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June*
 791 *16-22, 2024*, 2024a.
- 792 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to
 793 look: Training-free perception of small visual details with multimodal llms. *CoRR*, 2025b.
- 794 Qiming Zhang, Jing Zhang, Yufei Xu, and Dacheng Tao. Vision transformer with quadrangle atten-
 795 *tion. IEEE Trans. Pattern Anal. Mach. Intell.*, 2024b.
- 796 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 797 pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
 798 Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
 799 moyer. OPT: open pre-trained transformer language models. *CoRR*, 2022.
- 800 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
 801 Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Tsung-Yi Lin, Gordon Wetzstein, Ming-Yu
 802 Liu, and Donglai Xiang. Cot-vla: Visual chain-of-thought reasoning for vision-language-action
 803 models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025,*
 804 *Nashville, TN, USA, June 11-15, 2025*, 2025.

810 Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, B. G. Vijay Kumar, Anastasis Stathopou-
811 los, Manmohan Chandraker, and Dimitris N. Metaxas. Exploiting unlabeled data with vision
812 and language models for object detection. In *Computer Vision - ECCV 2022 - 17th European*
813 *Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part IX*, 2022.

814 Shiyu Zhao, Samuel Schulter, Long Zhao, Zhixing Zhang, B. G. Vijay Kumar, Yumin Suh, Man-
815 mohan Chandraker, and Dimitris N. Metaxas. Taming self-training for open-vocabulary object
816 detection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024,*
817 *Seattle, WA, USA, June 16-22, 2024*, 2024.

818 Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Lu-
819 owei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao. Regionclip: Region-based language-
820 image pretraining. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*
821 *2022, New Orleans, LA, USA, June 18-24, 2022*, 2022.

822 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting
823 twenty-thousand classes using image-level supervision. In *Computer Vision - ECCV 2022 - 17th*
824 *European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part IX*, 2022.

825 Yang Zhou, Shiyu Zhao, Yuxiao Chen, Zhenting Wang, and Dimitris N. Metaxas. LED: LLM
826 enhanced open-vocabulary object detection without human curated data generation. *CoRR*, 2025.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865

APPENDIX

866
867

A CODE & REPRODUCTION

868
869
870
871
872
873

To preserve anonymity, the full codebase is provided as a ZIP file in the supplementary materials on the submission site. Instructions for running the code are included in the README.md file within the ZIP archive. In accordance with code submission requirements, which include anonymity and no web pointers, the provided skeleton code is intended solely to demonstrate the methodological flow. The workable version will be provided upon publication.

874

B LIMITATIONS & FUTURE WORK

875

876
877
878
879
880
881
882
883

Despite its effectiveness, CoT-PL faces two limitation. (1) It depends on the capabilities of a sufficiently strong MLLM; less capable models produce lower-quality pseudo-labels and degrade detection performance. To mitigate this, it treats the MLLM’s three-way judgment (Yes/No/Unsure) as a hard gate, safely discarding all potentially false regions labeled Unsure. This rigid design risks accumulating irreversible false negatives. (2) Long-tailed categories are unfairly removed by the frequency threshold of the minimum number of annotations in base classes, discarding any labels below this count as noise for simplicity. Exploring these issues serves as a promising direction for future work.

884

885
886

All experiments were conducted using eight NVIDIA A6000 GPUs with PyTorch 1.12.1. Each training run took approximately 11 hours and involved around 12K GPU memory usage. For a fair comparison with the baseline, we fixed the random seed to 1194806617 across all experiments to ensure reproducibility.

891

892
893

D IMPLEMENTATION DETAILS

894
895
896
897
898

Baseline. We build our CoT-PL upon Faster R-CNN (Ren et al., 2015) with a ResNet-50 FPN backbone, consistent with prior open-vocabulary object detection (OVD) work. The backbone is initialized using weights pre-trained with SOCO (Wei et al., 2021) and utilizes synchronized Batch Normalization (SyncBN) (Zhang et al., 2018). We adopt the $1\times$ training schedule for OV-COCO (Lin et al., 2014) and $2\times$ for OV-LVIS (Gupta et al., 2019).

899
900
901
902
903
904
905

Pseudo-label generation process. During our offline pseudo-label generation process, we leverage SAM (Kirillov et al., 2023; Qin et al., 2024) to produce class-agnostic object proposals and apply Qwen2 (7B) (Bai et al., 2023) as our default MLLM for visual chain-of-thought (CoT) reasoning. CLIP based on ViT-B/16 (Radford et al., 2021) is used to encode textual prompts, which are constructed using the hand-crafted template “a photo of [OBJ]” following ViLD (Gu et al., 2022). Pseudo-labels are generated using only the training set, without leveraging any image captions. The pseudo-labels are used exclusively during training and discarded during inference.

906
907
908
909
910
911
912

Contrastive Background Learning. Following ViLD, the contrastive background learning (CBL) background prototypes are built from hand-crafted prompts rather than category names. Using prompt engineering, we define five generic background types, such as sky, water surface, vegetation, paved ground, and plain wall, and craft a small set of object-free prompts for each (*i.e.* “clear sky background, no objects”). We tokenize the prompts and encode them using the CLIP text encoder, then average the resulting text embeddings to obtain a single prototype per background type.

913
914

E HYPERPARAMETERS

For fair comparison, we adopt the same hyperparameter settings as BARON. We use the SGD optimizer with a momentum of 0.9 and a weight decay of 2.5×10^{-5} . The initial learning rate is set to 0.04 for OV-COCO and 0.08 for OV-LVIS. Models are trained for 90,000 iterations on OV-COCO (Lin et al., 2014) and 180,000 iterations on OV-LVIS (Gupta et al., 2019), with a fixed batch

918 size of 16 across all experiments. During training, model checkpoints are saved every 10,000 iterations
 919 for OV-COCO and every 30,000 iterations for OV-LVIS. The best-performing checkpoint on
 920 the validation set is selected for final evaluation.

921 For our proposed modules, we provide the hyperparameter configurations used in the OV-
 922 COCO (Lin et al., 2014) and OV-LVIS (Gupta et al., 2019) experiments. For semantic anchor
 923 construction, we filter out infrequent pseudo-labels using a minimum annotation threshold—set to
 924 1,237 for OV-COCO and 1 for OV-LVIS. Additionally, the background contrastive loss temperature
 925 parameter is set to $\tau'' = 5.0$, which controls the regularization strength of background embeddings
 926 relative to foreground embeddings.

928 F DATA APPENDIX

930 We report the statistics of the benchmarks used in this study. For both OVD benchmarks, our pseudo-
 931 label generation pipeline uses only the training set, while the validation and test sets remain unused
 932 to ensure fair evaluation during inference.

- 934 • **OV-COCO** (Lin et al., 2014): OV-COCO is based on the COCO 2017 detection split,
 935 containing 118,287 training and 5,000 validation images with instance-level bounding box
 936 annotations. We follow the category split from OVR-CNN (Zareian et al., 2021), which de-
 937 fines 48 base and 17 novel categories. During pseudo-label generation, images containing
 938 only novel categories are discarded to ensure consistent supervision. All pseudo-labels are
 939 generated solely from the base training split.
- 940 • **OV-LVIS** (Gupta et al., 2019): OV-LVIS is derived from LVIS v1.0, comprising over 120K
 941 training images with annotations for 1,203 categories. Following the ViLD (Gu et al., 2022)
 942 protocol, we treat 337 rare categories as novel, and the remaining frequent and common
 943 categories as base. Due to the severe long-tail distribution, some rare categories contain
 944 fewer than five instances; such categories are removed during semantic anchor construction.
 945 Evaluation is performed on the standard LVIS validation split.
- 946 • **Objects365** (Shao et al., 2019a): Objects365 contains 1,742,289 training and 80,000 val-
 947 idation images across 365 object categories. We use this dataset solely for cross-dataset
 948 evaluation without any additional fine-tuning. Specifically, the model trained on OV-LVIS
 949 is directly evaluated on the Objects365 validation split to assess its transferability. All
 950 category names are mapped via exact string matching using CLIP prompt templates.

951 G BASELINES

954 **Open-vocabulary detectors.** Recent advances (Ren et al., 2015; He et al., 2017) in open-
 955 vocabulary object detection (OVD) have been largely driven by the emergence of foundation models,
 956 including vision-language models (VLMs) (Radford et al., 2021; Jia et al., 2021). VLMs support
 957 novel class recognition in OVD through various techniques, such as pseudo-labeling. We build upon
 958 Faster R-CNN (Ren et al., 2015) for OVD, replacing its classifier with a linear layer that projects
 959 region features into the word embedding space. This enables each region to be represented by mul-
 960 tiple pseudo-words, capturing the rich semantics of each object. Given C object categories, the
 961 probability of a region being classified as the c -th category:

$$962 p_c = \frac{\exp(\tau \cdot \langle \mathcal{T}(w), f_c \rangle)}{\sum_{i=0}^{C-1} \exp(\tau \cdot \langle \mathcal{T}(w), f_i \rangle)}, \quad (4)$$

965 where \mathcal{T} is the text encoder, $\langle \cdot, \cdot \rangle$ denotes cosine similarity, τ is a temperature scaling factor, $\mathcal{T}(w)$
 966 represents the text embedding of pseudo-words, and f_c is the category embedding of a prompt
 967 template encoded by the text encoder (*i.e.* “a photo of {category} in the scene”).

968 **BARON (Wu et al., 2023c).** Additionally, we instantiate the idea of BARON (Wu et al., 2023c)
 969 to capture compositional structures for simplicity. During training, it learns using Faster R-CNN’s
 970 regression and classification losses (Ren et al., 2015), with annotations provided only for the base
 971 set. BARON first groups contextually related neighboring regions for each region proposal extracted
 972 from Faster R-CNN (Ren et al., 2015), forming a *bag of regions*. BARON then projects these

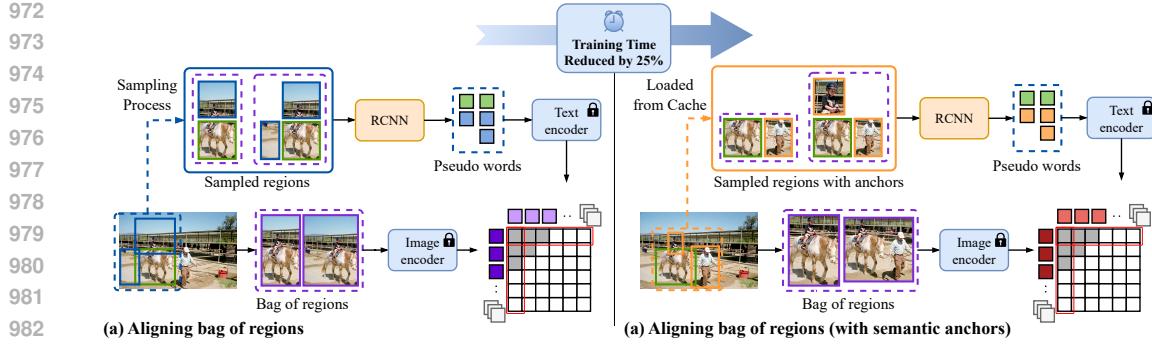


Figure 5: **The overall architecture of BARON (Wu et al., 2023c).** To reduce sampling time during training, BARON’s naive neighbor sampling can optionally be replaced with our semantic anchor-based strategy. In particular, caching the anchors reduced training time by 25% compared to the baseline, while maintaining the original performance.

regions into the word embedding space using the linear layer within Faster R-CNN, resulting in pseudo-words. The pseudo-words are passed through the text encoder to obtain the bag-of-regions embedding $f_v^i = \mathcal{T}(w_0^i + p_0^i, w_1^i + p_1^i, \dots, w_{N^i-1}^i + p_{N^i-1}^i)$, where N^i is the number of regions in the i -th bag, p_j^i represents the positional embedding of the j -th region in the i -th bag. Finally, this bag-of-regions embedding is aligned with the VLM’s image embeddings $f_v^i = \mathcal{V}(b_0^i, b_1^i, \dots, b_{N^i}^i)$, where b_j^i is the j -th region in the i -th bag. To align the bag-of-regions embeddings, BARON employs a contrastive learning loss based on InfoNCE (Rusak et al., 2024):

$$\mathcal{L}_{\text{bag}} = -\frac{1}{2} \sum_{k=0}^{G-1} (\log(p_{t,v}^k) + \log(p_{v,t}^k)), \quad (5)$$

$$p_{t,v}^k = \frac{\exp(\tau' \cdot \langle f_t^k, f_v^k \rangle)}{\sum_{i=0}^{G-1} \exp(\tau' \cdot \langle f_t^k, f_v^i \rangle)}, \quad (6)$$

$$p_{v,t}^k = \frac{\exp(\tau' \cdot \langle f_v^k, f_t^k \rangle)}{\sum_{i=0}^{G-1} \exp(\tau' \cdot \langle f_v^k, f_t^i \rangle)}, \quad (7)$$

where G is the number of bags for each region proposal and τ' is a temperature scaling factor. This allows BARON to leverage the compositional structures inherent in VLMs, resulting in moderate performance gains.

To align individual region embeddings, BARON uses a contrastive learning loss similar to InfoNCE:

$$\mathcal{L}_{\text{individual}} = -\frac{1}{2} \sum_{k=0}^{N-1} (\log(q_{t,v}^k) + \log(q_{v,t}^k)), \quad (8)$$

$$q_{t,v}^k = \frac{\exp(\tau_{\text{individual}} \cdot \langle g_t^k, g_v^k \rangle)}{\sum_{i=0}^{N-1} \exp(\tau_{\text{individual}} \cdot \langle g_t^k, g_v^i \rangle)}, \quad (9)$$

$$q_{v,t}^k = \frac{\exp(\tau_{\text{individual}} \cdot \langle g_v^k, g_t^k \rangle)}{\sum_{i=0}^{N-1} \exp(\tau_{\text{individual}} \cdot \langle g_v^k, g_t^i \rangle)}, \quad (10)$$

where N is the total number of regions g_t^k and g_v^k are the teacher and student embeddings for the k -th region, and $\tau_{\text{individual}}$ is the temperature parameter to re-scale the cosine similarity.

Segment Anything Model (SAM). SAM (Kirillov et al., 2023) is a general-purpose segmentation model that predicts instance masks given spatial prompts. It enables high-quality, class-agnostic mask generation via zero-shot segmentation, providing fine-grained object candidates valuable for downstream tasks (Yuan et al., 2024; Han et al., 2025). Recently, LangSplat (Qin et al., 2024) leveraged SAM to extract hierarchical segmentation masks from images, enabling structured multi-scale object representation. By densely sampling point prompts across the image, SAM generates

1026 **Table 9: Zero-shot performance of MLLMs across academic benchmarks.** Average accuracy
 1027 across six multimodal evaluation datasets: MMBench v1.1 (Test_{CN}/Test_{EN}), MMStar, MMMU (Val),
 1028 and HallusionBench.

Model	MMBench V1.1 (2024c)	MMStar (2024)	MMMU (2024)	HallusionBench Avg. (2024)
BLIP2 (2.7B) (2023)	-	-	-	-
InstructBLIP-7B (2023)	28.4	32.7	30.6	31.2
Qwen2-VL-7B (2023)	81.0	60.7	53.7	50.4

1034
 1035 a diverse set of masks that capture object regions at varying levels of granularity. These masks are
 1036 filtered and organized into three semantic levels—subpart, part, and whole—based on confidence
 1037 and spatial criteria. This hierarchical masking facilitates precise, pixel-aligned feature extraction
 1038 and supports the construction of language-aware 3D scene representations.

1039 **Multimodel Large Language Models.** Multimodal large language models (MLLMs) have re-
 1040 cently been explored in this context (Zhou et al., 2025; Zhang et al., 2025a; Yin et al., 2023; Wang
 1041 et al., 2023a; Wu et al., 2023b), as they integrate visual perception with language-based reasoning
 1042 and instruction following.

- 1044 • **BLIP-2:** BLIP-2 (Li et al., 2023) adopts a modular architecture comprising a frozen im-
 1045 age encoder, a trainable QFormer (Zhang et al., 2024b), and a frozen language model such
 1046 as OPT (Zhang et al., 2022). This setup enables efficient vision-language alignment and
 1047 achieves strong performance on tasks such as image captioning and visual question answer-
 1048 ing (VQA) with minimal training.
- 1049 • **InstructBLIP:** InstructBLIP (Dai et al., 2023) builds on BLIP-2 (Li et al., 2023) via in-
 1050 struction tuning, integrating a ViT-G vision encoder (Dosovitskiy et al., 2021) and a frozen
 1051 language model, such as Flan-T5 (Chung et al., 2024). This design allows the model to
 1052 follow natural language instructions and generalize across diverse multimodal tasks. As
 1053 shown in Table 9, this MLLM exhibits fair zero-shot performance on academic multimodal
 1054 benchmarks, with accuracy ranging from 24% to 32% on most tasks.
- 1055 • **Qwen2:** Qwen2 (Bai et al., 2023) is a multilingual large language model series ranging
 1056 from 0.5B to 72B parameters, trained on diverse and high-quality web-scale data. It em-
 1057 ploys a tokenizer optimized for multilingual understanding and exhibits strong performance
 1058 in reasoning, instruction following, and general language tasks. As shown in Table 9, the
 1059 model demonstrates strong generalization, particularly on MMBench (Liu et al., 2024c)
 1060 (81.0%), indicating superior reasoning capabilities and vision-language alignment.

1061 H ADDITIONAL ABLATION STUDY

1062 H.1 IMAGE PREPROCESSING

1063 We explore image preprocessing strategies to help MLLMs better focus on target regions. Their
 1064 impact on detection performance is summarized in Table 10.

1065 MLLMs (Li et al., 2023; Dai et al., 2023; Bai et al., 2023; Wang et al., 2023a) exhibit strong zero-
 1066 shot reasoning across vision-language tasks such as image captioning and retrieval. However, when
 1067 applied to object-level understanding, recent studies (Zang et al., 2025; Fu et al., 2024) have shown
 1068 that they remain highly sensitive to visual context. In our setting, where the MLLM is prompted
 1069 on individual region proposals, it is essential to emphasize the target object while suppressing ir-
 1070 relevant background information. As shown in Table 10, omitting preprocessing slightly degrades
 1071 performance, yielding an AP_{50}^N of 33.6 relative to the baseline.

1072 A naïve solution is to black out pixels outside the target segmentation mask. While this approach
 1073 directs the model’s attention to the target region, it removes surrounding context and may cause
 1074 misclassification due to silhouette artifacts—a limitation highlighted in prior work (Chang et al.,
 1075 2023; Fontanini et al., 2023). For example, as illustrated in Figure 6-b, the model misclassifies a
 1076 tree as a giraffe, influenced by the masked silhouette of a giraffe in the background. Despite this
 1077 issue, the black mask strategy significantly improves performance, achieving an AP_{50}^N of 38.5 (+4.5).

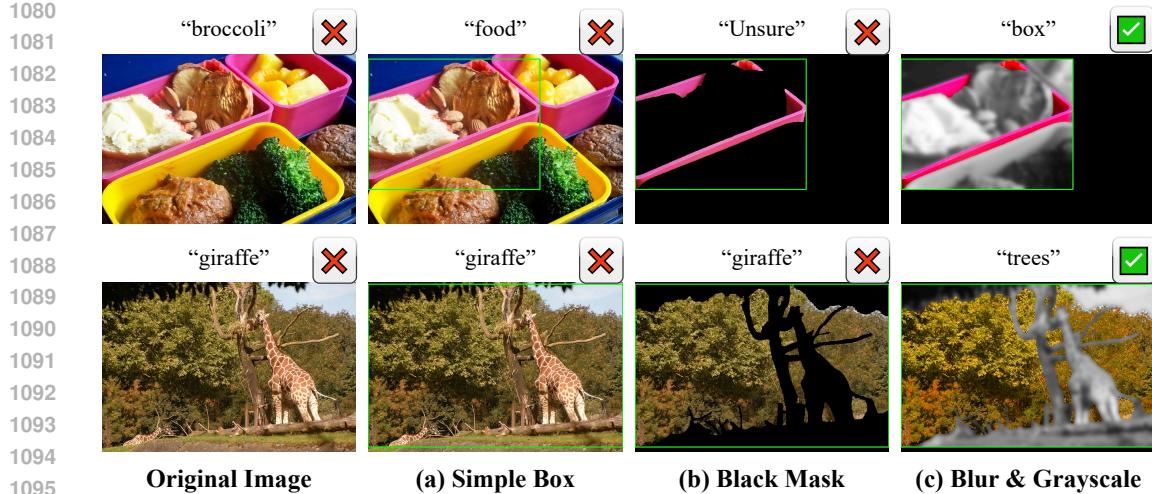


Figure 6: **Visualization of image preprocessing strategies.** We adopt three strategies: (a) simple box, (b) black mask, and (c) blur & grayscale. Each image is labeled with the MLLM’s (Bai et al., 2023) prediction. Qualitative analysis indicates that (c) yields the most reliable zero-shot object recognition performance.

Table 10: **Effect of image preprocessing on pseudo-label quality.** Blurred and grayscale images improve MLLM reasoning, leading to the best results on OV-COCO.

Method	AP ₅₀ ^N (%)	AP ₅₀ ^B (%)
BARON (Wu et al., 2023c)	34.0	60.4
Simple Box	33.6 (-0.4)	59.6
+ Masked image	<u>38.5</u> (+4.5)	59.5
+ Blurred & grayscale	41.7 (+7.7)	59.4

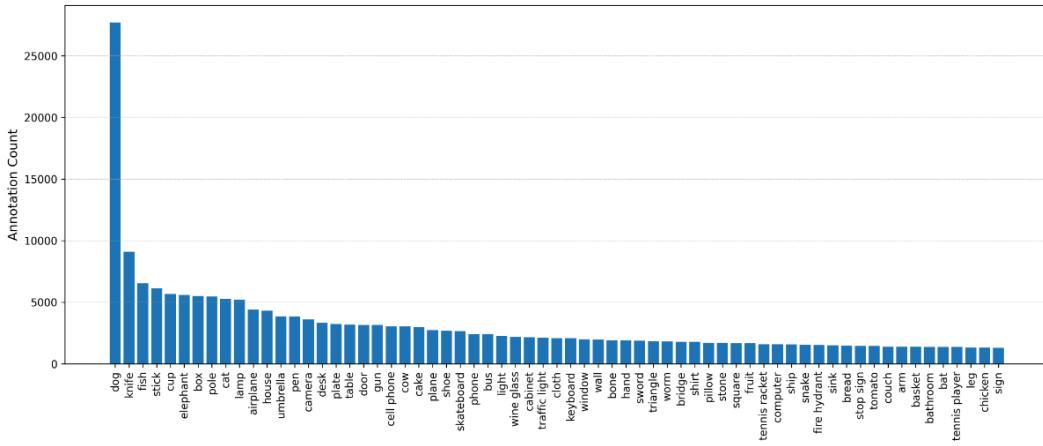
To mitigate such misclassifications, prior work (Qin et al., 2024) suggests that grayscaling and blurring regions outside the mask can effectively suppress background noise and enhance model focus. In practice, we validate that this strategy improves localization and reasoning in MLLMs (Bai et al., 2023), as shown in Table 10. Building on these findings, we adopt this preprocessing approach for all region proposals queried by the MLLM in our CoT pipeline. This configuration yields the best performance among all settings, achieving an AP₅₀^N of 41.7 (+7.7).

- **Raw image:** Original training images from the OVD benchmark, where each proposal box generated by SAM is preserved and all pixels outside the box are blacked out. We observe that MLLMs often struggle to focus on the proposal region during reasoning over the input query.
- **Masked image:** Starting from the raw image, only the segmentation mask region within each proposal box is retained, while all other pixels inside the box are masked in black. This often distracts the model due to black silhouettes (e.g., a masked giraffe shape), rather than helping it focus on the intended region.
- **Blurred and grayscale image:** Also based on the raw image, the segmentation mask region within each proposal box is preserved, while surrounding pixels inside the box are blurred and converted to grayscale. Pixels outside the box are blacked out. We adopt this preprocessing technique in our pipeline, as it effectively preserves contextual cues while maintaining focus on the target region. For reproducibility, we apply standard BGR-to-grayscale conversion and Gaussian blur with a kernel size of 31×31 and a sigma of 0.

Statistics. Figure 7 illustrates the annotation counts of pseudo-labels in the OV-COCO dataset, revealing a typical long-tail distribution. A small number of frequent categories account for the

1134
 1135 **Table 11: Statistics of pseudo-labels per super-class.** Super-classes are derived from pseudo-labels
 1136 using GPT-4o (Hurst et al., 2024) and Qwen2 (Bai et al., 2023) on OV-COCO.

1137 Animals	1138 Furniture	1139 Weapons/Tools	1140 Vehicles	1141 Electronics	1142 Food/Drink
1143 11	1144 14	1145 5	1146 6	1147 6	1148 6
1149 Buildings	1150 Clothing	1151 Shapes	1152 Sports	1153 Misc.	1154
1155 3	1156 3	1157 3	1158 3	1159 5	1160



1160 **Figure 7: Distribution of annotations per class.** Based on our Qwen2 (Bai et al., 2023) pseudo-
 1161 labels across 65 classes in the OV-COCO benchmark. For brevity, we omit the OV-LVIS distribution
 1162 visualization, as it includes over 3,000 different pseudo-labels.

1163
 1164
 1165 majority of annotations, reflecting their higher prevalence in the training data. This imbalance natu-
 1166 rally emerges, as the MLLM tends to predict commonly occurring and semantically salient objects.
 1167 Notably, the pseudo-labels also include several novel categories (e.g., “dog,” “knife,” and “cup”),
 1168 which contribute to improved detection performance on these previously unseen classes.

1169 **Semantic diversity of pseudo-labels.** To better understand the nature of our pseudo-labels, we
 1170 further group them into several semantic super-classes using GPT-4o (Hurst et al., 2024), prompted
 1171 with: “Question: Group the classes into broader super-classes.” As shown in Table 11, prominent
 1172 groups such as *Furniture* and *Animals* emerge, highlighting the robustness of our pipeline in pre-
 1173 dicting semantically diverse object categories.

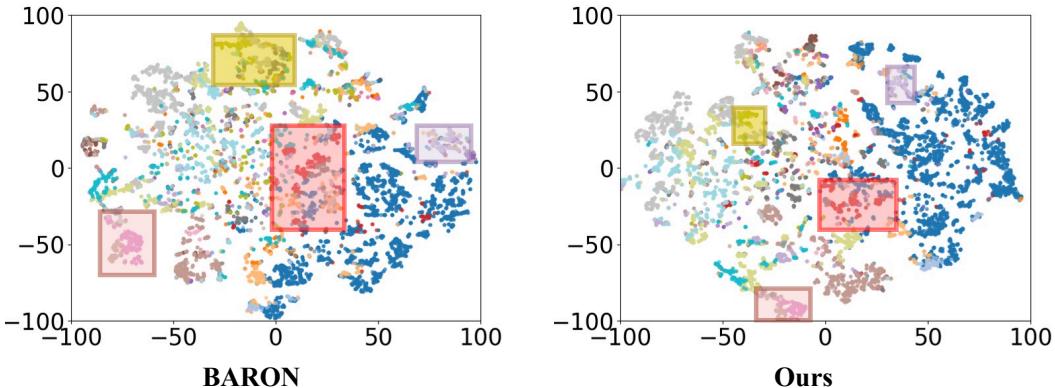
1174 However, we observe that some categories—particularly abstract or non-object-level concepts such
 1175 as *Shapes* and *Misc*—often result in vague or inconsistent outputs. This suggests that current
 1176 MLLMs are not yet fully equipped to handle such concepts reliably, indicating potential for future
 1177 improvement

1180 H.2 TRANSFER DETECTION PERFORMANCE

1181
 1182 To evaluate cross-dataset generalization, we follow the transfer detection setting, where the model is
 1183 trained on OV-LVIS and evaluated on COCO (Lin et al., 2014) and Objects365 (Shao et al., 2019b)
 1184 without any additional fine-tuning. As shown in Table 12, our CoT-PL, using the default ResNet-50
 1185 backbone, demonstrates strong transferability—surpassing F-VLM (Kuo et al., 2022) by +4.3% and
 1186 +2.0% AP on COCO and Objects365, respectively, and outperforming BARON (Wu et al., 2023c)
 1187 by +0.6% and +0.3%. Notably, CoT-PL also substantially reduces the performance gap with fully
 1188 supervised detectors, narrowing the AP difference to only 9.7% on COCO and 11.7% on Objects365.

1188 Table 12: **Result comparisons of the LVIS-trained model on COCO (Lin et al., 2014) and**
 1189 **Objects365 (Shao et al., 2019b).** We use BARON as the baseline and evaluate all methods without
 1190 fine-tuning.

Methods	MS-COCO (Lin et al., 2014)			Objects365 (Shao et al., 2019b)		
	AP (%)	AP ₅₀ (%)	AP ₇₅ (%)	AP (%)	AP ₅₀ (%)	AP ₇₅ (%)
Supervised (Gu et al., 2022)	46.5	67.6	50.9	25.6	38.6	28.0
ViLD (Gu et al., 2022)	36.6	55.6	39.8	11.8	18.2	12.6
DetPro (Du et al., 2022)	34.9	53.8	37.4	12.1	18.8	12.9
F-VLM (Kuo et al., 2022)	32.5	53.1	34.6	11.9	19.2	12.6
BARON (Wu et al., 2023c)	36.2	<u>55.7</u>	39.1	<u>13.6</u>	<u>21.0</u>	<u>14.5</u>
CoT-PL (Ours)	36.8	56.0	<u>39.5</u>	13.9	21.6	14.9



1202 Figure 8: **t-SNE results of feature distributions.** Compared to BARON (Wu et al., 2023c), our
 1203 CoT-PL generates more compact embeddings for novel representations.

1215 H.3 T-SNE VISUALIZATION

1216 We employ t-SNE (van der Maaten & Hinton, 2008) to visualize the feature distribution of novel
 1217 category proposals, emphasizing the effectiveness of our designed schemes. Figure 8 demonstrates
 1218 that CoT-PL enables the detector to learn more compact and discriminative features for novel cat-
 1219 egory proposals than BARON (Wu et al., 2023c). Gray points represent base classes, while novel
 1220 classes are shown in color.

1221 H.4 BACKGROUND FEATURE DISENTANGLEMENT

1222 We employ t-SNE (van der Maaten & Hinton, 2008) to visualize the feature distribution of novel
 1223 category proposals and background regions in Figure 9. Compared to BARON, CoT-PL more effec-
 1224 tively separates novel class objects from the background. Pink points indicate learnable background
 1225 embeddings labeled as “Background”, while green points represent the novel class *airplane*.

1226 I ADDITIONAL QUALITATIVE RESULTS

1227 I.1 GRAD-CAM VISUALIZATION

1228 In this paper, we introduce **CoT-PL**, a novel framework that integrates structured visual chain-of-
 1229 thought (CoT) reasoning into the pseudo-labeling process. CoT-PL decomposes object under-
 1230 standing into a sequence of interpretable steps—including region perception, category recogni-
 1231 tion, and background grounding, effectively generating high-quality pseudo-labels even in complex visual
 1232 scenes.

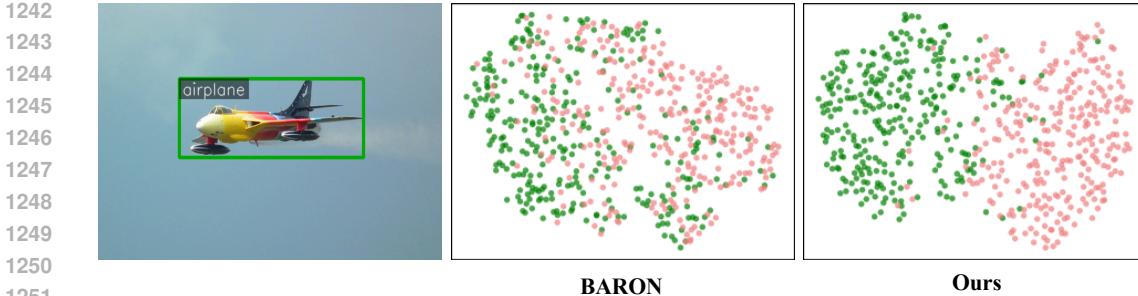


Figure 9: **t-SNE visualization of background separation.** The novel object class “airplane” is shown in green, and the “`__Background__`” in pink. Compared to BARON (Wu et al., 2023c), CoT-PL more effectively separates the novel class from the background.

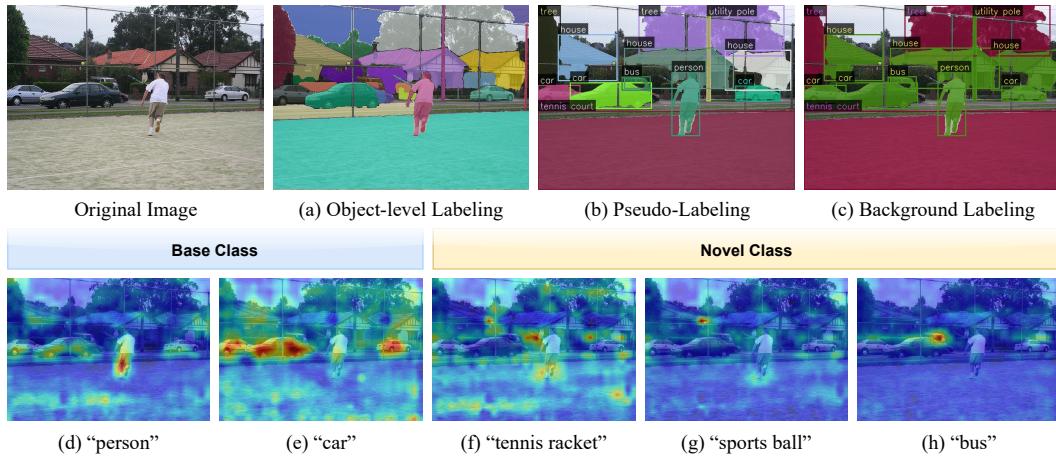


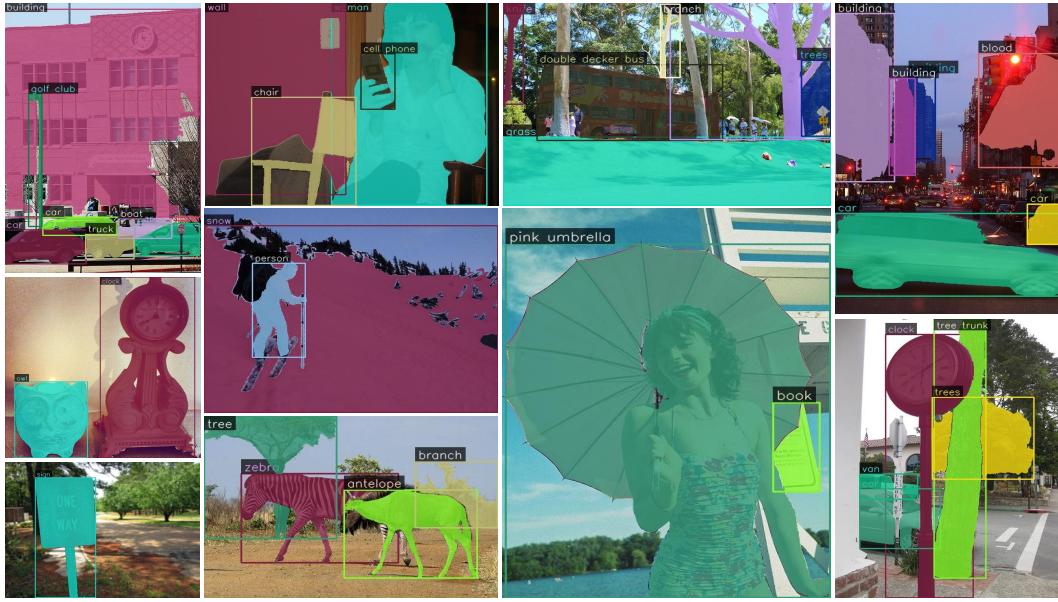
Figure 10: Our proposed CoT-PL generates accurate pseudo-labels without captions through a CoT-based MLLM pipeline: (a) verifying SAM-generated boxes as valid objects, (b) assigning zero-shot pseudo-labels, and (c) grounding each box to distinguish objects from the background. This enables detection of both base (d–e) and novel (h) classes, including unlabeled ones (f) and (g).

Unlike prior approaches, our method generates pseudo-labels solely from the training set without relying on image captions. We further propose contrastive background learning (CBL), which leverages background regions as negative samples to enhance feature disentanglement between foreground objects and background clutter.

As illustrated in Figure 10, our CoT-based MLLM pipeline proceeds by (a) verifying SAM-generated proposals as valid objects, (b) assigning zero-shot pseudo-labels, and (c) grounding each box to distinguish objects from the background. This enables our framework to detect both base and novel classes, including unlabeled categories that appear in challenging or open-vocabulary settings.

I.2 PSEUDO-ANNOTATION VISUALIZATION

We present visualization examples of our pseudo-annotations in Figure 11. The images are sampled from the validation sets of the OVD benchmarks. Each example highlights the predicted region and corresponding class label generated by our pipeline. These visualizations demonstrate that our method produces semantically meaningful and spatially accurate pseudo-labels across diverse object categories, including both base (common) and novel (rare) classes.

Figure 11: **Visualization of our pseudo-annotations on the OV-COCO dataset.**

I.3 DETECTION VISUALIZATION

We present additional detection results from our method, CoT-PL, on two OVD benchmarks: OV-COCO (Lin et al., 2014) and OV-LVIS (Gupta et al., 2019), as shown in Figures 13 and 12. The images are sampled from the validation sets of each benchmark.

On COCO, CoT-PL successfully detects novel categories such as “traffic light”, “bus”, “key-board”, “cup”, “snowboard”, and “cow”. On LVIS, it identifies rare categories including “boom_microphone”, “mammoth”, “kitchen_table”, “poncho”, “escargot”, “shepherd_dog”, and “pennant”. These results demonstrate the model’s ability to recognize a wide range of novel objects across both benchmarks.

J PROMPTS

First CoT step. We leverage SAM’s strong generalization to generate object-level pseudo boxes, which are verified by the MLLM for object presence.

- 1 Your Role: Object Presence Recognizer
- 2
- 3 You are a model that checks whether a clearly visible object exists in an image.
- 4
- 5 [Your task]
 - 6 - Look at the image.
 - 7 - If there is at least one clearly visible object, answer: Yes
 - 8 - If there is no visible object at all (only blurred or grayscale areas), answer: No
 - 9 - If it’s hard to tell whether something is visible or not, answer: Unsure
 - 10 - Specially, if your answer is Unsure, provide reasoning
- 11
- 12 [Important rules]
 - 13 - Ignore blurred or grayscale areas in the image.
 - 14 - Only consider clear, colorful, or sharply defined objects.
- 15
- 16 Your response must be only one word: Yes, No, or Unsure.
- 17
- 18 [Examples]

```

1350 19 Example 1:
1351 20 Image: (A color photo of a dog standing clearly in focus)
1352 21 Answer: Yes
1353 22 Reasoning: None
1354 23
1355 24 Example 2:
1356 25 Image: (A grayscale image with blurred outlines and no clear shapes)
1357 26 Answer: No
1358 27 Reasoning: None
1359 28
1360 29 Example 3:
1361 30 Image: (An image where a part of an object might be present, but it is
1362       not fully visible or too unclear)
1363 31 Answer: Unsure
1364 32 Reasoning: <YOUR_REASONING>
1365 33
1366 34 Now, analyze the following image:
1367 35 Image: <attach image here>
1368 36 Answer:
1369 37 Reasoning:
1370
Second CoT step. We leverage the MLLM's multi-class recognition ability to generate pseudo
1371 labels for specific concepts within each box.
1372 1 Your Role: Object Category Identifier
1373 2
1374 3 You are a model that identifies the most likely object category that
1375       is clearly visible in an image.
1376 4
1377 5 [Your task]
1378 6 - Look at the image.
1379 7 - Focus only on areas that are clear, colorful, and sharply defined.
1380 8 - Completely ignore grayscale or blurred areas.
1381 9 - Always guess the most likely object category that is clearly visible
1382       .
1383 10 [Instructions]
1384 11 - Answer with only one or two words.
1385 12 - Do not describe scenes -- just the object category.
1386 13 - If uncertain, make your best guess based on visible clues.
1387 14
1388 15 [Examples]
1389 16 Example 1:
1390 17 Image: (A focused image of a person riding a skateboard)
1391 18 Answer: Skateboard
1392 19
1393 20
1394 21 Example 2:
1395 22 Image: (A clear image of a zebra walking in grass)
1396 23 Answer: Zebra
1397 24
1398 25 Example 3:
1399 26 Image: (Blurry background, but a sharp image of a backpack is visible)
1400 27 Answer: Backpack
1401 28
1402 29 Now analyze the following image:
1403 30 Image: <attach image here>
1404 31 Answer:
1405
Third CoT step. We employ contrastive learning with background representations derived from
1406 a multimodal large language model (MLLM) as negative samples, encouraging the model to better
1407 separate object regions from true background areas. To obtain these background representations, we
1408 prompt the MLLM with the following instruction:
1409 1 Your Role: Foreground-Background Distinguisher
1410 2
1411 3 You are a model that determines whether an object in an image is part
1412       of the foreground or the background.

```

```

1404 4
1405 5 [Your task]
1406 6 - You are given an object name: "<Response>"
1407 7 - Look at the image and decide if this object is in the foreground or
1408   background.
1409 8 - Ignore any grayscale or blurred areas in the image.
1410 9 - Use visual focus and typical object roles to decide.
1411 10
1412 11 [Definitions]
1413 12 - Foreground = clearly focused subjects like people, animals, vehicles
1414   , or objects of interest.
1415 13 - Background = things like sky, grass, trees, mountains, or flowers.
1416 14
1417 15 Your answer must be exactly one word: Foreground or Background.
1418 16
1419 17 [Examples]
1420 18 Example 1:
1421 19 Object: Dog
1422 20 Image: (A dog is standing in sharp focus in front of a blurry park)
1423 21 Answer: Foreground
1424 22
1425 23 Example 2:
1426 24 Object: Sky
1427 25 Image: (A person is standing in front of a bright blue sky)
1428 26 Answer: Background
1429 27
1430 28 Example 3:
1431 29 Object: Tree
1432 30 Image: (A clear person in front, with trees in the back)
1433 31 Answer: Background
1434 32
1435 33 Now analyze the following image:
1436 34 Object: <Response>
1437 35 Image: <attach image here>
1438 36 Answer:
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

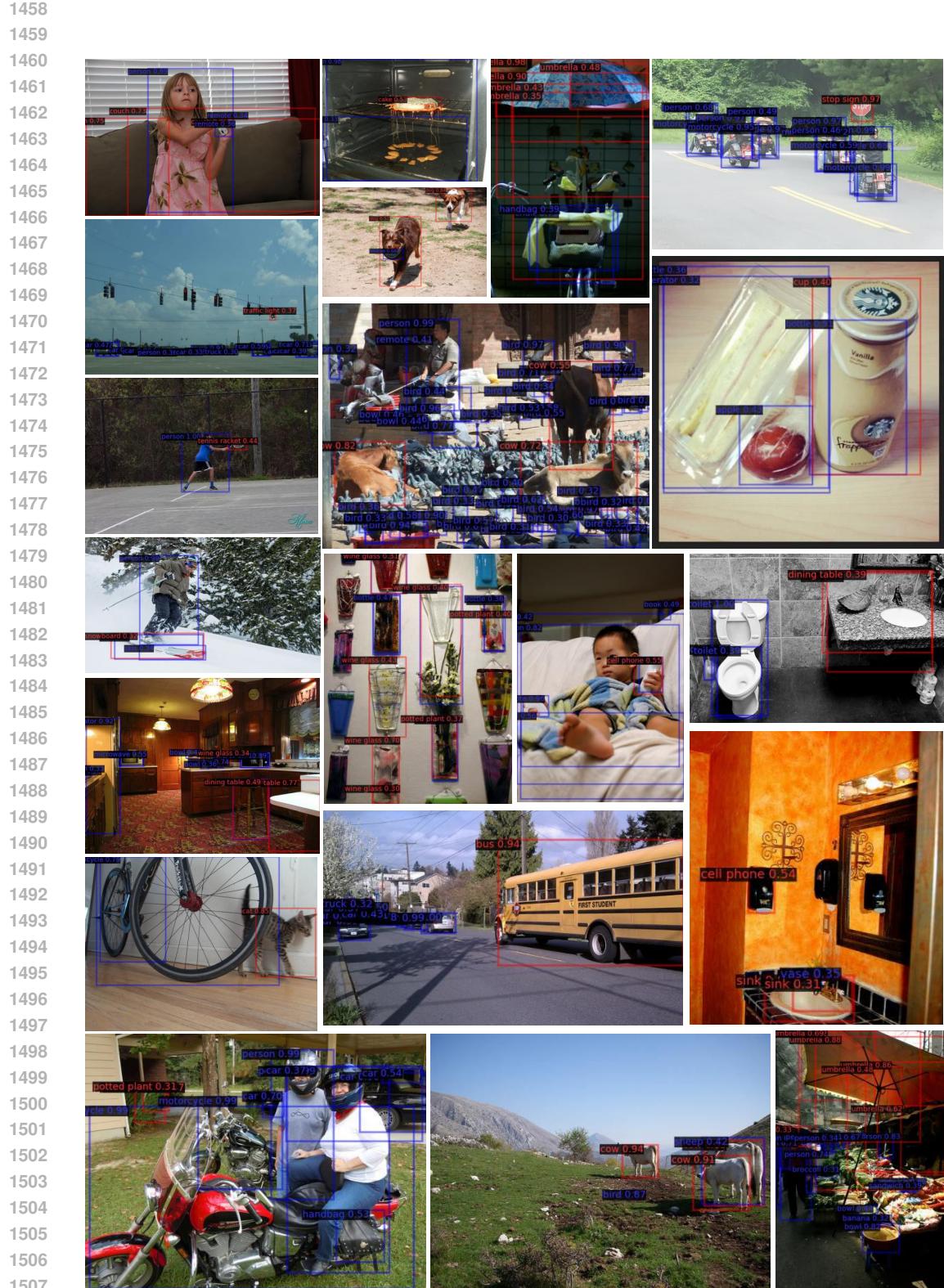


Figure 12: **Visualization of detection results on the OV-COCO dataset.** Red boxes and masks represent novel categories, while blue boxes and masks represent base categories.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

Figure 13: **Visualization of detection results on the OV-LVIS dataset.** Red boxes and masks represent novel (rare) categories, while blue boxes and masks represent base categories.

1560

1561

1562

1563

1564

1565