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Abstract

Phenotype imputation plays a crucial role in improving comprehensive and accu-
rate medical evaluation, which in turn can optimize patient treatment and bolster
the reliability of clinical research. Despite the adoption of various techniques,
multi-modal biological data, which can provide crucial insights into a patient’s
overall health, is often overlooked. With multi-modal biological data, patient
characterization can be enriched from two distinct views: the biological view and
the phenotype view. However, the heterogeneity and imprecise nature of the multi-
modal data still pose challenges in developing an effective method to model from
two views. In this paper, we propose a novel framework to incorporate multi-modal
biological data via view decoupling. Specifically, we segregate the modeling of
biological data from phenotype data in a graph-based learning framework. From
the biological view, the latent factors in biological data are discovered to model
patient correlation. From the phenotype view, phenotype co-occurrence can be
modeled to reveal patterns across patients. Hence, patients are encoded from these
two distinct views. To mitigate the influence of noise and irrelevant information
in biological data, we devise the cross-view contrastive knowledge distillation
that distills insights from the biological view to enhance phenotype imputation.
Phenotype imputation with the proposed model demonstrates superior performance
over state-of-the-art models on the real-world biomedical database.

1 Introduction

Clinical records, serving as a critical resource for understanding disease patterns and patient outcomes,
are valuable for observational studies. However, its collection can be biased or incomplete due to the
limits on infrastructures and expertise, the inconsistency in data types across healthcare systems, and
the variability in patient cohorts, etc [3, 15]. For instance, it is recognized that patients with dementia
and its related conditions can have under-documented phenotypes [36], probably resulting from a
lack of clear symptoms early on or ignorance of related diseases. The issue of missing or incomplete
phenotypic data is pervasive and can lead to biased results in medical research and suboptimal patient
care [21]. In light of this, phenotype imputation is essential to ensure a more holistic and precise
medical evaluation, thereby optimizing patient care and enhancing the validity of clinical studies.

Traditional imputation methods [11, 2] rely on informative statistical characteristics of the clinical
data to infer the missing phenotypes, yet often neglect the broad, interconnected nature of clinical
data with multi-modal biological information such as proteomics and metabolomics, while the
latter might provide deeper insights into the patient’s health status. The growing development of
extensive biobanks [4, 33], collecting various biological and lifestyle data alongside traditional
clinical records, unlocks a potential to address incomplete phenotypic data in clinical records. By
leveraging multi-modal biological data as external information, as shown in Figure 1, the associations
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Figure 1: Phenotype imputation with multi-modal biological data. "M1" denotes Modality 1, and
"M2" represents Modality 2. "—" refers to the missing modality and the red question mark refers to
the phenotype that needs to be imputed.

between biological observations and clinical phenotypes might improve the inference of incomplete
phenotypes.

However, leveraging multi-modal information for phenotype imputation remains a complex challenge
in two folds: 1) The heterogeneity of multi-modal data typically results in significant variances
from clinical data, as it includes different data types and characteristics. For instance, continuous
variables in proteomics may exhibit different patterns and correlations with a patient’s health status
compared to discrete phenotype data. Multi-modal biological data often contain measurement noise
and irrelevant information unrelated to phenotypic observations, which hinders accurate phenotype
imputation. Furthermore, biological data are frequently missing for many individuals due to the
labor-intensive and costly nature of data collection.

Despite the compelling need to leverage multi-modal data, the challenges outlined above have posed
significant obstacles to developing an effective approach for phenotype imputation. In recent years,
graphs have gained traction as a powerful tool for modeling complex data and capturing relationships
between real-world entities. Representing patients and phenotypes within a graph structure and
imputing missing phenotypes using Graph Neural Networks (GNNs) offers a promising path forward.
Biological data could, in principle, be incorporated as patient attributes and propagated through the
graph. However, the joint modeling conflicts with the heterogeneity between biological and pheno-
typic data, as each encapsulates distinct rationales for unveiling patient-specific health conditions.
First, from a statistical and collaborative view, the patient-phenotype graph connecting patients and
their phenotypes reflects phenotype co-occurrence patterns across all patients’ interactions. These
co-occurrence patterns indicate an underlying principle in imputation: if phenotype x and y are
frequently co-diagnosed, it is sensible to impute y for a patient once x is observed. Second, from a
biological view, a patient’s biological data reveals their fine-grained health status. This highlights
another rationale for imputation: understanding the detailed health conditions from biological data
can guide the imputation of phenotypes that correspond to similar biological health status. Therefore,
in this paper, we propose a view decoupling approach to segregate the modeling of biological data
from phenotypic data, thereby fully utilizing the information from both sources.

To model the correlation between patients and phenotypes, one can construct and encode a bipartite
graph. Nevertheless, the use of biological data is not a straightforward task. Biological data is
characteristically composed of a wide range of variables, including protein concentrations, metabolic
profiles, gene expression levels, etc. These variables exhibit high-dimensional and continuous
characteristics, making it challenging to model the data effectively. More importantly, the biological
conditions of patients uncover major underlying factors that indicate health status. In other words,
patients sharing similar underlying biological factors could have similar phenotypes. Identifying
these latent factors would facilitate the effective characterization of patients and their phenotypes.

To tackle these challenges, in this paper, we propose a novel framework MPI, aiming to harness
the Multimodal data for Phenotype Imputation. First, to identify the latent biological factors, we
propose quantizing the biological data and uncovering the corresponding factors using Residual
Quantization. Then, the obtained factors in conjunction with the patients themselves, are utilized to
create a graph that models the correlation between patients from a biological view. To decouple views
and segregate the modeling of biological data from phenotypic data, the patients and phenotypes
are additionally incorporated into another separate graph that depicts the patterns of co-occurrence
from the collaborative view. GNNs are then employed to encode both graphs. Second, with the two
separate graphs, we aim to leverage the biological information to facilitate the phenotype imputation.
However, due to the presence of noise and irrelevant information in biological data, relying solely
on biological factors may lead to inaccurate imputation. Thus, we employ a cross-view contrastive
knowledge distillation strategy to distill biological knowledge for enhancing phenotype imputation.
Within a teacher-student framework, we consider the biological-view GNN as the teacher model and
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the collaborative-view GNN as the student model. Rather than replicating the teacher model entirely,
the aim is for the student model to glean useful knowledge by receiving partial guidance from the
teacher model. The main contributions of this work are summarized as:

1) We propose leveraging multi-modal data to enhance phenotype imputation through view decoupling,
thereby segregating the modeling of multi-modal biological data from phenotype data. 2) To enhance
the depiction of patient profiling and facilitate the imputation, we propose to uncover the latent
biological factors of patients and accordingly model the correlation among the patients based on
these factors. 3) To avoid the impact of noise and irrelevant information in biological data, we adopt
a novel cross-view contrastive knowledge distillation to subtly leverage information from biological
data. 4) Extensive experiments over a real-world biomedical database demonstrate the superiority of
our proposed method over state-of-the-art methods.

2 Related Work

Phenotype Imputation. Phenotype imputation involves predicting missing phenotypic information
in clinical electronic health records (EHRs), e.g., diseases and symptoms, generally leveraging various
methods ranging from traditional statistical approaches to advanced machine learning techniques.
Early research relies on statistical modeling and matrix analysis [41, 40, 10, 1], while deep learning
demonstrates effectiveness in modeling more complex dependencies with deep networks [14, 50,
27, 2]. Despite existing efforts to explore the correlations between phenotypes and genotypes [2],
multi-modal biological data is largely overlooked in EHR analysis. Our approach differentiates itself
by utilizing multi-modal biological data to enhance phenotype imputation in EHRs.

Graph Neural Networks in Biomedicine. Graph Neural Networks (GNNs) [13, 54] have been
employed to model the interconnectivity of either clinical data or biological information. A line of
research devises GNN models for EHRs to enhance healthcare representation learning and patient-
specific outcomes [9, 35, 20, 28]. By leveraging the entities and connections in EHRs, e.g., diseases,
symptoms, and drug interactions, GNNs show effectiveness in producing patient profiles and clinical
predictions [23, 26]. Meanwhile, biological studies leverage GNNs to explore biological networks,
promote disease mechanism discovery, analyze drug response, etc. For instance, single-cell biology
adopts GNNs to analyze cellular heterogeneity, aiming for an improved understanding of cellular
functions and interactions [18, 31]. Besides, some work integrates clinical and molecular data to
predict adverse drug reaction signals [22], exemplifying the integration of EHRs and biological data
for combined healthcare analysis. Our approach leverages biological data to aid phenotype imputation
in EHRs by bridging the gap between clinical data and underlying biological mechanisms.

Multi-modal Representation Learning on EHRs. Multi-modal learning on EHRs aims to integrate
varied modalities in EHRs, e.g., medication records, lab test results, imaging data, and clinical
notes, to obtain optimized patient representations [23, 17]. Given the potential unavailability of
modalities, research efforts are made to improve model robustness in the face of partially or completely
missing modalities. Strategies include imputing the missing modalities, exploring the data generation
process, and preserving the structure of observed data [48, 29, 52, 6, 47, 53]. However, existing
works primarily explore modalities within EHRs as clinical insights, often overlooking biological
knowledge in EHR analysis. Different from existing work, we explore multi-modal biological data
with random missingness to enhance phenotype imputation in EHRs, via addressing the heterogeneity
and inaccuracy in multi-modal biological data.

3 Preliminaries

Electronic Health Records (EHRs). Clinical records, integral for encoding patient health informa-
tion, are commonly digitized into electronic health records (EHRs) and formatted as high-dimensional
medical codes. Typically, a clinical record includes a series of clinical entities, such as diagnoses,
medications, procedures, laboratory tests, and clinical notes. In this paper, our primary focus is on the
phenotypic information within EHRs, which is generally encoded as one-hot vectors, thus indicating
the presence or absence of specific medical symptoms or diseases.

Phenotype. Define the phenotype data in EHRs for a patient cohort as X = {x1,x2, . . . ,xN}, where
N represents the total number of patients. Each xi encapsulates the phenotypic attributes for patient
i, represented by medical codes for symptoms and diseases, denoted as xi = {p1, p2, . . . , p|xi|}.
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Figure 2: An overview of the MPI framework: (1) Residual Quantization quantizes the biological
data and uncovers the underlying factors. (2) Biological-view GNN and Phenotype-view GNN are
employed to encode the correlation between patients, biological factors, and phenotypes in separate
graphs. (3) Cross-view knowledge distillation makes use of learned representations from different
views and enhances the imputation.

Patient Multi-modal Data with Irregular Missingness. In biological multi-modal datasets, we
represent each patient by a collection of data points from various biological modalities, such as
genetics, proteomics, or metabolomics. Let Z represent the total number of modalities, then the
multi-modal dataset for patients can be expressed as XM = {xM

1 ,xM
2 , . . . ,xM

N }, where N denotes
the number of patients. Given the potential for absent modalities, we define the observed multi-modal
data for patient i as xM

i = {x1
i ,x

2
i , . . . ,x

m
i }, adhering to the condition 0 ≤ m ≤ Z. We focus on

the most relaxed setting where the modality missingness is irregular across patients, i.e., random
missingness. This randomness persists through the phases of training, validation, and testing, allowing
for the possibility that a patient might lack data for any, or in extreme cases, all modalities.

Phenotype Imputation. Phenotype imputation aims to address critical gaps in clinical records, where
certain medical symptoms, disease attributes, or outcomes are not documented or are incompletely
recorded. Given a patient cohort and the incomplete phenotypic data in a clinical dataset, the
problem we focus on aims to impute the other possible phenotypes by leveraging available biological
multi-modal data. Let X be the incomplete phenotype data, and XM be the biological multi-modal
data with irregular missingness, the objective is to design a model that infers the existence of other
possible phenotypes. Thereby, a model Φ is expected to perform Y = Φ(X,XM ; ·) and minimize the
discrepancy between the actual phenotype Ỹ and the imputed phenotype Y. Here Y and Ŷ denote
one-hot vectors. Given the extensive set of phenotypes, measuring discrepancy through classification
is impractical. Therefore, we frame the imputation task as a ranking problem, aiming to position the
correct phenotype higher than the incorrect ones.

4 The Proposed Method

In this section, we introduce the proposed method MPI. As shown in Figure 2, our proposed model
includes three components, i.e., biological data quantization, dual-view graph representation learning,
and cross-view contrastive knowledge distillation. Next, we describe each component in detail.

4.1 Biological Data Quantization

The biological state reveals analogous latent factors among patients. Existing approaches primarily
use biological data as features and apply traditional machine learning techniques to encode them,
yet they often struggle to disentangle the complex, heterogeneous factors inherent in biological data
[44, 12]. The learned representation of patients could be non-robust (e.g., prone to overreact to an
irrelevant factor) and hardly explainable. To identify the latent biological factors among patients,
we propose quantizing the biological data and uncovering the corresponding factors using residual
quantization [24], which employs a multi-level vector quantizer to convert residuals into a series
of codes. Specifically, the input xm is initially encoded into a latent representation zm := E(xm)
by an encoder E. At the first level (d = 0), the residual is set to r0 := zm. For each level d, we
define a codebook Cd := {ek}Kk=1 with size K. The residual r0 is quantized by mapping it to the
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nearest embedding from the codebook. The index of the closest embedding ec0 at d = 0, which is
c0 = argmink ∥r0 − ek∥, represents the zero-th code. For the next level (d = 1), the residual is
updated to r1 := r0 − ec0 . The code for this level is determined by finding the embedding in the
first level’s codebook that is nearest to r1. This quantization process is recursively repeated l times,
producing a tuple of l codes that constitute the disentangled biological factors. This hierarchical
approach approximates the input biological data from coarse to fine granularity. Notably, separate
codebooks are used for each of the l levels rather than a single, large codebook. This strategy is
preferred as the norm of residuals tends to decrease with increasing levels, facilitating the capture of
different granularity levels from the input data.

Upon obtaining the disentangled biological factors (c0, . . . , cl−1), the quantized representation of
zm is determined as ẑm :=

∑l−1
d=0 ecd . This quantized vector ẑm is subsequently fed into a decoder

D, which attempts to reconstruct the input xm based on x̂m = D(ẑm). The loss function for the
residual quantization is defined as follows:

Lbio := Lrecon + Lrq, (1)

where Lrecon := ∥xm − x̂m∥2 and Lrq :=
∑l−1

i=0 ∥sg[ri] − eci∥2 + β∥ri − sg[eci ]∥2. Here, x̂m

represents the decoder’s output, and sg denotes the stop-gradient operation [42]. The training of this
autoencoder involves simultaneous updating of the quantization codebooks and the parameters of
the encoder-decoder. Note that the exclusive autoencoder and quantization codebooks are learned
to capture the disentangled biological factors for each modality. For example, a patient’s biological
data includes two types of modalities, the disentangled biological factors can be represented as
(c10, . . . , c

1
l−1) and (c20, . . . , c

2
l−1). We use C to denote the set of learned biological factors in all

codebooks in subsequent sections.

4.2 Dual-view Graph Representation Learning

With disentangled biological factors and phenotypes, a patient can be described from two perspectives:
a phenotype view and a biological view. To effectively capture the relationship between patients and
biological factors and phenotypes, and fully utilize the information from both views, we construct
two separate graphs instead of a single patient-centric graph.

Patient-Phenotype Graph Construction. From the phenotype view, we construct a patient-
phenotype graph, denoted as Gp, to depict the collaborative relationships between phenotypes,
specifically focusing on phenotype-phenotype co-occurrences. The construction of Gp begins with
defining a set of phenotypes P and a set of patients X. Each patient x ∈ X is associated with one
or more phenotypes p ∈ P . An edge is created between a patient node and a phenotype node if the
patient exhibits that phenotype. By linking patients to their respective phenotypes, Gp captures the
complex interactions and shared occurrences of different phenotypes across the patient cohort, and
provides a comprehensive view of how different phenotypes interact within the patient population.

Patient-Factor Graph Construction. From the biological view, we first construct a patient-factor
graph, denoted as Gf , to explore the biology-level correlation between patients. Specifically, the
graph Gf is constructed using the same set of patients X and disentangled biological factors C from
learned codebooks as the set of nodes. To connect patients and factors, we build edges between each
patient x and their corresponding factors (c0, . . . , cl−1). This patient-factor graph Gf reveals patient
correlations through shared factors, offering a distinct approach to characterizing patients.

With the constructed graphs Gf and Gp, we denote the adjacency matrices of Gf and Gp as Af

and Ap, respectively. To capture the structural information of the graphs Gf and Gp and learn the
representation of patients, phenotypes, and biological factors, we utilize basic Graph Convolutional
Networks (GCNs) as the graph encoder. Taking Gp as an example, the phenotype-view graph encoder
for Gp works by:

H(l+1)
p = σ

(
ÂpH

(l)
p W(l)

p

)
, (2)

where H(0)
p = Fp represents the initial input features, to be more specific, for patients and phenotypes,

the input features are randomly initialized. In contrast, for biological factors, the input features
are initialized using the corresponding code embedding of factors. And H

(l)
p denotes the node

representations at the l-th layer. The matrix Âp = D̂
−1/2
p ÃpD̂

−1/2
p is the symmetrically normalized

adjacency matrix, with D̂p ∈ RN×N being the degree matrix of Ãp = Ap + IN , where IN is
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the identity matrix. Similarly, the representation H
(l)
f can be learned from the graph Gf using the

biological-view graph encoder.

To optimize both graph encoders and to effectively differentiate between the positive and negative
edges in graphs, we define a margin-based ranking loss for graph Gp as follows:

Lp =
∑

(i,j)∈Ep

∑
(i,k)∈Np

max(0, γ − f(i, j) + f(i, k)), (3)

where γ is the margin hyperparameter, (i, j) ∈ Ep denotes the set of positive edges in graph Gp, and
(i, k) ∈ Np denotes the set of negative edges and (i, k) does not present in Gp. f(, ) is a multi-layer
perceptron (MLP) that takes node embeddings as inputs and outputs the similarity score between
two node embeddings. We use the same loss function to update the biological-view graph encoder of
graph Gf and denote the loss as Lf .

4.3 Cross-view Contrastive Knowledge Distillation

Due to the noisy and irrelevant information in the biological data that could mislead the phenotype
imputation, the learning from the biological view and the learning from the phenotype view are
separative and we propose a cross-view contrastive knowledge distillation strategy to subtly leverage
the biological knowledge to facilitate the phenotype imputation. Following the teacher-student
framework [19, 8, 39], we regard the biological-view graph encoder as the teacher model and the
phenotype-view graph encoder as the student model. Since the teacher model cannot provide the
completely precise knowledge to represent patients [34], instead of fully imitating the behavior of the
teacher model, the student model is expected to extract the beneficial knowledge only incorporating
partial supervision from the teacher model. Specifically, with the patient representation Hf learned
from biological-view graph Gf and patient representation Hp learned from the collaborative-view
graph Gp, we propose cross-view contrastive knowledge distillation to distill useful knowledge from
the biological-view graph encoder. This approach leverages view-specific embeddings, represented as
hi
f from the biological view and hi

p from the phenotype view for patient i. Our objective is to align
these embeddings into a shared space, facilitating discriminative representation learning through
contrastive loss. Initially, embeddings are processed through a transformation with hidden layers to
project them into the desired space as hi

f = σ
(
W(2)σ

(
W(1)hi

f + b(1)
)
+ b(2)

)
where W(1) and

W(2) are the trainable weight matrices, b(1) and b(2) are the bias terms, and σ represents the ELU
activation function. hi

p can also be processed using the same transformation.

We then define positive and negative samples to compute the contrastive loss. Embeddings of the same
patient form positive samples from two different views, while negative samples consist of embeddings
from different patients. Specifically, for a given patient i, the positive sample pair is (hi

f ,h
i
p), and

negative samples include both intra-view and inter-view pairs. The contrastive knowledge distillation
loss is formulated as follows:

LCKD = − log
es(h

i
f ,h

i
p)/τ

es(h
i
f ,h

i
p)/τ +

∑
k ̸=i

(
es(h

i
f ,h

k
f )/τ

)
+
∑

k ̸=i

(
es(h

i
f ,h

k
p)/τ

) (4)

where s(·, ·) denotes the cosine similarity, and τ is a temperature parameter. This loss function
incorporates negative samples from both intra-view and inter-view sources, ensuring a comprehensive
learning process. By applying this cross-view contrastive optimization, our model effectively captures
the intricate relationships within both the biological and collaborative views, leading to robust
representations of the patients. Since the biological knowledge is distilled from the biological-view
graph encoder to enhance the phenotype-view graph encoder, the loss function for Gp to optimize the
phenotype-view graph encoder is updated to L̂p = Lp + αLCKD where α is a tradeoff parameter.

4.4 Optimization

In optimization, residual quantization involves the pretraining of autoencoders for biological data, and
the quantization codebooks using loss function Lbio to learn the disentangled biological factors and
their corresponding factor embeddings. Subsequently, we utilize an iterative optimization strategy to
optimize the biological-view graph encoder using Lf and phenotype-view graph encoder using L̂p.
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Table 1: Dataset Statistics
Dataset Unique Items# Interactions# Sparsity/Missing Rates

Patient 15,093 - -
Phenotype 1,109 380,239 97.73%
Proteomics 2,923 1,483 90.2%
Metabolomics 251 7,513 50.3%

Specifically, we leverage the patient representation learned from the biological view as the teacher
signal and optimize the phenotype-view graph encoder through contrastive knowledge distillation
following loss function L̂p. The process is iterated until both graph encoders converge. During
the evaluation phase, we employ the patient representation learned from the phenotype-view graph
encoder and evaluate a positive testing phenotype along with a set of candidate negative phenotypes
to assess performance. The pseudocode of MPI training procedure is described in Algorithm 1.

5 Real-World Experiments

5.1 Experimental Setup

Dataset. We evaluate MPI and baseline approaches using the UK Biobank [4], a comprehensive
biomedical database and research resource collecting extensive biological samples and clinical EHRs.
We focus on phenotype imputation for populations suffering from chronic diseases and thus extract
a cohort of patients diagnosed with Alzheimer’s disease and related dementia. Specifically, we
leverage the EHRs from inpatient and primary care to obtain phenotypic data before disease onset
after preprocessing and transformation. Besides, we utilize biological data across two modalities:
proteomics, measuring levels of roughly 3,000 proteins; and metabolomics, testing around 250
metabolic biomarkers. The biological data is preprocessed following common practice [7, 55]. We
observe significant modality missingness at random: approximately 90% in proteomics and 50%
in metabolomics. Table 1 shows the statistics of the dataset, with dataset details and preprocessing
methods described in the Appendix A.1.

Baselines. We compare the proposed model to baselines across three categories: (1) modality
imputation methods, including CMAE [32] and SMIL [30]; (2) graph neural networks comprising
GraphSage [16] and GIN [49], which utilize multi-modal biological information as patient features;
(3) multi-modal models on EHRs that handle missingness, consisting of M3Care [53], GRAPE
[51] and MUSE [47]. Note that all these methods primarily focus on patient classification tasks and
rely on supervision signals from patient labels. We adapt their training objectives to suit our problem
setting and evaluate the baselines on the same testing data for a fair comparison. Additional details
on the baselines are provided in Appendix A.2.

Experimental Settings. We implement MPI with PyTorch and run it on an NVIDIA RTX A6000
GPU. To implement MPI, a two-layer GCN is utilized for each decomposed view with 128 and 64
hidden units respectively. It’s worth noting that our focus is not on the complexity of the GNN itself;
we use GCN as the foundational backbone model, which can be substituted with any advanced GNNs
as needed. Besides, the quantization of proteomics and metabolomics is conducted with respective
autoencoders including a two-layer encoder and one-layer decoder, with a hidden size of 32 units.
To determine the trade-off weight for knowledge distillation, we choose 0.1 after a grid search in
{0.01, 0.1, 1, 5, 10}. The margin hyperparameter γ is determined as 3 through a search in {1, 3,
5,10}. The model is trained with Adam optimizer and evaluated at every epoch with an early-stopping
strategy at patience of 40 per the validation set performance. Baselines including Graphsage and
GIN utilize the same hidden sizes as MPI. CMAE and SMIL first conduct feature imputation for
the missing modalities, afterwards an MLP model is conducted with the imputed features for our
ranking objectives. As M3Care, Grape, and MUSE build graphs for patients and EHR modalities,
we use their published implementations and conduct adaptations to suit our problem setting. Thus,
we build the connections between patients and multi-modal modalities and meanwhile incorporate
patient phenotype connections for a fair comparison. Baseline hyperparameters are determined by
parameter search. Besides, the model learning rate is selected from {0.01, 0.001, 0.0005} for MPI
and all baseline models.
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Table 2: Performance comparison for different models on varying dataset proportions.

% Metric CMAE SMIL GraphSage GIN GRAPE M3Care MUSE MPI

30% H@10 25.81± 0.14 26.12± 0.25 24.96± 0.77 25.36± 0.66 25.60± 0.64 26.23± 0.56 24.24± 0.32 28.87± 0.04

H@20 41.66± 0.42 41.08± 0.53 40.61± 0.47 41.51± 0.84 41.41± 0.73 41.90± 0.65 40.89± 0.58 44.45± 0.44

H@50 68.81± 0.16 68.23± 0.21 67.28± 0.20 69.02± 0.68 68.45± 0.25 68.71± 0.34 67.90± 0.24 70.24± 0.15

MRR 11.51± 0.13 11.46± 0.32 11.23± 0.52 11.50± 0.30 11.33± 0.27 11.87± 0.25 11.06± 0.35 13.22± 0.17

50% H@10 26.33± 0.28 26.57± 0.28 28.59± 0.23 29.35± 0.39 28.83± 0.47 27.43± 0.32 28.86± 0.43 31.28± 0.32

H@20 42.34± 0.35 42.68± 0.42 44.51± 0.40 45.58± 0.47 45.20± 0.38 44.66± 0.26 44.87± 0.36 47.55± 0.31

H@50 69.28± 0.51 69.35± 0.22 70.92± 0.20 71.82± 0.34 70.74± 0.34 70.28± 0.51 70.77± 0.40 72.99± 0.14

MRR 11.99± 0.04 12.09± 0.19 13.30± 0.23 13.77± 0.28 13.14± 0.29 12.64± 0.21 13.41± 0.31 14.83± 0.15

70% H@10 27.40± 0.55 28.24± 0.35 32.35± 0.18 33.13± 0.41 30.51± 0.63 30.68± 0.49 32.42± 0.73 35.68± 0.56

H@20 43.50± 0.37 44.54± 0.31 48.12± 0.25 49.12± 0.35 47.07± 0.59 46.53± 0.35 48.38± 0.59 51.59± 0.48

H@50 69.93± 0.31 70.28± 0.26 73.10± 0.31 73.18± 0.40 72.64± 0.53 71.73± 0.47 73.04± 0.61 75.82± 0.34

MRR 12.48± 0.28 13.36± 0.18 15.59± 0.36 15.75± 0.22 14.04± 0.45 13.75± 0.26 15.19± 0.58 17.44± 0.41

90% H@10 27.90± 0.26 29.03± 0.27 35.48± 0.30 35.41± 0.35 31.61± 0.25 32.55± 0.33 33.73± 0.34 37.74± 0.32

H@20 44.10± 0.31 46.15± 0.42 51.47± 0.32 51.36± 0.25 48.86± 0.36 48.24± 0.55 49.84± 0.37 53.77± 0.46

H@50 70.42± 0.13 71.58± 0.15 75.45± 0.15 74.95± 0.55 73.40± 0.32 73.38± 0.28 74.63± 0.30 77.44± 0.25

MRR 12.77± 0.16 13.43± 0.09 17.36± 0.06 17.33± 0.11 15.16± 0.18 15.06± 0.22 16.34± 0.26 18.63± 0.22

100% H@10 28.02± 0.34 29.87± 0.43 36.64± 0.29 36.61± 0.07 32.70± 0.21 33.54± 0.34 34.92± 0.31 38.74± 0.27

H@20 44.29± 0.29 46.53± 0.32 53.01± 0.42 52.69± 0.38 49.68± 0.44 50.32± 0.42 50.94± 0.45 55.10± 0.31

H@50 70.64± 0.25 72.01± 0.18 76.58± 0.11 76.32± 0.16 74.27± 0.27 73.18± 0.45 75.62± 0.26 78.42± 0.20

MRR 12.88± 0.20 14.27± 0.24 17.99± 0.23 17.94± 0.22 15.63± 0.30 15.28± 0.32 16.61± 0.29 19.28± 0.19

Table 3: Ablation study of variants comparison on 30% and 100% of the dataset.

Variants 100% 30%
Prote. Metabol. CKD Hits@10 Hits@20 Hits@50 MRR Hits@10 Hits@20 Hits@50 MRR

V1 36.49 52.75 76.53 17.73 26.39 42.21 68.91 11.98
V2 ✓ ✓ 38.13 54.70 77.48 19.08 27.94 44.26 69.80 13.09
V3 ✓ ✓ 38.31 54.75 78.01 19.02 28.21 44.36 69.87 13.11
V4 ✓ ✓ 37.68 53.99 77.95 18.40 27.89 43.79 69.07 12.32

MPI ✓ ✓ ✓ 38.74 55.10 78.41 19.27 28.87 44.45 70.24 13.22

Evaluation Protocol. The discussion on the evaluation protocol can be found in the Appendix A.3.

5.2 Experimental Results

Performance Comparison. Table 2 presents the performance of the MPI and baseline models
trained with different proportions of the dataset. The best results are highlighted in bold, while the
top baseline scores are underlined. The baselines based on imputation, including CMAE and SMIL,
exhibit inferior performance. We attribute this to their reliance on modeling transformations from the
hidden space to reconstruct the input features. The imputed data can be inaccurate due to the high
dimensionality of the multi-modal data and the severity of missingness. GraphSage and GIN achieve
competitive performance compared to both imputation-based models and the multi-modal learning
approaches that explicitly handle missing data. The graph-based multi-modal models outperform
GNNs in some cases; however, they are sometimes inferior to applying naive integration of clinical
and biological data in naive GNNs. This may be due to the complexity and conflict between clinical
and biological views. For example, GRAPE, which uses each feature dimension as a node, is not
suitable for high-dimensional feature imputation. Additionally, M3Care computes patient similarity
for each modality separately, thereby failing to explore cross-modality correlations. MUSE connects
patients with modalities while representing each modality type as a node, possibly introducing dense
and noisy edges. In contrast, MPI demonstrates improvements across all settings, verifying its
capability to handle heterogeneity and noise through a decoupled view.

Ablation Study. To validate the effectiveness of MPI and gain deeper insight into the contributions of
each component in the proposed approach, we conduct ablation studies by comparing the following
variants with the original MPI: (1) V1, which does not utilize the biological data and only model
the correlation of patients and phenotypes. (2) V2, which only uses proteomics data and contrastive
knowledge distillation. (3) V3, which solely leverages metabolomics data and contrastive knowledge
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distillation. (4) V4, which organizes biological factors, patients, and phenotypes in a single graph and
does not require contrastive knowledge distillation. The results on 30% and 100% of the UK biobank
dataset are summarized in Table 3. First, we observe that variant V1 is outperformed by both V2
and V3. This performance disparity arises since V2 and V3 effectively model the biological data and
distill beneficial knowledge, thus enhancing phenotype imputation through knowledge distillation.
Second, V4 is inferior to the proposed model MPI. This demonstrates that modeling biological data
and phenotype data in separate graphs yields better performance compared to a single graph model.
The likely reason for this is that multi-modal biological data often contain measurement inaccuracies
and irrelevant information, which can impede accurate phenotype imputation Third, we observe that
V3 exhibits superior performance compared to V2. We attribute this to the higher sparsity ratio of
proteomics data relative to metabolomics data. The severe missing data issue in proteomics likely
affects the performance of imputation. Lastly, compared to all variants, MPI demonstrates the best
performance, highlighting the effectiveness of the proposed method.

The Impact of Codebook Settings. To analyze the impact of codebook settings on im-
putation performance, we varied the number and sizes of the codebooks and the results
for the entire dataset are presented in Figure 3. First, as shown in Figure 3(left), MPI
achieves optimal performance with three codebooks. A smaller number of codebooks, such
as one or two, may fail to capture sufficient fine-grained information from the biological data.

Figure 3: (Left) Results for varying the number of
codebooks while keeping the codebook size fixed.
(Right) Performance variation with changes in the
codebook sizes while keeping a fixed number of
codebooks.

Conversely, larger codebooks might introduce
additional underlying factors due to finer gran-
ularity, which could reduce their discrimina-
tive power for patient profiling. Second, Fig-
ure 3(right) illustrates that the performance of
MPI varies with changes in codebook sizes.
The optimal codebook sizes for proteomics
and metabolomics are 64 and 96, respectively.
Smaller codebook sizes may fail to capture un-
derlying biological factors, resulting in insuf-
ficient information for patient profiling. Con-
versely, larger codebook sizes might lead to cer-
tain codes being underutilized, which can hinder
the overall optimization of the codebook.

Sensitivity to Tradeoff Parameter. Figure 4 illustrates the impact of varying tradeoff parameters
on the performance of MPI, evaluated on 30% and 100% of the dataset. The tradeoff parameter
mediates between the contrastive knowledge distillation loss and the graph representation loss.
The results indicate that MPI achieves optimal performance with a tradeoff parameter of 0.01.

Figure 4: Effect of tradeoff parameter for MPI on
30% (left) and 100% (right) of the dataset.

Notably, when the tradeoff parameter is set to
0, the imputation performance largely declines.
This is due to the disabling of knowledge dis-
tillation, which prevents the model from lever-
aging biological knowledge. Conversely, as the
tradeoff parameter increases to a high value, the
model’s performance diminishes. The model
might overly depends on biological knowledge
and neglects the information from the collabo-
rative view, leading to suboptimal outcomes.

6 Conclusion

In conclusion, this work introduces a novel framework that leverages multi-modal data to enhance
phenotype imputation, aiming for a more comprehensive medical evaluation. The proposed approach
involves uncovering latent biological factors to enhance patient profiling and modeling correlations
based on these factors. To mitigate the impact of noise and irrelevant information in biological
data, we employ a cross-view contrastive knowledge distillation technique. Extensive experiments
on a large-scale biomedical database demonstrate that our proposed method outperforms existing
state-of-the-art approaches, showcasing its effectiveness and potential for improving biomedical data
analysis and patient care.
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A Appendix

A.1 Database

We conduct the experimental evaluation for the proposed model and the baselines on the UK Biobank
database [4], which is a lasting endeavor for biomedical research. The UK Biobank recruited
half a million participants between 2006 and 2010, maintaining a collection of long-term EHRs
from distributed health assessment centers with de-identified lifestyle and health information while
retaining biological samples for detailed biological analyses. Chronic diseases frequently exhibit
missing phenotypes due to mild or nonspecific initial symptoms. Routine data collection processes
might overlook these subtle signs until more pronounced symptoms emerge. This can be particularly
challenging in the context of neurodegenerative diseases like Alzheimer’s Disease and Related
Dementias (ADRD), where early detection is crucial for timely intervention and management.
Research on ADRD particularly emphasizes early detection and intervention, which aligns well with
the research goals of identifying historical phenotypes. Meanwhile, as one of the most common
neurodegenerative diseases, ADRD cohorts might include a wide range of phenotypic expressions and
stages of disease. This diversity is crucial for studying the full spectrum of phenotype presentation and
identifying underlying missing signs. Therefore, we focus on phenotype imputation for populations
suffering from chronic diseases and extracting a specific cohort of patients diagnosed with Alzheimer’s
disease and related dementia.

To build this cohort, we leverage the HESIN inpatient EHRs and the primary care EHRs from the
UK Biobank. As the EHRs are collected from distributed places and organizations, the medical
codings vary across different systems. Thus we standardize their variously formatted diagnosis
records into uniform ICD codes [5], and filter for patients with ADRD-related ICD codes, following
methodologies employed in related research [25]. We further refine the cohort by removing patients
whose ADRD onset occurred before or within one year of their biological sample collection, ensuring
that the biological information and EHR data used in our analysis reflect the preclinical states of the
disease and minimizing confounding factors post-diagnosis. For the extracted cohort, we eliminate
any EHRs recorded after the ADRD onset dates, and preprocess the EHRs by converting recorded
diagnoses and symptoms into distinct phenotypes [46]. We filter out phenotypes with an occurrence of
less than 20 while our cohort population reaches around 15000. The small occurrence (0.06%) reflects
the less practical value in this work of imputing these phenotypes, and meanwhile, their rarity often
introduces noise rather than providing valuable insights. Besides, there are a few phenotypes with
quite high frequency (e.g., hypertension). Since ADRD generally focuses on the elderly population,
the widespread prevalence typically indicates a low specificity and can be regarded as possible
confounders due to aging. These phenotypes may dominate the dataset, potentially obscuring other
important associations, whereas focusing on moderately prevalent phenotypes could uncover more
subtle associations.

Beyond EHR data, proteomic analysis has been conducted on blood plasma samples from over
56,000 UK Biobank participants. Enabled by Olink’s Proximity Extension Assay (PEA) [45],
this analysis measured the abundance of nearly 3,000 circulating proteins. Additionally, the UK
Biobank measures around 250 metabolic biomarkers in EDTA plasma samples from approximately
280,000 participants. These biomarkers span multiple metabolic pathways, including lipoprotein
lipids, fatty acids, and low-molecular-weight metabolites. Since biological processes could begin
years before the onset of clinical symptoms, proteomics and metabolomics which comprise the
end-product of genes, transcripts, and protein regulations, offer insights into identifying alterations
in multiple biochemical processes and the risk of ADRD among cognitively healthy adults [55, 37].
We leverage biological data across the two modalities of proteomics and metabolomics. Specifically,
proteomics data are provided as Normalized Protein eXpression (NPX) values, obtained after UK
Biobank preprocessing, which includes median centering normalization between plates and log
transformation. We used these NPX values directly as the encoder input without further processing
[7]. For metabolomics, we applied a natural logarithmic transformation (ln(x+ 1)) to all metabolite
values, followed by Z-transformation [55]. Owing to the resource-intensive nature of these tests and
the random unavailability for certain patients, we observe significant modality missingness at random:
approximately 90% in proteomics and 50% in metabolomics.
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A.2 Addiontal Details on Baselines

We compare MPI to baselines as follows.

• CMAE [32] employs a cross-modality auto-encoder to address missing modalities. Initially, a
subset of patients who have complete modalities is sampled where CMAE is trained to reconstruct
a purposely masked-out modality. After training, the CMAE model is used to fill in missing
modalities for all patients. We use the imputed modality information to perform downstream
phenotype imputation via ranking objective.

• SMIL [30] integrates Bayesian meta-learning techniques to modify the latent feature space,
enabling embeddings with missing modalities to closely resemble those with complete modalities.
SMIL estimates the missing modality using a weighted sum of modality priors based on the
complete modalities. We adopt the same strategy as CMAE to use SMIL to perform downstream
phenotype imputation.

• GraphSage [16] is evaluated by learning on the bipartite graph built from EHRs to form the
patient-phenotype graph. The built graph will directly leverage the multi-modal biological
information as the node features for the patient nodes, where missing biological information is
represented as zeros vectors. This baseline serves as a naive combination of clinical data and
biological data via joint modeling.

• GIN [49] follows the same setup with Graphsage when evaluated. We use the ranking loss to train
the Graphsage and GIN baselines.

• GRAPE [51] infers missing features by building a bipartite graph to include patients and individual
feature dimensions as the graph nodes. The value of the feature is regarded as an edge attribute,
where the target is to predict the value assigned to each edge. In this work, around 3000 proteomic
features and 250 metabolomics features are included in the graph alongside the patient nodes. We
meanwhile include the phenotype nodes and their connections with patients for a fair comparison.

• M3Care [53] aims for patient representation learning. It calculates patient similarity within each
modality and constructs a similarity graph for each modality respectively. Afterward, overall
patient similarities by averaging the similarities from each modality are utilized to model cross-
patient interactions by GNNs. The embeddings for each patient across different modalities are
then aggregated using a Transformer head. We leverage the learned patient representations in the
same way with CMAE and SMIL.

• MUSE [47] models the patient-modality relationship in a bipartite graph, where patients and
modalities constitute the graph nodes, and modality features serve as edges between them. MUSE
applies a Siamese GNN on the bipartite graph and its augmented graph that is obtained via random
edge dropout. We also incorporate phenotype nodes in MUSE in a similar manner as in GRAPE
to address our specific problem and ensure a fair evaluation.

A.3 Evaluation Protocol

We randomly hold out 10% of the patient-phenotype interactions as the testing set and train a model
on the remaining interactions following previous works [43, 38, 56]. From the training set, we
randomly select 10% of the interactions as the validation set to monitor the training process and help
early stop. For each observed patient-phenotype interaction, we treat it as one positive pair, while
negative instances are sampled from negative phenotypes with which the patient has no interactions.
Upon training our model, we generate personalized ranking lists for each patient in the test set,
where these lists rank the phenotypes not observed for each patient during training. To evaluate
our model’s effectiveness, we assess performance using Hit Ratio at specific thresholds (Hit@10,
Hit@20, Hit@50) and Mean Reciprocal Rank (MRR). Hit Ratio, as a recall-based metric, measures
whether the test phenotype appears within the top-K list. The MRR is position-sensitive, assigning
higher weight to hits that occur at higher ranks. Higher values for both metrics indicate better
performance. We report the average scores and their standard derivations on the testing set over
three random runs. To assess the effectiveness of the proposed model with varying dataset sizes, we
evaluate its performance on different proportions of the dataset: 30%, 50%, 70%, 90%, and 100%.
The extraction of different dataset proportions is based on sampling patient-phenotype edges in the
graph Gp. Specifically, for each patient, we sample the required proportion of edges connected to
phenotypes.
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Algorithm 1 The Training Procedure of MPI

1: Input: Patient multi-modal data XM , Codebook C, Encoder E, Decoder D, GCNs;
2: Output: Patient representation H;
3: for each iteration do
4: for each patient xm in XM do
4: zm := E(xm);
4: Retrieve disentangled biological factors (c0, . . . , cl−1) from Codebook C;
4: Obtain the quantized vector ẑm :=

∑l−1
d=0 ecd ;

4: Reconstruct the input xm based on x̂m = D(ẑm);
5: end for
5: Optimize loss in Eq.(1);
6: end for
6: Obtain the disentangled biological factors C;
6: Patient-Phenotype Graph Gp Construction;
6: Patient-Factor Graph Gf Construction;
7: for each iteration do
7: Learn node representation Hp and Hf for graph Gp and Gf using GCNs in Eq.(2), respectively;
7: Optimize loss in Eq.(3) and Eq.(4);
8: end for

A.4 Time Complexity

The time complexity of data quantization for each patient is composed of three primary compo-
nents. The first component is the encoder, which has a time complexity of O(D · F ), where D
represents the input dimensionality and F is a factor that depends on the number of layers and
the operations performed within the encoder. The second component is vector quantization, with
a time complexity of O(K · d), where K denotes the number of entries in the codebooks and d
represents the dimensionality of latent embeddings. The third component is the decoder, which has
a time complexity of O(d ·G), where G is a factor related to the number of layers and operations
in the decoder. Consequently, the overall time complexity of data quantization can be expressed as
O(D ·F +K · d+ d ·G). Given that both the encoder and the decoder in this study are implemented
as multi-layer perceptrons (MLPs), we simplify the expression to O(D · d +K · d + d2) for ease
of calculation. Then the updating of GNNs in each iteration mainly involves the updating of node
vectors and weight matrices, whose time complexity is O(nt · d2 + z · d), where nt = n+m and
z are the total number of nodes and the total number of edges in graph Gf and Gp, respectively. d
is the embedding dimensionality. Lastly, the time complexity of cross-view contrastive knowledge
distillation for each patient is O(d ·N) where N denotes the number of negative patients. Therefore
the time complexity of MPI is O(D · d + K · d + d2 + nt · d2 + z · d + d · N). Since K ≪ D,
d ≪ D, N ≪ D, and D ≪ z, the time complexity simplifies to O(nt · d2 + z · d) which is linear
with (nt · d2 + z · d), depending on the number of nodes and edges in the constructed graphs. It
is well-known that canonical GCNs are not characterized by high time complexity, indicating the
efficiency and scalability of our model.

A.5 Limitations

The current research primarily focuses on two modalities. Future work will explore the incorporation
of additional modalities. Another limitation is the selected patient cohort, as this study concentrates
on Alzheimer’s disease and related dementias. To enhance the generalizability of our findings, we
aim to apply the proposed model to a broader range of patient cohorts and various downstream tasks.

A.6 Broader Impacts

Phenotype imputation using biological data can advance healthcare by enabling a deeper understand-
ing of diseases and patients’ health states. It helps aids early diagnosis and personalized treatments,
leading to better health outcomes. However, there are potential risks, including the possibility of
exacerbating health disparities if data is not diverse, and the risk of inaccurate imputations leading to
erroneous conclusions.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and Section 1, we show our contributions and scope.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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• The claims made should match theoretical and experimental results, and reflect how
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2. Limitations
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Answer: [Yes]
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: NA.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present our experiment results in Section 5, the details and parameter
settings in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: https://github.com/aslandery/MPI.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and the test details can be found in Section 5.1 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix A.6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model does not have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have obtained authorization from the UK Biobank (UKBB) to use their
data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new asset is proposed.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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