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Abstract

Architected materials that consist of multiple subelements arranged in particular1

orders can demonstrate a much broader range of properties than their constituent2

materials. However, the rational design of these materials generally relies on3

experts’ prior knowledge and requires painstaking effort. Here, we present a4

data efficient method for the multiproperty optimization of 3D-printed architected5

materials utilizing a machine learning (ML) cycle consisting of the finite element6

method (FEM) and 3D neural networks. Specifically, we applied our method7

to orthopedic implant design. Compared to expert designs, our experience-free8

method designed microscale heterogeneous architectures with a biocompatible9

elastic modulus and higher strength. Furthermore, inspired by the knowledge10

learned by the neural networks, we developed machine-human synergy, adapting11

the ML-designed architecture to fix a macroscale, irregularly shaped animal bone12

defect. Such adaptation exhibits 20% higher experimental load-bearing capacity13

than the expert design. Thus, our method opens a new paradigm for the fast and14

intelligent design of architected materials with tailored mechanical, physical, and15

chemical properties.16

1 Introduction17

Architected materials are one of the most widely adopted engineering materials. Due to their18

excellent mechanical performance and adaptable properties, architected materials are very popular in19

many fields, such as those of light-weight structures [1, 2, 3], acoustics [4], battery electrodes [5],20

electromagnetics [6], and tissue engineering [7, 8]. Moreover, recent progress in 3D printing has21

further enabled the customized and inexpensive fabrication of complex material geometries.22

Despite the broad applicability and immense potential of architected materials, designing them23

is particularly difficult. The traditional design method generally relies on numerical simulation,24

theoretical analysis, and topology optimization. These undertakings are usually exhausting and time-25

consuming, and the performance of resultant designs highly depends on the designer’s professional26

knowledge and their initial guesses [9, 10]. Recently, machine learning (ML) has merged as a27

promising technique to circumvent this problem and find the optimal solution without any prior28

knowledge requirements [11, 12, 13]. However, the proposed ML methods require massive amounts29

of simulation data and mainly aim to solve 2D-structure-related problems. Efforts toward solving 3D30

real-world problems are often obfuscated by the lack of credible data sources, the enormity of design31

space and multidimensional complex patterns. Moreover, real-world design problems usually require32

multiobjective property optimization under possible external constraints, yet the current ML methods33

mostly attempt to solve unconstrained single-objective optimization problems.34

Therefore, we propose an ML approach for data-efficient, multiobjective architected material design.35

As demonstrated in Fig. 1(A to D), our approach consists of three main parts: 1) generative architec-36
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ture design (GAD). In this step, GAD leverages the encoder-decoder neural network (autoencoder) to37

generate architecture sets with unknown properties. Until recently, experimental discovery of archi-38

tected materials has relied on simple surrogate models and Bayesian optimization, which are limited39

to low-dimensional data, thus showing property improvements only after many iterations [14]. Unlike40

the Bayesian methods, the autoencoder learns an effective representation of the high-dimensional41

data in an unsupervised manner, which converts the exploration in a high-dimensional design space42

into a lower one. This method has been proven to be a revolutionary technique in materials discovery43

[15, 16]. However, to the best of our knowledge, this is the first time that a 3D convolutional44

autoencoder(3D-CAE) has been applied to 3D structure generation with high dimensionality (for45

details see Section A.3). 2) Multi-objective Active Learning Loop (MALL). MALL evaluates the46

generated dataset and searches for the high-performance architecture by recursively querying the47

finite element method (FEM). Active learning describes a specialized ML algorithm that interactively48

queries an information source such that the algorithm identifies high-value data with fewer labeled49

data than typical ML [17, 18]. Such data efficiency is highly desirable since constructing a large50

dataset with known properties is very difficult both computationally and experimentally. 3) 3D51

printing and testing. Finally, we fabricate the ML-designed architected materials via a specialized 3D52

printing technique (laser powder bed fusion) and experimentally verify the corresponding mechanical53

properties. We call the overall method ’GAD-MALL’.54

Figure 1: An overview of the proposed workflow (GAD-MALL). (A) The neural network proposes
candidates with unknown properties. (B) The ML algorithm interactively queries the FEM to propose
new designs. (C) The 3D printing technique fabricates the proposed architectural design. (D) GAD-
MALL explores the design landscape of architected materials and discovers various high-performance
architected materials.

2 Results55

2.1 Multiobjective active learning algorithm56

We applied the GAD-MALL approach to a multiproperty optimization problem with clinical im-57

portance - bone grafting implants. Bone is a typical architected material primarily consisting of58

cortical and cancellous parts, with elastic modulus (E) ranging from 0.03 to 30 GPa depending on59

the bone mineral density and varying according to age, sex, and race [19]. Although bone can repair60

itself, a bone defect of a critical size necessitates a grafting implant to support the load and induce61

bone growth. Metals are the first choice for bone implant materials due to their excellent mechanical62

properties. However, the E of the existing metal bulk materials is much greater than that of the63

bones (i.e., titanium – 100 GPa; iron - 200 GPa, etc.), which results in the stress shielding effect and64

impedes the recovery of the bone [20]. One effective solution is introducing a 3D-printed scaffold65

architecture to lower the E. The geometrical shape and mechanical properties of the scaffold should66

be comparable to those of the individual defective bone to provide reliable structural support and67

smooth stress conduction. Fig. 2(A) demonstrates a typical mechanical response of the scaffold.68

The slope of the linear section of the curve indicates E, which measures a material’s ability to resist69

external stress before being deformed permanently, and the yield point with 0.2% strain represents70

the yield strength (Y), which quantifies the maximum resistance before the onset of nonreversible71

deformation. Overall, the design tasks are multiobjective: First, the E of the replacement scaffold72

must match that of the bone. Second, The Y must be as high as possible to sustain bone movement. In73
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addition, the overall weight of the scaffold should not go beyond a certain threshold since a minimum74

usage is always required considering long-term biosafety.75

A cubic scaffold and its 3D-printed experimental counterpart are shown in inlets of Fig. 2(A).76

To balance complexity and computing efficiency, we adopted the 3× 3× 3 cubic arrangement of77

the gyroid unit for the optimization task (see Methods for the structure generation). The gyroid78

geometry is categorized in the triply periodic minimal surfaces (TPMS) family - it is an ideal porous79

structure for bone scaffolds due to its high interconnectivity, smooth surface, and mathematically80

adjustable geometrical attributes [21, 22]. Instead of a uniform-sized array of periodic subunits (the81

expert design), the ML design introduced heterogeneity: GAD-MALL adjusts the size of the gyroid82

unit (porosity) within the scaffold, resulting in a geometrical alteration that modulates the overall83

mechanical properties.84

Fig. 2(B) shows the models of the 3D convolutional neural network (3D-CNN) for the E and Y85

prediction. The 3D-CNN was designated for volumetric data representation learning [23, 24]. It86

included three main components: input, convolution, and output layers. At the input layer, the87

scaffold structure was voxelized into 60×60×60 pixels. A pixel can be in either the solid (1) or void88

(0) phase in the scaffold. The convolution layers consisted of a series of 3D convolution kernels that89

extracted high-level information about the scaffold, and the output layer provided the final prediction.90

Finally, a training dataset was prepared using the protocol described in the Methods.91

Fig. 2(C) illustrates the 3D-CAE with a typical two-neural network model, an encoder and a decoder.92

Notably, the original 60× 60× 60 scaffold structure was not used because the decoder could not93

reliably recover the original gyroid geometry due to the nonzero reconstruction error. However,94

thanks to the high mathematical controllability of gyroid geometry, we circumvented this problem95

by adopting the porosity matrix, a 3D matrix representation (3×3×3) that uniquely determines the96

overall geometry through Gyroid equations (see Methods). It measures the relative density (positive97

scalars) rather than the actual shape of the gyroid subunits, thereby allowing nonzero reconstruction98

errors. The encoder qφ (z|x) with parameters φ compressed the porosity matrix into a hidden feature99

representation (8-dimension) using the neural encoder. Then the decoder qϕ(x|z)with parameters ϕ100

reconstructed the output from the 8-dimension hidden features. A lower-dimension (e.g., 4-dimension)101

latent space was shown to suffer from high reconstruction error, while a higher-dimension (e.g.,102

16-dimension) doubled the search space without a sufficient increase in reconstruction accuracy.103

Ultimately, 8-dimensional represented a balance between loss and efficiency (Section A.2 and Fig. 7).104

Fig. 2(D) shows the primary steps of the MALL workflow, which comprised three steps. First,105

the scaffold generation was formulated as a process of sampling and reconstruction from the latent106

representation z. The sampling process required the latent representation to be modeled as a con-107

tinuous probabilistic distribution (Section A.2). Secondly, the decoder qφ (x|z) reconstructed the108

porosity matrices from the sampled latent points, which were then converted to their original shapes109

in Cartesian space. The scaffold selection method was a variant of the epsilon-greedy search: in each110

sampling iteration, we sampled 2000 data points and selected those whose 3D-CNN-predicted E met111

the target and whose 3D-CNN-predicted Y exceeded the best data point in the current dataset, with a112

chance of epsilon (5%) chances that the lower ones were chosen. The selected data points would still113

be rejected if their weights were 15% higher than preset criteria. Such a search method generally had114

a higher success rate than the Edisonian approach, which hinged on a trial-and-error search [25]. Last,115

the FEM calculated the E and Y of the queried scaffolds, and the results would augment the dataset,116

from which the 3D-CNNs were re-trained for the following active learning round. The workflow117

stopped when all the preset criteria were met.118
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Figure 2: The workflow of multiobjective active learning. (A) The task was to design scaffolds
with a better mechanical response - fixed E and maximized Y. (B) The 3D-CNN models for predicting
E and Y. (C) The generative model for targeted scaffold generation. The encoder qφ (z|x) with
parameters φ took the scaffold porosity matrix as input and the decoder pθ (x|z) with parameters θ

could act as a generator for proposing new scaffolds based on the learned latent z representation. (D)
The MALL for the high-performance scaffold discovery. First, the sampling algorithm sampled new
data points from the latent z representation. Second, the decoder reconstructed the corresponding
scaffolds so that the 3D-CNNs could infer their mechanical properties. Third, the most suitable
candidates were selected based on the predicted E and Y. Finally, the strain-stress curves of the
selected scaffolds were calculated by the FEM. New data were either fed back to the dataset or
3D-printed for further experiments.

2.2 Applications to orthopedic implants119

The properties of the architected materials are determined by both the scaffold architecture and the120

constituent materials. For orthopedic implants, the orthopedic materials Ti6Al4V (Ti) and pure zinc121

(Zn) were used as the constituent materials. Ti alloy is bioinert in human bodies and has been the de122

facto choice for 3D-printed orthopedic implants, achieving successful clinical application to repairing123

bone defects. Biodegradable Zn provides an alternative option to bioinert materials and is regarded as124

promising for addressing the clinical concerns associated with permanent existence and secondary125

surgery [26]. Such features are especially desirable for bone regeneration. As both materials are126

worthy of investigation, to demonstrate the effectiveness and general applicability of the GAD-MALL127

framework, we designed two optimization tasks for both constituent materials and applied the learned128

design principle to the real bone replacement architecture. Specifically, the Ti alloy scaffolds were129

assigned a high E while the pure Zn scaffolds had a low E, indicating different clinical needs based130
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on the constituent materials. In addition, two tasks were given different initial data distributions to131

demonstrate that GAD-MALL can work under different initial conditions. Notably, all tasks were132

completed in one week with the current hardware setup, as tasks in the clinical scene are usually133

time-constrained. In the following section, we begin with the Ti cubic scaffolds.134

2.2.1 A data-efficient route toward high-performance structure135

To mimic the mechanical behavior of trabecular and compact bones, the task was to design high-Y136

scaffolds with E = 2500 MPa and 5000 MPa (E2500 and E5000). The expert-designed uniform137

scaffolds at E = 2500 MPa and 5000 MPa set the ’golden criteria’ for the mechanical performance138

of the scaffolds. GAD-MALL stopped if the Y of the designed scaffolds significantly surpassed the139

golden criteria (termed the ’treasure’ scaffold) or the learning process showed no further progress.140

The initially labeled dataset was composed of merely 75 data points (the simulation took ca. 7141

days, hardware specified in the A.1 section). Fig. 3B shows that the scaffolds had been precisely142

manufactured - the cross-sections of the microcomputed tomography (Micro-CT) of the scaffolds143

largely overlapped (92.2%) with that of the designs. Fig. 3(A and C) demonstrates the good144

performance of 3D-CNNs on the test dataset (uniformly sampled from the labeled dataset) in the 1st145

round and last round, in which both 3D-CNNs demonstrate high accuracy (R2 ratio 0.92). A more146

detailed performance evaluation can be found in Section A.2.147

Fig. 3(E) shows the overall data distribution in terms of E and Y with the treasure scaffolds indicated148

by blue stars. Each active learning iteration is characterized by colored eclipses. Fig. 3(D and F)149

demonstrates two distinct exploration paths for two different tasks. The E2500 exploration path150

shows a steady upward trend, and GAD-MALL quickly discovered the treasure scaffolds at the 3rd151

and 5th rounds with more than a 30% increase in Y. However, the E5000 task was more complicated152

- the learning process experienced a downhill before it recovered and found the treasure scaffolds.153

Specifically, the batches from 1st to 3rd round either fell out of the target E region or had inferior154

Y values. The 4th-round batch finally hit the target of E; albeit Y was not notably better than that155

of the expert designs. Finally, the treasure scaffolds were discovered on the 5 and 6th rounds. This156

oscillatory trend is likely due to the sparsity of data within this range (with only two initial data points157

available). The computed mechanical properties of the resultant designs are tabulated in Section A.5.158

The experiments confirmed the discovery - the ML-designed scaffolds (A1-A4) showed better159

performance than the expert-designed scaffolds (H1 and H2, Fig.3(G)). For example, the experimental160

strain-stress curves of the A1 and H1 scaffold are also displayed in the inset (full detail in Section161

A.5). To understand the ML design, we further analyzed the ML-designed scaffold by extracting162

the corresponding regression activation map (RAM) and performing FEM mechanical analysis. As163

an illustrative example, we applied the RAM to the Y-predicting 3D-CNN to reveal the driving164

mechanism behind the high Y of the A1 scaffold. RAM is a variant of a classification activation map,165

that extracts the last convolutional layer to visualize the discriminative regions used by a 3D-CNN to166

predict the output [27]. In this case, the RAM highlights the scaffold’s spatial characteristics that167

correlate to its mechanical strength, identifying the regions that contribute to the enhancement of168

strength. Fig. 3(H) demonstrates the A1 scaffold geometrical structure, the corresponding porosity169

matrix and the RAM. The RAM implies that the ’attention’ distribution extracted from the 3D-CNN170

resembled a heterogeneous ’face-centered’ lattice. Indeed, a closer look at the A1 scaffold revealed171

that the gyroid units at each face center of the scaffold show a minimal porosity (0.3). This observation172

indicates that instead of uniformity, a heterogeneous scaffold with more materials distributed at the173

face centers could significantly enhance the strength. Moreover, from a macroscopic point of view,174

the strength of a typical porous structure can be approximated by the Gibson-Ashby equation [28]:175

Y C(1− p)αY0 (1)

where Y0 stands for the strength of the constituent material, C represents a geometry-related parameter,176

p is the porosity of the unit, and the exponent α relates to the deformation behavior of the structure.177

According to the FEM calculated data in Table S4, we fitted the curve of strength Y as a function of178

p for ML and expert-designed scaffolds and found: aML 2.11, aED 1.86, CML 0.84 and CED 0.64,179

in which ED stands for expert design.180

The ML-designed scaffold had a larger a and C than the expert design. Generally, increasing the181

mechanical anisotropy of a porous structure leads to an increase in the exponential factor a; while an182

increase in parameter C can be found in the material distribution in favor of the load direction [29].183
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Microscopically, FEM analysis confirmed the above observation. Fig. 3(I) shows the distribution184

of von Mises stress and hydrostatic pressure of the A1 and H1 scaffolds. Compared with the H1185

scaffold, the A1 scaffold endures a much weaker effect of stress concentration; moreover, more struts186

of the A1 scaffolds are compressed rather than stretched. The ML model preferentially places more187

materials on the face center of the scaffolds, which optimizes the stress distribution and improves the188

structural strength with increasing limited mass. Hence, GAD-MALL was able to find the optimal189

architectures by efficiently learning from a few initial data points.190

Figure 3: Data-efficient learning of high-performance scaffolds. (A and C) The regression plots
(1st and last rounds of active learning) of the 3D-CNNs for E and Y. Both 3D-CNNs demonstrate
excellent accuracy on the testing set, showing low mean absolute error (MAE) and high R2 ratio.
(B) Micro-CT shows that the designated scaffolds were accurately manufactured. (D to F) The
overall data distribution in terms of the E-Y plot. The colored eclipses indicate the area covered by 6
rounds of active learning data, and the learning paths are marked by black arrows. (G) Comparison
of the experimental E and Y between ML-designed (A1, A2 for E2500 and A3, A4 for E5000)
and expert-designed (H1 for E2500, H2 for E5000) scaffolds. The Y of the ML-designed scaffolds
was obviously higher than that of the expert designs. (H) The upper figures show the mathematical
model of the A1 scaffold and its porosity matrix. The lower figures contain the 3D view and three
cross-section views of the RAM. The RAM reveals a ’face-centered’ lattice in the A1 scaffold,
implying its prominent role in enhancing the Y. This face-centered lattice is displayed in the upper
right part of the figure. (I) Numerical compression analysis. Here we show the y-z cross-sections of
A1 and H1 scaffolds in terms of von Mises stress and hydrostatic pressure under 10% deformation.
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2.2.2 Learning without prior data at target range191

To demonstrate the robustness of the GAD-MALL approach, we designed a learning task by which192

GAD-MALL found the appropriate scaffolds ’from scratch’ - the initial Zn dataset did not contain193

any prior data points in the target range by design. The task of this section was to design high-Y194

scaffolds at E = 500 MPa and 1000 MPa (E500 and E1000) targeting to replacement of cancellous195

bone. Again, the expert-designed scaffolds at E = 500 MPa and 1000 MPa set the ’golden criteria’.196

Fig. 4(A to C) illustrate the E-Y distribution of the initial data (marked in gray) and the results197

from each active learning round characterized by colored eclipses. Fig. 4(B) demonstrates that the198

GAD-MALL exploration paths of the missing data were complicated, exhibiting back-and-forth199

trends. For the E500 task, the E distribution of the 1st round shows a significant standard deviation.200

It is noteworthy that some scaffolds from the 1st round had already reached the target E ≈ 500 MPa.201

The 2nd round shows improvement - the overall standard deviation was significantly reduced (from202

52 to 19 MPa). While all scaffolds’ E located at approximately 500 MPa, the Y values were still 30%203

less than the golden criteria. In the following rounds, the exploration path reached a plateau, and204

the selected candidates were slightly better than the golden criteria (14.8 MPa). The E500 task was205

terminated after the 5th round since no further progress was observed (see inset). The detailed results206

of each learning round are described in Section A.2.207

On the other hand, GAD-MALL excelled at the E1000 tasks, outperforming the golden criteria by a208

large margin. More specifically, the 1st round already showed promising results, in which all scaffolds209

exhibited the targeted E, although with slightly worse Y (≈10%). The subsequent round witnessed a210

significant decrease in porosity (Section A.2), which in turn remarkably enhanced Y. However, the211

reduced porosity resulted in another problem - the E increased to 1200 ∼ 1400 MPa. GAD-MALL212

incorporated this knowledge into the database in the subsequent learning process. Eventually, the213

average porosity increased, and the treasure scaffolds were discovered in the 3 and 4th rounds. The214

entire learning process took approximately 9 days, and the mechanical properties of the resultant215

designs are tabulated in Section A.5.216

Figure 4: Learning without prior data at the target range. (A to C) The E-Y distribution. The
colored eclipses indicate the area covered by 5 rounds of active learning data and black arrows specify
the learning paths. (D) Micro-CT shows that the designated Zn scaffolds were manufactured with
good precision. (E) The experimental strain-stress curves of the ML and expert-designed scaffolds.
The ML design yielded a 20% increase in Y. (F) The porosity of the ML-designed scaffold reached
the lower limit (0.2) at the face centers and the center of the scaffold. Similar to the ML-designed Ti
scaffold, the compression analysis shows that the low-porosity units of the ML-designed Zn scaffold
have higher stress concentrations.
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Fig. 4(D) illustrates the model and micro-CT of an exemplary ML-designed scaffold (more ML217

designs see Section A.5). From the cross-section view, the model and manufactured sample were218

shown to agree with each other. The ML-designed scaffolds were manufactured, and their mechanical219

properties were measured experimentally (Fig. 4(E)). The ML design had a significant performance220

advantage over the expert design, whose Y (26.4 ± 0.7 MPa) exceeded the golden criteria (21.7 ±221

1.8 MPa) by a large margin of 21.6%, with a slightly lower porosity (full detail in Section A.5). As222

the E and Y of the bulk Zn were less than those of the Ti alloy, the Zn scaffold still had a lower223

porosity even though the target E was only 1000 MPa. Similar to the Ti scaffold, the FEM analysis in224

Fig. 4(F) shows that the low-porosity face-centered units in the ML-designed scaffold had higher225

stress concentrations, leading to enhanced strength. Since the face-centered and the central unit of226

the Zn scaffold had reached the lower limit (porosity = 0.2) and the excess weight was allocated to227

the central and the ridge center unit of the cubic scaffold, the E of the scaffold did not hit the targeted228

E range (E = 1000 ± 100 MPa). Thus, the central and ridge-center units promoted E to the target229

range, without decreasing Y.230

In this task, we showcased that GAD-MALL was able to find the optimal architecture even when231

the initial data distribution and the constituent material are considerably different from the previous232

section. Such robustness is highly desirable since clinical situations can be variable-the patient data233

(target material and mechanical range) are often unknown beforehand and the initial data can have234

various distributions.235

2.3 ML-inspired anatomic bone implants236

Most real-world bone implants require scaffolds in anatomical shapes that fit to the defective bone.237

Fig. 5(A and B) shows a large, irregular-shaped bone defect in a New Zealand rabbit model animal238

model - a defect of critical size (30 mm) occurred in the middle part of the tibia. Fig. 5(C) shows239

the 3D shape of the tibia, which was acquired through micro-CT scanning. It is difficult and time-240

consuming to find the optimal scaffold architecture to fit the shape, whether by experimental or by241

numerical trials, since there are many possible choices. Here, we demonstrate how a machine-learned242

design principle can be readily adapted to a clinical scene through a facile machine-human design243

workflow.244

Figure 5: Anatomic bone fixation with ML design. (A and B) A 30 mm bone defect in the middle
part of the tibia in a New Zealand rabbit. (C) Micro-CT of the tibia. (D) Cross-sectional view of
ML-inspired and expert design. (E) Experimental displacement-force curves of the ML-inspired
design versus expert design. The inset shows the cross-sections of von Mises stress under 0.6 mm
deformation for both designs.

8



Concretely, to use the ML-designed cubic scaffold for a larger implant for large, irregularly shaped245

bone defect fixation, our workflow constituted the following two steps: 1) Using the ML-designed246

cubic scaffold as the basic unit, we manually created a cuboid of 3×3×9 units with width, length,247

and height of 18 mm, 18 mm, and 54 mm respectively. 2) Subsequently, we caved out an irregularly248

shaped scaffold from the interior of the cuboid that matched the bone shape (shown in Fig. 5(D)).249

The detailed workflow is described in Section A.6. The resultant implant design and its 3D-printed250

counterpart are illustrated in the inset of Fig. 5(E). The mechanical behaviors at the macroscale could251

be characterized by the displacement-force curves in Fig. 5(E), which confirmed that the stiffness of252

expert-designed and ML-inspired implants were almost the same, while the ML-inspired implant’s253

load-bearing capacity (indicated by stars) was considerably higher (20%). The von Mises stress254

distribution, given in the inset of Fig. 5(E), showed that the overall stress (under 6% deformation)255

of ML-inspired design was considerably higher than that of the expert design. With the same bone256

shape and deformation, the higher inner stress of the ML-inspired design indicated stronger support257

of the bone implant. Therefore, the strengthening effect of ML-learned face-centered lattice was258

accumulative; a large structure made up of many individual strengthened cubes still demonstrated259

better load-bearing capacity than the expert design of the same scale.260

3 Discussion261

This work demonstrates a multiobjective active learning approach for designing 3D-printed architected262

materials with generative models and 3D neural networks. With only 75 initial fine-tuned FEM263

simulation data points, our approach quickly discovered high-performance architected materials.264

Thus, by fusing high-precision simulation, ML, and 3D printing, our framework was developed265

into a powerful and robust tool that excels at complex multiobjective architecture optimization. It266

represents a data-efficient, intelligent method that requires no prior knowledge and can be readily267

adopted in wide-ranging architected materials applications. In this study, porosity is the only variable;268

in the future, our method can be extended to more advanced intelligent designs of geometrically269

complex metamaterials [30]. For example, one can either set new optimization objectives with the270

same algorithm (e.g., weight reduction, etc.) or introduce more architectural degrees of freedom271

such as the geometries of subunits to design 3D-printed materials with exotic architectures and272

customized properties. Furthermore, our framework provides interpretable patterns that bring new273

insights into the design philosophy of multidimensional architected materials. As a proof of concept,274

we demonstrated that ML-obtained knowledge from a relatively simple problem setting can be275

readily adapted to a complex, real-world scenario. Here, we developed a synergistic machine-human276

design methodology that uses machine-learned small-scale, regular structures as subunits to create277

large-scale, irregularly shaped architecture. In principle, such synergy can be extended to other types278

of architected materials. Overall, we anticipate that our methodology can be used for designing novel279

3-D architectures where optimal responses to various stimuli are desirable, including mechanical,280

thermal, and chemical conditions or application requirements.281
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A Appendix454

A.1 Methods455

A.1.1 TPMS structure generation456

Triply periodic minimal surfaces (TPMS) and related structures are widespread in natural biological457

systems [31, 32, 33]. TPMS is considered to be the ideal geometric shape to describe the biological458

form of the human skeleton [34]. Numerous studies have shown that the curved surfaces of TPMS459

contribute to enhanced plasma membrane elongation during cell crawling and spreading [35, 36]. In460

this study, we adopted the Gyroid minimal surface structure, which is a member of the TMPS family.461

In addition to these above-mentioned advantages of TMPS, the unique helical surface structure of the462

Gyroid unit makes the force distribution more uniform, leading to its excellent mechanical properties.463

The equation of Gyroid surface is as follows [37]:464

φG ≡ sin X cos Y + sin Y cos Z + sin Z cos X = c (2)

The equation φ(X ,Y,Z) defines a surface evaluated at the isovalue (i.e., level-set constant) c and465

has a topology similar to that of a minimal surface. X 2απx, Y 2βπy, Z 2γπz, α , β , and γ are466

constants related to the unit cell size in the x, y and z directions, respectively. In this work, we created467

the Gyroid lattice based on the minimal surface by considering one of the volumes divided by the468

surface as the solid domain and the other as the void domain. This was done by considering the469

volume bounded by the minimal surface such that φ(X ,Y,Z) c to create a solid-network lattice. The470

porosity of Gyroid lattices can be graded by varying the value of the level-set constant c spatially in471

the Cartesian space depending on a certain function or tabulated data such that [38]:472

φG > c(x,y,z) (3)

To achieve a smooth transition between units on the edge (Section A.3, Fig. 11), we describe the473

iso-value as a linear function along one of the Cartesian coordinates such that c Ax B where A and474

B are constants. This smooth transition is a prerequisite for representing the actual geometry shape475

using a porosity matrix.476

The scaffold contains 27 Gyroid sub-units in total, arranged as a 3×3×3 cubic. The geometry of477

the scaffold is controlled by the 3×3×3 porosity matrix. The porosity c of each sub-unit can take478

discrete values from 20 to 80 %, with the increment of 10 %.479

A.1.2 Dataset generation480

The unlabeled dataset consisted of 18000 data points and was generated for the training of the 3D-481

CAE. In principle, the porosity of a sub-unit can take any value from 0 to 1. Therefore, the possible482

arrangement is infinite. To simplify the problem, we allow the scaffold’s porosity takes discrete values483

from 10 to 80 % with an interval of 10% (more detail is described in the TMPS structure generation484

section). Nevertheless, there are still 727 possible combinations in the design space. Three thousand485

matrices of various porosities were generated at each interval. For each interval, there are three kinds486

of symmetry in the database (Section A.3): central, vertical, horizontal, and random arrangement.487

The porosity matrices also have three kinds: 2×2×2, 3×3×3 and 4×4×4, which then all expand488

to a 12×12×12 matrix (Section A.3, Fig. 12(B)). In such a way, our 3D-CAE can generate three489

different kinds of porosity matrices. This study chose the 3×3×3 arrangement to balance structural490

complexity and computational efficiency; nonetheless, our GAD-MALL can handle three different491

scaffold arrangements in principle.492

For the labeled dataset, the labels (the elastic modulus (E) and yield strength (Y) of the corresponding493

scaffolds) were computed by the finite element method (FEM), whose accuracy was verified through494

careful calibration with experimental data. It was confirmed that the deviations between experiment495

and simulation were less than 10% (see Section A.3).496

A.1.3 3D printing and compression tests497

The performance of powder shows much influence on formation quality of 3D-printed products.498

Spherical Ti6Al4V (Ti) powders with few satellite particles with good flowability were applied for499
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3D printing. The powder sizes of D10, D50 and D90 in statistics were 23.9, 37.8 and 58.5 µm500

respectively. The Ti scaffolds with the size of 6 × 6 × 6 mm were additively manufactured by501

laser powder bed fusion (LPBF) process using an EOS M290 machine in this work. The processing502

chamber was filled with argon gas to avoid harmful reactions. The key LPBF parameters used were503

as follows: the laser power of 280 W, the laser scanning speed of 1200 mm/s, and the layer thickness504

of 30 µm. After heat treatment at a temperature of 800 °C for 2 hours and cooled in a furnace, the Ti505

scaffolds were surface treated by sandblasting. The Ti6Al4V sand with an average grain size of 106506

µm was used in the sandblasting process. Uniformly blasted the outer surface of the Ti scaffolds to507

remove the adhered powder particles, with a pressure of 0.6 MPa at the outlet of the spray gun. The508

relative density of the composing struts in the Ti scaffolds was greater than 99.5%.509

The pure zinc (Zn) powder sizes of D10, D50 and D90 in statistics were 10.2, 19.6 and 39.4 µm510

respectively. The Zn scaffolds of 6 × 6 × 6 mm were processed using a BLT S210 machine. The511

processing chamber was filled with argon gas and a gas circulation system was employed to inhibit512

the negative effect of vaporization during the LPBF process. The Zn scaffolds were fabricated with a513

laser power of 40 W, a laser scanning speed of 500 mm/s, and a layer thickness of 0.03 mm. Chemical514

etching with 5% nitric acid and 5% hydrochloric acid (RT, 2 min) was applied to remove the adhered515

powder particles, and the relative density of the composing struts in Zn scaffolds reached 98.5%.516

Compression tests were conducted using an Instron machine (10 kN load cell) at a crosshead speed517

of 1mm/min at room temperature. The compress direction was parallel with the building direction.518

Three replicas were manufactured in order to ensure reproducibility.519

A.1.4 Numerical simulation parameters520

We performed the compression simulation on a CPU (Intel Xeon Gold 6226R Processor) with521

32-Core and 64-Thread using ABAQUS/Explicit software [39]. The FEM was based on the same522

rigid-cylinder and deformable-implant-structure model. The material was homogeneous, and the523

Poisson’s ratio was 0.25. The E was set to 5 GPa and the Y to 120 MPa based on the compression524

experiments of the block pure Zn prepared by LPBF. Ductile damage was used to simulate the plastic525

deformation to the failure stage. Fracture strain was set as 0.03, and the effects of triaxiality deviation526

and strain rate were neglected. We extracted displacements and forces in post-processing and then527

converted them to strains and stresses, respectively.528

A.1.5 Machine learning algorithms529

The 3D-CAE consisted of an encoder and decoder. The encoder was composed of 3 3D convolutional530

layers (Conv3D). The input size was (12, 12, 12, 1). The first, second, third, and fourth layers531

contained 60, 30, and 15 filters. Three max-pooling layers between the convolutional layers were532

responsible for the down-sampling. For example, one max pooling layer reduced the size of Conv3D533

from (12, 12, 12) to (6, 6, 6), shrinking each (2, 2, 2) box down to (1, 1, 1), and taking the maximum534

as its value. The size of the final layer is (3, 3, 3, 15). Another max-pooling reduced it to the hidden535

representation (1, 1, 1, x), where x represents the dimension. The decoder is of the same Conv3D536

architecture, but with up-sampling, converting the hidden feature (1, 1, 1, x) back to (12, 12, 12, 1).537

Reconstruction loss was the mean square error (MSE) between input and output.538

The 3D-CNN model consisted of 3 convolutional layers. The first, second, and third layers contain 8,539

4, and 2 filters, respectively; three max-pooling layers are located behind each convolutional layer.540

Finally, before reaching the output node, the last layer was flattened into 1048 neurons, followed by a541

series of fully connected layers (128, 64, 32). The activation function was the exponential linear unit.542

Moreover, the loss function was the mean square error. The program was written using Keras and543

Tensorflow [40]. We trained the 3D-CAE and 3D-CNNs using a GPU (NVIDIA GeForce RTX 3080)544

with 10GB of memory. The training results and performance evaluation of both the 3D-CAE and545

3D-CNNs can be found in Section A.2.546

A.2 Model performance evaluation547

The task in this study can be mathematically formulated as follows:548

14



Find x ∈ H
To the mapping f : H −→ Y and g : H −→ E
Such that x argmaxx∈H( f (x)) and g(x) Etarget

Under the constraint: weight fixed constant

(4)

H is the scaffold design space; f and g are the mappings of scaffold design to its corresponding Y and549

E. Fig. 6 shows a visualization of the exploration path.550

Figure 6: Representation of the constrained multi-objective optimization task in this study. The
contour surface represents the arrangement with equal E. The task is to find the maximum yield point
on this surface.

Fig. 7 shows the training history of 3D-CAE with eight latent dimensions. The loss quickly dropped551

to near zero after 60 epochs. The histogram (inlet) shows that the loss of 4-dimension latent space was552

high, while sampling from the 16-dimension was time-consuming. 8-dimension reached a balance553

between loss and efficiency.554

Figure 7: Training of 3D-CAE. Training history of 3D-CAE. The loss reaches almost zero after 60
epochs; inlet shows the histogram of the loss v.s. the latent space dimension.
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Fig. 8 and 9 demonstrate the performance evaluation of 3D-CNNs (for the E and Y) on the Ti and Zn555

test dataset. Both 3D-CNNs show high accuracy in the regression tasks (R2 ratio 0.98) at each active556

learning iteration. The test dataset was uniformly sampled from the labelled dataset.557

Figure 8: Performance evaluation of 3D-CNNs on the Ti test dataset. (A to L) show the R2 and
mean average error (MAE) of 3D-CNNs from round 1 to 6, (A to F) refer to the E and (G to L) refer
to the Y.
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Figure 9: Performance evaluation of 3D-CNNs on the Zn testing dataset. (A to J) show the R2

and mean average error of 3D-CNNs from round 1 to 5, (A to E) refer to the E and (F to J) refer to
the Y.

The Gaussian mixture model (GMM) was used to estimate the density in the latent z space (i.e., the558

marginal posterior qφ (z)). GMM is a density estimation model that uses a mixture of a finite number559

of Gaussian distributions with unknown mean and covariance to fit the data points. The number of560

Gaussian distributions is usually determined via the empirical elbow method. The elbow method561

is a heuristic used in determining the Pareto fronts in multi-objective optimization, in this case, it562

was used to determine the potential optimal number of Gaussian). As shown in Fig. 10, the average563

negative log-likelihood was plotted as a function of the number of Gaussian and we selected 4 as it564

represents the ‘elbow’ of the curve.565
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Figure 10: The average negative log-likelihood versus the number of clusters in the GMM.

Table 1 and 2 contain the result of each learning iteration for the Ti and Zn cubic scaffolds, respectively.566

Table 1: The Ti cubic scaffolds - Mean and standard deviation of the E and Y at each iteration

E2500 Task E5000 Task

Elastic
modulus
(MPa)

Yield
strength
(MPa)

Porosity
(%)

Elastic
modulus
(MPa)

Yield
strength
(MPa)

Porosity
(%)

It
er

at
io

n

1 2311 ± 73 57.7 ± 3.3 74.1 ± 0.3 6226 ± 408 139.7 ± 11.8 57.3 ± 1.7
2 2684 ± 69 62.6 ± 3.1 71.8 ± 0.7 5789 ± 142 136.6 ± 5.3 57.3 ± 0.3
3 2423 ± 59 65.1 ± 5.3 70.6 ± 1.2 5526 ± 122 124.8 ± 6.8 58.5 ± 0.3
4 2570 ± 47 66.6 ± 3.9 70.3 ± 0.7 5072 ± 147 119.1 ± 5.8 60.4 ± 0.6
5 2686 ± 156 69.4 ± 5.2 69.6 ± 1.3 5271 ± 81 129.4 ± 9.8 57.0 ± 1.3
6 2566 ± 47 70.0 ± 1.7 70.1 ± 0.3 5059 ± 128 136.0 ± 5.9 57.5 ± 0.9

Table 2: The Zn cubic scaffolds - Mean and standard deviation of the E and Y at each iteration

E500 Task E1000 Task

Elastic
modulus
(MPa)

Yield
strength
(MPa)

Porosity
(%)

Elastic
modulus
(MPa)

Yield
strength
(MPa)

Porosity
(%)

It
er

at
io

n

1 546 ± 52 12.9 ± 0.8 57.9 ± 0.5 1024 ± 22 26.2 ± 0.7 45.1 ± 0.2
2 508 ± 19 12.1 ± 0.6 59.1 ± 0.8 1297 ± 85 32.1 ± 1.3 38.0 ± 0.5
3 568 ± 34 15.2 ± 0.9 56.7 ± 0.9 1123 ± 71 28.8 ± 0.9 41.9 ± 1.3
4 555 ± 31 14.8 ± 0.7 56.0 ± 1.1 1024 ± 27 29.4 ± 0.3 43.2 ± 0.5
5 515 ± 16 14.2 ± 0.7 58.9 ± 0.2 965 ± 18 28.8 ± 0.5 43.7 ± 0.1

A.3 Data generation567

Fig. 11 shows the schematic for the smooth transition between units with different porosity.568
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Figure 11: The schematic for the smooth transition between units with different porosity.

Fig. 12(A and B) show the schematics for unlabelled scaffold preparation. Fig. 12(C to H) shows569

the simulation and experimental data of two randomly selected cubic scaffolds. ABAQUS/Explicit570

software was used for compression simulation [39].571
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Figure 12: Data generation and simulation calibration. (A) The porosity matrix database contains
three symmetries and one random arrangement. (B) Three kinds of porosity matrices: 2× 2× 2,
3×3×3 and 4×4×4, which can all expand to a 12×12×12 matrix. The 3×3×3 arrangement was
chosen to balance structural complexity and computational efficiency. (C to H) The FEM simulation
agrees with experimental observations. Three replicas were tested in order to ensure reproducibility.
The error of the E and Y between FEM simulation and experimental results is less than 10%. (C to E)
refer to 3 Ti scaffolds with random shapes, and (F to H) refer to 3 Zn scaffolds with random shapes.
(C to H) All stress-strain curves are adjusted in the x-axis direction to make them overlap.

A.4 FEM analysis of cubic scaffolds572

This section discusses the detailed FEM analysis of ML design cubic scaffolds from E2500 (Ti),573

E5000 (Ti), and E1000 (Zn) tasks.574
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Figure 13: FEM analysis of the Ti cubic scaffolds. Numerical compression analysis of Von-Mises
stress and hydrostatic pressure under 1.6%, 5%, 10% deformation. The cross-section view of ML
designs (A1-A4) and expert designs (H1 and H2) is plotted.
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Figure 14: FEM analysis of the Zn cubic scaffolds. Numerical compression analysis of Von-Mises
stress and hydrostatic pressure under 1.6%, 5%, 10% deformation. The front and orthographic views
of ML design (B3) and expert design (H4) are plotted.

A.5 Experimental characterization of cubic-shaped scaffolds575

Table 3: Experimental result of ML design and expert design Ti cubic scaffold. A1(2) and A3(4)
represent the best candidates for E2500 and E5000 tasks, respectively. Expert design (uniform) H1
and H2 are the reference scaffolds of E2500 and E5000

A1 A2 H1 A3 A4 H2

Elastic modulus
(MPa) 2527 ± 87 2649 ± 195 2627 ± 154 5169 ± 422 4947 ± 450 4903 ± 303

Yield strength
(MPa) 74.8 ± 2.2 73.4 ± 1.9 60.0 ± 1.1 147.6 ± 4.2 147.2 ± 2.3 119.8 ± 8.6

Porosity (%) 69.3 ± 0.3 69.1 ± 0.1 73.0 ± 0.2 57.5 ± 0.3 55.6 ± 0.1 60.8 ± 0.3
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Table 4: Experimental result of ML design and expert design Zn cubic scaffolds. B1(2) and B3(4)
represent the best candidates from E500 tasks and E1000, respectively. H3(4) are the reference
scaffolds (uniform porosity) of E500 and E1000. B3 scaffold shows superior performance over the
gold criteria H4 scaffold

B1 B2 H3 B3 B4 H4

Elastic modulus (MPa) 484 ± 17 510 ± 28 510 ± 28 1066 ± 35 1012 ± 22 975 ± 19

Yield strength (MPa) 13.0 ± 0.6 12.7 ± 0.3 12.9 ± 0.5 26.4 ± 0.7 21.8 ± 0.7 21.7 ± 1.8

Porosity (%) 56.5 ± 0.5 56.8 ± 0.2 55.8 ± 0.1 35.4 ± 0.2 38.6 ± 0.1 39.3 ± 0.4

Figure 15: Compression test curves of the Ti cubic scaffolds. ML designs (A1-A4) and expert
designs (H1 and H2). Three replicas were tested in order to ensure reproducibility. In each figure, all
stress-strain curves are adjusted in the x-axis direction to make them overlap.
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Figure 16: Experimental strain-stress curves of the Zn cubic scaffolds. ML design (B3) and
expert design (H4). Three replicas were tested in order to ensure reproducibility. In each figure, all
stress-strain curves are adjusted in the x-axis direction to make them overlap.

Figure 17: The porosity matrices and ’face-centered’ lattice structures of the Ti cubic scaffolds.
The porosity matrices of ML designs (A1-A4) and expert designs (H1 and H2). The ’face-centered’
lattice structures of ML designs (A1-A4).
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Figure 18: Regression activation map of the Ti cubic scaffolds. The x-z, x-y, and y-z cross sections
of the RAM of ML designs (A1-A4) and expert designs (H1 and H2).

A.6 Irregular-shaped scaffolds for bone implants576

Fig. 19 shows the design workflow for an irregular-shaped scaffold. We used a 3×3×9 raw structure577

as the starting point. The sub-unit is the ML-designed cubic scaffold. Overall, the whole structure578

consists of 9×9×27 Gyroid units. The scaffold structure was then caved out of the raw materials579

with the shape matching that of the bones.580

Figure 19: Pipeline for irregular-shaped scaffold design. We used the 3×3×9 raw structure as
the starting point, with each sub-unit representing the ML-designed cubic scaffold. The bone-shaped
scaffold was then caved out of the raw structure.
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Figure 20: FEM analysis of the anatomic bone implant. Numerical compression analysis of
Von-Mises stress and hydrostatic pressure under 0.3, 0.6, 1.0 mm deformation. The cross-section
view of ML-inspired design and expert design is plotted.
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