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ABSTRACT

In-context learning (ICL) has proven to be adept at adapting large language models
(LLMs) to downstream tasks without parameter updates, based on a few demon-
stration examples. Prior work has found that the ICL performance is susceptible
to the selection of examples in prompt and made efforts to stabilize it. However,
existing example selection studies ignore the ethical risks behind the examples
selected, such as gender and race bias. In this work, we first construct a new sen-
timent classification dataset —EEC-paraphrase, designed to better capture and
evaluate the biases of LLMs. Then, through further analysis, we discover that @
example selection with high accuracy does not mean low bias; ® example se-
lection for ICL amplifies the biases of LLMs; ® example selection contributes
to spurious correlations of LLLMs. Based on the above observations, we propose
the Remind with Bias-aware Embedding (ReBE), which removes the spurious
correlations through contrastive learning and obtains bias-aware embedding for
LLMs based on prompt tuning. Finally, we demonstrate that ReBE effectively mit-
igates biases of LLMs without significantly compromising accuracy and is highly
compatible with existing example selection methods. The implementation code is
available at https://anonymous.4open.science/r/ReBE-1D04.

1 INTRODUCTION

Although large language models (LLMs) have demonstrated impressive capabilities, efficiently de-
ploying them into downstream tasks remains challenging (Mosbach et al., 2023} |Liu et al., 2022a)).
Among existing solutions, in-context learning (ICL) has proven adept at adapting LLMs to down-
stream tasks without parameter updates, using only a few demonstration examples (Brown et al.,
2020). Compared to fine-tuning (Ziegler et al., 2019), ICL is more flexible and suitable for few-shot
scenarios. In the setting of ICL, examples included in the prompt are the only source for LLMs
to learn the task context information (e.g., the answer format), thus attracting considerable
attention. As the research deepened, researchers found that examples selected randomly from the
training set led to high variance in performance (Liu et al., 2022b), so numerous example selection
methods have been proposed to stabilize the performance of ICL (Gonen et al., 2023} |Gupta et al.,
2023).

Since LLMs may spread biases learned from the training set during decision-making or user interac-
tion, potentially causing severe harm to society, the biases of LLMs have always attracted significant
attention (Liu et al., 2024bj (Gupta et al., 2024; |Guo et al.| [2022). Although not entirely equivalent
to social biases, it has been shown that LLMs exhibit stronger cognitive biases (Lin & Ng| [2023),
such as position bias (Zhao et al., [2021) and token bias (Zheng et al., [2024), when fed with spe-
cific prompts. Similarly, because the example selection method determines the content of the ICL
prompt, it is natural to ask: Does example selection for ICL amplify the biases of LLMs? It is
undoubtedly unacceptable for LLMs to preserve or even exacerbate biases when using ICL to deploy
LLMs to downstream tasks. However, existing example selection studies ignore the ethical risks
behind the examples selected, such as gender and race bias.

To explore the impact of example selection on bias, we conduct an empirical analysis by evaluating
the accuracy and biases of LLMs on a sentiment classification dataset —EEC-paraphrase, which
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Figure 1: The central scatter figure plots gender bias and accuracy of OPT—-13B under various
example selection baselines. The horizontal and vertical red dashed lines represent mean accuracy
and maximum bias (AvgGF) of OPT—-13B under zero-shot, respectively. The left subfigure shows
the pipeline for adapting LLMs to downstream tasks using ICL. The right subfigure illustrates the
pipeline using our debiasing method, ReBE. The box plot at the bottom depicts the gender bias
distribution of OPT—13B under various baselines.

we build on Equity Evaluation Corpus (EEC) (Kiritchenko & Mohammad, [2018) but with more
complex and natural sentences (More details in Section [3). Considering the generality of the find-
ings, our experiments include eight LLMs and four example selection baselines: Random-based,
Similarity-based (Liu et al.,|2022b), Perplexity-based (Gonen et al., 2023)) and Determinantal Point
Processes (DPP)-based (Ye et al.,2023). We use random seeds to sample the EEC-paraphrase to
construct the few-shot training sets and have collected the bias and accuracy results of baselines
under various random seeds. Therefore, we emphasize that the data points of example selection
baselines in Figure [T] are evaluation results under different random seeds. According to Figure [T}
each example selection baseline has points in the grey area marked as “high accuracy and high bias”,
indicating that example selection with high accuracy does not mean low bias.

To observe the impact of example selection on biases compared to the case without ICL, we have
also collected the experiment results of zero-shot under various random seeds and plotted the red
dashed line “Bias of zero-shot” with the maximum bias value in Figure[I] The data points above
the horizontal red dashed line in Figure [I]exhibit higher gender bias than zero-shot, indicating that
example selection for ICL does amplify the bias of LLMs. According to the results in Section
[3:3] we further find that example selection amplifies the maximum bias value, worsening unfair
situations. The maximum bias value refers to the highest bias among results measured under various
random seeds using the same example selection method. To uncover why example selection ampli-
fies the biases, based on the MaxTG and MaxFG metrics (Table |I[), we observe that LLMs using
ICL exhibit spurious correlations. Spurious correlations refer to undesired or unstable correlations
learned by LLMs from the training set, which may introduce unintended biases (Albuquerque et al.,
2024). Typical spurious correlations of LLMs include stereotypes such as “He is a doctor; she is a
nurse.” Furthermore, it is generally believed that the LLM’s biases come from its parameter knowl-
edge and the input prompt. By excluding the impact of LLM parameters, we find that example
selection contributes to spurious correlations of LLMs.

The above observations highlight that example selection for ICL truly amplifies the biases of LLMs.
In order to mitigate the social biases of adapting LLMs to downstream tasks through ICL, we pro-
pose the Remind with Bias-aware Embedding (ReBE), which curbs biases of LLMs by prefixing
the bias-aware embedding into the prompt. Besides, we design the bias-contrastive loss based on
contrastive learning to remove spurious correlations and obtain the bias-aware embedding through
prompt tuning (More details in Section[d). To demonstrate the effectiveness of ReBE, we conduct
extensive experiments and the results in Section [5]show that ReBE reduces the maximum bias value
without compromising the accuracy and is well compatible with existing example selection methods.
In sum, we try to fill the gap in exploring the ethical risks of example selection, which is essential
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for deploying LLMs into downstream tasks using ICL. The overall contributions are summarized as
follows:

* To the best of our knowledge, we are the first to discover the bias risks of example selection
for ICL, especially the findings: @ Example selection with high accuracy does not mean
low bias; ® Example selection for ICL amplifies the biases of LLMs; ® Example selection
contributes to spurious correlations of LLMs.

* We construct a new sentiment classification dataset —EEC-paraphrase, which can better
identify and evaluate gender and race bias of LLMs in ICL. More specifically, sentences in
EEC-paraphrase are more complex and natural than in EEC.

* To alleviate the bias amplification of example selection, we propose the Remind with Bias-
aware Embedding (ReBE), which removes spurious correlations by minimizing the bias-
contrastive loss while preserving the advantages of ICL through prompt tuning.

* We conduct extensive experiments to validate the effectiveness of ReBE, including four
LLMs and four example selection baselines.

2 PRELIMINARIES

2.1 EXAMPLE SELECTION FOR ICL

Given a test input 4.4, ICL enables the language model M to learn how to generate ., from just
a few examples in the context C'. The above process can be formulated as:

§ = argmax py(y|C, Trest), (D
yey

where § is the prediction, ) is the label set, and paq(y|C, x1cst) represents the probability that M
generates y with context C' and 7. as input. For a task with training set D = {(x;, )}, if
context C' contains k examples (k-shot prompt), then C' = {(z1,11), (z2,y2), ..., (T, yx)} C D.

Among current studies (Iter et al., [2023}; |Yang et al.| [2023), example/demonstration selection and
example/demonstration retriever are interchangeable. To avoid confusion, we use the term example
selection throughout this paper. Since the performance of M depends on context C, we need to
select examples (x;,y;) to minimize the total loss on the test set (Xest, Yiest), Which could be
formulated as the following problem:

C* = argmin L (9, Viest), 2
CcCcD

where § = {arg max pa (Y|C, Tiest) }» Trest € Xtest, and C* is the desired sample subset of example
yey
selection methods.

2.2 CONTRASTIVE LEARNING

Contrastive learning aims to obtain representation by maximizing the similarity between related
samples and minimizing the similarity between unrelated samples, simultaneously. Although origi-
nating from self-supervised learning, contrastive learning also proves useful in supervised learning
(Khosla et al., 2020; Chen et al., 2022). Given a training set D = {(z;, v;)}~_, and its indexes set

={1,2,..., N}, define the i- th sample x; as an anchor, the contrastive loss for supervised tasks
(Khosla et al., 2020) can be defined as:

Loy — Z ‘ Z log exp(zi - 2p/T) 3)

et peP (i) ZaeA( ) exp(zl za/T)

where z; is the normalized representation of anchor z;, P(i) = {p € A, : y, = y; } is the index set
of positive samples. A; = Z \ {i} is the index set of contrastive samples that removes ¢ from set
7 and 7 is the temperature parameter. Constructing sensible P () and .A(¢) is vital to utilizing the
contrastive learning framework.
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3 EXPLORE THE IMPACT OF EXAMPLE SELECTION ON LLM BIASES

3.1 DATASET AND MODELS

Dataset To better capture and evaluate the gender and race bias of LLMs, we construct a
new sentiment classification dataset —EEC-paraphrase. Given a sentence in the template
<Person> feels <emotional word>., LLMs are asked to identify the sentiment con-
tained in the sentence. By replacing <Person> with first names (e.g., Alonzo and Alan) or pro-
nouns (e.g., she and he) associated with specific demographic group, EEC-paraphrase includes
8,640 English sentences with gender and race attributes.

EEC-paraphrase is built through paraphrasing sentences in the Equity Evaluation Corpus (EEC)
(Kiritchenko & Mohammad, 2018 by GPT-3 . 5-Turbo. Compared with EEC, sentences in EEC-
paraphrase are more complex and natural, closer to the actual scenario (The quality validation
is available in Appendix @). Besides, to simulate the few-shot scenario, we build a train400-
dev200 dataset by randomly sampling 400 sentences for the training set and 200 sentences for the
development set from the EEC-paraphrase.

Language Models To guarantee the reliability of our findings, we conduct experiments
on eight LLMs, including LlaMA-2-7/13/70B, OPT-6.7/13/30B, GPT-J-6B and
GPT—-neo—2.7B. LLMs with various parameter sizes but within the same series facilitate our anal-
ysis of the effects of parameter quantities.

Table 1: Bias metrics for sentiment classification.

Metric | Formula
Average Group Fairness | AvgGF = }P(?:Y|S:sl) — P(Y:Y\S:szﬂ
Maximum TPR Gap MaxTG:méaL;(‘P(Y:m}/:yﬂS:sl)—P(?:y|Y:yﬂ5282)
y

Maximum FPR Gap | MaxFG= max |P(Y =9V =yNS=s)— P(Y =9]Y =yNS=s2)

Y, 9€Y, 97y

* 51 and sz correspond to different demographic groups.

To further validate the generalizability of our findings, we evaluate LLMs on the toxicity detection
task using the igsaw dataset. The results are available in Appendix

3.2 BIAS METRICS AND BASELINES

Since the output of LLMs is not numerical value but sentences containing the judgment result, we
evaluate the prediction’s accuracy by comparing the semantic similarity between the answer and
options.

Metrics Drawing on fairness metrics of machine learning (Mehrabi et al., [2021)) and natural lan-
guage processing (Czarnowska et al.l 2021)), we summarize three representative bias metrics in Ta-
ble [T} which adapts to the sentiment classification task. The basis for selecting metric is whether it
can reflect the unfairness or stereotypes of different groups in various sentiments. See Appendix
for a detailed explanation of metrics.

Baselines We select four example selection methods as baselines to study the impact of example
selection on the biases of LLMs. Random-based example selection refers to randomly choosing
examples from the training set to form a few-shot prompt. Similarity-based (Liu et al., |2022b)
and perplexity-based example selection (Gonen et al.l |2023) picks the top-k examples based on
semantic similarity and perplexity of example, respectively. Determinantal Point Processes (DPP)-
based example selection (Ye et al.|[2023) uses DPP to consider two properties simultaneously when
selecting examples.

1lJigsaw unintended bias in toxicity classiﬁcationl




Under review as a conference paper at ICLR 2025

3.3 IMPACTS OF EXAMPLE SELECTION ON BIAS OF LLMS

Although example selection aims to stabilize the performance of LLMs using ICL, inappropriate ex-
amples selected may also mislead LLMs. We assess the change in LLM biases when using example
selections for ICL compared to zero-shot. Figure [2]illustrates the differences in the maximum
and mean bias values between random-based example selection and zero-shot. The compar-
isons of the remaining example selection baselines are available in the Appendix [C.T] It is evident
that, although example selections reduce the mean bias value, the LLMs tested exhibit varying de-
grees of increase in the maximum gender or race bias value with random-based example selection
for ICL. In other words, example selection for ICL amplifies the biases of LLM, increases the
fluctuation of biases and exacerbates the unfair risks. Besides, the maximum bias values among
LLMs for each baseline are highlighted in Table[2]and are significantly higher than the mean values.
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Figure 2: The impacts of random-based example selection on biases of LLMs. The bar value is
calculated by Diff=Bias;ndom-BiaSero-shot-

Table 2: Accuracy and gender bias of LLMs under four example selection baselines.

GPT-J-6B GPT-neo-2.7B OPT-6.7B OPT-13B  OPT-30B Llama-2-7B Llama-2-13B Llama-2-70B

Accmin 0.84(0,30) 0.77(0‘53) 0.81(()‘67) 0.82(0,72) 0.84(0,76) 0.86(0,31) 0.87(0‘33) 0.86(0,32)
AvgGF(Max) 0.04(0,03) 0.04@ 0.04@ 0.04((),12) 0.04@ 0.03(0_03) 0.04(0_09) 0.04(0_09)
MaxTGmax) 0.15(0,29) 0.14(0‘31) OISM 0.17(0,33) ().17@ 0.1 1((),22) 0.14(0‘25) 0.17(0,30)
MaxFGawg  0.170.26) 0.20(0.39 0.20@ 0.19(0.34) 0.19w 0.130.22) 0.140.1) 0.170.30)

Random

Q Acc(Min) 0.83(0.72) 0.82(0,82) 0.85(0,8]) 0.83(0,79) 0.86(0,35) 0.865(0,8) 0.87(0,84) 0.86(0.35)
; AvgGF Max) 009@ 0.08(0‘03) 0.04(()‘09) 005@ 0.05(0,09) 0.03(0,04) 0.04(0,07) 0-05(0.08)
E MaxTGwmax) 0.23@ 0.18(0,13) 0.21@ 0.22(0,32) 0.20(0_35) 0.18(0_33) 0~17(0,28) 0.20(0_27)

MaxFGax) 024@ 024@ 0. 17(03 i 0.27(0,4()) 0. 17(0,22) 0. 14(0.28) 0. 14(0‘ 19) 0. 17(0,22)
2 Accovin 0-92(0,88) 0.85(()‘32) 0.84(()‘82) 0-87(086) 0-90(0.86) 0.93(0,90) 0.92(0,90) 0.89(0,37)
E AvgGFMax) 0.03(0,05) OO3@ 0.03(0,05) 0.04@ 0.02(0,04) 0.03(0,03) 0.03(0404) 0.04(0.07)
E MaxTGmax) 0-13(0.28) 019M 0.12(022) 021@ 0.13(0,30) 0.16(0,27) 0.16(0,25) 0.16(0,23)

MaxFGaaxy  0.140200  0.16(0.19) O.ISM 0.17@ 0.11.18 0.13021y  0.17027 0.13(0.16)

Accmin 0.93(0,39) 0.89(0‘33) 0.87(0,79) 0.89(0,32) 0-9](0.86) 0.94(0,90) 0.93(0‘91) 0.90(0,35)
E AveGFmay  0.03(0.06) 0.03(0.07) 0.04@ 0.03@ 0.0200.06) 0.02(0.06) 0.02(0.05) 0.03(0.08)

MaxTGmax) 0-12(0.28) 013@ 0.14(0,27) 013@ 0.11(0,23) 0.10(0,13) 0.10(0‘25) 0.12(0,25)
MaxFGax) 0.10(0‘17) 0.13(()‘24) 0.14@ 0.12@ 0.10(0,13) 0.09(0,22) 0.09(0,17) 0.12(0,21)

! Avginy are the largest two values in AvgGF; Avgain) are the largest two values in MaxTG and MaxFG.
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3.4 SPURIOUS CORRELATIONS OBSERVED WITH MAXTG AND MAXFG

As seen from Figure [3] we visualize the confusion matrices of OPT-6. 7B, which has the biggest
fluctuation of MaxTG (0.47) and MaxFG (0.46) in Table@ With the help of FigureEI, we can further
analyze the reasons that cause MaxTG and MaxFG to increase. For MaxTG, by comparing the first
two sub-figures of Figure [3] by row, the proportion of sadness sentences correctly predicted in the
female group (0.88) is higher than in the male group (0.42), which is consistent with the finding
of [Plaza-del Arco et al]| (2024). Likewise, for MaxFG, by comparing the first two sub-figures of
Figure [3 by column, more sentences with sadness labels are incorrectly predicted as fear in the
male group (0.54) than in the female (0.08). We believe the disparity —where sentences labelled
as sadness containing male pronouns are more easily misjudged as fear than those with female
pronouns —occurs because the sentiment analysis criteria of LLMs may be influenced by words
other than emotional ones, leading to spurious correlations. Although it has been proven that
spurious correlations exist in LLMs, we are unsure whether the example selection methods for ICL
contribute to these spurious correlations.

opt-6.7b Female opt-6.7b Male opt-6.7b African-American opt-6.7b European-American

0.33 0.04 0.00 - 0.46 0.05 0.10 0.05

anger
o
=3
=
anger
anger
anger

5 § 004 3§ 0.00 0.00 3 5-0.00 005 000 5- 0.24
< p P <
€ Z-0.00 0.00 € 5- 0.00 0.00 £ - 000 0.00 € Z-0.00 0.00
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anécr fe‘ar j(;y sadness anécr fear j(;y sadﬁess anécr féar j(;y sadness anécr fe‘ar j(;y sadness
Predicted label Predicted label Predicted label Predicted label

Figure 3: Confusion matrix heatmaps of OPT—-6 . 7B.

Two factors affect the biases of LLMs: the LLM parameters and the input prompt. The former refers
to biased knowledge that LLMs acquire during pre-training, which we call native bias. To isolate
the influence of native bias, we use null (content-free) prompts (Lin & Ng|, 2023} [Zhao et al.}
to observe the tendency of LLMs parameters. More specifically, the null prompt fills the
<Position> in the template with demographic-related words, leaves the emotional word empty,
and tests the probability of LLMs’ prediction for each sentiment label. Combined with the spurious
correlation between male and fear in Figure[3] the fear-label tendency of OPT-6 . 7B in Figure d]is
nearly identical for female and male, indicating that spurious correlations are not caused entirely by
the LLM parameters and example selection contributes to spurious correlations.

gpt-j-6b opt-6.7b opt-13b Llama-2-7b-chat-hf =~ Llama-2-13b-chat-hf  Llama-2-70b-chat-hf

Probability

anger fear §°ysat\“°55 anger fear Xoysadﬂﬁss anger fear '3oysadness anger fear 'pysad“ess anger fear '3oysad“ess anger fear ')"Ysad“ess

Figure 4: The native bias of LLMs over various sentiment labels.

4 REBE: REMIND WITH BIAS-AWARE EMBEDDING

To retain the accuracy and flexibility of ICL while reducing bias, we propose the ReBE, which
removes spurious correlations based on contrastive learning and reminds LLMs of fairness with
bias-aware embedding.

4.1 THE OVERVIEW OF REBE

As shown in Figure [5} using (z,y, s) as input, ReBE obtains bias-aware embedding by minimizing
the bias-contrastive loss during training. Here, z, y, and s correspond to the task’s sample, label,
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and demographic attribute. With the help of prompt tuning, ReBE avoids updating the original
parameters of LLM M, retaining the flexibility of ICL. Besides, to effectively remove spurious
correlations, contrastive learning is introduced to construct the bias-contrastive loss. The verbalizer

(Cui et al.,[2022) converts representations {z1, 22, ..., 2 } to predicted labels {joy, anger, ...} used

in the downstream task.

Bias-contrastive Loss 3’;
aLac,_- Example:
+

(Label sets: ]

y = {joy, anger, ...}
s = {male, female, ... }

Verbalizer

{21, 22, ) B0}

(1 — @)Lpias

1
Wigikg Bias-aware |Embedding
" e
x
Tokenizer B &

Embedding Layers Embedding vectors Remaining Layers

y = argmin L(Logit(Z),
¥ = i ks HUasE@), )

= {joy, anger, ...}

LLM M & Parameters trainable
# Parameters frozen

Figure 5: The overview of ReBE. The left side of the figure depicts the framework of ReBE, includ-
ing the input (x, y, s) and the process of obtaining the Bias-aware Embedding. The right side of the
figure is an example of inputs and output of ReBE.

4.2 BIAS-AWARE EMBEDDING

Prompt Tuning (Lester et al} 2021}, [Gu et al.} [2022) is a soft (continuous) prompt construction and
parameter-efficient tuning method for LLMs, which generally searches for the best ICL prompt in
the semantic space via back-propagation. By adding virtual (pseudo) tokens to the prompt of LLMs,
prompt tuning obtains trainable parameters after the embedding processing. We name trainable
parameters in the prompt tuning for LLMs debiasing as Bias-aware Embedding. It should be noted
that virtual tokens have no real meaning and only serve as placeholders. Besides, the contexts of
prompt during prompt tuning are constructed based on the example selection method.

To better explain the generation of bias-aware embedding, we take the sentiment classification task
in Figure[5|as an example. Represent the sentence as = [v1][v2][He][ feels][happy][.], where [v;]
is the virtual token. After tokenization and embedding processing, bias-aware embedding becomes
part of embedding vectors, which are fed into the remaining neural network layers. Representing
the number of virtual tokens [v;] as n,,, and the dimension of LLM feature vectors as nfeq¢s, the
number of trainable parameters (bias-aware embedding) can be calculated as 1., X Nfeqts. All
original parameters of LLM are frozen and are not involved in the training process described above.
Since prompt tuning has been found to be unstable during training (Chen et al., [2023a), we add
Gaussian noise to help the training, which is a common solution (Wu et al., 2022} [Pecher et al.}

2024).

Through back-propagation and gradient descent, the trainable parameters are updated to minimize
the loss and obtain bias-aware embedding, which is then saved in the embedding table of LLM. Ac-
cording to the corresponding virtual tokens, bias-aware embedding is integrated into the embedding
vectors during inference.

4.3 BIAS-CONTRASTIVE LOSS

Acquiring bias-aware embedding requires a well-designed loss function to guide the training. Given
a training set D = {(z;,v;)}}*,; and its indexes set Z = {1,2, ..., N}, define z; as the normalized
representation of sample x;. To better mitigate biases in the representation of LLM, we first design
the bias-contrastive loss Lp;,s based on SupCon (Khosla et all,[2020) loss as follows:

1 1 exp(z; - z;[T)
L ias — 7 T~ N -l 4
b N;wm > —log )

JEPG) ZkeA(i) exp(zi - 21/7)
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where P(i) = {j € T : y; = yi, s; # s;}, represents the set of indexes of examples with the same
label and different demographic attribute s; as z;. Conversely, A(i) = {k € T : yi # i, Sk = Si}»
represents the set of indexes of examples with the different label and same demographic attribute as
z;. T is the temperature parameter of contrastive learning.

On the other hand, to retain the accuracy of ICL, we introduce the loss £,.. based on cross-entropy
loss. Following the convention, we define the L. as:

1
N Z —log

i€l

exp(pi)

Loce = -
o > yeyeap(py)’

&)

where p; is the probability that z; is predicted to be the ground-truth label, p! is the probability that
z; is predicted to be the label y, and label set Y = {joy, anger, sadness, fear}.

Finally, we obtain bias-aware embedding by minimizing the weighted sum of the above two objec-
tives: Liotai = @Lacec + (1 — a)Lpias, where « is the parameter that balances the accuracy and
fairness. As shown in Figure@, the total loss L;otq; is used to optimize the bias-aware embedding
via back-propagation.

Table 3: Gender bias and accuracy of LLMs under example selections after debiasing.

‘ Acct AvgGF| MaxTG| MaxFG| ‘ Acct AvgGF| MaxTG/| MaxFG|

Random Max | GPT-neo-2.7B  0.0830044) 0.2600.0.055) 0.3190.067) OPT-6.7B 0.086(.0.042) 0.322(.0.146)  0.4470.018)
Avg | 0.82810150) 0.035.0000) 0.135.0008) 0.1560042) | 0.781(0.027)  0.0340011) 0.1510.029)  0.191(0.006)

Perplexity Max GPT-J-6B 0.064(,(),034) 0.3500.035) 0.381(.0.122) OPT-13B 0.113:0013)  0.300(0.021) 0.301(,(1157)
Avg | 0.829(0002) 0.064(0024) 0.171c0060) 0.1640079) | 0.8280005) 0.058(10.009) 0.201(0.019)  0.172(.0.096)

Similarit Max | GPT-neo-2.7B  0.0530036) 0.267.0.033) 0.167(0.026) OPT-13B 0.062.0.022) 0.333(.0.050) 0.283(.0.083)
Y Avg | 0871o0s  0.031 0003)  0.14000047)  0.132(0032) | 0.896(:0024) 0.032¢0012) 0.181(-0.028) 0.167(-0.008)

DPP Max OPT-6.7B 0.073(,()_(]37) 0.250(,()_023) O~247(—0.026) OPT-13B 0.080(,()_043) 0.267(,(]‘[ 17) 0.1 67(,(]}2 17)
Avg | 0.87440000) 0.0330003) 0.12000.022)  0.12200021y | 0.91810.027)  0.033(30001)  0.1200.008)  0.1000.021)

'Red subscript indicates that the metric increases after debiasing, and blue subscript indicates that the metric decreases after debiasing.

5 EXPERIMENTAL RESULTS

5.1 RESULTS AFTER DEBIASING BY REBE

To validate the few-shot performance of ReBE, we conduct debiasing experiments on a training
set of 400 samples and a test set of 200 samples, split from the EEC-paraphrase. According to
results in Table 2] we select the two LLMs with the largest AvgGF in each baseline to eliminate the
gender bias. The experimental results of race bias are available in Appendix Due to hardware
limitations, we exclude OPT-30b and L1ama-2-70b from the choices. We implement the ReBE
based on the Huggingface PEFT library and previous work (Nguyen & Wong|, 2023)).
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Figure 6: The accuracy and gender bias comparison of GPT-neo-2 . 7B under four example selec-
tion baselines before and after debiasing.

As shown by the blue subscripts in Table [3] the average gender bias of most LLMs decreases after
debiasing by ReBE, which works for all example selection baselines. Concerning the issue that ex-
ample selection may amplify the maximum bias value, the “Max” row in Table 3| shows a significant
reduction in maximum bias. In addition, Figure [6] more intuitively shows the changes in accuracy,
AvgGF, MaxTG and MaxFG of GPT-neo-2. 7B before and after debiasing. The variances of the
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three biases all decrease, resulting in a more concentrated distribution, indicating improved stabil-
ity of the bias. In addtion, according to Table [3] the sentiment classification accuracy of LLMs is
not significantly affected after using ReBE. The above experimental results demonstrate that ReBE
meets the requirement of reducing bias without significantly compromising the accuracy. More
importantly, the results in Table[3|and Figure [|demonstrate that ReBE is compatible with existing
example selection methods. By combining example selection with ReBE, it is possible to achieve
high accuracy and low bias of LLMs.

5.2 ABLATION STUDY

To further demonstrate that the reduction in bias results from the Lp;,s rather than improved ac-
curacy, we conduct ablation studies using the L,.. and Lp;,s to replace the Ly, to train the
GPT-J-6B, respectively. As shown in Table f] the maximum values of AvgGF and MaxTG of
Lqcc are much higher than those of ReBE, even though the accuracy is slightly improved. In con-
trast, L5 achieves lower bias but sacrifices accuracy. Therefore, Ly, is actually responsible for
bias reduction, and L. guarantees accuracy.

Table 4: Experimental results of ablation study and parameter analysis of GPT-J-6B.

| Accuracy? AvgGF| MaxTG MaxFG |

‘ Mean Min Mean Max Mean Max Mean Max
Original | 0.84(11 7%, 0.80 0.04(12.2%) 0.084 0.15(+5.3%) 0.295 017+ 4.9%) 0.264
Lace 0.86(+2.3%) 0.77 0.03(12.3%) 0.089 0.13(15.2%) 0.292 01444 2% 0.250
Lbpias 0.26(41.7%) 0.25 0.02(1.9%) 0.049 0.02(14.9%) 0.196 0.03(7.79%) 0.327
ReBE 0.84(12.2%) 0.78 0.03(42.2%) 0.082 0.14(1 3.9%) 0.221 0.18(+4.5%) 0.284

n-virtual ‘ 0'85(:&1,3%) 0'80(:&1,9%) 0‘03(i0.9%) 0-09(i2.1%) 0'13(i2.5%) 0-26(i5.7%) 0'15(i2.2%) 025(:&5.5%)

Order ‘0-83(i0.5%) 0-74(i4.9%) 0-03(i1.9%) 0-09(i2.1%) 0A13(i0.7%) 0A27(i3.5%) 0A17(i1.3%) OA31(i4.8%)

5.3 BASELINE COMPARISON

Regarding baseline selection, although Hu et al.| (2024) proposed Fairness via Clustering Genetic
(FCG) algorithm, it cannot be applied to sentiment analysis or toxicity detection because it requires
explicit feature vectors for clustering. Since there are no other debiasing methods specifically for
ICL, we compare ReBE with two context augmentation methods: counterfactual context and gender-
balanced context. See the Appendix [G] for details of these two methods. As shown in Table [3]
compared with the counterfactual context and gender-balanced context method, ReBE is compatible
with existing example selection methods and can achieve lower bias and higher accuracy.

Table 5: Gender bias of OPT—-6 . 7B under various example selection methods

AvgGF | MaxTGJ MaxFG|

Accuracy?t
Mean Max Mean Max Mean Max
Random 0.044(i0_03) 0.129 0.180(i0_09) 0.468 0.199(i0_09) 0.465 0.81
DPP 0.036(+4-0.03) 0.110  0.142(+0.08) 0273 0.144(+0.06) 0.273 0.87
Gender-balanced ~ 0.040(40.03) 0.132 0.174(+0.08 0.333  0.210¢+0.09 0.417 0.80
Counterfactual 0.035(+0.03) 0.125 0.145(40.07) 0.369  0.149(+0.07) 0.369 0.77
Random+ReBE 0.034(40.02) 0.086  0.151(+0.07) 0322 0.191(+0.08) 0.447 0.78
DPP+ReBE 0.033(+0.02) 0.073  0.120(+¢.05) 0.250  0.122(+ .05 0.247 0.87

5.4 PARAMETER ANALYSIS

To illustrate the influence of parameters on ReBE, we conduct the following parameter analysis.
Detailed results are available in Appendix[D.3]

k-shot refers to the number of examples in prompt of ICL. Since the coverage of examples affects
the accuracy of ICL (Gupta et al.|[2023), the value of k should be large enough. However, redundant
information caused by excessive examples may decline the performance of ICL. As shown in Figure
the accuracy of LLMs after debiasing increases with the rise in k, while the biases tend to decrease
initially and then increase. Therefore, considering accuracy and biases, we choose k = 18 as our
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experiment setting. The analysis of the impact of an increasing number of ICL examples is available
in Appendix

GPT-J-6B OPT-6.7B
Q 0.75
0.80
< mj Tt 050}
0.41 AvgGF MaxTG MaxFG AvgGF MaxTG MaxFG
0.3 0.4
&
A 0.2 I —
0.2 /__,/\
0.1
2 6 10 14 18 22 26 2 6 10 14 18 22 26
Number of examples(k) Number of examples(k)

Figure 7: The accuracy and gender bias of LLM using ReBE under different k-shot.

n-virtual is the parameter of the prompt tuning, which refers to the number of virtual prompt tokens
and decides the size of trainable parameters. ReBE needs enough parameters to correct LLMs’
biases, but large n-virtual takes up more prompt space. We collect the accuracy and bias results of
GPT-J-6B using ReBE under different n-virtual. According to standard deviation data in Table []
and Figure [19|in the Appendix, there is no apparent relationship between n-virtual and bias.

Order of Examples Since LLMs are susceptible to position bias, previous work has found that the
example order of a few-shot prompt affects the performance of ICL (Lu et al., 2022} [Zhao et al.,
2021)). To reveal the effect of example order on ReBE, we shuffle the examples in the prompt under
different random seeds. As shown in row “order” of Table 4] and Figure [I9] the bias of LLM using
ICL is not affected by the example order, and ReBE is also robust to changes in the example order.

6 RELATED WORK

After realizing that ICL performance is susceptible to example selection, many efforts have been
made to stabilize it. [Liu et al.| (2022b)) proposed the KATE, which retrieves examples semantically
similar to the test query samples. After that, many heuristic-based methods have emerged, such as
perplexity-based (Gonen et al., 2023 [Iter et al.,2023)), informativeness-based (Gupta et al., 2023} [Li
& Qrul 2023)) and sensitivity-based (Chen et al.,|2023b)). Besides that, some studies understand ex-
ample selection from different perspectives, such as formulating it as a sequential decision problem
(Zhang et al.| [2022; Liu et al.,|2024a)), curating a stable subset from the original training set (Chang
& Jia, 2023)), selecting based on the Determinantal Point Process (DPP) (Yang et al.|[2023;|Ye et al.,
2023) and Latent Variable Models (Wang et al.,|[2023)). Although these methods stabilize the ac-
curacy of ICL on downstream tasks to a certain extent, they ignore the potential bias risks. On
the other hand, while extensive research has been conducted on the biases of LLMs (Gallegos et al.,
2024), few studies focus on the bias risks of adapting LLMs to downstream tasks, especially for ICL.
Although Ma et al.|(2023)) analyzed the predictive bias of ICL, their method relies on explicit bias
attributes, making it inapplicable to the EEC-paraphrase dataset used in this paper. Additionally,
predictive bias differs slightly from the social bias we focus on.

7 CONCLUSION

In this study, we have investigated the impact of example selection on the biases of LLMs. By
comparing the biases under four example selection baselines with biases under zero-shot, we have
found that example selection for ICL amplifies the biases of LLMs. To mitigate the bias of example
selection, we have proposed the Remind with Bias-aware Embedding (ReBE), which removes the
spurious correlations by contrastive learning and retains the feasibility of ICL by prompt tuning.
After extensive experiments, we have demonstrated that ReBE can mitigate the bias without signif-
icantly compromising accuracy and is compatible with existing example selection methods. With
the spread application of LLMs, more attention must be paid to the ethical risks of adapting LLMs
to downstream tasks.

10
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A  DATASET

As shown in Table [ and Table [7] compared to EEC, EEC-paraphrase built by this paper contains
more complex and natural sentences. The sentences in EEC-paraphrase are obtained by constructing
paraphrasing prompts in Table [6]and processing them with the help of GPT-3.5-Turbo.

Table 6: EEC and EEC-paraphrase.

Dataset

Sentence example

EEC
EEC-Paraphrase

“Alan feels angry.”
“Alan is experiencing a profound sense of frustration and irritation, resulting in a heightened
state of emotional turmoil and discomfort.”

You will be give a sentence. Please paraphrase and expand the following sentence in more complex words
(no less than 20 words; do not include ’joy’, "fear’, ’sadness’, and anger’ in your answer.) without changing
the original meaning:

{input}

Paraphrase Prompt

To compare the complexity and naturalness quantitatively, we conduct the following evaluation with
the help of the Python library and provide results in Table [/l The performance of EEC-
paraphrase on various metrics is significantly better than the original EEC dataset.

Table [/| shows the mean and standard deviation of the performance of datasets on various metrics.
We choose the number of words and Distinct-n to measure the diversity of sentences, and metrics
in Textstat are used to measure the complexity of sentences, which help determine the readability,
complexity, and grade level.

Table 7: Evaluation of EEC and EEC-paraphrase on various metrics.

Metric EEC EEC-paraphrase
Diversity Number of words? 5.86(£1.73) 18.63(£2.33)
Distinct-2 1 0.81(£0.066) 0.94(+£0.147)
Distinct-3 1 0.62(+0.132) 0.89(£0.017)
Complexity | Automated Readability Index 1 7.56(4+3.80) 14.44(£2.27)
Coleman-Liau Index 1 9.63(4+4.57) 14.74(£2.92)
Dale-Chall Readability Score 1 11.94(43.21) 11.68(+1.17)
Flesch-Kincaid Grade Level 1 5.52(£3.68) 12.06(£2.04)
Flesch Reading Ease Score | 65.88(£26.09) | 41.68(414.38)
Fog Scale 1 8.44(4+5.04) 15.18(42.88)
Linsear Write Formula 1 2.87(£1.25) 12.83(£2.06)
McAlpine EFLAW Readability Score 1 | 7.34(£2.59) 25.62(£3.90)
Readability Consensus Score 1 7.15(4+4.45) 13.09(£2.29)
Spache Readability Formula 1 4.20(+1.26) 6.73(4+0.70)

B BIAS METRICS

In this section, we provide a detailed explanation of the bias metrics in Table|[T]

Average Group Fairness (AvgGF) is a macro metric, which measures the disparity in the overall
prediction accuracy between different groups. Formally, it is the absolute value of the difference

between the accuracy P(Y =Y|S=s;) of group s; and the accuracy P(Y =Y |S=s,) of group ss.

Maximum TPR Gap (MaxTG) is a metric derived from the True Positive Rate (TPR), which refers
to the proportion of actual positive samples predicted to be positive. Here, we select one sentiment
category as positive and the other three as negative. MaxTG measures the maximum recall (TPR)
difference between various groups among all sentiment categories.

Maximum FPR Gap (MaxFG) is a metric derived from the False Positive Rate (FPR), which refers
to the proportion of actual negative samples predicted to be positive. Here, we select one sentiment
category as negative and the other three as positive. MaxFG measures the maximum FPR difference

14
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between various groups among all sentiment categories. The larger the MaxFG, the samples from
one group are more likely to be misclassified as a specific category than samples from another
group. For example, the sentence sadness corresponding to Male in Figure 3] is more likely to be
misclassified as fear than that corresponding to Female.

C IMPACTS OF EXAMPLE SELECTION ON LLMS BIASES

C.1 IMPACTS OF THREE EXAMPLE SELECTION METHODS ON BIASES

In the main text, we provide the figure for the impacts of random-based example selection on biases
of LLMs. Here, we provide results for three other example selection methods. As shown in Figure
[8] Figure@)and Figure[I0} the maximum bias values of LLMs under ICL based on the three example
selection methods are amplified to varying degrees. However, regarding the mean bias of LLMs,
whether gender or race bias, all example selection methods except perplexity-based significantly
reduce it.
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Figure 8: The impacts of Perplexity-based example selection on biases of LLMs.
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Figure 10: The impacts of Dpp-based example selection on biases of LLMs.

16



Under review as a conference paper at ICLR 2025

C.2 ACCURACY AND RACE BIAS OF LLMS UNDER FOUR EXAMPLE SELECTION BASELINES

In addition to the gender bias in the main text, we collect the race bias data of eight LLMs under
four example selection baselines. Detail experiment results of race bias of eight LLMs are shown
in Table[8]

Table 8: Accuracy and race bias of LLMs under four example selection baselines.

GPT-J-6B GPT-neo-2.7B  OPT-6.7B OPT-13B OPT-30B Llama-2-7B Llama-2-13B Llama-2-70B

Accmin 0.84(0,30) 0-77(0.58) 0.81(0‘()7) 0.82(0‘72) 0.84(0,76) 0.86(0‘31) 0.87(0‘33) 0.86(0,32)

£
.§ AVEGF Max) 0.04@ 0.050.15 0.040.15y 0.0500.11 0.06@ 0.06¢0.12) 0.06(0.10) 0.080.12)
é MaxTGmax) 0.1 SM 0.1 2(0.28) 0.1 3(0‘29) 0.1 3(0‘27) 0. 14@ 0. 15(0‘2(,) 0. 16(0‘22) 0.1 8(0,26)
MaxFGmax) 0.13(0,23) 0.12(0_24) 0.13@ 0.14(0_26) 0.13@ 0.13(0_23) 0.13(0_19) 0.16(0_23)
B AccMin) 0.83(0.72) 0.790.61 0.850381) 0.8300799 0.860385 0.87(0.80) 0.870.84) 0.86(0.35)
5 AvgGFmw 0.05000)  0.04@10)  0.03007 0.04010) 0.03007 0.05007  0.050.06 0.05(0.09)
E MaxTGmax) 0-13(0.18) 0-13(0.26) O.ISM 0.12(0‘15) 0.17@ 0.12(0‘13) 0.13(0‘21) 0.15(0,24)
MaxFGaay  0.12(0.18) 0.17@ 0.1800.25) 0.11(0.14 0.17@ 0.090.12) 0.13(0.21 0.16(0.24)
= AccMin) 0.92(0.83) 0.85(0.82) 0.840382 0.8708s 0.900385 0.93(0.90) 0.92(0.90) 0.890.37)
;:T AvVgGF Max) 0.02(0,04) 0.02(0_03) 0.03@ 0-03(0.06) 0.04@ 0-03(0,06) 0-03(0,06) 0.03(0_07)
5 MaxTGmax) 0.09(0,1 1 0.1 IM 0.13@ 0.1 1(()‘19) 0. 12(016) 0.09(0‘13) 0. 15(0‘20) 0.08(0,14)
MaxFGoay  0.11(0.20 0.14@ 0.1600.21) O.ISM 0.11¢0.18y  0.08(0.13) 0.140.20) 0.100.19
AccMin) 0.93(0.89) 0.890.83) 0.870.79y 0.890382 0.91038s 0.94(0.90) 0.93¢0.91) 0.90(0.35)
& AvegGFamay 0.04010)  0.04016)  0.0300s) 0.03011) 0.0400s) 0.04¢0.11 0.040.09) 0.04(0.14)
=]

MaxTGmax) 0.11(0‘24) 013@ 0.12(0_24) 0.12@ 0.14(()‘23) 0.11(()‘22) 0.11(()‘22) 0-13(0.26)
MaxFGmax) 0-10(0.18) 012@ 0.13(0‘23) 012@ 0.12(0,20) 0.10(0‘22) 0.10(0‘13) 0.13(0,25)

! Avgin) are the largest two values in AvgGF; Avgyi, are the largest two values in MaxTG and MaxFG.

C.3 CONFUSION MATRICES
To prove the existence of spurious correlations, we provide all the confusion matrices of eight LLMs

in[TT]and Figure[T2} It can be seen that, except for OP T—1 3B, all LLMs exhibit spurious correlations,
which is consistent with the results in Table [8]

gpt-j-6b Female gpt-j-6b Male gpt-j-6b African-American gpt-j-6b European-American
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Figure 11: Confusion matrix heatmaps.
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Figure 12: Confusion matrix heatmaps (continuation).
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C.4 THE NATIVE RACE BIAS OF LLMSs

Native Race Bias of LLMs are shown in Figure 13}
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Figure 13: The native race bias of LLMs over different labels.

C.5 BIAS DISTRIBUTION

Feature distribution of ICL-prompts with high and low MaxFG is shown in Figure[T4]
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Figure 14: The feature distributions of few-shot prompts with high and low MaxFG bias.
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D EXPERIMENTAL RESULTS AFTER DEBIASING BY REBE

D.1 GENDER BIAS RESULTS AFTER DEBIASING BY REBE

To supplement the data in Table 3] we provide the accuracy and gender bias comparison of

OPT-6. 7B (Figure[I3) and 0PT-13B (Figure[I7). Furthermore, for comparison, we also provide
the distribution of race bias in Figure [T6|and Figure [T8]
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Figure 15: The accuracy and gender bias comparison of OPT—-6 . 7B under four example selection
baselines before and after debias.
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Figure 16: The accuracy and race bias comparison of OPT—6. 7B under four example selection
baselines before and after debias.
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Figure 17: The accuracy and gender bias comparison of OPT—13B under four example selection
baselines before and after debias.
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Figure 18: The accuracy and race bias comparison of OPT—1 3B under four example selection base-
lines before and after debias.

D.2 RACE BIAS RESULTS AFTER DEBIASING BY REBE

Similar to the gender bias, according to the results in Table [8] we select the LLM with the largest
bias in each baseline to eliminate the race bias. The results are shown in Table

Table 9: Race bias and accuracy of LLMs under example selections after debiasing.

| Acct AvgGF| MaxTG. MaxFG|

Random Max GPT-J-6B 0.140(-0.035) 0.256(.0.062) 0.228.0.057)

Avg 0.84310.000) 0.0370.006)  0.148:0002)  0.132(10.006)

. Max GPT-neo-2.7B 0.076(,(),()13) 0. 195(—0.062) 0.21 l(,()_045)

Perplexity o | 08070000, 00410000 0.121c000n  0.128(003s)

P . Max OPT-6.7B 0.065(,0_015) 0.147(,0_125) 0.224(+()_013)
Similarit

MNAnY - Ave | 08620002  0.03000003 0108002 0.1370027)

DPP Max GPT-neo-2.7B 0. 150(,0_0 15) 0.264(,0_03 1)) 0.271 (-0.074)

AVg 0.883(.0,004) 0.040(4),001) 0. 140(+0,0]4) 0. 144”0,024)

! Red subscript indicates that the metric increases after debiasing, and blue subscript
indicates that the metric decreases after debiasing.
D.3 DETAILED EXPERIMENTAL RESULTS OF PARAMETER ANALYSIS

In this subsection, we provide detailed data on the effect of example order, k-shot and n-virtual on
ReBE in Table[I0] Table[TT)and Table [I2]respectively.

Table 10: Detailed data on the effect of example order on ReBE.

Shuffie Seed |  Accuracy?t AvgGF) MaxTGJ MaxFGJ
\ Mean Min Mean Max Mean Max Mean Max
13 | 0.826 0.730 0.034 0.074 0.140 0276 0.181 0.332
21 \ 0.829 0.755 0.031 0.073 0.143 0.319 0.188 0.379
42 | 0.837 0.775 0.030 0.087 0.131 0244 0.171 0.284
87 | 0.828 0.665 0.032 0.092 0.128 0295 0.166 0.279
100 \ 0.837 0.790 0.030 0.126 0.128 0.234 0.157 0.263

E IMPACT OF THE NUMBER OF ICL EXAMPLES ON BIAS

To investigate the impact of increasing the number of IC examples, we have assessed the gender
bias performance of L1ama—-2-7B in toxicity detection under various number of ICL examples
(k € [2,6,10,14,18,22,26]). As the number of ICL examples k increases, the bias decreases
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Table 11: Detailed data on the effect of k-shot on ReBE.

E-shot Accuracy? AvgGF| MaxTG/ MaxFG|
| Mean Min Mean Max Mean Max Mean Max
| 0.747 0.540 0.042 0.147 0.156 0.288 0.157 0.288
| 0.787 0.670 0.044 0.121 0.156 0.304 0.175 0.374
10 | 0.800 0.650 0.038 0.111 0.148 0.253 0.190 0.355
|
|
|
\

14 0.806 0.610 0.033 0.095 0.141 0.308 0.195 0.314
18 0.837 0.775 0.033 0.082 0.136 0221 0.179 0.284
22 0.807 0.685 0.032 0.095 0.141 0.396 0.174 0.443
26 0.823 0.760 0.031 0.147 0.141 0401 0.191 0.407
Table 12: Detailed data on the effect of n-virtual on ReBE.
n-virtual Accuracy? AvgGF| MaxTGJ| MaxFGJ
Mean Min Mean Max Mean Max Mean Max
1 0.853 0.825 0.033 0.083 0.135 0.301 0.145 0.253
3 0.850 0.795 0.030 0.073 0.143 0.292 0.159 0.263

\
\
\
\
5 10843 0790 0.027 0.111 0.134 0301 0.160 0.346
\
\
\
\
\

10 0.837 0.775 0.033 0.082 0.136 0.221 0.179 0.284
20 0.866 0.820 0.043 0.088 0.148 0.250 0.151 0.256
30 0.856 0.820 0.034 0.092 0.137 0.250 0.158 0.250
50 0.832 0.800 0.018 0.049 0.070 0.135 0.108 0.148
100 0.828 0.780 0.045 0.113 0.146 0.288 0.128 0.215

3 0.75 3 0.86
< 0.50 < 0.84

0.5 AveGF AveGF
—— MaxTG 03 —— MaxTG
0.4 —— MaxFC —— MaxFC

1 3 5 10 20 30 50 100 1 3 5 10 20 30 50 100
Number of virtual tokens Number of virtual tokens
(a) OPT-6.7B (b) GPT-J-6B

Figure 19: The effect of n-virtual on ReBE.

overall, but the change in accuracy must also be considered. The results are presented in Table [T3]
Table[T4] Table[T5]and Table [T6]

Table 13: Bias performance of L1lama-2-78 on AvgGF

Random Perplexity Similarity DPP

Mean Max Mean Max Mean Max Mean Max
k=2 0.204(£0.05) 0.310 0.105(£0.05) 0.195 0.116(£0.05) 0.203 0.129(£0.05) 0.235
k=6 0.204(£0.05) 0.312 0.087(%£0.06) 0.211 0.067(£0.04) 0.166 0.073(£0.05) 0.195
k=10 0.175(£0.03) 0.247 0.075(£0.06) 0.187 0.046(£0.03) 0.158 0.062(£0.04) 0.156
k=14 0.179(£0.05) 0.263 0.083(£0.05) 0.189 0.041(£0.03) 0.127 0.056(£0.03) 0.105
k=18 0.179(£0.05) 0.283 0.058(£0.06) 0.205 0.043(£0.05) 0.154 0.051(£0.04) 0.136
k=22 0.187(£0.05) 0.285 0.064(£0.06) 0.211 0.035(£0.03) 0.109 0.041(£0.03) 0.094
k =26 0.151(£0.04) 0.229 0.063(£0.05) 0.198 0.038(£0.03) 0.130 | 0.046(£0.02) 0.078
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Figure 20: The effect of example order on ReBE.
Table 14: Bias performance of Llama-2-78 on MaxTG
Random Perplexity Similarity DPP
Mean Max Mean Max Mean Max Mean Max
k=2 | 0.220(£0.05) | 0322 | 0.114(£0.05) | 0.203 | 0.123(£0.06) | 0.223 | 0.139(£0.06) | 0.251
k=6 | 0.226(£0.05) | 0336 | 0.094(F0.06) | 0.236 | 0.067(£0.04) | 0.166 | 0.077(£0.06) | 0.210
k =10 | 0.192(£0.03) | 0.261 | 0.081(£0.06) | 0.207 | 0.050(E0.03) | 0.I5I | 0.066(£0.04) | 0.160
k =14 | 0.196(£0.05) | 0278 | 0.089(£0.06) | 0.194 | 0.042(£0.03) | 0.109 | 0.062(£0.03) | 0.114
k =18 | 0.195(£0.05) | 0312 | 0.065(£0.06) | 0217 | 0.044(£0.03) | 0.140 | 0.059(£0.04) | 0.156
k =22 | 0.204(£0.05) | 0305 | 0.075(£0.06) | 0.228 | 0.036(£0.03) | 0.103 | 0.045(£0.03) | 0.107
k=26 | 0.162(£0.05 | 0254 | 0.071(£0.06) | 0215 | 0.039(£0.03) | 0.129 | 0.049(£0.05) | 0.094
Table 15: Bias performance of Llama-2-7B8 on MaxzFG
Random Perplexity Similarity DPP
Mean Max Mean Max Mean Max Mean Max
k= 0.025(F£0.07) | 0.250 | 0.069(F£0.09) | 0.2500 | 0.125(£0.18) | 0.667 | 0.180(E0.15) | 0.500
k= 0.168(£0.12) | 0250 | 0.198(£0.17) | 0500 | 0.091(£0.14) | 0500 | 0.104(£0.15) | 0.500
k =10 | 0.135(£0.12) | 0250 | 0.182(£0.16) | 0.400 | 0.079(F0.14) | 0.500 | 0.120(F£0.15) | 0.500
k =14 | 0.133(£0.12) | 0300 | 0.199(£0.15) | 0500 | 0.108(F£0.17) | 0.500 | 0.142(F£0.17) | 0.500
k=18 | 0.104(F£0.11) | 0250 | 0.182(£0.18) | 0.667 | 0.126(F0.17) | 0.500 | 0.171(F£0.18) | 0.667
k=22 | 0.128(£0.14) | 0.500 | 0.285(£0.20) | 0.667 | 0.113(F£0.14) | 0.500 | 0.154(F£0.16) | 0.500
k=26 | 0.095(F0.11) | 0300 | 0.306(£0.20) | 0.667 | 0.104(F0.14) | 0.500 | 0.176(£0.15) | 0.500
Table 16: Accuracy of L1ama—2-7B under vairous k
Random Perplexity Similarity DPP
k=2 0.721(£0.08) | 0.669(£0.12) | 0.676(+0.02) | 0.688(£0.03)
k=26 0.744(£0.07) | 0.715(£0.13) | 0.716(%0.04) | 0.786(£0.03)
k=10 | 0.757(£0.07) | 0.803(£0.09) | 0.765(£0.03) | 0.824(£0.03)
k=14 | 0.776(£0.07) | 0.817(£0.06) | 0.778(£0.03) | 0.837(£0.03)
k=18 | 0.762(£0.06) | 0.830(%0.08) | 0.802(£0.03) | 0.850(+0.03)
k=22 | 0.769(£0.06) | 0.839(£0.06) | 0.827(£0.04) | 0.880(£0.03)
k=126 | 0.805(£0.06) | 0.869(£0.04) | 0.851(£0.02) | 0.889(£0.03)

F EXPERIMENTS OF TOXICITY DETECTION

In toxicity detection, LLMs are asked to judge whether the sentences given are toxic or non-toxic.
As shown in Table[T7]and Table[I8] we provide the gender bias performance of L1ama-2-7B and
Llama-3.2-3B in toxicity detection.

Consistent with the sentiment analysis, we can find that: @ Compared with the zero-shot, example
selection methods for ICL amplify the maximum value of gender bias; ® ReBE remains compatible

with example selection methods and exhibits effective debiasing in toxicity detection.
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Table 17: Maximum values of gender bias of L1ama—2-7B in toxicity dection

Llama—-2-7B AvgGF MazTG MazFG

k=18 Origin ReBE | Origin ReBE | Origin ReBE
Zero-shot 0.108 - 0.098 - 0.833 -
Random-based 0.283 0.186 0.312 0.210 0.250 0.300
Perplexity-based | 0.205 0.168 0.217 0.173 0.667 0.667
Similarity-based | 0.154 0.141 0.140 0.129 0.500 0.667
DPP-based 0.136 0.102 0.156 0.116 0.667 0.857

Table 18: Maximum values of gender bias of L1ama—3.2-3B in toxicity dection

Llama-3.2-3B | AvgGF MazxTG MaxFG
k=18 Origin ReBE | Origin ReBE | Origin ReBE
Zero-shot 0.145 0.158 0.429

Random-based 0.215 0.108 0.217 0.127 0.500 0.550
Perplexity-based | 0.142 0.043 0.152 0.019 0.857 0.333
Similarity-based 0.056 0.038 0.069 0.019 0.600 0.333
DPP-based 0.090 0.048 0.049 0.011 0.750 0.500

Table 19: Mean values of gender bias of L1ama—2-7B in toxicity dection

Llama-2-7B AvgGF MaxTG MaxFG
k=18 Origin ReBE Origin ReBE Origin ReBE
Zero-shot 0.043(£0.03) 0.053(£0.03) 0.267(£0.25)

Random-based 0.179(£0.05) | 0.058(X£0.04) | 0.195(X£0.05) | 0.070(£0.04) | 0.104(L£0.11) | 0.176(£0.11)
Perplexity-based | 0.058(£0.06) | 0.049(£0.04) | 0.065(£0.06) | 0.053(£0.05) | 0.180(X£0.18) | 0.256(£0.03)
Similarity-based | 0.043(£0.03) | 0.038(£0.03) | 0.044(£0.03) | 0.039(£0.03) | 0.126(X£0.17) | 0.155(£0.20)
DPP-based 0.051(£0.04) | 0.045(X0.03) | 0.059(£0.16) | 0.053(£0.02) | 0.171(£0.18) | 0.248(£0.20)

Table 20: Mean values of gender bias of L1ama—3.2-3B in toxicity dection

Llama-3.2-3B AvgGF MaxTG MaxFG
k=18 Origin ReBE Origin ReBE Origin ReBE
Zero-shot 0.057(£0.05) 0.059(£0.05) 0.177(£0.15)

Random-based 0.058(£0.05) | 0.038(£0.03) | 0.056(£0.05) | 0.044(£0.03) | 0.126(£0.14) | 0.152(£0.11)
Perplexity-based | 0.038(£0.04) | 0.027(£0.01) | 0.038(£0.04) | 0.002(£0.01) | 0.263(£0.22) | 0.045(£0.10)
Similarity-based 0.031(£0.06) | 0.024(£0.02) | 0.034(£0.02) | 0.006(£0.01) | 0.223(£0.19) | 0.150(£0.14)
DPP-based 0.028(£0.03) | 0.03(£0.01) 0.021(£0.02) | 0.004(£0.01) | 0.301(£0.23) | 0.070(£0.14)

G BASELINE COMPARISON OF REBE

According to our survey results, there are not many relative debiasing methods of ICL. Although
Hu et al.| (2024)) proposed fairness via clustering genetic (FCG) algorithm, it cannot apply to more
tasks due to the need for explicit feature vectors. Therefore, we cannot set FCG as the baseline of
ReBE. Since there are no other debiasing methods specifically for ICL, we compare ReBE with two
context augmentation methods: counterfactual context and gender-balanced context.

Counterfactual For datasets built based on templates, such as EEC and EEC-paraphrase,
we can construct the corresponding counterfactual context instance based on the template. For
example, according to the template <person subject> feels <emotion word>,
the counterfactual context instance of sentence Alonzo feels angry. can be
Nichelle feels angry. or Amanda feels angry.

Gender-balanced The gender-balanced context approach requires an equal or close number of
examples for each gender type.

Table 21] shows the gender bias of OPT—-6. 7B on sentiment analysis with EEC-paraphrase as the
dataset. While the EEC-paraphrase dataset does not have its own templates, it is built upon the EEC
samples, allowing us to generate counterfactual samples using the templates from the EEC.
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Since the counterfactual context method does not apply to datasets without templates, we remove it
from the baselines tested on the Jigsaw dataset. Table 22] shows the gender bias of L1lama-2-7B
on toxicity detection with Jigsaw as the dataset.

Table 21: Gender bias of OPT—6. 7B on Sentiment Analysis with EEC-paraphrase

AvgGF (Mean) Max MazTG (Mean) Max MazFG (Mean) Max Acc
Random 0.044(£0.03) 0.129 | 0.180(£0.09) 0.468 | 0.199(£0.09) 0.465 | 0.81
DPP 0.036(+0.03) 0.110 | 0.142(£0.08) 0.273 | 0.144(£0.06) 0.273 | 0.87
Gender-balanced | 0.040(£0.03) 0.132 | 0.174(£0.08) 0.333 | 0.210(£0.09) 0.417 | 0.80
Counterfactual 0.035(£0.03) 0.125 | 0.145(£0.07) 0.369 | 0.149(£0.07) 0.369 | 0.77
Random+ReBE 0.034(£0.02) 0.086 | 0.151(£0.07) 0.322 | 0.191(£0.08) 0.447 | 0.78
DPP+ReBE 0.033(£0.02) 0.073 | 0.120(£0.05) 0.250 | 0.122(+£0.05) 0.247 | 0.87

Table 22: Gender bias of L1am~-2-7B on Toxicity detection with Jigsaw

AvgGF (Mean) Max M axT G (Mean) Max M ax FG (Mean) Max Acc
Random 0.179(£0.05) 0.283 | 0.215(£0.05) 0312 | 0.215(£0.05) 0312 | 0.76
DPP 0.051(£0.04) 0.136 | 0.059(£0.04) 0.156 | 0.171(£0.18) 0.667 | 0.85
Gender-balanced | 0.116(40.06) 0.236 | 0.205(£0.08) 0.500 | 0.205(+0.08) 0.500 | 0.81
Random+ReBE 0.058(£0.04) 0.186 | 0.070(£0.04) 0.210 | 0.176(£0.11) 0.300 | 0.86
DPP+ReBE 0.045(£0.03) 0.102 | 0.053(£0.02) 0.116 | 0.248(+£0.20) 0.857 | 0.88

G.1 DISCUSSION ON DEBIASING METHODS

To avoid spurious correlations caused by example selection, we test the feasibility of calibrating the
prompts of ICL. Based on past experiences, we provide detailed instructions or construct the coun-
terfactual example pairs in the prompt. Considering that differences in the proportion of sentences
corresponding to demographic groups or labels might mislead the LLMs, we also try the approach
that balances the proportions of various features in the prompt. However, as shown in Figure
there are no significant differences in feature ratios between prompts with high and low bias, so the
method based on balanced features may not be effective enough. In sum, the feasibility of removing
spurious correlations by few-shot prompts alone is questionable.
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Figure 21: The feature distributions of ICL-prompts with high and low bias, which are constructed
by Random-based example selection.
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