
Published in Transactions on Machine Learning Research (09/2025)

Latent Trajectory: A New Framework for Deep Actor-Critic
Reinforcement Learning with Uncertainty Quantification

Frank Shih shihf@mskcc.org
Department of Epidemiology and Biostatistics
Memorial Sloan Kettering Cancer Center
New York, NY 10017

Faming Liang fmliang@purdue.edu
Department of Statistics
Purdue University
West Lafayette, IN 47907

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8B74xdaRHa

Abstract

Uncertainty quantification in deep learning is challenging due to the complexity of deep
neural networks. This challenge is particularly pronounced in deep reinforcement learning
(RL), where agents interact with stochastic environments. In deep actor-critic RL, this
challenge is further exacerbated due to the interdependence between the actor and critic
updates. Existing uncertainty quantification methods for RL are predominantly developed
within the Bayesian framework. While these methods estimate the uncertainty of the value
function, their confidence intervals are often misleading, with the coverage rate frequently
falling well below the nominal level. To address this issue, we introduce a novel deep RL
framework that treats transition trajectories as latent variables. Leveraging this framework,
we propose an adaptive Stochastic Gradient Markov Chain Monte Carlo algorithm to train
deep actor-critic models, which naturally accounts for the interdependence between the actor
and critic updates. We provide theoretical guarantees for the convergence of the proposed
method and offer empirical evidence for its effectiveness in uncertainty quantification of the
value function. The proposed latent trajectory framework is highly flexible, allowing for the
integration of advanced RL strategies to further enhance deep actor-critic learning.

1 Introduction

Reinforcement learning (RL) tackles sequential decision-making problems by designing an agent that interacts
with its environment to learn an optimal policy, aiming to maximize a value function. Accurately quantifying
the uncertainty of the value function is crucial for ensuring reliable and robust RL applications. However, this
task is particularly challenging in the context of deep RL due to two main factors: the complex architectures
of deep neural networks (DNNs) and the adaptive nature of the RL process. Even in supervised learning,
accurately quantifying the uncertainty for DNNs has proven to be difficult (see, e.g., Blundell et al., 2015,
Lakshminarayanan et al., 2017, and Sun et al., 2021), and the dynamic, evolving process in RL exacerbates
this challenge (Osband et al., 2016; Bellemare et al., 2017). A significant step toward addressing this
challenge has been made in Shih & Liang (2024), where deep Q-networks are simulated from their posterior
distribution under the Kalman Temporal Difference (KTD) framework (Geist & Pietquin, 2010; Shashua &
Mannor, 2020), enabling accurate quantification of the uncertainty of the Q-value function throughout the
RL process. However, this approach is difficult to extend to deep actor-critic RL, where the presence of an
additional actor network adds complexities to uncertainty quantification.

To address this challenge, we introduce a novel deep RL framework which treats transition trajectories as
latent variables. Leveraging this framework, we propose an adaptive Stochastic Gradient Markov Chain

1

https://openreview.net/forum?id=8B74xdaRHa

Published in Transactions on Machine Learning Research (09/2025)

Monte Carlo (SGMCMC) algorithm to train deep actor-critic networks, which simultaneously updates the
actor network through a stochastic gradient descent (SGD) step and samples from the conditional distribution
of the critic network — conditioned on the current actor network — via an SGMCMC step. Under mild
conditions, we establish the convergence of this adaptive SGMCMC algorithm. Specifically, we show that
the parameters of the actor network converge in probability to a fixed point, while the parameters of the
critic network converge weakly to a target distribution, thereby enabling accurate uncertainty quantification
for the associated value function.

In summary, this study has made three primary contributions:

• We introduce a novel latent trajectory framework for training deep actor-critic models that natu-
rally accounts for the interdependence between the actor and critic updates, simplifying theoretical
analysis.

• We provide theoretical guarantees for the convergence of the proposed deep actor-critic RL method
— the latent trajectory framework coupled with an adaptive SGMCMC algorithm, which ensures
effective training for the actor network while enabling proper uncertainty quantification for the critic
network and, consequently, the value function.

• The proposed latent trajectory framework is highly flexible, allowing for the integration of advanced
RL strategies to enhance deep actor-critic training and uncertainty quantification.

Related Works Convergence analysis for deep actor-critic RL is inherently challenging due to the inter-
dependence between the actor and critic updates. To the best of our knowledge, only limited progress has
been made in this area; see, e.g., Wang et al. (2020), Cayci et al. (2022), and Tian et al. (2023). Both Wang
et al. (2020) and Cayci et al. (2022) considered single-layer neural networks and employed a double-loop
strategy. In the inner loop, the critic network performs sufficiently many updates to accurately estimate
the value function, ensuring that the actor network operates with a reliable approximation of the true value
function. This setup enables the actor-critic RL to be analyzed as a gradient method with approximation
error. In contrast, Tian et al. (2023) applied a small-gain approach that accommodates multi-layer networks
but is limited to finite state spaces. In this work, we establish convergence guarantees for deep actor-critic
RL with multi-layer networks and general state spaces, which can be either discrete or continuous.

The proposed method provides accurate uncertainty quantification for the critic network. While Bayesian
methods have been widely adopted for uncertainty quantification in machine learning, applying them rigor-
ously to deep actor-critic RL presents significant challenges. For example, Osband et al. (2018) introduced
uncertainty in deep RL through randomized priors within a maximum a posteriori (MAP) framework. How-
ever, the posterior consistency for such priors remains unestablished, and inappropriate priors can lead to
severely biased inference. The deep actor-critic setting further complicates the uncertainty quantification
issue due to the interdependence between the actor and critic updates. Other methods, such as those based
on bootstrapping (Osband et al., 2016; Tasdighi et al., 2024; Peer et al., 2021; Kalweit & Boedecker, 2017),
deep ensembles (Mai et al., 2022), Bayesian dropout (Moerland et al., 2017) Gaussian processes (Geist &
Pietquin, 2010; Engel et al., 2003), quantile regression (Dabney et al., 2017), Kalman temporal difference
(Shashua & Mannor, 2020), and distributional RL (Bellemare et al., 2017; Clements et al., 2019), have
been proposed for uncertainty quantification in RL. However, their theoretical guarantees have not been
established in the deep actor-critic setting.

In contrast, our method explicitly accounts for the evolving nature of online deep RL and ensures that
uncertainty in the critic network is accurately quantified, despite challenges posed by the interdependence
between the actor and critic updates.

2 Preliminaries on Actor-Critic Models

We consider discounted, finite horizon policy optimization problems. Let θ and ψ denote the parameters
of the actor and critic networks, respectively. Let (s1, a1, s2, a2, . . .) be the transition trajectory generated
by a stochastic policy πθ, where each action at is sampled from the distribution πθ(at|st) and t indexes the

2

Published in Transactions on Machine Learning Research (09/2025)

state transitions. Let Qπθ (st, at) denote the Q-value corresponding to the state-action pair (st, at) under the
policy πθ. At each time step t, the agent receives an immediate reward rt = r(st, at). Let Rt =

∑n
τ=t γ

τ−trτ
denote the truncated return up to horizon n, which is an unbiased estimator of Qπθ (st, at). Let Vψ be the
critic network approximation to the value function Vπθ . For convenience, we denote a single transition of the
state and action as x = (s, a), the return estimate as R. In this paper, we focus on the advantage actor-critic
algorithm (Sutton et al., 2000; Schulman et al., 2018) with the advantage function expressed as:

Aψ(st, at) = Rt − Vψ(st), (1)

where Aψ indicates the dependence of the advantage function on the critic network ψ.

The policy gradient (Sutton & Barto, 2018) for the advantage actor-critic algorithm takes the form

gacψ (θ) = Eπθ [
n∑
t=1

Aψ(st, at)∇θ log πθ(at|st)], (2)

where the expectation is taken with respect to on-policy trajectories generated by πθ. Note that different
parameterization strategies can be used for the advantage function. For example, one may parameterize the
Q-function, using temporal difference (TD) or Monte Carlo methods to estimate it (Schulman et al., 2018).
The parameters θ and ψ are then iteratively updated using SGD algorithms till convergence, at which a
solution to the following equation is reached:

gacψ (θ) = 0, (3)

which characterizes a (local) optimum of the policy objective (not necessarily the global optimum). However,
the convergence theory for such an iterative optimization algorithm is hard to establish except for special
cases under restrictive assumptions, such as linear function approximation (Chen et al., 2023; Wu et al.,
2022), greedy policies (Holzleitner et al., 2020), shallow neural network approximation (Wang et al., 2020;
Cayci et al., 2022), or finite state space (Tian et al., 2023). In practice, various RL strategies have been
proposed, such as Advantage Actor-Critic (A2C), Asynchronous Advantage Actor-Critic (A3C) (Mnih et al.,
2016), Proximal Policy Optimization (PPO) (Schulman et al., 2017), Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), and Deep Deterministic Policy Gradient (DDPG)(Lillicrap et al., 2019), which employ different
tuning techniques for policy gradients to enhance the convergence and stability of the training process.

R(k)

x(k)

ψk

θk−2 θk−1 θk θk+1

Figure 1: Latent Markov Sampling process, where ψk is conditionally independent of θk−1 given x(k), i.e.,
ψk |= θk−1|x(k), and the dashed line indicates that including the latent variables (x(k),R(k)) breaks the
original dependence between ψk and θk−1.

Consider an actor-critic training process as depicted by Figure 1. Let k index the updates of θ in the training
process, and let x(k) := {x(k)

t }nt=1 denote a batch of state-action transition trajectories drawn independently
from the stationary distribution1 π(x|θk−1), where x(k)

t := (s(k)
t , a

(k)
t) and n is the batch size. Additionally,

let R(k) = {R(k)
t }nt=1 be the estimated returns corresponding to x(k). At each iteration k, a transition

trajectory of size n is generated from the policy πθk−1 , the critic network parameter ψk is then updated
based on the transition trajectory.

1Given actor-network parameters θk−1, the induced policy πθk−1 is fixed. Together with the environment transition dy-
namics, this policy induces a stationary distribution over state–action trajectories x = (s0, a0, s1, a1, . . .), which we denote by
π(x | θk−1) under standard ergodicity conditions.

3

Published in Transactions on Machine Learning Research (09/2025)

The ultimate goal of RL is to learn an optimal policy, with the transition trajectory serving as an evolving
path of the learning process and the critic network serving as an auxiliary guiding device for the path.
Therefore, the transition trajectory (x(k),R(k)) and the critic parameter ψk can be naturally treated as
latent variables that facilitate policy optimization. The whole RL process is Markovian as depicted by
Figure 1. Leveraging the latent Markov sampling process, ψk can also be viewed as a sample drawn from
the conditional distribution π(ψk|θk−1) by noting that

π(ψk|θk−1) =
∫
π(x(k),R(k)|θk−1)π(ψk|x(k),R(k))dR(k)dx(k). (4)

To enhance the mathematical rigor of equation (4) in practical implementations, we assume that x(k) is
sampled from a pseudo-population2 (denoted by Ωθk−1) of size N , while the pseudo-populations can vary
for different values of θk−1. Intuitively, when the pseudo-population is small, π(x|θk−1) can be well ap-
proximated with a limited number of samples, thereby resulting in a good approximation to π(ψk|θt−1)
and strengthening the Markovian property of the process. The concept of pseudo-population allows for the
flexibility of using different mini-batch size at different iterations, while ensuring the stability of the target
conditional distribution π(ψ|θ). In what follows, we use πN (ψ|θ) to denote the conditional distribution of ψ
for a given value of θ.

Furthermore, this latent Markov process view of RL allows us to frame the training of the actor network in
terms of solving the following equation:

g(θ) =
∫
gacψ (θ)πN (ψ|θ)dψ = 0, (5)

which accounts for the variation of ψ in (3), and makes its solution (denoted by θ∗) essentially invariant to
the trajectories of ψ and (x,R). Notably, θ∗ is not necessarily unique. However, as with other applications
of neural networks, this non-uniqueness of the optimal solution does not impact the network’s performance.
Equation (5) can be efficiently solved using an adaptive SGMCMC algorithm (Liang et al., 2022; Deng et al.,
2019), leading to an innovative Latent Trajectory Framework (LTF) for training actor-critic models.

By examining equation (5) through the lens of Fisher’s identity (see, e.g., Song et al., 2020), it becomes
evident that g(θ) corresponds to the marginal gradient of the actor network when the critic network is
treated as a latent variable. Consequently, training deep actor-critic networks falls into the class of problems
amenable to stochastic approximation MCMC (see e.g., Benveniste et al., 1990). This formulation allows
the interdependence between the actor and critic updates to be naturally handled by the proposed adaptive
SGMCMC algorithm (see Section 3), leading to a simplified convergence analysis compared to the double-
loop (Wang et al., 2020; Cayci et al., 2022) and small-gain (Tian et al., 2023) approaches.

3 A Latent Trajectory Framework for Actor-Critic Models

3.1 An Overview of the SGMCMC Algorithm

To solve equation (5), an adaptive SGMCMC algorithm can be applied. Each iteration of the algorithm
consists of two steps:

1. (ψ-sampling) Simulate ψk ∼ πN (ψ|θk−1) by a SGMCMC algorithm.

2. (θ-updating) Update θk = θk−1 +υkĝ
ac
ψk

(θk−1), where υk denotes the step size used in the stochastic
approximation procedure (Robbins & Monro, 1951), and ĝacψk(θk−1) represents an unbiased estimator
of g(θk−1).

2Given a fixed policy πθ and a stationary, ergodic sequence of transition tuples, as the number N of observed tuples tends to
infinity, any consistent estimator ψ̂N of the parameter ψ in the value function Vψ collapses to a point (zero variance). To avoid
the resulting degeneracy of the conditional distribution π(ψ | θ), we work with a pseudo-population so that π(ψ | θ) remains
well defined and does not depend on N .

4

Published in Transactions on Machine Learning Research (09/2025)

Under mild conditions, we establish the convergence of the proposed algorithm. Specifically, we show that
∥θk−θ∗∥ → 0 in probability as k → ∞, where θ∗ denotes a solution to (5) as defined previously. Additionally,
ψk converges weakly (in 2-Wasserstein distance) to the conditional distribution πN (ψ|θ∗). Consequently, the
algorithm enables proper uncertainty quantification for ψ-related quantities, such as the V - and Q-value
functions, which are central to RL. Notably, uncertainty quantification for the value functions is generally
beyond the capabilities of iterative optimization algorithms conventionally used to train deep actor-critic
models (see, e.g., Tian et al. (2023)). Leveraging this latent trajectory formulation, we establish a actor-
critic training framework that is essentially independent of the sample trajectory.

3.2 Adaptive Stochastic Gradient MCMC for Deep Actor-Critic Learning

To perform ψ-sampling using SGMCMC, we need to evaluate the gradient ∇ψ log πN (ψk|θk−1). This can be
done using the following identity established in Song et al. (2020):

∇ψ log π(ψ|θ) =
∫

∇ψ log π(ψ|z, θ)π(z|ψ, θ)dz,

where z denotes a latent variable. By treating the trajectory (x(k),R(k)) as the latent variable, we can
derive the following formula (refer to Appendix A for the derivation):

∇ψ log πN (ψk|θk−1) =
∫

∇ψ log πN (ψk|x(k),R(k))π(R(k)|x(k), ψk)
π(R(k)|x(k))

π(x(k),R(k)|θk−1)dx(k)dR(k), (6)

provided that the mini-batch size n has been chosen to be sufficiently large, ensuring that x(k) serves as a
good representative of the underlying pseudo-population.

For convenience, though not a requirement, we assume that the reward distribution π(Rt|xt, ψ) is Gaussian,
as given by

Rt|xt, ψ ∼ N (Vψ(st), σ2). (7)

It is worth noting that the Gaussian assumption for the reward has also been employed under the Kalman
Temporal Difference framework, see e.g., Geist & Pietquin (2010), Tripp & Shachter (2013), and Shashua &
Mannor (2020).

Remark 3.1 How to evaluate ∇ψ log πN (ψk|x(k),R(k))? Based on (7), we have

∇ψ log πN (ψk|x(k),R(k)) = ∇ψ log πN (R(k)|x(k), ψk) + ∇ψ log π(ψk)

= N
n

n∑
t=1

∇ψ log π(R(k)
t |x(k)

t , ψk) + ∇ψ log π(ψk),
(8)

where π(ψk) denotes the prior distribution of ψk.

Remark 3.2 How to evaluate the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k)) ? Since the numerator can be

evaluated based on (7), we consider the evaluation of the denominator in this remark. One way is to evaluate
the denominator based on the relationship:

π(R(k)|x(k)) =
∫
π(R(k)|x(k), ψk)π(ψk|x(k))dψk, (9)

i.e., estimating the denominator by averaging the density π(R(k)|x(k), ψk) over a set of samples of ψk drawn
from π(ψk|x(k)). The auxiliary samples of ψk can be simulated using a SGMCMC algorithm based on the
following gradient estimation:

∇ψ̃ log π(ψ̃|x(k)) =
∫

∇ψ̃ log π(ψ̃|x(k), R̃)π(R̃|x(k), ψ̃)dR̃, (10)

which can be estimated based on auxiliary samples of R̃ drawn from π(R̃|x(k), ψ̃), as defined in (7).

5

Published in Transactions on Machine Learning Research (09/2025)

Alternatively, one can estimate π(R(k)|x(k)) using the Nadaraya-Watson (NW) conditional density kernel
estimator:

π̂(R|x) =
∑n
t=1 Kh2(x− x

(k)
t)Kh1(R−R

(k)
t)∑n

t=1 Kh2(x− x
(k)
t)

, (11)

where both Kh1(·) and Kh2(·) are Gaussian kernels, and h1 and h2 are their respective bandwidths. The NW
estimator is known to be consistent provided h1 → 0, h2 → 0, and nh1h2 → ∞ as n → ∞ (Hyndman et al.,
1996). Extensions of the NW estimator based on local polynomial smoothing are available, see e.g., Fan
et al. (1996) and Gooijer & Zerom (2003). See Izbicki & Lee (2016) for an estimator in a high-dimensional
regression setting.

As a summary, we have Algorithm 1, which provides an efficient implementation for the proposed LTF.
Although the algorithm is described to perform a single update of ψ at each sampling step, multiple updates
are also allowed. This does not interfere with the convergence theory of the algorithm.

Algorithm 1 Latent Trajectory for A2C (LT-A2C)
1: Step 0 (Initialization). Initialize actor network πθ0 with learning rate sequence {υk}, and initialize critic network Vψ0

with learning rate sequence {ϵk}
2: for k = 1, . . . ,K do
3: Generate trajectories x(k) = {x(k)

t }nt=1 and returns R(k) = {R(k)
t }nt=1 with policy πθk−1

4: Step 1 (Auxiliary sampling). Draw auxiliary ψ̃-samples.
5: for j = 1, . . . ,m do
6: Presetting: If j = 1, set ψ̃0 = ψk−1

ψ̃j = ψ̃j−1 +
δj

2
∇ψ̃ log π(ψ̃|x(k)) + ẽj , (12)

where δj is the learning rate, ∇ψ̃ log π(ψ̃|x(k)) = 1
L

∑L

i=1 ∇ψ̃ log π(ψ̃|x(k), R̃i) is calculated based on (10) using L auxiliary
samples of R̃ drawn from π(R̃|ψ̃,x(k)), and ẽj ∼ Np(0, δjIp).

7: end for
8: Step 2 (Policy Evaluation). Sampling the critic network ψk.
9: Computing importance weight: calculate

ŵk =
π(R(k)|x(k), ψk−1)

1
m

∑m

j=1 π(R(k)|x(k), ψ̃j)
. (13)

10: Sampling: Draw ek ∼ Np(0, nN ϵkIp) and calculate

ψk = ψk−1 +
ϵk

2
∇ψL̃(θk−1, ψk−1) + ek,

where the gradient term is given by

∇ψL̃(θk−1, ψk−1) = ŵk

{ n∑
t=1

∇ψ log π(R(k)
t |x(k)

t , ψk−1) +
n

N
∇ψ log π(ψk)

}
. (14)

11: Step 3 (Policy Control). Updating the actor network θk−1: Compute advantage functions in (1) and update
θk−1 as

θk = θk−1 + υk

n∑
t=1

Aψk (x(k)
t , a

(k)
t)∇θ log πθk−1 (a(k)

t |s(k)
t).

12: end for

Furthermore, the proposed LTF is highly flexible and can be seamlessly integrated with various actor-critic
learning strategies. Specifically, we can modify the critic network distribution πN (ψ|Rt,xt) and/or the policy
gradient to align with different actor-critic learning strategies. For instance, we replaced the A2C policy
gradient with the one used in PPO, resulting in the LT-PPO algorithm, as demonstrated in our numerical
experiments. Potential alternatives for the critic network distribution will be discussed in the final section
of the paper.

6

Published in Transactions on Machine Learning Research (09/2025)

3.3 Convergence Theory

In the proposed LTF, we simulate ψk ∼ π(ψk|θk−1) with a SGMCMC algorithms while θk changes from
iteration to iteration. We establish the L2-convergence of {θk : k = 1, 2, . . .} and the W2-convergence of
{ψk : k = 1, 2, . . .} in Theorem 3.1 and Theorem 3.2, respectively. This implies that the actor network
achieves an optimal policy, while the critic network converges weakly to the stationary distribution π(ψ|θ∗).

Theorem 3.1 (Convergence of θk) Suppose Assumptions A1-A5 (in Appendix B) hold, and the sample
size of auxiliary ψ̃-samples is sufficiently large. Set the learning rate sequence {ϵk}∞

k=1 and the step size
sequence {υk}∞

k=1 in the form:

ϵk = Cϵ
cϵ + kα

, υk = Cυ
cυ + kβ

, (15)

for some constants Cϵ > 0, cϵ > 0, Cυ > 0, cυ > 0, α, β ∈ (0, 1], and β ≤ α ≤ min{1, 2β}. Then there exists
a root θ∗ ∈ {θ : g(θ) = 0} such that

E∥θk − θ∗∥2 ≤ ξυk, k ≥ k0, (16)

for some constants k0 > 0 and ξ = λ0 + 6
√

2ς2(1 +Gψ)1/2Gθ, where λ0 > 0 denotes a constant, ς2 is defined
in Assumption A5, and Gψ and Gθ are given in Lemma B.2.

The constants Gψ and Gθ depend, respectively, on the critic and actor networks, including their dimensions
and structures. It is worth noting that condition (15) requires the learning rate of the critic network to
decay no slower than that of the actor network, ensuring that valid samples of critic networks are used for
the update of the actor network in the later period of the simulation. This aligns with conditions commonly
seen in iterative optimization methods, which typically require an accurate estimate of the value function,
see e.g., the double-loop methods (Wang et al., 2020; Cayci et al., 2022).

Let π∗ = π(ψ|θ∗), let Tk =
∑k
i=1 ϵi, and let µTk denote the probability law of ψk. Theorem 3.2 establishes

convergence of µTk in 2-Wasserstein distance.

Theorem 3.2 (W2-convergence of ψk) Suppose Assumptions A1-A6 (in Appendix B) hold, the sample
size of auxiliary ψ̃-samples is sufficiently large, and the sequences {ϵk}∞

k=1 and {υk}∞
k=1 are set as in Theorem

3.1. Then, for any k ∈ N,

W2(µTk , π∗) ≤ (Ĉ0δ
1/4
L̃

+ C̃1υ
1/4
1)Tk + Ĉ2e

−Tk/cLS , (17)

for some positive constants Ĉ0, Ĉ1, and Ĉ2, where W2(·, ·) denotes the 2-Wasserstein distance, cLS denotes
the logarithmic Sobolev constant of π∗, and δL̃ is a coefficient as defined in Assumption A3 and reflects the
variation of the stochastic gradient ∇ψL̃(θk−1, ψk).

The right-hand side of (17) can be made sufficiently small by selecting a large enough mini-batch size, a
sufficiently small value of υ1, and a large number of iterations.

We prove Theorems 3.1 and 3.2 by following the proofs of adaptive SGLD provided in Dong et al. (2023)
and Liang et al. (2025), respectively (see Appendix B). The proof for the expression of ξ can be found in
Theorem A.1 of Dong et al. (2023). It is worth noting that the proposed LTF can also be implemented
using an adaptive SGHMC algorithm (Liang et al., 2022). In this case, Theorems 3.1 and 3.2 can still be
established similar to the convergence theory presented in Liang et al. (2022).

4 Experiments

In this section, we evaluate the performance and effectiveness of the proposed LTF in enhancing deep actor-
critic RL. We conduct experiments in two environments: the Indoor Escape Environment, where we demon-
strate the performance of the LTF-enhanced deep actor-critic methods in uncertainty quantification; and
the PyBullet Environment (Ellenberger, 2018–2019), where we compare the performance of LTF-enhanced
deep actor-critic methods to their vanilla counterparts on continuous control benchmarks, demonstrating
the flexibility of the LTF in integrating different RL strategies to enhance deep actor-critic training. These
experiments highlight the improvements in deep actor-critic RL achieved through the adoption of the LTF.

7

Published in Transactions on Machine Learning Research (09/2025)

4.1 Indoor Escape Environment

Figure 2 depicts a simple indoor escape environment (Shih & Liang, 2024), where the state space consists of
100 grids and the agent’s objective is to navigate to the goal positioned at the top right corner. The agent
starts its task from the bottom left grid at time t = 0. For every time step t, the agent identifies its current
position, represented by the coordinate s ∈ {(i, j) : i, j = 1, . . . , 10}. Given a policy πθ, the agent chooses an
action a ∈ {N,E,S,W} with respect to the probability πθ(a|s). The action taken by the agent determines
the adjacent grid to which it moves. Following each action, the agent is awarded an immediate reward, rt,
drawn independently from the Gaussian distribution N (−1, 0.01).

Figure 2: Indoor escape envi-
ronment

We evaluate the performance of the proposed method from three aspects:
(i) Policy Diversity: The policy, coded by the actor network and denoted
as πθ(a|s), should converge to a distribution that assigns equal probabilities
to optimal actions and zero probability to others. (ii) Value Accuracy: The
critic network is expected to accurately approximate the state value function
V ∗(s) across the entire state space. (iii) Value Uncertainty: Algorithms
should be capable of quantifying the uncertainty associated with the value
function.

To quantify policy diversity, we define the optimal policy distribution π∗(·|s)
to be a probability distribution over all actions at state s, which is uniform
over optimal actions and zero on sub-optimal actions. For a given policy
πθ(·|s), the Kullback-Leibler (KL) divergence between π∗ and πθ, denoted by
DKL(π∗∥πθ), can be used to measure the diversity of the policy distribution.
It’s worth noting that for most states, actions N and E are identically optimal. Hence, the policy πθ(a|s)
should assign equal probabilities on these two actions. Figure 3 visualizes the policy distribution πθ at each
state s. The left plot shows that the LTF achieves a nearly optimal policy distribution at each state s, which
has a small value of DKL(π∗∥πθ). The right plot shows the policy distributions achieved by A2C, which is
severely biased toward a single policy and has a large value of DKL(π∗∥πθ). Refer to Appendix C for the
experimental settings.

Figure 3: (Left) Policy distribution at each state s, achieved by LTF
in a single run; (right) Policy distribution at each state s, achieved by
A2C in a single run.

Suppose that the actor network
converges to a fixed policy πθ∗ , and
the state value function Vψ(s) coded
by the critic network should be dis-
tributed around the optimal value
function V ∗(s). To evaluate such
estimation, we collect the last 1000
critic parameter updates to form
a pool of ψ-samples, denoted by
ψs = {ψ̂i}, which naturally in-
duces a sample pool of values Vs =
{Vψ(·)|ψ ∈ ψs}. From the value
sample pool, we can obtain a point
estimate of the state value at state
s by calculating the sample average
V̂ (s) = 1

n

∑n
i=1 Vψ̂i(s, a). For inter-

val estimation, we can achieve one-step value tracking by constructing a 95% prediction interval with the
state value samples. We replicate each experiment 100 times and calculate the following three metrics: (i) the
KL-divergence between π∗ and πθ∗ , denoted by DKL(π∗∥πθ∗), (ii) the mean squared error (MSE) between
V̂ (s) and V ∗(s), defined by MSE(V̂) = Es∈S(V̂ (s) − V ∗(s))2, where E(·) denotes the empirical average over
the state space S; and (iii) the coverage rate (CR) of the 95% prediction intervals.

Table 1 demonstrates that, when enhanced with LTF, both A2C and PPO show substantial improvements
across all three performance metrics. Compared to the vanilla A2C and PPO methods, which exhibit notable
bias in value function estimation, the LTF-enhanced methods yield more consistent estimates and offer

8

Published in Transactions on Machine Learning Research (09/2025)

Table 1: Comparison of A2C, PPO, LT-A2C, and LT-PPO for Indoor Escape. The number in the parentheses
represents the standard deviation of the corresponding metric, which was calculated by averaging over 100
independent runs for each method.

Algorithm N DKL(π∗∥πθ∗) MSE(V̂) Coverage Rate CI-Width

A2C - 4.647 (0.0729) 0.53527 (0.03974) 0.489 (0.0061) 0.413 (0.0023)
LT-A2C 10000 0.010 (0.0010) 0.00038 (0.00001) 0.947 (0.0004) 0.457 (0.0009)
LT-A2C 20000 0.014 (0.0014) 0.00039 (0.00001) 0.947 (0.0004) 0.452 (0.0010)
LT-A2C 40000 0.014 (0.0013) 0.00033 (0.00001) 0.947 (0.0004) 0.449 (0.0009)

PPO - 4.773 (0.0893) 0.56112 (0.04272) 0.487 (0.0066) 0.416 (0.0024)
LT-PPO 10000 0.011 (0.0010) 0.00041 (0.00001) 0.947 (0.0004) 0.458 (0.0009)
LT-PPO 20000 0.009 (0.0009) 0.00038 (0.00001) 0.947 (0.0005) 0.452 (0.0009)
LT-PPO 40000 0.011 (0.0011) 0.00032 (0.00001) 0.947 (0.0004) 0.449 (0.0008)

reliable uncertainty quantification. Across all three performance metrics, LT-A2C and LT-PPO consistently
outperform the original A2C and PPO methods, yielding lower MSE values, reduced KL-divergence, and
improved coverage rates. The lower KL-divergence values suggest that the policy distribution more effectively
converges to a uniform distribution over optimal actions, thereby enhancing exploration efficiency across the
state space. These findings can be further visualized in Figure A1 and Figure A2. The former summarizes
the results on KL-divergence and CI-Width, and the latter summarizes the results on MSE(V̂) and coverage
rates. For MSE(V̂), the LTF-enhanced methods exhibit significantly smaller values and tighter box plots,
reflecting greater training stability. In terms of uncertainty quantification, only the LTF-enhanced methods
achieve coverage rates close to the nominal 95%. Furthermore, as the pseudo-population size increases,
uncertainty quantification for the value function becomes more accurate, as indicated by reduced MSE
values and narrower confidence interval widths.

Many existing methods claim the ability to quantify the uncertainty of the critic network. These methods
often rely on approaches such as Bootstrap DQN, Quantile Regression DQN (distributional RL), and Ran-
dom Prior Networks (RPN). While these methods provide estimates of uncertainty, they fail to construct
statistically honest confidence intervals for the Q-function. As demonstrated in Table 2, we evaluated these
methods in the Indoor Escape environment using a single neural network to approximate the Q-value func-
tion. None of them was able to accurately construct the 95% confidence interval for the Q-value, highlighting
their limitations in uncertainty quantification: when neural networks are involved, the existing methods can
be challenging to calibrate, often leading to inaccurate coverage rates of Q-values. This raises significant
concerns about their ability in quantifying uncertainty for more complex actor-critic models.

Table 2: Comparison of different methods for Indoor Escape: (i) BootDQN: Bootstrapped DQN (Osband
et al., 2016), (ii) Quantile regression (QR)-DQN: Distributional RL (Bellemare et al., 2017), (iii) RPN:
Randomized Prior Networks (Osband et al., 2018). The number in the parentheses represents the standard
deviation of the corresponding metric, which was calculated by averaging over 100 independent runs.

Algorithm MSE(Q̂) Coverage Rate CI-Width

BootDQN 0.09979 (0.01609) 0.388 (0.0186) 0.188 (0.0032)
QR-DQN 0.00459 (0.00028) 0.821 (0.0089) 0.278 (0.0033)
RPN: prior scale=0.1 0.03339 (0.00290) 0.802 (0.0147) 0.679 (0.0243)
RPN: prior scale=1.0 0.03724 (0.00412) 0.816 (0.0157) 0.693 (0.0243)
RPN: prior scale=5.0 0.03658 (0.00297) 0.793 (0.0190) 0.782 (0.0341)

In the Indoor Escape environment, each episode is capped at 200 steps in our implementations. As a result,
reaching the goal – without relying on additional exploration techniques like ϵ-greedy – depends heavily
on the ability of the method in performing parameter space exploration. Figure 4(a) plots the best-so-far
reward versus time steps for each method: LT-A2C reaches the global optimum (−18) in every run, whereas
A2C fails to do so in a substantial fraction of runs. Figure 4(b) reports the proportion of experiments in
which each method successfully attained the optimal policy: LT-A2C reached the optimal policy in 100% of
the runs, whereas A2C succeeded in only 78% of the runs. The comparison highlights the capability of the

9

Published in Transactions on Machine Learning Research (09/2025)

LTF in parameter space exploration and suggests that it substantially outperforms A2C in identifying the
optimal policy, while accurately quantifying the uncertainty of the resulting values.

Regarding computational complexity, we note that although LTF requires additional SGMCMC sampling
for the critic network at each iteration, the per-iteration complexity of SGLD and SGHMC is comparable to
that of SGD. As a result, the overall time complexity remains on par with standard iterative optimization
methods, supporting the scalability of the proposed method. The LTF methods can be readily applied to
large-scale neural networks.

(a) Maximum reward achieved along time steps (b) Success rate of achieving optimal policy

Figure 4: Optimal policy exploration for the Indoor Escape environment

4.2 PyBullet Environment

To demonstrate the applicability of the LTF-enhanced actor-critic RL methods in complex environments, we
evaluate their performance on continuous control benchmarks using the RL Baselines3 Zoo (Raffin, 2020) and
the PyBullet environment (Ellenberger, 2018–2019). We compare the LT-A2C and LT-PPO methods with
their vanilla counterparts (A2C and PPO, respectively) across four continuous control tasks: HalfCheetah,
Hopper, Reacher, and Walker. The hyperparameters for A2C and PPO follow the default configurations
from RL Baselines3 Zoo (Raffin, 2020). Additional experimental details are provided in Appendix C.

Figure 5 presents the best reward up to the current iteration obtained by these methods for the control
tasks. Each curve in the plots represents the mean of the best-so-far reward obtained by the corresponding
method in 100 independent runs. The shaded region indicates the 95% confidence interval of the expected
return, computed as the mean ±1.96 times the standard error. The comparison shows that both LT-A2C and
LT-PPO outperform their vanilla counterparts in Walker-2D, while performing comparably in other control
tasks. This underscores the flexibility of the proposed LTF, which allows for the integration of various
advanced RL strategies to enhance actor-critic training while ensuring proper uncertainty quantification for
the critic network and the resulting value function. Specifically, for PPO, its gradient clipping mechanism
prevents the actor’s policy from changing too drastically, helping ensure stable updates and improving the
training of the actor-critic networks, even under the proposed LTF.

In terms of computation, the LT framework introduces an inner loop that samples the critic network (Algo-
rithm 1), which increases training cost. However, the number of sampling steps need not be large; 5–10 steps
typically suffice. To assess how this hyperparameter affects wall-clock time and performance, we conducted
an ablation over the number of sampling steps, with results presented in Figure 6. The comparison shows
that reward improvements slow after about 10 steps. Accordingly, we recommend using 10 sampling steps
to reliably achieve good performance while maintaining efficient training.

A close inspection of Figure 6 shows that LT-A2C’s performance continues to improve as the number of
critic-network sampling steps increases. This, in turn, suggests that a high-quality SGMCMC algorithm
could further enhance the method’s performance, though it is not strictly essential.

10

Published in Transactions on Machine Learning Research (09/2025)

Figure 5: Comparison of A2C, PPO, LT-A2C, and LT-PPO for the PyBullet environments: training, evalu-
ation/testing, and best/highest rewards (up to the current iteration) achieved during training. The results
were summarized from 100 independent runs for each method.

5 Conclusion

In this paper, we have introduced a novel Latent Trajectory Framework, coupled with an adaptive SGMCMC
algorithm, for training deep actor-critic networks. The proposed method naturally captures the interdepen-
dence between the actor and critic updates. We provide theoretical guarantees that, under mild conditions,
the proposed method ensures consistency in parameter estimation for the actor network and weak conver-
gence in parameter sampling for the critic network. Compared to existing iterative optimization methods,
the proposed method ensures accurate uncertainty quantification for the critic network and, consequently,
the value function, while offering greater flexibility and robustness in training the actor network. Exist-
ing Bayesian methods generally lack the mathematical rigor required to achieve this level of uncertainty
quantification for deep actor-critic networks. Notably, the proposed method accomplishes these improve-
ments without increasing the order of computational complexity compared to existing iterative optimization
methods, making it scalable to large-scale DNNs.

In searching for high-reward policies, LTF is expected to outperform the vanilla baselines when the landscape
of the actor-network objective is rugged. The added randomness from sampling critic networks – compared
with iterative optimization – facilitates escape from local optima and speeds convergence to higher-reward
policies. On smoother landscapes, LTF and iterative optimization-based methods perform similarly, with no
loss from sampling.

The proposed LTF is also highly flexible. In addition to replacing the SGLD steps with SGHMC (Chen
et al., 2014) or substituting the SGD step with Adam (Kingma & Ba, 2014), one can modify the policy
control step and/or the critic network distribution to incorporate advanced RL strategies, further accelerating
its convergence toward high-reward polices. In this paper, we have demonstrated that substituting the
policy control step with a PPO update significantly enhances the training of actor-critic models in complex

11

Published in Transactions on Machine Learning Research (09/2025)

Figure 6: Comparison of A2C and LT-A2C (with varying numbers of sampling steps) on PyBullet environ-
ments. The plots show the best-so-far rewards (up to the current wall-clock time) during training. Results
are averaged over 100 independent runs for each method.

environments. Similarly, the critic network distribution can be replaced with one derived from the critic
update of an advanced RL strategy. For example, by leveraging the randomized ensembled double Q-
learning (REDQ) strategy (Chen et al., 2021), we can replace the critic network distribution πN (ψ|Rt,xt)
used in (8) with the following ensembled version:

πN (Ψ|rt,xt) ∝ exp

− N
|B|

∑
ψi∈Ψ

∑
(s.a.r,s′)∈B

(Qψi(s, a) − y)2

π(Ψ),

where Ψ = {ψ1, ψ2, . . . , ψN} denotes an ensemble of critic networks, B represents a mini-batch with size
|B|, and y is defined as in Algorithm 1 of Chen et al. (2021). The detailed definition of y is omitted here
for simplicity. Based on other strategies, such as SUNRISE (Lee et al., 2021) and Optimistic Actor-Critic
(OAC) (Ciosek et al., 2019), the critic network distribution can also be defined accordingly. In summary,
the proposed LTF is able to accelerate the search for optimal policies by leveraging the strengths of modern
RL strategies as well as the inherent randomness from sampling critic networks, while providing calibrated
uncertainty quantification for the critic network and value functions. It is readily applicable to diverse
actor–critic training tasks.

Acknowledgments

Liang’s research is supported in part by the NSF grant DMS-2210819 and the NIH grant R01-GM152717.
Shih’s research is partially supported by MSK Cancer Center Support Grant/Core Grant (P30 CA008748).

12

Published in Transactions on Machine Learning Research (09/2025)

References
Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning,

2017.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive Algorithms and Stochastic Approxima-
tions. Springer-Verlag, New York, 1990.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1613–1622. JMLR.org, 2015.

Semih Cayci, Niao He, and Rayadurgam Srikant. Finite-time analysis of entropy-regularized neural nat-
ural actor-critic algorithm. ArXiv, abs/2206.00833, 2022. URL https://api.semanticscholar.org/
CorpusID:249282402.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In ICML,
2014.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning: Learn-
ing fast without a model. ICLR, 2021. URL https://api.semanticscholar.org/CorpusID:231627730.

Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale actor-critic
for solving linear quadratic regulator, 2023.

Kamil Ciosek, Quan Ho Vuong, Robert Tyler Loftin, and Katja Hofmann. Better exploration with optimistic
actor-critic. In Neural Information Processing Systems, 2019. URL https://api.semanticscholar.org/
CorpusID:202765226.

William R. Clements, Benoît-Marie Robaglia, Bastien van Delft, Reda Bahi Slaoui, and S’ebastien Toth.
Estimating risk and uncertainty in deep reinforcement learning. ArXiv, abs/1905.09638, 2019. URL
https://api.semanticscholar.org/CorpusID:162184328.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement learn-
ing with quantile regression. ArXiv, abs/1710.10044, 2017. URL https://api.semanticscholar.org/
CorpusID:139930.

Wei Deng, Xiao Zhang, Faming Liang, and Guang Lin. An Adaptive Empirical Bayesian Method for Sparse
Deep Learning. In NeurIPS, 2019.

Tianning Dong, Peiyi Zhang, and Faming Liang. A stochastic approximation-langevinized ensemble kalman
filter algorithm for state space models with unknown parameters. Journal of Computational and Graphical
Statistics, 32(2):448–469, 2023. doi: 10.1080/10618600.2022.2107531. URL https://doi.org/10.1080/
10618600.2022.2107531.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym, 2018–2019.

Yaakov Engel, Shie Mannor, and Ron Meir. Bayes meets bellman: the gaussian process approach to temporal
difference learning. In Proceedings of the Twentieth International Conference on International Conference
on Machine Learning, ICML’03, pp. 154–161. AAAI Press, 2003. ISBN 1577351894.

Jianqing Fan, Qiwei Yao, and Howell Tong. Estimation of conditional densities and sensitivity measures
in nonlinear dynamical systems. LSE Research Online Documents on Economics, 1996. URL https:
//api.semanticscholar.org/CorpusID:17065829.

Matthieu Geist and Olivier Pietquin. Kalman temporal differences. J. Artif. Int. Res., 39(1):483–532, sep
2010. ISSN 1076-9757.

Jan G. De Gooijer and Dawit Zerom. On conditional density estimation. Statistica Neerlandica, 57, 2003.
URL https://api.semanticscholar.org/CorpusID:122069058.

13

https://api.semanticscholar.org/CorpusID:249282402
https://api.semanticscholar.org/CorpusID:249282402
https://api.semanticscholar.org/CorpusID:231627730
https://api.semanticscholar.org/CorpusID:202765226
https://api.semanticscholar.org/CorpusID:202765226
https://api.semanticscholar.org/CorpusID:162184328
https://api.semanticscholar.org/CorpusID:139930
https://api.semanticscholar.org/CorpusID:139930
https://doi.org/10.1080/10618600.2022.2107531
https://doi.org/10.1080/10618600.2022.2107531
 https://github.com/benelot/pybullet-gym
https://api.semanticscholar.org/CorpusID:17065829
https://api.semanticscholar.org/CorpusID:17065829
https://api.semanticscholar.org/CorpusID:122069058

Published in Transactions on Machine Learning Research (09/2025)

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. ArXiv, abs/1801.01290, 2018. URL https:
//api.semanticscholar.org/CorpusID:28202810.

Markus Holzleitner, Lukas Gruber, José Arjona-Medina, Johannes Brandstetter, and Sepp Hochreiter. Con-
vergence proof for actor-critic methods applied to ppo and rudder, 2020.

Rob J Hyndman, David M. Bashtannyk, and Gary K. Grunwald. Estimating and visualizing condi-
tional densities. Journal of Computational and Graphical Statistics, 5:315–336, 1996. URL https:
//api.semanticscholar.org/CorpusID:121045552.

Rafael Izbicki and Ann B. Lee. Nonparametric conditional density estimation in a high-dimensional regression
setting. Journal of Computational and Graphical Statistics, 25:1297 – 1316, 2016. URL https://api.
semanticscholar.org/CorpusID:2886739.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep reinforcement
learning. In Conference on Robot Learning, 2017. URL https://api.semanticscholar.org/CorpusID:
4083410.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 6405–6416, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964.

Kimin Lee, Michael Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework for ensem-
ble learning in deep reinforcement learning. ICML, 2021. URL https://api.semanticscholar.org/
CorpusID:220424803.

F. Liang, Sehwan Kim, and Yan Sun. Extended fiducial inference: Toward an automated process of statistical
inference. Journal of the Royal Statistical Society, Series B, 87(1):98–131, 2025.

Siqi Liang, Yan Sun, and Faming Liang. Nonlinear sufficient dimension reduction with a stochastic neural
network. NeurIPS, 2022.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

Vincent Mai, Kaustubh Mani, and Liam Paull. Sample efficient deep reinforcement learning via uncer-
tainty estimation. ArXiv, abs/2201.01666, 2022. URL https://api.semanticscholar.org/CorpusID:
245704549.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1928–1937, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/mniha16.html.

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Efficient exploration with double uncertain
value networks. ArXiv, abs/1711.10789, 2017. URL https://api.semanticscholar.org/CorpusID:
21565462.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf.

14

https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:121045552
https://api.semanticscholar.org/CorpusID:121045552
https://api.semanticscholar.org/CorpusID:2886739
https://api.semanticscholar.org/CorpusID:2886739
https://api.semanticscholar.org/CorpusID:4083410
https://api.semanticscholar.org/CorpusID:4083410
https://api.semanticscholar.org/CorpusID:220424803
https://api.semanticscholar.org/CorpusID:220424803
https://api.semanticscholar.org/CorpusID:245704549
https://api.semanticscholar.org/CorpusID:245704549
https://proceedings.mlr.press/v48/mniha16.html
https://api.semanticscholar.org/CorpusID:21565462
https://api.semanticscholar.org/CorpusID:21565462
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf

Published in Transactions on Machine Learning Research (09/2025)

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,
pp. 8626–8638, Red Hook, NY, USA, 2018. Curran Associates Inc.

Oren Peer, Chen Tessler, Nadav Merlis, and Ron Meir. Ensemble bootstrapping for Q-learning. In Inter-
national Conference on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:
232076148.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical Statistics,
22:400–407, 1951.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, 2018.

Shirli Di-Castro Shashua and Shie Mannor. Kalman meets Bellman: Improving policy evaluation through
value tracking. ArXiv, abs/2002.07171, 2020.

Frank Shih and Faming Liang. Fast value tracking for deep reinforcement learning. In The Twelfth In-
ternational Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
LZIOBA2oDU.

Q. Song, Y. Sun, M. Ye, and F. Liang. Extended stochastic gradient mcmc algorithms for large-scale bayesian
variable selection. Biometrika, 107:997–1004, 2020.

Yan Sun, Qifan Song, and Faming Liang. Consistent sparse deep learning: Theory and computation. Journal
of the American Statistical Association, 117:1981–1995, 2022.

Yan Lindsay Sun, Wenjun Xiong, and Faming Liang. Sparse deep learning: A new framework immune to
local traps and miscalibration. NeurIPS, 2021. URL https://api.semanticscholar.org/CorpusID:
238259983.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for re-
inforcement learning with function approximation. In Advances in Neural Information Processing Systems
(NIPS), pp. 1057–1063, 2000.

Bahareh Tasdighi, Manuel Haussmann, Nicklas Werge, Yi-Shan Wu, and Melih Kandemir. Deep exploration
with pac-bayes, 2024. URL https://arxiv.org/abs/2402.03055.

W.Y. Teh, Alexandre Thiery, and Sebastian Vollmer. Consistency and fluctuations for stochastic gradient
langevin dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

Haoxing Tian, Ioannis Ch. Paschalidis, and Alexander Olshevsky. Convergence of actor-critic methods
with multi-layer neural networks. NeurIPS, 2023. URL https://api.semanticscholar.org/CorpusID:
274397963.

Charles Edison Tripp and Ross D. Shachter. Approximate kalman filter q-learning for continuous state-space
mdps. ArXiv, abs/1309.6868, 2013. URL https://api.semanticscholar.org/CorpusID:8719550.

15

https://api.semanticscholar.org/CorpusID:232076148
https://api.semanticscholar.org/CorpusID:232076148
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
https://openreview.net/forum?id=LZIOBA2oDU
https://openreview.net/forum?id=LZIOBA2oDU
https://api.semanticscholar.org/CorpusID:238259983
https://api.semanticscholar.org/CorpusID:238259983
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2402.03055
https://api.semanticscholar.org/CorpusID:274397963
https://api.semanticscholar.org/CorpusID:274397963
https://api.semanticscholar.org/CorpusID:8719550

Published in Transactions on Machine Learning Research (09/2025)

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global op-
timality and rates of convergence. ICLR, 2020. URL https://api.semanticscholar.org/CorpusID:
202121359.

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor critic
methods, 2022.

16

https://api.semanticscholar.org/CorpusID:202121359
https://api.semanticscholar.org/CorpusID:202121359

Published in Transactions on Machine Learning Research (09/2025)

Appendix

A Derivation of Equation (6)

∇ψ log πN (ψk|θk−1)

=
∫

∇ψ log πN (ψk|x(k),R(k), θk−1)π(x(k),R(k)|ψk, θk−1)dx(k)dR(k)

=
∫

∇ψ log πN (ψk|x(k),R(k))π(x(k),R(k)|ψk, θk−1)
π(x(k),R(k)|θk−1)

π(x(k),R(k)|θk−1)dx(k)dR(k)

=
∫

∇ψ log πN (ψk|x(k),R(k))π(R(k)|x(k), ψk, θk−1)π(x(k)|ψk, θk−1)
π(R(k)|x(k), θk−1)π(x(k)|θk−1)

π(x(k),R(k)|θk−1)dx(k)dR(k)

=
∫

∇ψ log πN (ψk|x(k),R(k))π(R(k)|x(k), ψk)
π(R(k)|x(k))

π(x(k),R(k)|θk−1)dx(k)dR(k),

(A1)

provided that the mini-batch size n has been chosen to be sufficiently large, ensuring that x(k) serves
as a good representative of the underlying pseudo-population. This guarantees that ψk is conditionally
independent of θk−1 given x(k), see Figure 1 for the graphical illustration of the latent Markov sampling
process. Consequently, we have ∇ψ log πN (ψk|x(k),R(k), θk−1) = ∇ψ log πN (ψk|x(k),R(k)) and π(ψk|x(k)) =
π(ψk|θk−1). The former leads to the second equality in (A1), while the latter leads to the last equality in
(A1) by the following equality:

π(x(k)|ψk, θk−1)
π(x(k)|θk−1)

= π(ψk|x(k), θk−1)
π(ψk|θk−1) = π(ψk|x(k))

π(ψk|θk−1) = 1. (A2)

B Proof of Theorem 3.1 and Theorem 3.2

For convenience, we denote the trajectory observation (x(k),R(k)) as zk, and assume zk ∈ Z be a compact
set. The Latent Trajectory Framework can be written in a general form as

ψk = ψk−1 + ϵk∇ψL̃(θk−1, ψk−1, zk) +
√

2ϵkek,
θk = θk−1 + υkg̃(θk−1, ψk, zk),

(A3)

where ϵk denotes the learning rate, ek is a standard Gaussian noise, ∇ψL̃(θk−1, ψk−1, zk) denotes an unbi-
ased estimate of ∇ψL(θk−1, ψk−1) = ∇ψ log π(ψk−1|θk−1), and g̃(θk−1, ψk, zk) is an unbiased estimator of
gacψk(θk−1). Convergence of adaptive stochastic gradient MCMC algorithms has been studied in Deng et al.
(2019), Dong et al. (2023) and Liang et al. (2025). The convergence theory of LTF can be established by
slightly modifying some of the assumptions used therein.

Notation: We use Eψ[u(θ, ψ)] to denote the expectation of u(θ, ψ) with respect to the conditional distri-
bution π(ψ|θ), and use E[u(·)] to denote the expectation with respect to the joint distribution of all the
variables involved in the integrand u(·).

Assumption A1 The step size sequence {υk}k∈N is a positive decreasing sequence of real numbers such that

lim
k→∞

υk = 0,
∞∑
k=1

υk = ∞. (A4)

There exist δ > 0 and a stationary point θ∗ such that for any θ ∈ Θ,

⟨θ − θ∗, g(θ)⟩ ≤ −δ∥θ − θ∗∥2,

17

Published in Transactions on Machine Learning Research (09/2025)

where g(θ) = Eψ[gacψ (θ)] and, in addition,

lim inf
k→∞

2δ υk
υk+1

+ υk+1 − υk
υ2
k+1

> 0, (A5)

where ∥ · ∥ denotes the L2-norm.

Assumption A2 L(θ, ψ) is M-smooth on θ and ψ with M > 0, and (m, b)-dissipative on ψ for some
constants m > 1 and b > 0. In other words, for any ψ,ψ′, ψ′′ ∈ Ψ and θ, θ′ ∈ Θ, the following inequalities
are satisfied:

∥∇ψL(θ, ψ′) − ∇ψL(θ′, ψ′′)∥ ≤ M∥ψ′ − ψ′′∥ +M∥θ − θ′∥, (A6)
⟨∇ψL(θ∗, ψ), ψ⟩ ≤ b−m∥ψ∥2, (A7)

where θ∗ is a stationary point as defined in Assumption A1.

Assumption A1 is a critical and standard assumption in the convergence of SGMCMC algorithms. In the
context of deep neural networks, the dissipativity condition can be easily achieved by imposing a Gaussian
prior on the critic network parameter, which further guarantees convergence.

Lemma B.1 ∥∇ψL(θ, ψ)∥2 ≤ 3M2∥ψ∥2 + 3M2∥θ − θ∗∥2 + 3B2 for some constant B.

Proof: Follow the proof of Lemma A.1 in Dong et al. (2023). □

Assumption A3 Let ζk = ∇ψL̃(θk, ψk, zk) − ∇ψL(θk, ψk). Assume that ζk’s are mutually independent
white noises, and they satisfy the conditions

E(ζk|Fk) = 0, E∥ζk∥2 ≤ δL̃(M2E∥ψk∥2 +M2E∥θk − θ∗∥2 +B2), (A8)

where δL̃ and B are positive constants, and Fk = σ{θ1, ψ1, θ2, ψ2, . . . , θk, ψk} denotes a σ-filtration.

Assumption A4 There exist positive constants M and B such that for all z ∈ Z,

∥g̃(θ, ψ, z)∥ ≤ M2∥θ − θ∗∥2 +M2∥ψ∥2 +B2,

where g̃(θ, ψ, z) is as defined in (A3).

By the formulation defined in section 3.2, let g(θ) = E(ψ,z)[g̃(θ, ψ, z)|θ] and η = g̃(θ, ψ, z) − g(θ). Since
E(ψ,z)[∥g̃(θ, ψ, z)∥2|θ] = ∥g(θ)∥2 + E(ψ,z)[∥η∥2|θ], this implies E∥g(θ)∥2 ≤ E∥g̃(θ, ψ, z)∥2 and E∥η∥2 ≤
E∥g̃(θ, ψ, z)∥2.

Lemma B.2 (Uniform L2 bounds) Suppose Assumptions A1-A4 hold. If the following conditions are satis-
fied:

ϵk = Cϵ
cϵ + kα

, υk = Cυ
cυ + kβ

, (A9)

for some constants Cϵ > 0, cϵ > 0, Cυ > 0, cυ > 0, α, β ∈ (0, 1], and β ≤ α ≤ min{1, 2β}. Then there exist
constants Gψ and Gθ such that E∥ψk∥2 ≤ Gψ and E∥θk − θ∗∥2 ≤ Gθ for all k = 0, 1, 2,

Proof: Follow the proof of Lemma A.2 in Dong et al. (2023). We slightly modify Assumption 4 in Dong
et al. (2023) by Assumption A4, where the stochastic gradient is replaced with ĝacψ (θ). Then the proof is
straight forward.

□

Assumption A5 (Solution of Poisson equation) For any θ ∈ Θ, ψ ∈ Ψ, and a function V(ψ) = 1 + ∥ψ∥,
there exists a function µθ on Ψ that solves the Poisson equation µθ(ψ) − Tθµθ(ψ) = gacψ (θ) − g(θ), where Tθ
denotes a probability transition kernel with Tθµθ(ψ) =

∫
Ψ µθ(ψ

′)Tθ(ψ,ψ′)dψ′, such that

gacψk+1
(θk) = g(θk) + µθk(ψk+1) − Tθkµθk(ψk+1), k = 1, 2, (A10)

Moreover, for all θ, θ′ ∈ Θ and ψ ∈ Ψ, we have ∥µθ(ψ) − µθ′(ψ)∥ + ∥Tθµθ(ψ) − Tθ′µθ′(ψ)∥ ≤ ς1∥θ− θ′∥V(ψ)
and ∥µθ(ψ)∥ + ∥Tθµθ(ψ)∥ ≤ ς2V(ψ) for some constants ς1 > 0 and ς2 > 0.

18

Published in Transactions on Machine Learning Research (09/2025)

Proof of Theorem 3.1

Proof: For Algorithm 1, we assume that the sample size of auxiliary ψ̃-samples is sufficiently large, ensuring
the denominator estimator in Eq. (13) converges almost surely to its mean value (Teh et al., 2016). Therefore,
the resulting stochastic gradient (14) is almost surely unbiased.

Dong et al. (2023) proved the result (16) for a more general adaptive Langevinized ensemble Kalman filter
(LEnKF) algorithm, which is equivalent to an adaptive pre-conditioned SGLD algorithm. Extending their
proof to Algorithm 1 is straight forward. □

Assumption A6 The probability law µ0 of the initial hypothesis θ0 has a bounded and strictly positive
density p0 with respect to the Lebesgue measure on Rdψ , and

κ0 := log
∫
Rdψ

e∥θ∥2
p0(θ)dθ < ∞.

Proof of Theorem 3.2

Proof: This theorem is proved in Liang et al. (2025) with the same Assumptions A1-A6. For Algorithm 1,
we only need to assume that the sample size m of auxiliary ψ̃-samples is sufficiently large, as explained in
the proof of Theorem 3.1. □

C Experiment Settings

C.1 Escape environment

In this experiment, both πθ and Vψ are approximated by deep neural networks with two hidden layers of
sizes (128, 128). The agent updates the network parameters every 50 interactions, for a total of 106 action
steps. Each experiment is replicated for 100 times. For initial exploration, an entropy penalty coefficient of
0.01 is added, and gradually decay to 0. To achieve sparse deep neural network, we follow the suggestion in
Sun et al. (2022) to impose mixture Gaussian prior onto both network parameters:

θ, ψ ∼ (1 − λ)N (0, σ2
0) + λN (0, σ2

1) (A11)

where λ ∈ (0, 1) is the mixture proportion and σ2
0 is usually set to a small number compare to σ2

1 . We set
σ1 = 0.01, σ0 = 0.001 and λ = 0.5 in all LTF-enhanced algorithms. For indoor escape environment, the
reward is given by N (−1, 0.01); that is, we set σ2 = 0.01. To make the estimated return yt = Rt stationary,
the reward at the goal state is set to N (−1, 0.01

1−γ2), where the discount factor γ = 0.9. To guarantee the
convergence of LTF, we set the decay policy learning rate as υk = O(1

k0.5) and constant critic learning rate
ϵk = 2 × 10−4. The sample size L in (12) is set to 50, and the auxiliary sample size m in (13) is set to 5.

In practical implementation, drawing samples from the conditional distribution πN (ψk|xk) can be performed
with a short sub-loop of SGMCMC updates, which we set the length to be 10. That is, for each iteration k,
we repeat the ψ-sampling update 10 times. The sub-loop sampling scheme is given by

ψk,ℓ = ψk,ℓ−1 + ϵk,ℓ
2 ŵk,ℓ

{ n∑
i=1

∇ψ log π(R(k)
i |x(k)

i , ψk,ℓ−1) + n

N
∇ψ log π(ψk,ℓ−1)

}
+ ek,ℓ (A12)

where the sub-loop is indexed by ℓ. And the importance weight can be calculated by

ŵk,ℓ = π(R(k)|x(k), ψk,ℓ−1)
1

m+1
∑m
j=1 π(R(k)|x(k), ψ̃j) + 1

m+1π(R(k)|x(k), ψk,ℓ−1)
.

where m denote the number of auxiliary samples and the importance weight is bounded by m + 1. The
boundedness of the importance weights ŵk,ℓ’s further ensures the stability of SGMCMC sampling step.
We note that including the ψk,l−1-term in the denominator is reasonable. As implied by the definition of

19

Published in Transactions on Machine Learning Research (09/2025)

the importance weight wk = π(R(k)|x(k),ψk)
π(R(k)|x(k)) , the numerator term should be part of the denominator and,

therefore, we need to include ψk,l−1 as an auxiliary sample of ψ̃. Furthermore, we refer to Theorem 1 of
Song et al. (2020) for the sample equally weighted formula in calculating the denominator.

Figure A1: KL-divergence (top plot) and interval widths (bottom plot) achieved by A2C, PPO, LT-A2C,
and LT-PPO for the Indoor Escape example. The results were summarized from 100 independent runs for
each method.

Figure A2: Top plot: MSE of V̂ ; Bottom plot: Coverage rate of the 95% prediction interval for the value
V ∗(s). The results were computed from 100 independent runs for each method.

C.2 PyBullet environment

In this experiment, we conduct experiments on PyBullet environments, including Ant, HalfCheetah, Hopper,
Reacher, and Walker2D. The training framework and hyperparameters of A2C and PPO are based on RL
baselines3 zoo, and our LT-A2C and LT-PPO is implemented on top of Stable-Baselines3 Raffin et al. (2021).
The hyperparameters are listed in Tables A1, A2, A3, and A4. Any hyperparameter not specified in these
tables is set to the default value used in its corresponding vanilla counterpart. The actor and critic networks
in LT-A2C and LT-PPO follow the default configurations of A2C and PPO, respectively, as implemented in

20

Published in Transactions on Machine Learning Research (09/2025)

the Stable-Baselines3 Zoo. There are 2 types of learning rate, constant and linear decay. To balance between
exploration and exploitation in LT-enhanced algorithms, we adopt an annealing technique, where the pseudo
population size increases as training steps increase, starting from 500. This method allows the algorithm to
gradually shift from exploration to exploitation, improving overall performance and stability. A2C optimizes
both the actor and critic networks using RMSprop, whereas PPO employs the Adam optimizer for both
networks. In contrast, LT-A2C and LT-PPO update the actor network using RMSprop while performing
SGHMC sampling for the critic parameters. For the prior distribution, both LT-A2C and LT-PPO adopt
the same Gaussian mixture prior used in the Escape environment.

In theory, the auxiliary sampling step requires large sample size to guarantee a good approximation. To
improve the sampling efficiency of the auxiliary sampling step, we modify the approximation procedure of
the importance weight. We replace the auxiliary samples ψ̃j ’s with the SGMCMC samples ψk,ℓ derived in
(A12). The importance weight can then be approximated by

ŵk,ℓ̃ =
π(R(k)|x(k), ψk,ℓ̃−1)

1
ℓ̃

∑ℓ̃−1
ℓ=0 π(R(k)|x(k), ψk,ℓ)

.

With this modification, we can eliminate the auxiliary sampling step and further lower the computation
complexity and memory complexity. The rationale behind this replacement is that the drift term ∇ψ̃ log π(ψ̃ |
x(k),R(k)), used in (A12), provides an unbiased estimator of the drift ∇ψ̃ log π(ψ̃ | x(k)) that governs the
dynamics in (12) for simulations of auxiliary samples.

Table A1: Hyperparameters for A2C and LT-A2C

Environment HalfCheetah Hopper

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00067 lin 0.00096 lin 0.00042 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 50000 - 10000 -
γ(discount factor) 0.95 0.99 0.99 0.99
gae-λ 0.9 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6

Table A2: Hyperparameters for A2C and LT-A2C (cont.)

Environment Reacher Walker2D

Hyperparameters LT-A2C A2C LT-A2C A2C

learning rate lin 0.00096 lin 0.0008 lin 0.00037 lin 0.00096
σ (observation) 0.1 - 0.1 -
N 1000 - 500 -
γ(discount factor) 0.99 0.99 0.99 0.99
gae-λ 1.0 0.9 1.0 0.9
train batch 32 32 32 32
training steps 2e6 2e6 2e6 2e6

21

Published in Transactions on Machine Learning Research (09/2025)

Table A3: Hyperparameters for PPO and LT-PPO

Environment HalfCheetah Hopper

Hyperparameters LT-PPO PPO LT-PPO PPO

learning rate 3e-5 3e-5 3e-5 3e-5
σ (observation) 0.1 - 0.1 -
N 50000 - 50000 -
γ(discount factor) 0.99 0.99 0.99 0.99
gae-λ 0.9 0.9 0.9 0.9
train batch 128 128 128 128
training steps 2e6 2e6 2e6 2e6

Table A4: Hyperparameters for PPO and LT-PPO (cont.)

Environment Reacher Walker2D

Hyperparameters LT-PPO PPO LT-PPO PPO

learning rate 3e-5 3e-5 3e-5 3e-5
σ (observation) 0.1 - 0.1 -
N 50000 - 50000 -
γ(discount factor) 0.99 0.99 0.99 0.99
gae-λ 0.9 0.9 0.9 0.9
train batch 64 64 128 128
training steps 2e6 2e6 2e6 2e6

22

	Introduction
	Preliminaries on Actor-Critic Models
	A Latent Trajectory Framework for Actor-Critic Models
	An Overview of the SGMCMC Algorithm
	Adaptive Stochastic Gradient MCMC for Deep Actor-Critic Learning
	Convergence Theory

	Experiments
	Indoor Escape Environment
	PyBullet Environment

	Conclusion
	Derivation of Equation (6)
	Proof of Theorem 3.1 and Theorem 3.2
	Experiment Settings
	Escape environment
	PyBullet environment

