
RETHINKING CROSS-LINGUAL GAPS FROM A STATISTICAL VIEWPOINT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Any piece of knowledge is usually expressed in one or a handful of natural lan-
012 guages on the web or in any large corpus. Large Language Models (LLMs) act as
013 a bridge by acquiring knowledge from a *source* language and making it accessible
014 when queried from *target* languages. Prior research has pointed to a *cross-lingual*
015 *gap*, viz., a drop in accuracy when the knowledge is queried in a target language
016 compared to when the query is in the source language. Existing research has ra-
017 tionalized divergence in latent representations in source and target languages as
018 the source of cross-lingual gap. In this work, we take an alternative view and hy-
019 pothesize that the variance of responses in the target language is the main cause
020 of this gap. For the first time, we formalize the cross-lingual gap in terms of
021 bias-variance decomposition. We present extensive experimental evidence which
022 support proposed formulation and hypothesis. We then reinforce our hypothesis
023 through multiple inference-time interventions that control the variance and reduce
024 the cross-lingual gap. We demonstrate a simple prompt instruction to reduce the
025 response variance, which improved target accuracy by 20-25% across different
026 models.

1 INTRODUCTION

029 Large Language Models (LLMs) have revolutionized information access. Central to LLM’s mission
030 is to assimilate knowledge universally and make it available generally without any barriers. State-
031 of-art LLMs are multilingual: Gemini supports over 40 languages (Gemini, 2025), GPT-5 supports
032 at least 12 languages (GPT, 2025) (with no official number of supported languages) and open-source
033 models like Gemma-3 support over 100 spoken languages (Gemma, 2025). Because pretraining data
034 cannot contain duplicate information for every language, cross-lingual generalization is a necessary
035 capability for LLMs. However, LLMs are known to have disparity in recalling knowledge across
036 languages (Jiang et al., 2020; Kassner et al., 2021; Qi et al., 2023; Chua et al., 2024a; Goldman
037 et al., 2025).

038 Our objective is to understand the causes of poor transfer of knowledge encoded in parameters
039 across languages. We, therefore, evaluate models on knowledge-intensive tasks in a closed-book QA
040 setting, i.e., without access to such tools as grounding in search. Cross-lingual gaps are quantified
041 through disparity on parallel datasets that alter language-specific surface form of the prompts. We
042 refer to the two evaluation settings that makeup parallel data as source and target. Prompts in the
043 source split are (roughly) in-distribution with pretraining data, while those in the target split are
044 out-of-distribution. Parity between source and target is achieved when the model generalizes across
045 languages. For instance, consider a question derived from a Wikipedia article that is only available
046 in Hindi: *When was Kreedha Bharti established?* Gemini¹ correctly answers the question when posed
047 in Hindi (source) but the same question in Hebrew (a target language) is often answered incorrectly
048 (Figure 1 (c)). LLMs are more likely to emit incorrect responses in target, which is the subject of
049 our paper.

050 Figure 2 presents source-to-target performance drops on two recent benchmarks across various
051 LLMs. Why do we see such cross-lingual gaps despite the mounting evidence (Dumas et al., 2024;
052 Schäfer et al., 2024; Brinkmann et al., 2025) for language-agnostic representations in LLMs? Com-
053 monly, the problem is attributed to subpar generalization of parametric knowledge across languages

¹Gemini-2.5-Flash (with thinking)

054

055

056

057

058

059

060

061

(a) Illustration of response distribution when the Cross-lingual gaps are due to bias or variance.

(b) PCA projection of responses (G-2.5-Flash) in source and target for the English-sourced question: *What was the name of the protagonist in the Prizzi novels?*

(c) Distribution of hundred responses (with G-2.5-Flash) for the Hindi-sourced question “When was Kreeda Bharti established?” in various languages.

Figure 1: If the model has knowledge barriers, we expect the responses in target biased as shown in left sketch of (a). In practice, we observe the target responses are distributed around source in such a way that their respective average values coincide as shown in the right sketch of (a). In (b), we show PCA projection of source and target responses where each response is a dot, and crosses represent centroid. We show KDE fitted distribution for three target languages for a numerical question in (c). Please refer Figure 14, 15 of Appendix for additional plots, and Section 1 for additional context.

due to representation misalignment. For instance, we may imagine knowledge fragmentation if Nelson Mandela and नेल्सन मंडेला (*Nelson Mandela* in Hindi) are embedded differently. Given the sparsity of non-English languages and non-latin scripts in pretraining data and even further rarity of entities, the representation misalignment rationale is compelling and likely. But could there be other causes at play? How can we validate if knowledge is failing to transfer?

Cross-lingual divergence in responses may emerge either due to variance (of responses) or biases. The well-known error decomposition of mean squared error, $MSE = \text{bias}^2 + \text{variance}$, can be applied to our setting to characterize how differences arise between source and target responses. We contextualize bias and variance with an example question sourced from a Hindi document: *When was Kreeda Bharti established?* with the correct answer 1992. If there is a knowledge barrier and the entity *Kreeda Bharti* is unrecognized in any language other than Hindi, we then expect the model to respond with a random guess anywhere from 1500 BC to 2024 AD leading to significant *bias* between target responses and the Hindi response (1992). On the other hand, if the gap is due to variance alone we expect target responses distributed more widely around the source response: say 1992 ± 30 . Figure 1 sketches source and target responses for a hypothetical example when the cross-lingual gaps are due to biases (left diagram) or variance (right diagram).

The distinction between the two sources of gap is important for guiding mitigation approaches. Besides, the problem is more severe if the gaps are due to biases because it requires rethinking LLM pretraining, tokenization, embeddings, etc. To the best of our knowledge, past work did not establish the nature of gaps. In fact, the literature often overlooked variance to explain the cross-lingual gap. The gaps instead are explained through certain knowledge barrier inducing biases in the target responses (Chua et al., 2024a; Wang et al., 2024b).

In contrast to the prevailing wisdom of attributing gaps to biases (i.e., knowledge barriers), we do not observe significant bias in the two examples of Figure 1(b, c). In (b), we show PCA projected response embeddings for a question sourced from an English document: *What was the name of the protagonist in the Prizzi novels?* with answer: *Charlie Partanna*. Please see Appendix C for details on how we obtained the embeddings. In Figure 1 (c), we sketched the various responses to our running example: *When was Kreeda Bharti established?* in three languages. The question is answered correctly in Hindi with high confidence, which we did not plot to show the variance in other languages. We highlight two observations based on Fig 1,(and 14, 15 in appendix), (1) the response distribution in target has higher variance, (2) the average of all responses coincides with the source response despite high variance.

Anecdotal examples of Figure 1 indicate variance over bias as the dominant cause of cross-lingual gap, which we establish carefully in the paper. In Section 2, we formally express the response distribution and cross-lingual divergence due to bias or variance. We report on experiments that

(a) ECLeKTic

(b) MMLU (with mixup)

Figure 2: Cross-lingual performance gaps on ECLeKTic and MMLU (with mixup) with different LLMs. Here, DS refers to the DeepSeek model. G-2.5-Flash, G-2.5-Pro are Flash and Pro flagship Gemini models from 2.5 class and GPT-5-mini & GPT-5 are Open AI models. All models exhibit a significant cross-lingual gap on the ECLeKTic benchmark. Please refer Section 1 for additional context and Section 3 for dataset description.

tease apart the nature of gaps in Section 4.1. We discuss further implications of our findings in Section 4.2 including the surprising finding that cross-lingual gaps diminish when the model is confident in source. We finally conclude with takeaways, limitations and future work in Section 6. We hope an improved understanding of the source of gaps will better guide the mitigation efforts.

Contributions:

- We take an alternate viewpoint to explain cross-lingual gaps to hypothesize and validate for the first time that the gaps are dominantly due to variance (and not knowledge) transferring poorly from source to target (Section 4.1).
- We additionally demonstrate that (response) variance in Source and Target are proportional. As a consequence, source-target gaps diminish with decreasing variance in Source (Section 4.2).
- We validate our claims across two benchmarks and five closed/open SoTA LLMs. We present multiple inference-time interventions that mitigate the cross-lingual gap (Section 4.1).

2 A FRAMEWORK OF CROSS-LINGUAL GAPS

In this section, we express how the target response distribution transforms due to bias or variance. We will begin by modeling the distribution of source and target responses by identifying the various sources of uncertainty. We ideally require access to model parameter posterior for characterizing the strength of bias-variance components, which in other words require training multiple LLMs on the same pretraining data. Since training an LLM, let alone multiple, is prohibitively expensive we model uncertainties in the forward pass for a fixed model. We operate under the assumption that floating point errors and MoE routing uncertainties sufficiently capture the response variance. If the forward pass of a model is deterministic, we would require training multiple models for bias-variance analysis. Thankfully, forward pass stochasticity sufficiently capture the response variance for the models we considered in our work.

An LLM model M projects an input \mathbf{x} to its logits \vec{z} . Mapping from $\mathbf{x} \rightarrow \vec{z}$ could be stochastic due to floating point errors and MoE related routing variance. We model all those aspects by assuming the logits are sampled from a normal distribution with latent variables: mean $\vec{\mu}$, and variance $\sigma^2 I$. If the mapping from example to logits is deterministic, we can simply set the variance (σ^2) to 0. LLMs finally sample a response \hat{y} via a categorical distribution parameterized by softmax transformation of logits. The sampling process is summarized below.

$$M(\mathbf{x}) \triangleq \vec{z} \sim \mathcal{N}(\vec{\mu}, \sigma^2 I)$$

$$\hat{y} \sim \text{Categorical}(\text{softmax}(\vec{z}))$$

162 The variance of responses is high if σ^2 is high or $\text{softmax}(\vec{z})$ is flat (i.e., has high entropy). Therefore,
 163 we may model increased variance of responses in target through multiplicative factors that increase
 164 variance or make the logits flatter.

165 For the sake of analysis, we assume that the response space is enumerable and shared between
 166 source and target. We may achieve this by collating many responses in both source and target and
 167 normalizing the unique values to only encode concept while ignoring the language. For instance, we
 168 normalize $\{\text{order of santiago}, \text{order de santiago}, \text{ordem de santiago}\}$ to order of santiago . Hereafter,
 169 we will treat response space categorical with only the levels defined by the normalized values and
 170 logits are their corresponding scores.

171 With the response space normalized, we can quantify the probability of shared responses between
 172 source and target in the wake of response uncertainties. However, we must first model how the logit
 173 distribution tilts from source to target. We denote the mean and variance of logit distribution for
 174 source with $\vec{\mu}_s, \sigma_s^2 I$ respectively. The target logit distribution is expected to be unrelated to source
 175 indicating a bias if there are knowledge barriers, i.e., distributed with mean and variance $\vec{\mu}_b, \sigma_b^2 I$
 176 respectively such that their modes do not match, i.e., $\arg \max \vec{\mu}_s \neq \arg \max \vec{\mu}_b$. If there is no bias
 177 but high variance, the target responses are expected to be distributed with a flatter logit mean $(\vec{\mu}_s/\tau)$
 178 and higher variance: $\eta \sigma_t^2 I$ for some values of $\tau \geq 1, \eta \geq 1$. Since we do not know the relative
 179 contribution of bias and variance to cross-lingual gap, we model target responses as a mixture of
 180 both the distributions with an unknown mixing coefficient: $\pi, 0 \leq \pi \leq 1$. Overall, our model of
 181 source and target responses is summarized below.

182
 183 **Source response distribution:**

$$\vec{z} \sim \mathcal{N}(\vec{\mu}_s, \sigma_s^2 I). \\ \hat{y}_s \sim \text{Categorical}(\text{softmax}(\vec{z})).$$

184 **Target response distribution:** η, τ, π as defined above

$$\kappa \sim \text{Bernoulli}(\pi), \\ \vec{z} \sim \underbrace{\kappa \mathcal{N}(\vec{\mu}_s/\tau, \eta \sigma_s^2 I)}_{\text{high var. component}} + (1 - \kappa) \underbrace{\mathcal{N}(\vec{\mu}_b, \sigma_b^2 I)}_{\text{high bias component}}. \\ \hat{y}_t \sim \text{Categorical}(\text{softmax}(\vec{z})).$$

191 Figure 1 (a) depicts the two scenarios of cross-lingual gap. In the left sketch, the cross-lingual gaps
 192 are due to target bias, i.e., $\kappa = 0$. In the right sketch, the cross-lingual gaps are due to variance,
 193 i.e., $\kappa = 1$. Our objective in this work in a nutshell is to find the value range of π . Thankfully,
 194 the two mixture components have different expected behavior that we could establish the dominant
 195 component through few targeted ablations, which we describe in the rest of this section. Proofs for
 196 all the results can be found in Appendix D.

198 2.1 BIAS-VARIANCE DECOMPOSITION OF CROSS-LINGUAL GAPS

200 In this section, we study the nature of source-target gaps induced by the two components. Specifically,
 201 we discuss how the likelihood of source-target agreement transforms with reduced “response
 202 variance”.

204 **Source-target gaps due to biases: knowledge did not transfer ($\kappa = 0$).**

205 **Proposition 1.** *When knowledge did not transfer, the probability of shared response between source
 206 and target decreases with decreased response variance.*

208 **Source-target gaps due to variance: confidence did not transfer ($\kappa = 1$).**

210 **Proposition 2.** *When the target responses are unbiased, the probability of shared response between
 211 source and target increases with decreased response variance.*

212 **Decoding the nature of gaps.** From Propositions 1, 2, we observe that the bias and variance com-
 213 ponents respond differently to response variance reduction. We may also interpret this intuitively
 214 from Figure 1 (a). Reducing the radii ($\sqrt{\text{variance}}$) will make the responses from source and target
 215 agree more often only when there are no biases.

In practice, we may reduce variance by simply ensembling multiple responses for the same example and using the majority voted response from N responses (Hastie, 2003). We validate if ensembling improves overall source-target agreement in Section 4.1. Decreasing source-target gaps with ensembling indicate that the gaps are dominated by variance and not bias, i.e., $\pi > 0.5$. We may estimate π more accurately by estimating the fraction of examples on which ensembling reduced source-target gaps, which we discuss in more detail in Section 4.1.

2.2 FURTHER IMPLICATIONS OF UNBIASED NOISE IN TARGET

In this section, we discuss two surprising implications of the unbiased noise component: (a) variance in source and target are proportional, (b) cross-lingual gaps diminish with low variance in source. We also empirically validate our claims thereby further bolstering our main claim that knowledge barriers are not dominant.

We begin by showing that the response variance in source and target are related, and we quantify response variance using probability of the mode. We refer to probability of a sample matching the mode as confidence and represent variance as 1 minus confidence. For instance, when the response variance is 0, all the sampled responses match the mode with probability 1. We present the lower bounds on the confidence from source and target below using the notation from Proposition 2 and Section 2 for $\vec{\mu}_s, \sigma_s$.

Proposition 3. *Recall the sampling process when $\kappa = 1$. We have the following lower bound on the probability of the mode of responses sampled from source and target.*

$$\Pr(y_s^{\text{mode}}) \geq \left\{ \Phi\left(\frac{\mu_0 - \mu_1}{\sqrt{2(\sigma_s^2 + 2)}}\right) \right\}^{m-1}; \quad \Pr(y_t^{\text{mode}}) \geq \left\{ \Phi\left(\frac{\mu_0 - \mu_1}{\tau \sqrt{2(\eta \sigma_s^2 + 2)}}\right) \right\}^{m-1}.$$

Where m is the size of the response space and μ_0, μ_1 are the top two values of $\vec{\mu}_s$.

We make the following observations based on the above result.

1. When the source confidence is high, i.e., $(\mu_0 - \mu_1)/\sqrt{\sigma_s^2 + 2} \gg 1$ then the target confidence must also be high based on Proposition 3.
2. Since source and target confidence are related, we should see increasing agreement (or suppressed cross-lingual gap) as confidence in source increases.

We empirically validate the two observations in Section 4.2.

3 EXPERIMENT SETUP

Datasets: We employ two recent benchmarks: (1) ECLeKTic, (2) MMLU (with mixup).

- **ECLeKTic** (Goldman et al., 2025) dataset constitutes factoid questions sourced from Wikipedia pages that exist only in single language. Original questions from single language page define the *source* split. Translation into any other language make up the *target* split.
- **MMLU (with mixup)** (Chua et al., 2024a) builds on multiple-choice MMLU to introduce new examples that mixup the language of question and options randomly. Original questions make up the source split because examples with shared language for both question and options are likely in-distribution with pretraining. The mixedup questions make up the target split.

All our experiments pertain these two benchmarks. Both the datasets are knowledge-intensive and require recall from entities in foreign language/script. In Appendix H, we extend some of our results to Multiloko dataset (Hupkes and Bogoychev, 2025).

Languages: ECLeKTic, MMLU (with mixup) represent twelve, and five languages respectively. Please see Appendix E for further dataset details.

Models: We validate with five SoTA LLMs. For closed-source, we picked from Gemini (Comanici et al., 2025) series or GPT series(Jaech et al., 2024; Achiam et al., 2024). As a representative open model, we use Deepseek-R1 (Guo et al., 2025).

LLM-as-judge. Responses on ECLeKTic are freeform text, which we rate using LLM-as-judge. The LLM-judge rates if the model’s response matches reference, see Appendix M.3 for the autorater

prompt. Autorater responses have over 95% accuracy on spot-checking but have slightly higher error rate on non-English reference/responses. For better validation of our claims without the influence of autorater noise, we use a split of ECLeKTic that require year as an answer, which we refer to as **Year-ECLeKTic**. Questions of the kind *In which/what year was ...* make up about 18% of ECLeKTic. On Year-ECLeKTic, we use regex to extract year from reference and response and use exact match to mark the response as correct/incorrect.

4 EXPERIMENTAL RESULTS

We present results that support our contributions in this section.

- In Section 4.1, we show that reducing response variance through various ensembling approaches reduces cross-lingual divergence. The empirical result together with the analysis of Section 2.1 establishes that *cross-lingual gaps are due to variance (and not knowledge) transferring poorly*.
- In Section 4.2, we demonstrate that cross-lingual gap diminish with decreasing response variance (or increasing confidence) in Source. The section also validates the expectations from Section 2.2 if noise in target is unbiased.

4.1 CROSS-LINGUAL GAPS ARE DUE TO VARIANCE

In Section 4.1.1, we prompt the same example multiple times to ensemble responses, and in Section 4.1.2, we report on ensembling within a single prompt. Our intent in the section is to show improvements for each LLM without hinting any additional knowledge and by only reducing the response variance. So, all the ensembles are within the same model.

4.1.1 RESPONSE ENSEMBLING

We sample ten responses per example for any LLM at default temperature with randomized seed for each prompt. We measure the divergence between “average” target and source response as the ensemble size increases from one to ten. We may better suppress the response variance with temperature set to zero instead of default temperature. However in practice, we noticed ensembling at default non-zero temperature reduced the variance better. Please see Appendix B for more details.

ECLeKTic. In Figure 4 (a), we plot the average distance between responses from source and target responses to the same question as a function of ensemble size. Since responses in ECLeKTic task are free-form text, we embed the responses using `text-multilingual-embedding-002` (Vertex AI, 2024) model from Vertex AI (AI, 2025). For each question, we compute the L2 distance between average embedding of responses from source and average embedding of responses from target (which includes eleven languages). We finally average L2 distance across all questions.

Oracle. We also plot the best possible L2 distance along with confidence region as the oracle in the plot. We estimated the oracle value as the average L2 distance among responses (to the same question) that are marked as correct by the LLM judge thereby ensuring their equivalence. The oracle value is non-zero due to embeddings encoding language and syntactics of text.

π **estimate.** We present in each plot the value of $\pi = \mathbb{E}[\kappa]$ estimated as the fraction of examples on which the average L2 distance decreased from ensemble size of one to ten. Thinking-heavy LLMs (G-2.5-Pro, GPT-5, Deepseek) have slightly lower π estimate likely due to their higher syntactic variation in responses that the embeddings did not fully suppress.

Results on Year-ECLeKTic in Appendix G further validate our claims on ECLeKTic without embedding-related artifacts.

MMLU (with mixup). In Figure 4 (b), we plot the average Chi-squared distance (described in Appendix M.4 for reference) between the probability distribution over the options. Recall that MMLU (with mixup) is a multiple-choice task and the answer is one of four options.

π **estimate.** We present in each plot the value of π estimated as one minus fraction of examples with mismatched predictions even after ensembling. We approximate binary mismatch with a soft score (Appendix M.5) with difference of mode probabilities. In Appendix M.6, we elaborate on why we needed different π estimators for ECLeKTic and MMLU (with mixup) owing to their distinct response space: continuous vs categorical.

Figure 4: Response ensembling from multiple forward passes gradually diminishes the source-target differences as illustrated on ECLeKTic (top) and MMLU (with mixup) (bottom). Oracle value shown in red in (a) is the best expected value. Each plot shows an estimated value of π . Please refer Section 4.1.1 for details.

Observations. We observe a steady decrease in Source-Target divergence with ensemble size for both the benchmarks in Figure 4. The estimated values of $\pi \approx 0.9$ for ECLeKTic and ≈ 0.95 for MMLU (with mixup) indicate that the noise is unbiased, i.e., $\kappa = 1$ for 90-95% of the examples. It may be possible that the remaining 5-10% examples may reduce further with even higher ensemble size or are biased (likely due to translation errors detailed in Appendix M.7 or due to cross-language factual inconsistencies). In Appendix K, we analyze cross-lingual transfer at a finer level. In the Appendix section, we show that the trend observed in this section holds for any combination high or low resource language transfer.

4.1.2 INPUT ENSEMBLING

A heuristic but popular alternate approach to ensembling is averaging model response across semantically similar inputs. Averaging responses with multiple inputs is shown to be as effective or better than ensembling with one input but multiple models (Kimura, 2021). Ensembling with semantically similar inputs is known as test-time augmentations (Shanmugam et al., 2021; Moshkov et al., 2020; Ayhan and Berens, 2018; Krizhevsky et al., 2012) and was found to be effective for improving estimates of predictions, robustness and uncertainty in various tasks such as image classification, segmentation.

TrEn-k is inspired from test-time augmentations. We prompt the model with $k+1$ semantically equivalent questions and elicit a single response under the assumption that the model implicitly ensembles across different questions. TTA is a variant on TrEn that forces the model to pay attention to all the translations (inputs).

Since the augmented questions look different, we may simply present all the (semantically equivalent) questions in one prompt and request an answer. The prompting is such that the answer needs to tally with all the presented questions, so we assume the model implicitly ensembles responses. We discuss two baselines in the spirit of input ensembling.

Ensembling in prompt. We introduce an ablation called **Translation Ensemble (TrEn-k)** where we present the original question along with k translations and then prompt for the answer. An example is shown in Figure 5 (a). In the appended translations, we ensure that we do not sample from the same script as the source. For example, if we are prompting a German-sourced question in Hindi, we do not sample translations from Hindi language or Latin script. Thereby, improvements with TrEn cannot be simply due to accidental injection of source question as a hint, which may influence the answer. We report results for three values of k : 1, 3, 5.

378	Answer the following questions. Your answer must be	379	Answer the following questions. You must first translate
379	in the same language as the first line of the question.	380	the question into one random language and then answer
380		381	it in the original language.
381	Q: What is Mahatma Gandhi's national affiliation?	382	Q: What is Mahatma Gandhi's national affiliation?
382	महात्मा गांधी की राष्ट्रीय संबद्धता क्या है?	383	Translated question: महात्मा गांधी की राष्ट्रीय संबद्धता क्या है?
383	A: India	384	A: India
384	...	385	...
385	Q: வகோந்தா கீல்டன் இன் தொழில் என்ன? எக்ரை கிள்க்ஸ் கா பேசா க்யா ஹி?	386	Q: வகோந்தா கீல்டன் இன் தொழில் என்ன? எக்ரை கிள்க்ஸ் கா பேசா க்யா ஹி?
386	A:	387	Translated question:
387		388	A:

(a) Translation Ensemble (TrEn) with k=1.

(b) Translate then Answer (TTA) with k=1.

Figure 5: Prompt templates for two input ensembling approaches. k is the number of translations presented or generated. Please refer Section 4.1.2.

Ensembling through generation. A model could ignore the multiple translations of TrEn-k and simply answer the first question. We can better influence the model if we redefine the task to generate translations first and then answer. We refer to the approach as **Translate-then-Answer (TTA)**. We further label the approach with TTA-k when we require the model to generate k translations before answering. Figure 5 (b) illustrates TTA-k for k=1. We report results for two values of k: 1, 3.

Results. We skip reporting results on MMLU (with mixup) in this section because each question in the dataset contains mixed-up language. As a result, the dataset is not suitable for monolingual translations of our ablations. Instead, we report results on Multiloko dataset in Appendix H. The dataset is described in Appendix E. Trend in our results from Table 1 generalized well to the dataset.

Unlike Section 4.1.2, our ablations TrEn and TTA yield only one response, therefore we can directly evaluate for correctness and quantify transfer using transfer scores as defined in Goldman et al. (2025). The score is defined as below.

$$A_{q,l} \triangleq \text{event that a question } q \text{ is correctly answered in both Source and Target language: } l$$

$$\text{transfer-score} \triangleq \mathbb{E}_{q,l}[A_{q,l}]$$

Higher values of the score indicate better overall performance and transfer. The score is 100 only if Source and Target accuracy are perfect, therefore sub-perfect score need not indicate high cross-lingual gap. In Table 1, we show the transfer score for our ablations on various models.

We observe from Table 1: (1) a consistent improvement in transfer scores from TrEn-1 to TrEn-5. (2) As expected, TTA-1 performs even better and has consistently good transfer scores with no consistent improvement from TTA-1 to TTA-3. TTA is not effective on some models like GPT-5-mini and Deepseek because they failed to follow the instruction.

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek	Gem-3-27B
Baseline	30.7	37.2	19.1	35.4	18.0	9.6
TrEn-1	32.8	39.2	23.4	37.6	19.9	10.3
TrEn-3	33.7	40.7	24.2	38.0	19.5	10.7
TrEn-5	36.0	40.6	22.6	39.3	18.8	11.5
TTA-1	37.8	49.3	22.3	49.1	25.1	14.9
TTA-3	40.6	48.7	26.0	46.6	23.6	11.4

Table 1: Source-Target transfer scores for ECLeKTic. Higher score indicate better Source-Target transfer and better overall performance. TTA-1 (highlighted) has consistently good performance. Please refer Section 4.1.2. See Table 7 of Appendix for individual Source-Target accuracies.

4.2 VARIANCE IN SOURCE DETERMINES VARIANCE IN TARGET AND CROSS-LINGUAL GAPS

We plot source-target agreement with increase confidence in source for ECLeKTic, MMLU (with mixup) in this section. In Appendix F, we empirically validate that increased source confidence leads to increased target confidence. Confidence is the probability of mode as defined in Section 2.2 and Proposition 3: $\Pr(y_s^{\text{mode}})$. We estimate the confidence in practice as the relative frequency of the mode (from ten responses).

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258<br

486 6 DISCUSSION 487

488 We closely analyzed the causes of performance gaps in LLMs on knowledge-intensive tasks. Much
489 of the past work hypothesized that knowledge in parameters is localized to specific languages to
490 explain the cross-lingual gap. We demonstrated that parametric knowledge gaps are either absent
491 or non-dominant in LLMs. Because we can often retrieve the correct answer in any language by
492 simply ensembling multiple responses or guiding the model to do so. Instead, we hypothesized that
493 the gaps are due to increased response variance in target setting. We validated our hypothesis through
494 multiple targeted ablations. In all, we argue that increased variance in target rather than parametric-
495 knowledge fragmentation as the dominant cause of the cross-lingual gap. We hope that an improved
496 understanding of the causes can help in guiding the mitigation efforts. We recommend fixing the
497 gaps through post-training since fragmentation of parametric-knowledge is not the dominant cause.
498

499 **Future Work and limitations.** (1) We championed some inference-time mitigation strategies that
500 are simple and effective, and leave mitigation through training approaches for future work. (2) Our
501 insights may also explain cross-modal (for e.g., performance disparity between text as input vs audio
502 as input) gaps. We leave such generalizations for future work. (3) Our analysis may only apply to
503 the languages covered by our datasets and to languages sufficiently well-represented in the training
504 data, and will surely not apply to unseen (by LLM) languages. (4) We demonstrated that variance
505 of responses increases in target but it is unclear what led to it (Appendix A). Is increased variance in
506 target a coping mechanism of LLMs to keep perplexity loss from exploding due to cross-language
507 factual inconsistencies in pretraining data? We leave such analysis also for future work.
508

509 REFERENCES 510

- 511 J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
512 S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, et al. Gpt-4
513 technical report, 2024.
- 514 V. AI, 2025. URL <https://cloud.google.com/vertex-ai>.
- 515 M. S. Ayhan and P. Berens. Test-time data augmentation for estimation of heteroscedastic aleatoric
516 uncertainty in deep neural networks. In *Medical Imaging with Deep Learning*, 2018.
- 517 S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adap-
518 tation. *Advances in neural information processing systems*, 19, 2006.
- 519 C. Blum, K. Filippova, A. Yuan, A. Ghandeharioun, J. Zimmert, F. Zhang, J. Hoffmann, T. Linzen,
520 M. Wattenberg, L. Dixon, et al. Beyond the rosetta stone: Unification forces in generalization
521 dynamics. *arXiv preprint arXiv:2508.11017*, 2025.
- 522 J. Brinkmann, C. Wendler, C. Bartelt, and A. Mueller. Large language models share represen-
523 tations of latent grammatical concepts across typologically diverse languages. *arXiv preprint*
524 *arXiv:2501.06346*, 2025.
- 525 L. Chua, B. Ghazi, Y. Huang, P. Kamath, R. Kumar, P. Manurangsi, A. Sinha, C. Xie, and C. Zhang.
526 Crosslingual capabilities and knowledge barriers in multilingual large language models. *arXiv*
527 *preprint arXiv:2406.16135*, 2024a.
- 528 L. Chua, B. Ghazi, Y. Huang, P. Kamath, R. Kumar, P. Manurangsi, A. Sinha, C. Xie, and C. Zhang.
529 Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models. *arXiv*
530 *preprint arXiv:2406.16135*, 2024b.
- 531 G. Comanici, E. Bieber, M. Schaeckermann, I. Pasupat, N. Sachdeva, I. Dhillon, M. Blistein, O. Ram,
532 D. Zhang, E. Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodal-
533 ity, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.
- 534 Deepseek. deepseek-ai/DeepSeek-V3-0324 · Hugging Face — huggingface.co. <https://huggingface.co/deepseek-ai/DeepSeek-V3-0324>, 2025. [Accessed 24-09-2025].
- 535 C. Dumas, V. Veselovsky, G. Monea, R. West, and C. Wendler. How do llamas process multilingual
536 text? a latent exploration through activation patching. In *ICML 2024 Workshop on Mechanistic*
537 *Interpretability*, 2024.

-
- 540 J. Ferrando, O. Obeso, S. Rajamanoharan, and N. Nanda. Do i know this entity? knowledge aware-
541 ness and hallucinations in language models. *arXiv preprint arXiv:2411.14257*, 2024.
542
- 543 C. Fierro, N. Foroutan, D. Elliott, and A. Søgaard. How do multilingual language models remember
544 facts? *arXiv preprint arXiv:2410.14387*, 2024.
545
- 546 Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and V. Lem-
547 pitsky. Domain-adversarial training of neural networks. *Journal of machine learning research*,
548 17(59):1–35, 2016.
549
- 550 Gemini. Where you can use the Gemini web app - Gemini Apps Help — support.google.com.
551 <https://support.google.com/gemini/answer/13575153>, 2025. [Accessed 20-
551 09-2025].
552
- 553 Gemma. Gemma 3 model card | Google AI for Developers — ai.google.dev. https://ai.google.dev/gemma/docs/core/model_card_3, 2025. [Accessed 20-09-2025].
554
- 555 O. Goldman, U. Shaham, D. Malkin, S. Eiger, A. Hassidim, Y. Matias, J. Maynez, A. M. Gilady,
556 J. Riesa, S. Rijhwani, et al. Eclectic: a novel challenge set for evaluation of cross-lingual knowl-
557 edge transfer. *arXiv preprint arXiv:2502.21228*, 2025.
558
- 559 GPT. GPT-5 System Card — openai.com. <https://openai.com/index/gpt-5-system-card/>, 2025. [Accessed 20-09-2025].
560
- 561 D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang,
562 X. Yu, Y. Wu, Z. F. Wu, et al. Deepseek-r1: Incentivizing reasoning capability in llms via rein-
563 forcement learning, 2025.
564
- 565 T. Hastie. Trees bagging random forests and boosting. *Standford: Stanford University*, 2003.
566
- 567 D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
568 massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
569
- 570 D. Hupkes and N. Bogoychev. Multiloko: a multilingual local knowledge benchmark for llms
571 spanning 31 languages. *arXiv preprint arXiv:2504.10356*, 2025.
572
- 573 A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry, A. Beutel,
574 A. Carney, A. Iftimie, A. Karpenko, et al. Openai o1 system card, 2024.
575
- 576 Z. Jiang, A. Anastasopoulos, J. Araki, H. Ding, and G. Neubig. X-factr: Multilingual factual knowl-
577 edge retrieval from pretrained language models. *arXiv preprint arXiv:2010.06189*, 2020.
578
- 579 N. Kassner, P. Dufter, and H. Schütze. Multilingual lama: Investigating knowledge in multilingual
580 pretrained language models. *arXiv preprint arXiv:2102.00894*, 2021.
581
- 582 M. Kimura. Understanding test-time augmentation. In *International Conference on Neural Infor-*
583 *mation Processing*, pages 558–569. Springer, 2021.
584
- 585 W. M. Kouw and M. Loog. A review of domain adaptation without target labels. *IEEE transactions*
586 *on pattern analysis and machine intelligence*, 43(3):766–785, 2019.
587
- 588 A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
589 neural networks. *Advances in neural information processing systems*, 25, 2012.
590
- 591 D. Liu and J. Niehues. Middle-layer representation alignment for cross-lingual transfer in fine-tuned
592 llms. *arXiv preprint arXiv:2502.14830*, 2025.
593
- 594 M. Lu, R. Zhang, C. Eickhoff, and E. Pavlick. Paths not taken: Understanding and mending the
595 multilingual factual recall pipeline. *arXiv preprint arXiv:2505.20546*, 2025.
596
- 597 K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in gpt.
598 *Advances in neural information processing systems*, 35:17359–17372, 2022.
599

-
- 594 N. Moshkov, B. Mathe, A. Kertesz-Farkas, R. Hollandi, and P. Horvath. Test-time augmentation
595 for deep learning-based cell segmentation on microscopy images. *Scientific reports*, 10(1):5068,
596 2020.
- 597 J. Qi, R. Fernández, and A. Bisazza. Cross-lingual consistency of factual knowledge in multilingual
598 language models. *arXiv preprint arXiv:2310.10378*, 2023.
- 600 L. Ranaldi, G. Pucci, and A. Freitas. Empowering cross-lingual abilities of instruction-tuned large
601 language models by translation-following demonstrations. *arXiv preprint arXiv:2308.14186*,
602 2023.
- 603 A. Schäfer, S. Ravfogel, T. Hofmann, T. Pimentel, and I. Schlag. The role of language imbalance
604 in cross-lingual generalisation: Insights from cloned language experiments. *arXiv preprint
605 arXiv:2404.07982*, 2024.
- 607 D. Shanmugam, D. Blalock, G. Balakrishnan, and J. Guttag. Better aggregation in test-time aug-
608 mentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages
609 1214–1223, 2021.
- 610 G. Vertex AI. Get text embeddings | Generative AI on Vertex AI | Google Cloud
611 — cloud.google.com. [https://cloud.google.com/vertex-ai/generative-ai/
612 docs/embeddings/get-text-embeddings#supported-models](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings#supported-models), 2024. [Accessed
613 23-09-2025].
- 615 M. Wang, H. Adel, L. Lange, Y. Liu, E. Nie, J. Strötgen, and H. Schütze. Lost in multilinguality:
616 Dissecting cross-lingual factual inconsistency in transformer language models. *arXiv preprint
617 arXiv:2504.04264*, 2025.
- 618 W. Wang, M. Wu, B. Haddow, and A. Birch. Bridging the language gaps in large language models
619 with inference-time cross-lingual intervention. *arXiv preprint arXiv:2410.12462*, 2024a.
- 621 Y. Wang, F. Wang, J. Dong, and H. Luo. Cl2cm: Improving cross-lingual cross-modal retrieval via
622 cross-lingual knowledge transfer. In *Proceedings of the AAAI Conference on Artificial Intelli-
623 gence*, volume 38, pages 5651–5659, 2024b.
- 624 M. Yuksekgonul, V. Chandrasekaran, E. Jones, S. Gunasekar, R. Naik, H. Palangi, E. Kamar, and
625 B. Nushi. Attention satisfies: A constraint-satisfaction lens on factual errors of language models.
626 *arXiv preprint arXiv:2309.15098*, 2023.
- 627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Rethinking Cross-Lingual Gaps from a Statistical Viewpoint (Appendix)

A WHAT DETERMINES THE VARIANCE OF RESPONSES?

The main paper argued that cross-lingual gaps are due to high variance in source, which also determines the variance in target. The factors contributing to variance in source are unclear. We present some additional related insights in this section.

Entities are a hot-spot of cross-lingual gaps. Figure 7 presents the results on ECLeKTic along with an illustration of our source borrowed entities in target (SBET) transformation. SBET bridged 60-70% of the cross-lingual gaps to the extent that the gaps between source and SBET are statistically insignificant ($p=0.05$).

Figure 7: Illustration of Source Borrowed Entities in Target (SBET) and its performance. SBET transformation recovers 60%-70% of the cross-lingual drop suffered by Gemini 2.0 models when generalizing from Source to Target languages in ECLeKTic. Refer Section A for more details.

(Multilingual) Popularity of Entities is uncorrelated with multilingual accuracy. We may observe from SBET’s effectiveness that the transfer of non-entity tokens is not a serious concern. It further demonstrated that entities are a hot-spot of cross-lingual factuality gaps. But it is unclear why entities in a target language are under-recognized irrespective of their mention statistics in the pretraining data. Take an example question from Hindi-sourced ECLeKTic: *Which body part of the Goddess fell at Pavagadh?* is correctly answered in almost every language even though the key entity “Pavagadh” is not mentioned in languages other than Hindi, English and Korean on the web. Therefore, entities are still recognized in foreign languages even though the exact surface form was never seen before. We also illustrate the poor correlation quantitatively on ECLeKTic in the right figure. We show the number of (target) languages an entity is mentioned (on the web) and the number of languages correctly answered on the vertical axis; we only considered languages with varying scripts for the analysis: *hi, zh, ko, ja, he, en*. If not their multilingual multiplicity in pretraining data, what then determines confidence in source? Is knowledge consistency or duplication important?

B ENSEMBLING WITH A SINGLE LLM

Our experiments in Section 4.1 prompted a single LLM multiple times and then ensemble the responses. Can we simply set the temperature to 0 for even more controlled variance? To verify the same, we repeated the ensembling experiment with Gemini-2.5-Flash with temperature set to 0 or 1 (the default temperature).

The results are shown in Figure 8. From the Figure we observe strange artifacts when setting the temperature to zero. Ensembling at temperature 0 is worse than ensembling at temperature 1, which

702
703
704
705
706
707
708
709
710
711 Figure 8: Replicating Figure 11 results with temperature 0 and 1 with Gemini-2.5-Flash. We ob-
712 served setting temp=0 is not the same as ensembling at temp=1. Model behavior is altered with zero
713 temperature. See Section B for more details.
714
715

716 is surprising. We get much better variance reduction when ensembling with default temperature
717 than when the temperature is set to 0, observe that best MAE in left and right plots is 10.6 and 8.8
718 respectively.

719 It is unclear why we obtained better target accuracy when ensembling at non-zero temperature: 70%
720 (at non-zero temperature) vs 65% (at zero temperature). We also note that the source accuracy is
721 much higher when the temperature is set to zero likely because we are under-representing the
722 variance in source responses. Also, setting temperature to 0 may internally be mapped to an unknown
723 non-zero temperature. For instance, Deepseek-V3 maps temperature 0 to 0.3 (Deepseek, 2025).

724 We used the default temperature for all our experiments to avoid confounding our results with tem-
725 perature related artifacts.
726

727 C HOW DID WE OBTAIN EMBEDDINGS OF RESPONSES?

728 For generating response embeddings we utilize the *text-multilingual-embedding-002* (Vertex AI,
729 2024) API from the Vertex-AI platform. We generate embeddings for all the 10 responses for each
730 question-language pair. Following that, we perform PCA analysis on the generated embeddings for
731 a particular question ID for all languages. We found that often the first 2 PCA components were
732 heavily influenced by the language script so we chose to plot 3rd and 4th component to convey
733 semantic similarity. Finally we use kernel density plots with 5 levels to visualize the distribution of
734 source and target language responses.
735

736 D PROOFS

737 D.1 PROOF OF PROPOSITION 1

738 We restate the proposition for better clarity.
739

740 When the knowledge did not transfer, the probability of shared response between source and target
741 language decreases with decreased variance.
742

743 **Proof. Proof sketch.** (1) We derive upper bound on the probability of shared response. (2) Then
744 show that both the bound decreases with decreasing response variance thereby proving the statement.
745

746 **Upper bound.** We will derive the following upper bound on the probability of shared response.
747

$$\begin{aligned}
 \Pr(\hat{y}_s = \hat{y}_t) &\leq \Phi\left(\frac{\mu_0^s - \mu_1^s}{\sqrt{2(\sigma_s^2 + 2)}}\right) \left\{1 - \Phi\left(\frac{\mu_0^b - \mu_1^b}{\sqrt{2(\sigma_t^2 + 2)}}\right)\right\} \\
 &\quad + \left\{1 - \Phi\left(\frac{\mu_0^s - \mu_1^s}{\sqrt{2(\sigma_s^2 + 2)}}\right)\right\} \Phi\left(\frac{\mu_0^b - \mu_1^b}{\sqrt{2(\sigma_t^2 + 2)}}\right).
 \end{aligned}$$

756 Where μ_0^s, μ_1^s are two top values of $\vec{\mu}_s$ and likewise for $\vec{\mu}_t$. Φ is the normal CDF, and m is the size
757 of response space.

758 If we have two categorical distributions parameterized by \vec{p}, \vec{q} , the probability that samples from
759 each distribution overlap can be computed by enumerating over the support of the distribution as
760 shown below.

762 $y_p \sim \text{Cat}(\vec{p}), y_q \sim \text{Cat}(\vec{q}).$
763 $\Pr(y_p = y_q) = \sum_k \vec{p}[k] \times \vec{q}[k] = \langle \vec{p}, \vec{q} \rangle.$ (1)
764
765

766 Assume $\vec{p} \neq \vec{q}$ and denote by p_a, p_b the top two values of \vec{p} , q_c, q_d the top two values of
767 \vec{q} for indices a, b, c, d . The two top values of the expression 1 are $\max(p_a * q_a, p_c * q_c)$,
768 $\max(p_b * q_b, p_d * q_d, \min(p_a * q_a, p_c * q_c))$ since $p_a \geq p_b \geq p_{\{k \setminus a, b\}}$ and $q_c \geq q_d \geq q_{\{k \setminus c, d\}}$.
769 Without loss of generality, let $p_a q_a = \max(p_a q_a, p_c q_c)$. So, the two top values of the sum are
770 $p_a q_a, \max(p_b q_b, p_d q_d, p_c q_c)$. The second highest value takes greatest value: $p_b q_c$ when $b=c$ since
771 $p_b \geq p_{\{k \setminus a, b\}}$ and $q_c \geq q_b$. If all the probabilities are further concentrated at the two top-values, we
772 get the following upper bound on the probability of shared response.

773 $\Pr(y_p = y_q) = \langle \vec{p}, \vec{q} \rangle \leq \frac{p_a q_a + p_c q_c}{(p_a + p_c)(q_a + q_c)}$ (2)
774
775

776 For the problem in hand, we are bounding probability of shared responses when sampling from
777 distributions parameterized by $\vec{\mu}_s, \vec{\mu}_b$ respectively as below.

779 $\vec{\epsilon} \sim \mathcal{N}(\mathbf{0}, I)$
780 $\vec{g} \sim \mathcal{G}(0, 1)$ Gumbel distribution
781 $y_s \sim \arg \max \{ \vec{\mu}_s + \sigma_s \vec{\epsilon} + \vec{g} \}$
782 $y_b \sim \arg \max \{ \vec{\mu}_b + \sigma_b \vec{\epsilon} + \vec{g} \}$
783

784 Since we are interested in an upper bound on the probability and since probability of sharing in-
785 creases with variance as $\vec{\mu}_s \neq \vec{\mu}_b$, we approximate Gumbel random variable with a random variable
786 with even higher variance. Variance of $\mathcal{G}(0, 1) = \pi^2/6 \approx 1.6$, is approximated with $\mathcal{N}(0, 2)$.
787

788 $y'_s \sim \arg \max \{ \vec{\mu}_s + \sigma_s \vec{\epsilon} + \sqrt{2} \vec{\epsilon} \}$
789 $y'_b \sim \arg \max \{ \vec{\mu}_b + \sigma_b \vec{\epsilon} + \sqrt{2} \vec{\epsilon} \}$
790 $\Pr(y_s = y_b) \leq \Pr(y'_s = y'_b)$ (3)
791
792

793 We have from Inequality 2 that we obtain an upper bound when we put all the mass of each distri-
794 bution at their two highest density values and if the second highest density of one matches with the
795 highest density of the other. We denote the two highest values of $\vec{\mu}_s$ with μ_0^s, μ_1^s and likewise for $\vec{\mu}_b$:
796 μ_0^b, μ_1^b in that order are the two highest values. The probability of the two levels: μ_0^s, μ_1^s is as below.
797

798 $\Pr(y_s = 0) = \Phi\left(\frac{\mu_0^s - \mu_1^s}{\sqrt{2(\sigma_s^2 + 2)}}\right)$
799
800 $\Pr(y_b = 0) = 1 - \Phi\left(\frac{\mu_0^b - \mu_1^b}{\sqrt{2(\sigma_b^2 + 2)}}\right)$
801
802

803 Plugging these values into the inequality 2, we get the upper bound.
804

805 **Upper bound decreases with reduced response variance.** The upper bound is of the form: $p_1(1 -$
806 $p_2) + p_2(1 - p_1)$ where $p_1 = \Phi((\mu_0^s - \mu_1^s)/\sqrt{2(\sigma_s^2 + 2)})$ and similarly for p_2 . We observe that
807 $p_1 > 0.5, p_2 > 0.5$ since $\mu_0^s > \mu_1^s$ and $\mu_0^b > \mu_1^b$. When response variance is reduced, both p_1 and
808 p_2 increase but the bound decreases because $\partial p_1(1 - p_2) + p_2(1 - p_1)/\partial p_1 = 1 - 2p_1 < 0$.
809

□

810 D.2 PROOF OF PROPOSITION 2
 811

812 We copy the statement of the proposition here for clarity.
 813

814 When the target responses are unbiased, the probability of shared response between source and target
 815 language increases with decreased variance.
 816

817 *Proof. Proof sketch.* (1) We derive an upper and lower bound on the probability of shared response,
 818 (2) we then show that both the bounds increase with reduced variance thereby proving the statement.
 819

Upper bound on probability of shared response.

820 When the target responses are unbiased, we first show that the probability of shared response be-
 821 tween source and target language has the following upper bound.
 822

$$823 \Pr(\hat{y}_s = \hat{y}_t) \leq m \times \left\{ \Phi\left(\frac{\mu_0^s - \mu_0'^s}{\sqrt{2(\sigma_s^2 + 1)}}\right) \right\}^{m-1} \left\{ \Phi\left(\frac{\mu_0^s - \mu_0'^s}{\tau\sqrt{2(\eta\sigma_s^2 + 1)}}\right) \right\}^{m-1}$$

825 Where $\mu_0^s = \max \vec{\mu}_s$, $\mu_0'^s = \min \vec{\mu}_s$, Φ is the normal CDF, and m is the size of response space.
 826

827 Recall that the cardinality of the response space is m . The probability of shared response between
 828 two distributions when enumerated over the response space is as below.
 829

$$830 \vec{\epsilon} \sim \mathcal{N}(\mathbf{0}, I); \quad \vec{g} \sim \mathcal{G}(0, 1) \\ 831 y_s \sim \arg \max \{ \vec{\mu}_s + \sigma_s \vec{\epsilon} + \vec{g} \} \\ 832 y_t \sim \arg \max \{ \vec{\mu}_s + \sigma_t \vec{\epsilon} + \vec{g} \} \quad (4)$$

$$833 \Pr(y_s = y_t) = \sum_{k=1}^m \Pr(y_s = k \mid \vec{\mu}_s, \sigma_s^2 I) \Pr(y_t = k \mid \vec{\mu}_s, \sigma_t^2 I).$$

836 Since the mean of two distributions are matching, the probability of shared response is maximized
 837 when the variance is low. To obtain an upper bound on the shared probability, we approximate the
 838 Gumbel distribution with variance $\pi^2/6 \approx 1.6$ with $\mathcal{N}(0, 1)$. Therefore, we compute the bounds
 839 using samples from $\mathcal{N}(\vec{\mu}_s, \sigma_s^2 + 1)$ and $\mathcal{N}(\vec{\mu}_s, \sigma_t^2 + 1)$.
 840

841 The probability of sampling k from the sampling distribution: $\arg \max \vec{\mu} + \sigma \vec{\epsilon}$ is the probability that
 842 $\mu_k + \sigma \epsilon_k$ is greater than any other value: $\mu_i + \sigma \epsilon_i, i \neq k$, which is $\prod_{i \neq k} \left\{ \Phi\left(\frac{\mu_k - \mu_i}{\sqrt{2}\sigma}\right) \right\}$.
 843

With little more working we can derive the claimed statement as summarized below.

$$844 \vec{\epsilon} \sim \mathcal{N}(\mathbf{0}, I) \\ 845 y'_s \sim \arg \max \{ \vec{\mu}_s + \sigma_s \vec{\epsilon} + \vec{\epsilon} \} \\ 846 y'_t \sim \arg \max \{ \vec{\mu}_s + \sigma_t \vec{\epsilon} + \vec{\epsilon} \} \\ 847 \Pr(y_s = y_t) \leq \Pr(y'_s = y'_t) \\ 848 = \sum_k \prod_{i \neq k} \Phi\left\{ \frac{\mu_k - \mu_i}{\sqrt{2(\sigma_s^2 + 1)}} \right\} \Phi\left\{ \frac{\mu_k - \mu_i}{\tau\sqrt{2(\eta\sigma_s^2 + 1)}} \right\} \\ 849 \leq m \times \Phi\left\{ \frac{\mu_0^s - \mu_0'^s}{\sqrt{2(\sigma_s^2 + 1)}} \right\}^{m-1} \Phi\left\{ \frac{\mu_0^s - \mu_0'^s}{\tau\sqrt{2(\eta\sigma_s^2 + 1)}} \right\}^{m-1}$$

855 **Lower bound on probability of shared response.** We can derive the following lower bound by only
 856 considering the term where $k = \max \vec{\mu}_s$ in Equation 4. And observing that $\Phi\left(\frac{\mu_0^s - \mu_1^s}{\sigma}\right) \leq \Phi\left(\frac{\mu_0^s - \mu_0^s}{\sigma}\right)$.
 857

$$858 \Pr(\hat{y}_s = \hat{y}_t) \geq \left\{ \Phi\left(\frac{\mu_0^s - \mu_1^s}{\sqrt{2(\sigma_s^2 + 1)}}\right) \right\}^{m-1} \left\{ \Phi\left(\frac{\mu_0^s - \mu_1^s}{\tau\sqrt{2(\eta\sigma_s^2 + 1)}}\right) \right\}^{m-1}$$

862 **Both the bounds increase with reduced response variance.** We can see this easily by noting that
 863 reducing response variance increases all the Φ fractions (z-scores). Therefore, reducing response
 864 variance improves source-target agreement likelihood. \square

D.3 PROOF OF PROPOSITION 3

We copy the proposition statement here for reference.

$$\begin{aligned} \vec{z} &\sim \mathcal{N}(\vec{\mu}_s; \sigma_s^2 I), \quad \vec{z}' \sim \mathcal{N}(\vec{\mu}_s/\tau; \eta \sigma_s^2 I) \text{ when} \\ y_s &\sim \text{Categorical}(\text{softmax}(\vec{z})), \quad y_t \sim \text{Categorical}(\text{softmax}(\vec{z}')) \\ y_s^{mode} &= \arg \max_k \Pr(y_s = k), \quad y_t^{mode} \sim \arg \max_k \Pr(y_t = k) \end{aligned}$$

We have the following lower bound on the probability of the mode of responses sampled from source and target.

$$\Pr(y_s^{mode}) \geq \left\{ \Phi\left(\frac{\mu_0 - \mu_1}{\sqrt{2(\sigma_s^2 + 2)}}\right) \right\}^{m-1}; \quad \Pr(y_t^{mode}) \geq \left\{ \Phi\left(\frac{\mu_0 - \mu_1}{\tau \sqrt{2(\eta\sigma_s^2 + 2)}}\right) \right\}^{m-1}.$$

Where m is the size of the response space and μ_0, μ_1 are the top two values of $\vec{\mu}_s$

Proof. The sampling of both y_s, y_t can be alternately be described as below.

$$\begin{aligned}\vec{\epsilon} &\sim \mathcal{N}(\mathbf{0}, I) \\ \vec{g} &\sim \text{Gumbel}(0, 1) \\ y_s &\sim \arg \max \{\vec{\mu}_s + \sigma_s \vec{\epsilon} + \vec{g}\} \\ y_t &\sim \arg \max \{\vec{\mu}_s / \tau + \eta \sigma_s^2 \epsilon + \vec{g}\}\end{aligned}$$

As we are interested in a lower bound on the probability of the mode, we will approximate Gumbel noise with Gaussian noise with higher variance like in the proof of Proposition 1. Then we have: $y_s \sim \mathcal{N}(\mu_s, \sqrt{\sigma_s^2 + 2})$. The probability of mode then is the probability of drawing the highest logit: μ_0 .

$$\Pr(y_s^{mode}) = \prod_{i \neq 0} \Phi\left(\frac{\mu_0 - \mu_i}{\sqrt{2(\sigma_s^2 + 2)}}\right) \geq \left\{\Phi\left(\frac{\mu_0 - \mu_1}{\sqrt{2(\sigma_s^2 + 2)}}\right)\right\}^{m-1}.$$

The bound follows similarly for y_t^{mode} .

E DATASET DETAILS

ECLeKTic (Goldman et al., 2025) dataset constitutes factual questions from Wikipedia pages that exist only in single language. Single language Wikipedia pages are used as a proxy for content that is unavailable or unpopular in other languages. Therefore, the benchmark proposed to validate the cross-lingual knowledge transfer on questions translated from the original language. Questions that are in the same language as the passage that contained the fact in pretraining data define the *source* split. While the questions in any other language make up the *target* split. It contains around 5500 examples and spans 12 languages.

MMLU (with mixup) (Chua et al., 2024b) dataset alters MMLU (Hendrycks et al., 2020) to probe LLM’s language generalization. MMLU is a multiple choice dataset spanning multiple tasks. MMLU (with mixup) proposes to mixup the question by replacing the options with translations into random languages. Original questions make up the source split because examples with shared language for both question and options are likely in-distribution with pretraining. Likewise, questions with language mixed options make up the target split. We subsample around 2000 examples and this spans five languages. Figure 9 shows an example.

MultiLoKo (Hupkes and Bogoychev, 2025) is a recently released benchmark for multilingual evaluation of LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For our use-case we use the *dev-split* which is publicly available consisting of 250 questions per language along with human-authored translations.

918 **Languages:** ECLeKTic dataset spans twelve languages: German (de), Chinese (zh), Portuguese
 919 (pt), Spanish (es), Hindi (hi), Italian (it), Indonesian (id), Hebrew (he), Japanese (ja), French (fr),
 920 English (en), and Korean (ko). MMLU (with mixup), on the other hand, covers five languages:
 921 English (en), French (fr), German (de), Spanish (es), and Italian (it).

923 F VARIANCE IN SOURCE DETERMINES THE VARIANCE IN TARGET

925 In this section, we present results that support the text in Section 4.2.

927 Figure 10 shows average confidence in target with that of source for both the datasets.

929 G RESULTS ON YEAR-ECLEKTIC

931 In Figure 11, we reproduce the results on Year-ECLeKTic from Section 4.1 and Figure 4. We
 932 observe similar but cleaner trend on Year-ECLeKTic of decreasing Mean Absolute Error (MAE)
 933 between the averaged source and target answers. We also observe that the target accuracy increased
 934 with ensemble size such that the source-target accuracy differences at the extreme right are statisti-
 935 cally insignificant for 3 of 4 models.

936 In Figure 12, we reproduce the results on Year-ECLeKTic from Section 4.2 and Figure 6. The
 937 figure more cleanly demonstrates the trend of increasing agreement between source and target as the
 938 confidence in source increases.

940 H RESULTS ON MULTILOKO

942 We also evaluate our Input Ensembling strategies as mentioned in Section 4.1.2 on MultiLoKo
 943 dataset [Hupkes and Bogoychev \(2025\)](#). Since our evaluation strategy required multiple translations
 944 of the question in up to 5 languages, we decided to use only the English division of the MultiLoKo
 945 dataset as it contains translations in 30 languages, while for other languages translations are only
 946 available in English language which restricts their evaluation. As observed in Table 2, following the
 947 trend as seen on ECLeKTic dataset in Table 1, we observe improvements from TrEn-1 to TrEn-5.
 948 And TTA-3 gives the best performance for most models. We noticed that some of these artifacts
 949 can also be influenced due to the input system prompt given to a specific model, hence the noise in
 950 trends.

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek
Baseline	54.3	60.1	48.4	65.2	29.8
TrEn-1	55.5	62.7	51.4	68.7	32.8
TrEn-3	56.3	61.8	50.2	67.1	32.7
TrEn-5	60.0	63.3	49.4	68.5	33.3
TTA-1	57.2	68.2	48.8	70.6	25.8
TTA-3	59.4	68.7	49.0	73.0	16.3

951 Table 2: Source-Target transfer scores for MultiLoKo. Higher score indicate better Source-Target
 952 transfer and better overall performance. TTA-3 (highlighted) has consistently good performance.
 953 Deepseek did not fare well with TTA because it often misinterpreted the instruction. Refer Sec-
 954 tion H.

```
955 Source: What is the capital of France? (A) Paris (B) Rome (C) Berlin (D)  

  956 Madrid
  957
  958 Target (with mixup): What is the capital of France? (A) Paris (B) 로마 (C)  

  959 Berlin (D) マドリード (Options B and D translated to Korean and Japanese,  

  960 respectively)
```

961 Figure 9: An example from the MMLU (with mixup) dataset.

984
985 Figure 10: Empirical validation that high confidence in source leads to high confidence in target
986 (Proposition 3). Answer confidence is defined in Section 2.2. The figure supports Section 4.2 of
987 main text. Refer Section F for more details.

1003 Based on our analysis in Section 2.2, we expect improved cross-lingual gaps when source accuracy
1004 is improved through overfitting. To verify the same, we finetuned a DeepSeek-R1-0528-Qwen3-
1005 8B model for 200 epochs on the source split of Year-ECLeKTic. If we succeed on overfitting the
1006 source, we must have seen improvements in target accuracy as well although target split is not part
1007 of training.

1008 Results are shown in Figure 13. We see the predicted trend partially in the plot but we found it hard
1009 to make the model overfit on random facts from ECLeKTic. As a result, we do not have a conclusive
1010 evidence of the question we attempted to validate: *improving source alone also improves target?*

J POTENTIAL MECHANISMS OF TARGET VARIANCE.

1015 In Sections 2, 4.1, we argued with evidence that cross-lingual gaps are due to increased variance in
1016 target. In this section, we postulate underlying mechanisms that may lead to increased variance in
1017 target.

Figure 12: Reproducing results from Figure 6 on Year-ECLeKTic.

1026

1027

1028

1029

1030

1031

1032

1033

1034

Figure 13: Performance of DeepSeek model, observing improved source target agreement with increase in source accuracy. Refer Section I.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 13: Performance of DeepSeek model, observing improved source target agreement with increase in source accuracy. Refer Section I.

(a) According to Benjamin Mazar and Yohanah Aharoni, to which tribe did the city of Dor belong?
 (b) What was the name of the Uni-versity of Detroit's halfback in the 1929 football season?
 (c) Alongside which council does the Israeli Coastal Environment Preservation Committee operate?

(d) Who was the first Grand Com-mander of Eastern Wu?
 (e) Who designed the Olivetti DL typewriter?
 (f) What colors do the members of the Landsmannschaft Saxonia wear?

Figure 14: Additional results from Figure 1b on ECLeKTic.

Let \vec{r}_s, \vec{r}_t represent the representations of an example in source and target. The representations are expected to contain a language-agnostic and language-specific components, which we assume linearly compose the final representation, i.e., $\vec{r}_s = \vec{r} + \vec{r}_l, \vec{r}_t = \vec{r} + \vec{r}_{l'}, l \neq l'$. We use a linear model to inspire the effects of language component, thereby the response is $\vec{w}^T \vec{r}_s$ for a parameter vector \vec{w} . The source-target responses diverge due to the language component: $\vec{w}^T \vec{r}_t = \vec{w}^T \vec{r}_s + \vec{w}^T (\vec{r}_{l'} - \vec{r}_l)$. Therefore, the target response is source response with a residual term that is dependent on language divergence.

We further assume the parameter posterior for w as Gaussian that is parameterized as $\mathcal{N}(\vec{\mu}, \sigma^2 I)$. If the parameters are trained on sufficiently multilingual data, we may expect the mean to be orthogonal to the span of language variation $\vec{\mu}^T (\vec{r}_l - \vec{r}_{l'}) = 0 \quad \forall l, l'$. Finally with some working, the response distribution in source is $\mathcal{N}(\vec{\mu}^T \vec{r}_s, \sigma^2 \|\vec{r}_s\|^2)$ and target is $\mathcal{N}(\vec{\mu}^T \vec{r}_s, \sigma^2 \|\vec{r}_s\|^2 + \sigma^2 \|\vec{r}_l - \vec{r}_{l'}\|^2)$. Therefore, an additional noise in out-of-distribution target emerged due to language component of representations.

K DO OUR INSIGHTS FROM SECTION 4.1 HOLD FOR ANY LANGUAGES?

In this section, we investigate if our analysis and insights hold at a finer level of cross-lingual transfer: high-to-low resource and vice-versa. We picked two languages from ECLeKTic: en, zh as high-resource and two other languages: he, id as low-resource. We followed the statistics for Wikipedia pages mentioned at *WikiSources* to ascertain high and low resource languages..

Figure 15: Additional results from Figure 1c on ECLeKTic.

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

We replicate our main findings: Figure 4, Table 1 for all combinations of high and low resource languages. All the results are consistent with the analysis in Section 4.1 with the only difference on the evaluation subset used for aggregation. For instance, high→low analysis considers only the examples that originated in a high resource language: en or zh and being queried in a low resource language: he or id. Please refer to Figures 16, 17, 18, 19 and 20. and Tables 3, 4, 5 and 6.

Figure 16: Reproducing results from Figure 4 on ECLeKTic for Gemini 2.5 Flash.

Figure 17: Reproducing results from Figure 4 on ECLeKTic for Gemini 2.5 Pro.

1143 Figure 18: Reproducing results from Figure 4 on ECLeKTic for GPT-5 mini.

1156 Figure 19: Reproducing results from Figure 4 on ECLeKTic for GPT-5.

L DO OUR INSIGHTS FROM SECTION 4.2 HOLD AT A FINER LEVEL OF CROSS-LINGUAL TRANSFER?

In this section we further experiment and solidify our findings from Section 4.2. We plot trend of source-target agreement with source confidence for 4 combinations with source and target language either being high resource or low resource. Here we use the full-set of ECLeKTic dataset and identified English, German, French, Spanish, Chinese and Italian as high resource languages and Portuguese, Japanese, Korean, Hebrew, Hindi and Indonesian as low resource languages. Our findings confirm that the trend still holds for different sets of language pairs. Please refer Figure 21.

M MISCELLANEOUS

M.1 RESPONSE MATCHING PROMPT

Please find the full prompt used for matching strings potentially different languages in `response_matching_prompt.txt` in supplementary material.

M.2 RESPONSE SUMMARIZER PROMPT

Please find the full prompt used for summarizing a list of strings into their unique values and counts in `response_summarizer_prompt.txt` in supplementary material.

1188 Figure 20: Reproducing results from Figure 4 on ECLeKTic for DeepSeek.

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek	Gem-3-27B
Baseline	38.7	43.7	28.6	45.3	23.4	13.0
TrEn-1	44.2	51.9	31.2	48.3	34.1	15.6
TrEn-3	42.0	52.4	32.5	49.7	27.3	14.3
TrEn-5	48.1	51.5	35.1	50.9	30.7	15.6
TTA-1	43.7	51.1	34.2	61.0	38.5	20.3
TTA-3	55.4	49.4	35.1	61.7	31.2	17.7

Table 3: Source-Target transfer scores for ECLeKTic for High resource language to Low resource language.

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek	Gem-3-27B
Baseline	39.9	46.8	28.6	45.8	27.3	14.3
TrEn-1	42.9	51.9	29.9	48.0	25.6	14.3
TrEn-3	42.9	50.6	32.5	50.9	32.6	15.6
TrEn-5	51.9	54.5	36.4	50.9	27.9	18.2
TTA-1	40.3	49.4	36.4	63.4	37.7	18.2
TTA-3	53.2	48.1	37.7	60.0	28.6	15.6

Table 4: Source-Target transfer scores for ECLeKTic for High resource language to High resource language.

M.3 AUTOCHECKER PROMPT

Please find the full prompt used for autochecking if a response matched the reference in `autochecker_prompt.txt` attached in supplementary material. The provided autochecker prompt is for the response: *A: L'ordre de Santiago.* and reference: *ordre de santiago.*

M.4 CHI-SQUARED DISTANCE

$$\text{Chi-squared}(p, q) = \sum_{\substack{x \text{ s.t. } p(x) + q(x) > 0}} \frac{(p(x) - q(x))^2}{p(x) + q(x)}$$

M.5 PI ESTIMATION FOR MMLU (WITH MIXUP)

We provide additional details for Section 4.1.1. We estimate π for MMLU (with mixup) as one minus fraction of examples with best answer mismatch. We use a soft score for mismatch as described next. Imagine there are only two options with source response distribution estimated as p_0, p_1 and target as q_0, q_1 . The mismatch score for this examples is $|p_i - q_j|$ where i, j correspond to best responses in source and target respectively, i.e., $i = \arg \max p_k, j = \arg \max q_k$. Therefore π over the entire dataset is as below.

$$p_i^{(n)} = \arg \max p_k^{(n)}; q_j^{(n)} = \arg \max q_k^{(n)},$$

$$\pi = \frac{\sum_n |p_i^{(n)} - q_j^{(n)}|}{N}.$$

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek	Gem-3-27B
Baseline	28.7	36.6	20.2	38.5	13.1	8.5
TrEn-1	27.7	33.3	18.8	28.8	13.4	10.3
TrEn-3	29.1	36.6	22.1	30.6	13.7	11.3
TrEn-5	34.7	39.4	18.3	36.6	13.7	12.7
TTA-1	34.3	44.1	23.5	41.9	22.1	10.8
TTA-3	35.2	43.2	28.6	35.3	18.3	9.4

Table 5: Source-Target transfer scores for ECLeKTic for Low resource language to High resource language.

	G-2.5-Flash	G-2.5-Pro	GPT-5-mini	GPT-5	Deepseek	Gem-3-27B
Baseline	29.1	37.8	26.8	46.6	8.5	8.5
TrEn-1	20.7	23.2	14.6	26.4	10.2	8.5
TrEn-3	25.6	28.0	20.7	25.0	8.3	8.5
TrEn-5	26.8	36.6	14.6	31.0	12.5	11.0
TTA-1	31.7	40.2	28.0	41.7	22.0	7.3
TTA-3	32.9	39.0	37.8	35.0	15.9	6.1

Table 6: Source-Target transfer scores for ECLeKTic for Low resource language to Low resource language.

(a) High Resource Source Language, High Resource Target Language

(b) High Resource Source Language, Low Resource Target Language

(c) Low Resource Source Language, High Resource Target Language

(d) Low Resource Source Language, Low Resource Target Language

Figure 21: Additional results from Section 4.2 on Year-ECLeKTic.

M.6 WHY IS PI ESTIMATOR DIFFERENT IN ECLeKTIC VS MMLU (WITH MIXUP)

The π estimation procedure described in Section M.5 is a direct estimate for fraction of examples on which bias is likely dominant. But we could not easily adopt the estimate for ECLeKTic because our text embedding model used to embed responses is sensitive to language. Therefore, we see a large divergence in averaged target and source response embeddings just because they are in different languages.

In the interest of avoiding embedding-related artifacts in our estimate, we used the fraction of examples on which ensembling improved L2 distance as a proxy to estimate π on ECLeKTic. This is a valid estimate because as we show in Section 2, source-target divergence improves with number of examples only when the noise is unbiased, i.e., $\kappa = 1$.

1296
1297

M.7 ANALYSIS OF EXAMPLES WITH BIAS

1298
1299

In this section, we spot-check examples that are biased even after ensembling. We find that bias among the examples we checked is due to translation errors.

1300
1301
1302
1303
1304

In ECLeKTic dataset we observed translations errors such as in Figure 15(b) when the Chinese question was back translated into English, we observed that "Rock Basement" was translated as "Rock Cellar" which led to erroneous answers, confirmed upon passing "Rock Basement" in the question. Similarly in Figure 15(c) upon translating Japanese question back to English we find that the word "issued" is replaced by "published" leading to erroneous answers.

1305
1306
1307
1308
1309

Similarly, in the MMLU (with mixup) dataset, we observe for the statement-based questions, where the task is to identify if a set of statements are "Right" or "Wrong", often their translations in target languages when back translated to english can have varied meanings like "bad", which take away from the semantic meaning of the answer. On performing a spot-check we observed multiple instances of such statement-based questions.

1310
1311
1312

M.8 EXTENDED RESULTS

1313

Below we enumerate a more comprehensive evaluation from our Table 1.

1314
1315
1316
1317
1318

	G-2.5-Flash	G-2.5-Pro	GPT-5	Deepseek
Baseline	51.1 (1.4), 40.5 (0.4)	58.7 (4.3), 46.5 (1.3)	53.0 (1.4), 45.2 (0.4)	38.7 (4.4), 27.1 (1.2)
TrEn-5	52.4 (4.5), 44.7 (1.4)	57.1 (4.4), 50.9 (1.3)	52.4 (5.1), 47.8 (1.6)	36.3 (5.6), 30.0 (1.6)
TTA-1	56.8 (4.3), 47.1 (1.4)	66.1 (4.2), 57.5 (1.3)	66.2 (5.5), 55.0 (1.8)	45.6 (10.0), 27.0 (2.8)

1319
1320

Table 7: We show Source-Target accuracies for best ablations from Table 1. The format is Src acc (std dev), Tgt acc (tgt dev). Some models dropped for staying within margins.

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349