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Abstract

Large-scale translation projects for low-
resource languages mostly rely on human trans-
lators to ensure cultural and linguistic fidelity.
However, even professionally produced transla-
tions often contain subtle translation errors that
are difficult to detect. Manual quality control at
scale becomes prohibitively expensive, creating
a major bottleneck in the development of high-
quality Natural Language Processing (NLP) re-
sources. Recent advances in multilingual large
language models (LLMs) offer promising sup-
port for annotation workflows with human-in-
the-loop settings. In this work, we investigate
the use of LLMs to assist in auditing translation
quality, enabling more efficient quality control
pipelines for low-resource African languages.
We audit translations in 11 African languages
using the MAFAND-MT dataset, combining
LLM-as-a-judge, native-speaker human review,
and automated metrics. Our quality-audited
version of MAFAND-MT test set yields perfor-
mance gains across all languages, with BLEU
scores ranging from 0.4 to 9.27 and chrF scores
ranging from 0.3 to 8.69. Our findings fur-
ther indicate that state-of-the-art LLMs, such
as GPT-5.1, can assist in auditing translation
quality and suggesting candidate corrections
for low-resource languages. However, they re-
main far from being a stand-alone solution for
the automatic correction of human translations
in African languages.

1 Introduction

Machine Translation (MT) is a fundamental and
prominent task in natural language processing
(NLP), essential for global communication and in-
formation access (Anastasopoulos et al., 2020). For
many low-resource languages, particularly those in
Africa, a common method for developing bench-
mark datasets is through human translation of ex-
isting resources from higher-resource languages
such as English and French (Adelani et al., 2025a).
Therefore, the quality of these translated datasets
is very crucial, as it directly impacts the evaluation
and development of MT systems, ultimately deter-
mining their reliability for real-world use. High-
quality human translations should satisfy at least
three key criteria: fluency in the target language,
adequacy in preserving the semantic content of
the source text, and the target language’s cultural
context (Freitag, Markus and Foster, George and
Grangier, David and Ratnakar, Viresh and Tan, Qi-
jun and Macherey, Wolfgang, 2021).

However, human translation, while indispens-
able for cultural and nuanced understanding, is not
immune to error (Han et al., 2021; Lin et al., 2022).
Translators may introduce typos, grammatical mis-
takes, fluency issues, and bilingual (code mixing)
errors (Lin et al., 2022). These errors can stem from
various factors, including the use of imperfect aux-
iliary translation tools, errors by native translators,
the translator’s proficiency in the target language,



and the ambiguity of the source content to be trans-
lated (Han et al., 2021; Lin et al., 2022). Table 1
shows examples from the MAFAND-MT test set
where human-translated text in Amharic, Hausa,
Igbo, Swahili, and Twi languages contains such
errors, creating a "garbage in, garbage out" risk for
MT models and evaluations (Adelani et al., 2022).
Furthermore, errors that propagate into benchmark
datasets systematically bias evaluation and hinder
the development of robust MT models (Koehn and
Knowles, 2017).

Despite their importance, ensuring the quality of
human translations at scale remains a major chal-
lenge. Exhaustive manual review by professional
translators is financially unsustainable (Sambasi-
van et al., 2021). Consequently, many projects face
a difficult trade-off between scale, cost, and qual-
ity, potentially allowing errors to propagate into
valuable resources.

Recent advances in multilingual Large Language
Models (LLMs) offer a promising path toward mul-
tidisciplinary problem-solving capabilities (Treviso
et al., 2024; Feng et al., 2025a). In this work, we
investigate whether LLMs can act as assist first-
pass filters, automatically identifying translation
errors with a higher likelihood of containing errors
and thus proceeding for expert review. Specifically,
we explore the following three research questions:
RQ1 Can large language models (LLMs) assist
in detecting and correcting human translation er-
rors in low-resource African languages (how are
they good enough to judge the translation quality
of low-resource languages)? RQ2 What types of
translation errors are commonly found in machine
translation (MT) resources for African languages?
and RQ3 How does translation quality review im-
prove the performance of machine translation sys-
tems in low-resource languages?

Our contributions are threefold: (1) We intro-
duce a pipeline for LLM-assisted quality assur-
ance of translated resources; (2) We provide a de-
tailed error analysis of a subset of human-translated
MAFAND-MT datasets (11 languages), (3) We ex-
plore the different kinds errors exist in African MT
resources; and (4) We offer insights on using LLMs
as a cost-effective alternative in the reviewing of
a high-quality human translation dataset for low-
resource languages. Our findings demonstrate that
an LLM-human workflow can help develop reliable
and accurate MT datasets and systems.

2 Related Work

2.1 Auditing Training Corpora Quality

Recent efforts to improve NLP for African lan-
guages have increasingly emphasized both the scale
and quality of training corpora. Early work focused
on constructing large-scale web-crawled multilin-
gual pretraining datasets (Xue et al., 2021; Vegi
et al., 2022b; Tonja et al., 2024), demonstrating the
feasibility of incorporating a broader set of African
languages into foundation models. However, the re-
liance on web-crawled data introduced substantial
noise, including mistranslations, misalignments,
and non-parallel content, which introduces greater
degradation in data quality for low-resource lan-
guages.

To mitigate these quality issues, subsequent stud-
ies have focused on improving the quality of trans-
lation datasets through filtering, cleaning strategies,
and manual or semi-automatic audits (Zhang et al.,
2020; Kreutzer et al., 2022). This evolution reflects
a growing recognition that data quality, rather than
volume, is a critical bottleneck for machine transla-
tion performance in low-resource settings.

Despite these advances, existing auditing ap-
proaches remain largely human-intensive, limiting
their scalability across languages and domains. In
this work, we position LLMs as a complementary
tool for MT data auditing, examining their ability to
judge if the given translation is whether correct or
not, identify translation errors and suggests correct
translations.

2.2 Evaluations of Test Dataset Quality

Language models are commonly evaluated on
downstream tasks, with Machine Translation (MT)
serving as a central benchmark for assessing
cross-lingual capabilities. For African languages,
MAFAND-MT (Adelani et al., 2022) is one widely
used evaluation dataset that has supported numer-
ous studies on MT training and evaluations (Ojo
et al., 2025; Abdulmumin et al., 2022; Vegi et al.,
2022a; Nzeyimana, 2024; Tang et al., 2024; Ji et al.,
2025; Singh et al., 2025). The validity of con-
clusions drawn from such benchmarks critically
depends on the quality of their underlying transla-
tions.

The work by Abdulmumin et al. (2024) demon-
strated that even human-translated evaluation
datasets are susceptible to translation errors and
identified and corrected issues for some African
languages (Hausa, Sepedi, Xitsonga, isiZulu) in



MAFAND translated dataset Corrected translation

"eng": "Date: Thursday, July 31, 2014",
"amh": ’ÎÍn È°} ¶≈”Çm fth yÚ¤hÅl"

"eng": "Date: Thursday, July 31, 2014",
"amh": ◊n :HΩs, HmŠ 31, 2014

"eng": "Ian Simbota represented the Association of Persons with
Albinism at the court.",
"kin": "Igihe umucamanza yasomaga, icyampangayikishije ni
uko igice cya Padiri Muhosha [n’abandi] bahamwe n’icyaha ..."

"eng": "Ian Simbota represented the Association of Per-
sons with Albinism at the court.",
"kin": "Ian Simbota yari ahagarariye ishyirahamwe
ry’abantu bafite ubumuga bw’uruhu mu rukiko."

"eng": "Every soul shall have a taste of death.",
"hau": "Ko shakka babu akwai wani lokaci da rayuwa za ta zo
karshe K̈owane rai mai dandanar mutuwa ne(̈Suratu Al Imrana
3:185)."

"eng": "Every soul shall have a taste of death.",
"hau": "Ubangiji, muna d>aukin jiran wannan damar"

"eng": "policemen has claimed ownership of Dino melaye",
"ibo": "Ndı. uweojii egbochiela u. lo. Dino Melaye"

"eng": "policemen has claimed ownership of Dino
melaye",
"ibo": "Ndı. uweojii ekwuola na ha nwe Dino Melaye"

"eng": "Ian Simbota represented the Association of Persons with
Albinism at the court.",
"swa": "Igihe umucamanza yasomaga, icyampangayikishije ni
uko igice cya Padiri Muhosha [n’abandi] bahamwe n’icyaha ...."

"eng": "Ian Simbota represented the Association of Per-
sons with Albinism at the court.",
"swa": "Ian Simbota yari ahagarariye ishyirahamwe
ry’abantu bafite ubumuga bw’uruhu mu rukiko."

"eng": "A local councilor, Jabu Zondo, visited the area yesterday
to reprimand the incident.",
"twi": "Kurow no mu kaunsila, Eabu Zondo kOO beaeE hO nnera
kOhwEE deE Esii no"

"eng": "A local councilor, Jabu Zondo, visited the area
yesterday to reprimand the incident.",
"twi": "Kurow no mu gyinatufoO panyin, Jabu Zondo,
kOO beaeE no nnera kO kaa wOn anim."

Table 1: Examples of translation errors from the MAFAND-MT test dataset. The Table shows example cases in
Amharic (amh) Hausa (hau), Igbo (ibo), Swahili (swa), and Twi (twi) translations (Adelani et al., 2022). The red
marked text is the incorrect translation of the given English-sourced (eng) text, and the blue is the correct translation
using native speakers of the target language.

the FLORES dataset. These findings, together with
prior analyses (Freitag, Markus and Foster, George
and Grangier, David and Ratnakar, Viresh and Tan,
Qijun and Macherey, Wolfgang, 2021), highlight
the need for systematic auditing and validation of
MT evaluation datasets to ensure reliable bench-
marking.

However, existing approaches primarily rely on
additional rounds of human translation and expert
review, which are costly and difficult to scale across
languages and datasets. In contrast, the use of
LLMs for auditing evaluation data quality remains
underexplored. In this work, we investigate the ex-
tent to which LLMs can assist in auditing MT eval-
uation datasets by identifying translation errors and
inconsistencies, and we analyze their agreement
with human judgments to better understand when
LLM-based auditing can reduce cost and when hu-
man oversight remains essential.

2.3 LLM-as-a-Judge Translation Review

LLMs have demonstrated strong performance as
an evaluator in various tasks, including automated
data quality control (Gu et al., 2025), dataset an-
notation assistance (Tan et al., 2024; Belay et al.,
2025), identifying error types for machine transla-

tion dataset (Feng et al., 2025b; Kim, 2025), and
research paper summarization (Liu et al., 2024).
Within machine translation research, LLM-assisted
translation error detection and correction have been
explored primarily in English as an automatic post-
editing (APE) (Berger et al., 2024; Freitag, Markus
and Foster, George and Grangier, David and Rat-
nakar, Viresh and Tan, Qijun and Macherey, Wolf-
gang, 2021; Lu et al., 2024), translation quality
evaluation (Qian et al., 2024), and automatic cor-
rection of human translations (Lin et al., 2022).

Despite these advances, the use of LLMs as trans-
lation reviewers, capable of identifying, catego-
rizing, and correcting translation errors, remains
unexplored, mainly for low-resource and African
languages. Recent evaluations of MAFAND-MT
(Adelani et al., 2022) reveal the presence of trans-
lation errors and varying degrees of semantic mis-
alignment, as evidenced by low automatic quality
scores reported in prior work using metrics such
as COMET (Falcão et al., 2024). These under-
score the need for scalable, systematic translation-
review methods that extend beyond manual in-
spection. In this work, we investigate the role
of LLMs as translation reviewers for African-
language datasets. Specifically, we assess their



ability to judge whether the translation is correct,
identify common types of translation errors, pro-
pose correction candidates, and support a human-
in-the-loop auditing pipeline. By analysing agree-
ment between LLM-based judgments and human
verification, we aim to clarify both the potential and
the limitations of LLMs as assistants for translation
data quality auditing.

3 Translated African Languages Dataset

A growing number of human-translated datasets are
available for African languages. These datasets are
mostly translated from English and French source
texts and span diverse domains. For machine trans-
lation NLP tasks, prominent datasets that include
African languages are FLORES (Guzmán et al.,
2019), NLLB (Team et al., 2022), HornMT1, and
MAFAND-MT (Adelani et al., 2022). Recently,
domain-specific datasets have also been created,
such as AFRIDOC-MT (Alabi et al., 2025) and
AfriMed-QA (Nimo et al., 2025) for health-related
data, AfriGSM (Adelani et al., 2025b) for math
word problems, and AfriMMLU and AfriXNLI
(Adelani et al., 2025b) for general knowledge and
reasoning.

The MAFAND-MT Translation Dataset The
Masakhane Anglo and Franco Africa News Dataset
for Machine Translation (MAFAND-MT) is one
of the frequently used MT evaluation datasets for
African languages (Adelani et al., 2022). This
dataset covers 20 African languages: 15 are trans-
lated from English into target languages, and the
remaining 5 are translated from French sources.
MAFAND-MT data is professionally translated
by native speakers of the target languages with
a compensation (Adelani et al., 2022). However,
we observed a range of common MT error types
presented in Table 1.

4 Translation Review Pipeline

We used a two-stage review pipeline to assess and
review translation quality. In the first stage, LLM
automatically evaluates each translation pair and
flags potential errors. In the second stage, native-
speaker verify the flagged cases and provide cor-
rections where necessary, shown in Figure 1.

1A multi-way parallel news corpus for languages in
the Horn of Africa; https://github.com/asmelashteka/
HornMT

Category Error description

Typos Misspellings or character-level mistakes in the translation
Grammar Grammatical errors (e.g., agreement, tense, syntax)
Fluency Unnatural or awkward phrasing; non-native flow
Bilingual Interference or overly literal translation from English
Incomplete Translation omits some(all) part(s) of the source meaning
Addition Adds information not present in the source
Omission Removes information present in the source

Table 2: Error categories reported during manual
analysis of translation quality. The table summarizes
recurrent error types observed with their description.

LLM-assisted Translation Review We used
GPT-5.12 as a judge to review the translation. We
probed GPT-5.1 for each parallel text pair to assess
translation quality and classify the translation as
correct or incorrect. We further instructed this
LLM to suggest the types of translation error(s)
presented in Table 2 and the correct translation
versions if the reply was incorrect at first.

Human Translation Correction We assign a
minimum of two native-speaker volunteers per lan-
guage for a total of 11 languages. Human transla-
tion reviews translation errors flagged by LLMs as
incorrect and verifies the corrected translations
proposed by the LLMs. To facilitate native speaker
review of LLM suggested corrections, we design
an interactive annotation interface that displays the
source English text, the original MAFAND-MT hu-
man translation, and the LLM proposed alternative.
If either translation is flagged as incorrect, the tool
highlights common error categories. Annotators
are also provided with an option to supply a new
translation if both existing options are incorrect.
Details of the translation review guidelines and the
annotation interface are provided in Appendix A.

5 Human vs LLM Audit Agreement

We analyze the agreement between humans and
GPT-5.1 in translation quality review and assess
whether the LLM’s suggested corrections are use-
ful.

Can LLMs assist in reviewing translation
quality for low-resource languages? Based on
AfroBench, a benchmark for evaluating LLMs on
African languages, proprietary LLMs such as the
GPT family consistently outperform widely used
open-source models for the machine translation
task (Ojo et al., 2025). Motivated by this obser-
vation, we used the latest GPT-5.1 as a transla-

2https://openai.com/index/gpt-5-1/, Dec 2025

https://github.com/asmelashteka/HornMT
https://github.com/asmelashteka/HornMT
https://openai.com/index/gpt-5-1/


GPT 5.1
Translation

Review

MAFAND-MT 
(11 languages)

Incorrect

typos fluency

bilingual

grammar

incomplete addition

Incorrect

typos fluency

bilingual

grammar

incomplete addition

Type the correct
translation here...

Correct

Correct

Is this Translation (1) correct?

Is this Translation (2) correct?

LLMs as Judges

If Translation (1)  &
Translation (2) are 
incorrect:

Evaluation

LLM-assisted Human Review of Translation QualityMT Dataset

Figure 1: LLM-assisted pipeline for MT dataset quality assessment and correction. The figure illustrates
the workflow for judging whether the translation is correct or not, identifying translation errors, and generating
correction suggestions.

Language
Translation

direction # Test set
LLM predict

"Correct"
LLM predict
"Incorrect"

Human vs LLM
Trans. Agree. %

Human vs LLM
Errors. Agree.

Amharic eng-amh 1,037 271 766 0.85 0.23
Hausa eng-hau 1,500 680 820 0.23 0.25
Igbo eng-ibo 1,500 884 964 0.78 0.18
Kinyarwanda eng-kin 1,006 390 616 0.55 0.00
Luo (Dholuo) eng-luo 1,500 398 1,102 0.96 0.09
Nigerian Pidgin eng-pcm 1,564 1009 555 0.43 0.20
Shona eng-sna 1,005 368 637 0.24 0.15
Swahili (Kiswahili) eng-swa 1,835 748 787 0.30 0.05
Tswana (Setswana) eng-tsn 1,500 844 656 0.75 0.18
Twi (Akan-Twi) eng-twi 1,500 265 1285 0.91 0.11
Yoruba eng-yor 1,558 585 973 0.45 0.16

Table 3: The MAFAND-MT test set dataset details with human and LLM agreement analysis. LLM predict
Correct and LLM predict Incorrect columns are the number of translation responses from LLMs. Human vs
LLM Translation Agreement is the percentage agreement between humans and LLM to say the original translation
is correct or incorrect. Human vs LLM Translation Agreement is Cohen’s Kappa translation error label agreement
between Human and LLM. We target only the test set data, and each language has its own Source (English) and
target translations.
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Figure 2: The statistics of Human-labeled translation errors for the MAFAND-MT test dataset. The bar graph
illustrates the number of types of translation errors where Amharic (amh), Luo-Dholuo (luo), Igbo (ibo), Shona
(sna), Swahili (swa), and Twi (twi) languages have more error types statistically.

tion quality reviewer. Native speakers of each
target language are then presented with two op-

tions: the original MAFAND-MT translation and
the revised translation produced by the GPT-5.1



(reviewer model).
The level of agreement between GPT-5.1 and hu-

mans in assessing translation quality is reported in
Table 3. The results suggest that GPT-5.1 can sup-
port translation quality verification within a human-
in-the-loop framework. Notably, based on GPT-
generated revisions, a substantial number of trans-
lations were judged by native speakers to be of
higher quality than the original human-produced
translations, for example, amh (118), hau (628),
yor (124), swa (548), and pcm (320).

Regarding agreement on translation error labels
between the LLM (GPT-5.1) and human native
speakers (shown in Table 3, Human vs. LLM Er-
rors Agreement column), the Cohen’s Kappa scores
are consistently low, ranging from 0 (minimum) to
0.25 (maximum). This low agreement can be at-
tributed to several factors: (1) translation errors
are annotated in a multi-label setting, (2) GPT-5.1
tends to over-predict multiple error types for a sin-
gle translation pair, and (3) there is substantial dis-
agreement in cases where native speakers labeled
most LLM translations as incorrect.

State-of-the-art LLMs, such as GPT-5.1, can as-
sist with machine translation quality auditing and
provide translation suggestions for low-resource
languages. A considerable number of translations
that were generated by LLM were judged by native
speakers to be of acceptable quality. Moreover, a
majority of annotators (64.7%) reported that quali-
fying each translation took 1–3 minutes, and 29.4%
reported 30 seconds to 1 minute, indicating that
LLM pre-auditing can provide a substantial time-
saving benefit for human annotators. Regarding
the helpfulness of adding LLM-generated transla-
tion as an option during quality audits of machine
translation data, native speaker responds 42.2%
yes, it was helpful, 42.1% partially useful, and
17.6% not helpful. However, the selected LLM
reviewer (GPT-5.1) remains far from a stand-alone
solution for the automatic correction of human
translations in African languages. High-quality,
corrected MAFAND-MT test set data will there-
fore be valuable for further machine translation
experiments and evaluations.

Can LLMs serve as judges of translation qual-
ity for low-resource languages? We select the
following popular open-source LLMs for the LLM-
as-a-judge evaluation: Gemma-3-27B (Team et al.,
2025), LLaMA-3.3-70B (Grattafiori et al., 2024),
GPT-oss-120B (OpenAI et al., 2025), and Mistral-

123B (OpenAI et al., 2024). In addition, we include
the closed-source model GPT-5-mini (Hurst et al.,
2024). We evaluate these models on 200 randomly
sampled, human-labeled instances (100 correct and
100 incorrect translations), where incorrect transla-
tions are further annotated with fine-grained error
labels.

As shown in Figure 3, the agreement between hu-
man judgments and LLM-based judges is substan-
tially low. In particular, for translations labeled as
correct by human annotators, most LLM judges
incorrectly classify them as incorrect. Models such
as Mistral-123B, GPT-oss-120B, and GPT-5-mini
fail to identify correct translations reliably. A sim-
ilar trend is observed for incorrect translations:
the LLM judges tend to label nearly all translation
pairs as incorrect and frequently overpredict mul-
tiple error categories for a single translation. The
agreement on error labeling between humans and
LLM-as-judge models is reported in Appendix 6.

How is the COMET score a reliable quality es-
timation for low-resource languages? We ap-
ply SSA-COMET-QE (Sub-Saharan African Cross-
lingual Optimized Metric for Evaluation of Transla-
tion) - an improved version of AfriCOMET (Wang
et al., 2024), a robust and automatic metric for
machine translation quality estimation (Rei et al.,
2020). It receives a pair (source sentence, transla-
tion in target language), and returns a score ranging
from 0 (semantically unrelated) to 1 (high quality)
that reflects the quality of the translation (Li et al.,
2025). The quality estimation score (SSA-COMET-
QE) for the MAFAND-MT dataset before and af-
ter quality check is presented in Figure 4. Based
on the SSA-COMET-QE score, each language has
translations ranging from 70 to 400 parallel texts
that have a quality estimation score of less than
0.6. As illustrated in Figure 4, an empty source
and output or a single character or word translation
can still receive a low score. Across all languages,
the maximum score observed is 0.84; even per-
fect translations do not approach a score of 1.0,
and most translation outputs fall within a narrow
range between 0.65 and 0.70. Notably, some out-
puts in an incorrect language receive higher scores
than null or random outputs produced in the cor-
rect language. These findings indicate a divergence
between SSA-COMET-QE scores and human judg-
ments in low-resource language settings, warrant-
ing further investigation into the reliability and be-
haviour of such evaluation metrics for low-resource
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Figure 4: SSA-COMET-QE translation scores across language pairs before (pre) and after (post) applying
quality audit. Scores range from 0 to 1, with higher values indicating better translation quality. The en–pcm
direction has lower COMET scores; only 21% of the data have>0.5 SSA-COMET-QE because the language is not
included in the specifically fine-tuned model.

languages. While we improved the statistics of
low-scoring translations, the improvement remains
modest due to the quality of the SSA-COMET-QE
metrics, as shown in Table 4.

6 Benchmarking Improved Dataset

Automated scores provide a cost-effective and
rapid approximation of quality, which is essential
for machine translation system performance and for
quick feedback on evolving models (Kocmi et al.,

2024). While human judgment remains the gold
standard, we evaluate our approach in three ways:
human judgments, LLM-as-a-judge assessments,
and automatic evaluation metrics such as BLEU
and chrF for MT output. To make benchmark re-
sults, we select popular open-source machine trans-
lation models such as multilingual Aya-101 (Üstün
et al., 2024), NLLB 600M and NLLB 3B (Team



Language Source text Translation SSA-COMET score
amh NULL NULL 0.38
amh 1 1 0.44
amh " " " " 0.48
ibo Naira Naira 0.54
ibo Ihiala Ihiala 0.44
swa ICANNWiki ICANNWiki 0.49
swa (CC BY 2.0) (CC BY 2.0) 0.55
pcm "GOD DEY," "GOD DEY," 0.33

Table 4: Translation pair examples with SSA-COMET-
QE score. Short translation examples from the dataset:
empty (NULL), single-character, and a word with per-
fect translation but a low SSA-COMET-QE score.

et al., 2022), and Google Translate3.

Results Analysis The benchmark results are pre-
sented in Table 5. As the results show, the quality-
audited version (corrected MAFAND-MT) outper-
forms the original evaluation across all settings, in-
dicating that the dataset has been improved. Google
Translate outperforms other open-source models,
with NLLB-3B being the strongest open alternative
in terms of parameter size, followed by NLLB-
600M. However, the result remains close to the
original. This might be due to two main reasons:
1) the target languages are low-resource languages
- the evaluated models do not well represent the
languages, 2) the evaluation metrics problem, such
as COMET, as discussed in Table 4.

7 Native-Speakers Feedback

Following completion of the translation quality au-
dit, we conducted a survey to gather qualitative
insights from native speaker annotators regarding
the source text quality, the use of LLM-generated
suggestions, and the time they spent on the task.
The primary feedbacks are summarized below:

Quality Issues in English Source Text: Annota-
tor feedback revealed significant challenges stem-
ming from the quality and composition of the
source (English) text. In particular, source-side
noise was observed in segments derived from so-
cial media (X/Twitter); as the entries frequently
contained platform-specific metadata, such as user
handles (@usernames) and hashtags(#), and suf-
fered from syntactic fragmentation due to character
limits. Additionally, annotators identified instances
of language leakage, where the source text was
labeled as English but included content in other
languages, which the annotators were unable to

3https://cloud.google.com/translate, Dec 2025

interpret. Such issues negatively impacted the an-
notation process and introduced ambiguity in trans-
lation and sentiment interpretation.

Literal Translation: Annotators observed that
GPT-5.1 often defaulted to overly literal transla-
tions, struggling to balance literal and conceptual
meaning, especially for metaphors. This issue was
exacerbated by archaic or unnatural terms in human
references, which conflicted with modern usage.
As a result, current benchmarks may over-reward
word-level matching while overlooking native flu-
ency, and, in some cases, GPT-5.1 produced non-
existent words in the target language.

8 Conclusions

In this work, we evaluated a subset of a widely used
machine translation evaluation dataset for African
languages (MAFAND-MT), covering 11 languages
and all test set splits, with support from native
speakers. The evaluation process involved judging
whether each translation was correct or incorrect,
labeling the type(s) of translation error(s) for incor-
rect translations, and producing corrected transla-
tions when necessary. Our analysis revealed that
the original translations contained various types of
errors relative to the source text. We corrected the
MAFAND-MT test set using native speakers and
LLMs as assistants at different stages. We show
that attention should be given to translated eval-
uation sets, and that relying solely on automatic
evaluation metrics for MT quality evaluation may
not align with human assessments. A combina-
tion of human evaluation, using LLMs as judges,
and automatic metrics is recommended. The im-
proved MAFAND-MT test set and the accompany-
ing quality-audit annotation tool, provide valuable
resources for researchers conducting further ma-
chine translation quality analysis and evaluation.

Limitations

Our work is not without limitations.
First, it focuses on a single MT dataset because

recruiting volunteer native speakers for each target
language is difficult. However, our pipeline is re-
producible and this work can be extended to other
African languages’ translated dataset such as 1)
machine translation dataset: FLORES 101 (Goyal
et al., 2022) and FLORES+ (Gordeev et al., 2024)
and 2) health (e.g., AFRIDOC-MT (Alabi et al.,
2025) and AfriMed-QA (Nimo et al., 2025)), 3)

https://cloud.google.com/translate


Models Metrics amh hau ibo kin luo pcm sna swa tsn twi yor Avg.

NLLB 600M

BLEU (MAFAND-MT) 4.92 7.68 17.00 23.11 11.02 7.83 8.72 27.18 25.23 8.10 8.57 13.58
BLEU (Corrected) 10.04 10.04 18.26 23.13 12.58 7.87 10.41 30.00 25.36 10.10 8.84 15.15
chrF (MAFAND-MT) 25.49 36.83 47.22 55.70 39.92 27.89 42.55 56.18 56.04 36.87 29.78 41.32
chrF (Corrected) 34.06 38.81 48.10 55.72 41.61 27.93 44.56 58.32 56.09 38.43 30.22 43.08

Aya 101

BLEU (MAFAND-MT) 3.40 7.12 9.66 09.64 2.84 13.52 5.85 19.96 3.96 2.73 4.22 7.54
BLEU (Corrected) 6.10 8.98 10.27 9.61 2.92 13.50 6.32 21.83 4.02 3.25 4.21 8.27
chrF (MAFAND-MT) 20.00 34.88 37.35 37.85 13.94 45.71 27.98 47.77 23.06 23.96 17.16 29.97
chrF (Corrected) 25.65 36.46 37.90 37.88 14.05 45.74 28.81 49.29 23.08 24.21 17.21 30.93

NLLB 3B

BLEU (MAFAND-MT) 5.62 8.44 20.24 26.60 12.43 4.59 9.39 28.81 28.00 8.69 10.88 14.88
BLEU (Corrected) 11.23 10.59 21.60 26.61 14.25 04.51 10.92 32.01 28.17 10.71 11.26 16.53
chrF (MAFAND-MT) 26.51 37.87 50.13 59.28 41.80 11.63 43.18 57.54 57.79 38.92 32.36 41.55
chrF (Corrected) 35.20 39.81 51.01 59.31 43.66 11.56 45.02 59.91 57.85 40.71 32.83 43.35

Google Trans.

BLEU (MAFAND-MT) 6.35 8.71 15.60 25.33 8.49 00.00 10.69 30.81 31.98 8.87 14.26 14.64
BLEU (Corrected) 15.62 11.41 16.77 25.20 13.16 00.00 12.58 34.73 32.05 10.85 14.95 17.03
chrF (MAFAND-MT) 27.99 38.85 48.91 64.71 38.02 00.00 45.44 59.52 61.38 40.37 37.33 42.05
chrF (Corrected) 39.65 41.12 49.86 64.67 41.21 00.00 47.55 62.31 61.40 42.30 37.99 44.37

Table 5: Zero-shot evaluation benchmark results. The result compares the original (MAFAND-MT) with the
corrected translation version of the MAFAND-MT test set. All translation directions are from English to target
languages. Nigerian Pidgin (pcm) is not supported by Google Translate.

mathematics word problem (e.g., AfriGSM (Ade-
lani et al., 2025b)), and 4) general knowledge
and reasoning (e.g., AfriMMLU and AfriXNLI
(Adelani et al., 2025b)) and MAFAND-MT dataset
(Adelani et al., 2022).

Second, we focused only on the quality audit
of the test set, as it is urgent, and research work
reports are based on test set results. The same way
can be extended for other split sets, such as training
and validation sets.
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Appendix

A Translation Annotation Guideline

The native speakers do not have information about the two transition option sources, which are the original
human translation and LLM translation. The native speakers were given the following guidelines.

Reviewing translation errors: At this stage, the native speakers read and evaluate the translation quality
in parallel with the given source English text.

• Read the source English sentence.

• Read the translated in Translation 1 and Translation 2 (One is the original translation, and the other
is the LLM translation; we randomly shuffle the content positions of the two translations when
displaying for the annotators).

• For both Translation 1 and Translation 2, choose Correct or Incorrect.

• If any of the translations are Incorrect, select one or more error types (multi-label error selection
approach) that best describe the error by ticking from the list of error types, shown in Table 2.

Correcting the translations: If both Translation 1 and Translation 2 are marked Incorrect with the
corresponding error types, provide a new correct translation in the given text box; the UI is shown in
Appendix B.

B Annotation Tool UI

Figure B shows a screenshot of our machine translation quality audit annotation tool UI.

Figure 5: Annotation tool UI for Hausa language. The tool will be publicly released upon acceptance of the work
for further machine translation and other NLP dataset quality audits with additional features.



C LLM-as-a-Judge Prompts

Prompt: LLM-as-a-judge for translation quality analysis

You are an expert translation quality analyst with deep knowledge of machine
translation evaluation from English to African languages. Analyze the following
English → {target_lang_name} translation..

Possible translation error types (choose one or more when incorrect):
- Typos : misspellings or character mistakes in the translation
- Grammar : grammatical errors (agreement, tense, syntax)
- Fluency : unnatural or awkward phrasing / non-native flow
- Bilingual : interference or literal translation from English
- Incomplete : translation omits part(s) of the source meaning
- Addition : adds information not present in the source
- Omission : removes information present in the source

SOURCE (English):
{eng_text}
TRANSLATION ({target_language_name}):
{tgt_text}

Your task is to follow the below rules exactly:
1) Decide if the translation is correct or incorrect contextually. If correct,
respond with status "correct". Only mark as ’incorrect’ when the meaning changes.
Do NOT mark minor differences as errors.
2) If incorrect, set status "incorrect", pick one or more error types from the
taxonomy, and give a short explanation for each type of error.
3) IF incorrect, ALSO PROVIDE a corrected translation in the target language in
the field "correct_translation" (a fluent, natural translation that preserves
source meaning correctly).
4) If correct, set "correct_translation" to null.
5) Return ONLY valid JSON (no extra commentary). Use this exact structure:

{{
"status": "correct" | "incorrect",
"errors": [
{{"type": "<one_of_taxonomy>", "description": "<short explanation>"}}
],
"correct_translation": "<correct text or null>"
}}
Taxonomy reference:
{taxonomy} Return only the JSON.



D Translation Error Labeling Agreement Between Human vs LLMs

Figure 6 the overlap between human and LLM-as-a-judge for translation error labeling. The statistics
show that LLMs are overpredicting error types relative to humans in the targeted low-resource languages.
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Figure 6: Translation error labeling overlap between Human and LLM-as-a-judge.
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