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Abstract
Federated Learning (FL) is a distributed learning paradigm
that enhances users’ privacy by eliminating the need for
clients to share raw, private data with the server. Despite
the success, recent studies expose the vulnerability of FL to
model inversion attacks, where adversaries reconstruct users’
private data via eavesdropping on the shared gradient infor-
mation. We hypothesize that a key factor in the success of
such attacks is the low entanglement among gradients per
data within the batch during stochastic optimization. This
creates a vulnerability that an adversary can exploit to re-
construct the sensitive data. Building upon this insight, we
present a simple, yet effective defense strategy that obfuscates
the gradients of the sensitive data with concealed samples. To
achieve this, we propose synthesizing concealed samples to
mimic the sensitive data at the gradient level while ensuring
their visual dissimilarity from the actual sensitive data. Com-
pared to the previous art, our empirical evaluations suggest
that the proposed technique provides the strongest protection
while simultaneously maintaining the FL performance. Code
is located at https://github.com/JingWu321/DCS-2.

Introduction
Consider an Artificial Intelligence (AI) service that aids in
disease diagnosis. Multiple hospitals train a model for this
service in collaboration. Publishing such a service could
benefit a large number of doctors and patients, but it is
critical to ensure that private medical data is secure and
the utility of the service is normal. Federated Learning
(FL) (McMahan et al. 2017a) is an essential technology for
such critical applications where the confidentiality of pri-
vate data is important. FL provides a distributed learning
paradigm that enables multiple clients (e.g., hospitals, busi-
nesses, or even mobile devices) to train a unified model
jointly under the orchestration of a central server. A key ad-
vantage of FL lies in its promise of privacy for participating
clients. With data decentralized and users’ information kept
solely with the client, only model updates (e.g., gradients)
are transmitted to the central server. Since the model’s up-
dates are specifically tailored to the learning task, they may
create a false sense of security for FL clients, leading them
to believe that the shared updates contain no information on
their private training data (Kairouz et al. 2021).
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Recent model inversion attacks (Zhu, Liu, and Han 2019;
Geiping et al. 2020; Balunović et al. 2022; Fowl et al. 2022;
Li et al. 2022) have shown that the users’ private data can
be reconstructed from the gradients shared during the learn-
ing process. This alarming finding has led to the explo-
ration of various defense schemes to mitigate privacy leak-
age. Zhu et al. (Zhu, Liu, and Han 2019) employed a strategy
that adds noise to gradients, guided by Differential Privacy
(DP) (Dwork et al. 2006; Abadi et al. 2016; Song, Chaud-
huri, and Sarwate 2013; McMahan et al. 2017b), a con-
cept originally designed to constrain information disclosure.
They also utilized gradient compression (Lin et al. 2017),
which prunes gradients below a threshold magnitude, as a
protective measure. Latest techniques have further advanced
the field, with developments such as Automatic Transforma-
tion Search (ATS) (Gao et al. 2021) (augmenting data to hide
sensitive information), PRivacy EnhanCing mODulE (PRE-
CODE) (Scheliga, Mäder, and Seeland 2022) (use of bottle-
neck to hide the sensitive data), and Soteria (Sun et al. 2021)
(pruning gradients in a single layer).

However, as defense techniques improve, attacks evolve
as well. New findings, as highlighted by Balunović et al.
(2022) and Li et al. (2022), indicate that modern defenses
may be ineffective against more sophisticated attacks. For
example, Balunović et al. (2022) show that an adversary
can disregard the gradients pruned by Soteria and still re-
construct inputs, even without knowledge of the specific
layers where pruning is applied. The vulnerability also ex-
tends to other defenses; data can be readily reconstructed
in the initial communication rounds against the defense
ATS (Balunović et al. 2022). In the case of the defense
PRECODE, the mere presence of a single non-zero entry
in the bias term can enable perfect reconstruction by adver-
saries (Balunović et al. 2022).

Most current defenses seek to protect all data equally,
even if this results in a poor privacy-performance trade-off.
In this work, we argue for a more realistic and practical setup
where the focus should be given to the sensitive data (e.g.,
personal data revealing racial or ethnic origin, political opin-
ions, and religious beliefs as mentioned in European Union’s
General Data Protection Regulation (Voigt and Von dem
Bussche 2017)). Consider a malignant skin lesion recogni-
tion system as an example. Skin images with tattoos that
contain personal information demand extra attention than
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images without such information. As such, preserving the
former’s privacy should be the algorithms’ priority.

Exploring the underlying mechanism of model inversion
attacks, we hypothesize that these attacks capitalize on the
characteristic of relatively low entanglement among the gra-
dients of data points during stochastic optimization. Build-
ing upon this understanding, we introduce a defense strat-
egy that obfuscates the gradients of sensitive data using con-
cealed samples. Formally, our goal is to ensure that an ad-
versary is unable to reconstruct sensitive data while simul-
taneously preserving the performance of the FL system. To
achieve this, we propose an algorithm that can adaptively
synthesize concealed samples in lieu of sensitive data. We
design the concealed points to have high gradient similarity
with the sensitive data but visually disparate. For this pur-
pose, our proposed defense has two main characteristics; 1)
Enhancing the privacy of sensitive data. Even though the
gradients from the concealed data are similar to those of the
sensitive data, inverting these gradients results in data points
that are visually very different from the sensitive data. By
obfuscating the gradients of the sensitive data with those of
the concealed data, the reconstruction of sensitive informa-
tion becomes confounded, which in turn leads to enhanc-
ing the privacy of sensitive data in FL. 2) Maintaining the
FL performance. The introduction of concealed data could
potentially disrupt the learning process as it alters the gra-
dient information. Our algorithm mitigates this by ensuring
that the shared gradients, after the introduction of concealed
data, align with the gradients of the original training sam-
ples, including sensitive data. This alignment is achieved
through a gradient projection-based approach, preserving
the learning capability of the FL system. Unlike existing
defenses, our approach proposes a practical solution to en-
hance privacy in FL. It presents a significant challenge for
an adversary to reconstruct the user-defined sensitive sam-
ples, all without sacrificing the overall performance of the
FL system.

Our main contributions can be summarized as follows:
• We show that model inversion attacks predominantly ex-

ploit the characteristic of relatively low entanglement
among gradients of samples during stochastic optimiza-
tion. Based on this finding, we propose to adaptively syn-
thesize concealed samples that obfuscate the gradients of
sensitive data.

• The proposed approach crafts concealed samples that are
adaptively learned to enhance privacy for sensitive data
while simultaneously avoiding performance degradation.

• We thoroughly evaluate and compare our algorithm
against various baselines (e.g., injecting noise to the gra-
dients as in the previous works (Sun et al. 2021; Gao et al.
2021; Zhu, Liu, and Han 2019)), and empirically observe
that our algorithm consistently outperforms the current
state-of-the-art defense methods.

Related Work
Model Inversion Attacks. Several model inversion at-
tacks breach FL privacy by reconstructing the clients’ data
e.g., (Zhu and Blaschko 2020; Fan et al. 2020; Zhu, Liu, and

Han 2019; Yin et al. 2021; Jin et al. 2021; Jeon et al. 2021;
Li et al. 2022; Takahashi, Liu, and Liu 2023; Nguyen et al.
2023). Deep Leakage from Gradients (DLG) (Zhu, Liu, and
Han 2019) and its variants (Zhao, Mopuri, and Bilen 2020)
employ an optimization-based technique to reconstruct pri-
vate data from the given gradient updates. While the original
algorithm (Zhu, Liu, and Han 2019) works best if the num-
ber of training samples in each batch is small, subsequent
works (Geiping et al. 2020; Wei et al. 2020; Mo et al. 2021;
Jeon et al. 2021; Yin et al. 2021) including Gradient Similar-
ity (GS) (Geiping et al. 2020) and GradInversion attack (Yin
et al. 2021) are able to reconstruct high-resolution images
with larger batch sizes by incorporating stronger image pri-
ors. Jin et al. (2021) introduce catastrophic data leakage
(CAFE) in vertical federated learning (VFL), showing im-
proved data recovery quality in VFL. Balunović et al. (2022)
formalize the gradient leakage problem within the Bayesian
framework and demonstrate that the existing optimization-
based attacks could be approximated as the optimal ad-
versary with different assumptions on the input and gradi-
ents (ie., the prior knowledge about the input and condi-
tional probability of the gradient given the input). They fur-
ther show that most existing defenses are not quite effective
against stronger attacks once appropriate priors (e.g., using
generative adversarial networks (Li et al. 2022)) are incor-
porated to reconstruct data.

While aforementioned optimization-based model inver-
sion attacks assume the server is honest-but-curious (Gol-
dreich 2009), recent works (Fowl et al. 2022; Boenisch et al.
2021) introduce model modification attacks by a malicious
server. Boenisch et al. (2021) apply trap weights to initialize
the model with the goal of activating parts of its parameters,
enabling perfect reconstruction within milliseconds. Simi-
larly, Fowl et al. (2022) proposes the insertion of a tailored
imprint module into the network structure. The imprinting
module will store information exclusively about a specific
subset of data points during the updates, and as a result, data
can be recovered precisely and quickly, even when aggre-
gated over large batches.

Privacy Preserving Defenses. Several approaches pro-
pose defense against model inversion attacks that breach
users’ privacy in FL. We can broadly categorize the exist-
ing defenses against model inversion attacks into four cat-
egories: gradient compression (Lin et al. 2017; Sun et al.
2021) and perturbation (Dwork et al. 2006; Abadi et al.
2016; Song, Chaudhuri, and Sarwate 2013), data encryp-
tion (Gao et al. 2021; Huang et al. 2020), architectural mod-
ifications (Scheliga, Mäder, and Seeland 2022), and secure
aggregation via changing the communication and training
protocol (Bonawitz et al. 2017; Mohassel and Zhang 2017;
Lee et al. 2021; Wei et al. 2021) (not considered here). Zhu,
Liu, and Han (2019) show that gradient compression can
help, while Sun et al. (2021) propose Soteria, suggesting
gradient pruning in a single layer as a defense strategy. Zhu,
Liu, and Han (2019) also explore adding Gaussian or Lapla-
cian noise guided by DP (Dwork et al. 2006; Abadi et al.
2016; Song, Chaudhuri, and Sarwate 2013; McMahan et al.
2017b) to prevent data being reconstructed. ATS relies on
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heavy data augmentation on training images to hide sensi-
tive information, while InstaHide (Huang et al. 2020, 2021)
encrypts the private data with data from public datasets.
Scheliga, Mäder, and Seeland (2022) introduce PRECODE,
which inserts a bottleneck to hide the users’ data. Despite
these significant efforts to develop defense schemes against
FL attacks, recent works highlight the vulnerabilities of
existing defenses. For example, several studies show that
DP requires a large number of participants in the training
process to converge (Zhu, Liu, and Han 2019; Gao et al.
2021; Sun et al. 2021). Balunović et al. (2022) show that
an adversary can get an almost perfect reconstruction af-
ter dropping the gradients pruned by Soteria. Balunović et
al. (Balunović et al. 2022) also suggests that it is easy to
reconstruct the data using the GS attack in the initial com-
munication rounds against ATS, while Carlini et al. (2020)
shows that the private data can be recovered from the encod-
ings of InstaHide (Huang et al. 2020, 2021). For PRECODE,
Balunović et al. (2022) demonstrate that an adversary can
completely reconstruct the data with at least one non-zero
entry in the bias. Further, strong defenses like Soteria can
still be bypassed by the Generative Gradient Leakage (GGL)
attack method (Li et al. 2022).

Methodology
In this section, we outline our proposed defense against
model inversion attacks. We begin by introducing a basic
FL framework, followed by an explanation of a simple re-
construction formulation that illustrates how model inver-
sion attacks operate with shared gradient information. Sub-
sequently, we describe how our proposed approach counters
these attacks. Throughout the paper, we denote scalars by
lowercase symbols, vectors by bold lowercase symbols, and
matrices by bold uppercase symbols (e.g., a, a, and A).

Federated Learning
Let fθ : X → Y be a model with parameters θ, classifying
inputs x ∈ X to labels y in the label space Y . In FL, we
assume that there are C clients and a central server. The data
Dc resides with the client c, and the server receives the gradi-
ent updates from the clients to update the model parameters
θ as

min
θ

E(X,Y )∼Dc
[L(fθ(X),Y ;θ)]. (1)

In the t-th training round, each client c will compute the
gradients∇θL(fθ(X),Y ) over local training data and send
it to the server. The server then updates the model parame-
ters θt using gradients from the selected C̃ clients:

θt = θt−1 − η

C̃

C̃∑
c=1

∇θt−1L(fθ(X),Y ;θt−1), (2)

where η is the learning rate. The server propagates back
the updated parameters θt to each client, repeating the pro-
cess until convergence. Even though the private training data
never leaves the local clients, in the following, we show
how an adversary can still reconstruct the data based on the
shared gradients ∇θL(fθ(X),Y ) from client c in the t-th
communication round.

Privacy Leakage
Individual Data Point Leakage. Without loss of gener-
ality, we consider the case of a network having only one
fully connected layer, for which the forward pass is given
by Rm ∋ y = W⊤x+ b, where W ∈ Rn×m is the weight
and b ∈ Rm is the bias. Let L denote the objective to up-
date the parameters, then the adversary reconstructs the in-
put x ∈ Rn by computing the gradients of the objective
w.r.t. the weight and the bias:

∇WL = [
∂L
∂y1

∂y1
∂W:1

, · · · , ∂L
∂ym

∂ym
∂W:m

],

∇bL = [
∂L
∂y1

, · · · , ∂L
∂ym

]. (3)

Note that ∂yl

∂W:l
= x for 1 ≤ l ≤ m. Thus, we can perfectly

reconstruct the input from the gradient information as x∗ =
∇W:l

L/∇bl
L = ( ∂L

∂yl

∂yl

∂W:l
)/ ∂L

∂yl
= x, provided that at least

one element of the gradient of the loss with respect to the
bias is non-zero (ie., ∂L

∂yl
̸= 0, 1 ≤ l ≤ m).

Multiple Data Points Leakage. Let xj , j ∈ [1, B], B >
1 denotes samples of a mini-batch of size B. The gradient of
the mini-batch is:

∇WL =
1

B

B∑
j=1

[
∂L
∂y1,j

∂y1,j
∂W:1

, · · · , ∂L
∂ym,j

∂ym,j

∂W:m
],

∇bL =
1

B

B∑
j=1

[
∂L
∂y1,j

, · · · , ∂L
∂ym,j

], (4)

which encapsulates a linear combination of all data points
xj in the mini-batch. Sun et al. (2021) observe that for data
coming from different classes, the corresponding data repre-
sentations tend to be embedded in different rows/columns of
gradients. Suppose that within the mini-batch, only x1 be-
longs to class yc (1 ≤ c ≤ m), then the column c of the
gradient in Eq. (4) will have∑B

j=1
∂L

∂yc,j

∂yc,j

∂W:c∑B
j=1

∂L
∂yc,j

≈
∂L

∂yc,1

∂yc,1

∂W:c

∂L
∂yc,1

= x1. (5)

Due to this property, ie. relatively low entanglement among
gradients per data points within a batch, the adversary can
reconstruct the data in practice. Boenisch et al. (Boenisch
et al. 2021) also observe that for a ReLU network, over-
parameterization can cause all but one training data in a
mini-batch to have zero gradients, allowing the individual
data point leakage in the mini-batch and the passive adver-
saries to obtain perfect reconstruction in various cases.

Optimization-based attacks aim to reconstruct data by
minimizing the distance between the gradient of the input
and that of the reconstruction. In contrast, model modifica-
tion attacks utilize specific parameters with the goal of am-
plifying the leakage of individual data points (Boenisch et al.
2021) within the mini-batch or allowing portions of the gra-
dient to contain information exclusive to a subset of data
points (Fowl et al. 2022). It is important to note that neither
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optimization-based attacks nor model modification attacks
can precisely separate the gradient for individual data points.
This limitation in the attack algorithms is a vulnerability
that we leverage in our approach to protect the data.

Defense by Concealing Sensitive Samples (DCS2)
Our objective is to protect sensitive data without modifying
any FL settings (e.g., model structure) and the sensitive data
themselves, while minimizing the impact of the proposed
defense on the model performance. Previously, we discussed
that model inversion attacks reconstruct the inputs using the
gradient information since the gradient encapsulates suffi-
cient information about data samples to reconstruct them
(see Eq. (4)). We note that while theoretically, attacks can-
not precisely separate the gradient for each sample, they can
be extremely successful in practice. Our key insight is to in-
sert samples (referred to as concealed samples) to imitate
the sensitive data on the gradient level while ensuring that
these samples are visually dissimilar to the sensitive data.
Our goal is to make it difficult or even impossible for the
adversary to distinguish the gradient of the synthesized con-
cealed samples from the gradient of the sensitive data.

Without loss of generality, assume that there is only one
sensitive data point, denoted by xs. Our task is to construct
the concealed sample x̃c for this sensitive data to achieve the
following goals as part of our defense strategy:

Goal-1: To protect sensitive data from model inversion at-
tacks, we would like to maximize the dissimilarity
between the concealed sample x̃c and the sensitive
sample xs, as measured by ∥x̃c − xs∥. Simultane-
ously, we seek to minimize the similarity between
the gradient of the concealed sample w.r.t. sensitive
data. This is quantified by the cosine similarity be-
tween the gradient vectors, ie.,∇θL(fθ(x̃c), ỹc) and
∇θL(fθ(xs),ys), while ensuring that the resulting
latent representation is similar to the sensitive latent
representation, ie., ∥fθ(x̃c)− fθ(xs)∥ ≤ ϵ.

Goal-2: To facilitate the server’s ability to learn and
enhance the FL model, we must ensure that the
resulting gradient closely resembles the gradient
of the batch without concealed samples. This
can be achieved by satisfying ⟨∇θL(fθ({xs} ∪
{x̃c}), {ys} ∪ {ỹc}),∇θL(fθ(xs),ys)⟩ > 0.

To accomplish the aforementioned goals, our defense strat-
egy consists of two phases: 1. synthesizing the concealed
samples and 2. gradient projection, which we discuss below.

Synthesizing the Concealed Samples. To obtain con-
cealed samples that are visually dissimilar to sensitive data
but whose gradient is similar to the sensitive data, we would
like to solve the following optimization problem:

min
x̃c

1−
〈
∇θL(fθ(x̃c), ỹc),∇θL(fθ(xs),ys)

〉
∥∇θL(fθ(x̃c), ỹc)∥ ∥∇θL(fθ(xs),ys)∥

(6)

max
x̃c

∥x̃c − xs∥ (7)

s.t.
∥∥fθ(x̃c)− fθ(xs)

∥∥ ≤ ϵ. (8)

We propose the following objective to achieve this

Lobj = (1− ⟨∇θL(fθ(x̃c), ỹc),∇θL(fθ(xs),ys)⟩
∥∇θL(fθ(x̃c), ỹc)∥ × ∥∇θL(fθ(xs),ys)∥

)

+ e−λx∥x̃c−xs∥ + λz(
∥fθ(x̃c)− fθ(xs)∥

∥fθ(xs)∥
− ϵ), (9)

where λz and λx are hyperparameters to balance the differ-
ent terms in the objective, ϵ controls the latent distance. The
first term and third term target achieving Goal-1 by ensur-
ing that the concealed sample is similar to the sensitive data
at the gradient level, while the second term learns the con-
cealed sample to be visually dissimilar to the sensitive data.

Remark. The label corresponding to the concealed sample
x̃c is denoted by ỹc in Eq. (9). To obtain x̃c, we solve an op-
timization problem, starting from x0, which may be a sample
different from xs. In such cases, we assign ỹc with the label
of x0, ie., ỹc = y0. In our experiments, we show that x̃c

can be randomly initialized, and accordingly, we set ỹc at
random. Our empirical evaluations show that the proposed
method works equally well under both conditions.

Gradient Projection. Using Eq. (9), we can obtain the
concealed sample xc. What we need to do next is to en-
sure that the gradient of the mini-batch augmented with the
concealed sample is aligned with the gradient of the original
mini-batch, as this way, the server can improve its model.
This will be achieved via the gradient projection, but be-
fore delving into details of projection and inspired by the
mixup regularization (Zhang et al. 2017), we propose an
enhancement. Let g be the gradient of the original mini-
batch ∇θL(fθ(xs),ys). We obtain the gradient with the
concealed sample as

gc ≜ ∇θ

{
L(fθ(xs),ys) + λgL(fθ(x̃c), ỹc)

+ (1− λg)L(fθ(x̃c),ys)
}
, (10)

where λg is a hyperparameter. Note that if λg = 1, we in-
deed attain the gradient of the mini-batch augmented by the
concealed sample. However, including the gradient in the
form ∇θL(fθ(x̃c),ys) is empirically observed to be bene-
ficial. Analysis can be found in § .

To align the resulting gradient gc with the original gradi-
ent of the mini-batch g, we opt for the technique developed
in (Lopez-Paz and Ranzato 2017). This will ensure that the
gradient sent to the server will improve the FL model. To
this end, we compute the angle between the original gra-
dient vector and the new gradient and check if it satisfies
⟨g, gc⟩ ≥ 0. If the constraints is satisfied, the new gradient
gc behaves similarly to that of obtained from the mini-batch
xs; otherwise, we project the new gradient gc to the closest
gradient ĝc according to:

argmin
ĝc

1

2
∥gc − ĝc∥22 ,

s.t. ⟨g, ĝc⟩ ≥ 0. (11)
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Algorithm 1: Defense by DCS2.

1: procedure GRADIENT OBFUSCATION
2: initialize the start point for constructing

the concealed data x̃c ← x0, ỹc ← y0;
3: get the concealed sample x̃c ← Eq. (9);
4: compute the new gradient gc ← Eq. (10);

5: procedure GRADIENT PROJECTION
6: get the gradient from the original batch

g ← ∇θL(fθ(xs),ys);
7: if ⟨g, gc⟩ < 0 then
8: get the solution v∗ ← Eq. (12);
9: project the new gradient to the closest gradient

ĝc = gv∗ + gc.

To efficiently solve Eq. (11), we employ the Quadratic Pro-
gramming (QP) with inequality constraints:

argmin
v

1

2
g⊤gv + g⊤

c gv,

s.t. v ≥ 0. (12)

The projected gradient ĝc is given from the solution v∗ in
Eq. (12) as ĝc = gv∗ + gc. The complete pseudocode for
the algorithm is provided in Algorithm 1.

Experiments
In this section, we first describe our evaluation settings, fol-
lowed by a comparison of our defense with existing defenses
against model inversion attacks in FL, to answer the follow-
ing research questions (RQs):
RQ1: Can the proposed method DCS2 effectively protect sensi-

tive data against model inversion attacks in FL?
RQ2: Is the proposed method DCS2 capable of maintaining FL

performance while providing protection?
RQ3: How does the proposed method DCS2 compare with exist-

ing defenses?
RQ4: How does the proposed method DCS2 perform when de-

fending against adaptive attacks?
RQ5: How does the proposed method DCS2 perform when the

starting point for generating concealing samples varies?

Additional details and results are available in the supplemen-
tary material at https://arxiv.org/pdf/2209.05724v2.pdf.

Experimental Setup
Attack Methods. We evaluate defenses against classical
and state-of-the-art (SOTA) attacks in FL: the improved ver-
sion of the classical Deep Leakage from Gradients (Zhu,
Liu, and Han 2019) called GS attack (Geiping et al. 2020)
that introduces image prior and uses cosine similarity as a
distance metric to enhance reconstruction, and SOTA at-
tack GGL attack that uses a Generative Adversarial Network
(GAN) to learn prior knowledge from public datasets. We
also include the recently proposed SOTA model modifica-
tion attack ie. Imprint attack (Fowl et al. 2022). Further-
more, we provide an evaluation when the adaptive attack
has strong prior knowledge about the private training data.

Defense Baselines. Following Sun et al. (2021); Gao et al.
(2021), we compare DCS2 with defenses including DP-
Gaussian (adding Gaussian noise to gradients, following the
implementation in (Sun et al. 2021; Gao et al. 2021)), and
Prune (Gradient Compression) (Lin et al. 2017). We further
compare against the recently proposed defense Soteria (Sun
et al. 2021), which perturbs the representations.

Datasets and Models. We consider four datasets, namely
MNIST (LeCun et al. 1998), CIFAR10 (Krizhevsky, Hinton
et al. 2009), CelebFaces Attributes (CelebA) Dataset (Liu
et al. 2015) with image resolution rescaled to 32 × 32 for
a fair evaluation on GGL attack and TinyImageNet (Le and
Yang 2015) with image resolution rescaled to 224 × 224.
Being consistent with existing literature, we consider three
model architectures i.e., LeNet (LeCun et al. 1998) for
MNIST, ConvNet (with the same structure as in Soteria (Sun
et al. 2021)) for CIFAR10 and CelebA, ResNet18 (He et al.
2016) for TinyImageNet.

Metrics. To quantify the quality of reconstructed images
and compare them with the sensitive data, we use peak
signal-to-noise ratio (PSNR) as used in the work (Balunović
et al. 2022), and structural similarity index measure
(SSIM) (Wang et al. 2004). Besides, we use the learned per-
ceptual image patch similarity (LPIPS) metric (Zhang et al.
2018) for experiments on TinyImageNet. When measuring
PSNR and SSIM, lower values indicate better performances.
When it comes to LPIPS, a higher number indicates a bet-
ter performance. We report classification accuracy values on
the respective test sets (denoted as Acc T) and the protected
data (denoted as Acc S) to measure the FL performance.

Privacy-Performance Trade-Off
We consider 100% of the training data in the target client
as sensitive samples. The optimal conditions for an adver-
sary to invert gradients are a batch size of one, a low image
resolution, and an untrained target network.

Results on MNIST and CIFAR10. We first evaluate de-
fenses against the GS attack on the MNIST and CIFAR10
datasets using models with randomly initialized weights.
Results on Tab. 1 indicate that, compared with existing de-
fenses, our proposed approach provides a better defense
against the GS attack. Specifically, on MNIST, the defense
baselines reduce the PSNR from 59.20 to ∼ 10, while our
defense can reduce the PSNR to around 8. On CIFAR10,
our method reduces the SSIM to 0.17 when other defenses
only reduce it to around 0.3. In terms of the FL perfor-
mance, as shown in Tab. 1, our proposed defense method
DCS2 largely retains the performance compared with other
defenses. Specifically, on MNIST, when most defense base-
line drops the performance by about 1% on the sensitive
data, our defense maintains the performance.

Results on CelebA and TinyImageNet. Further, we com-
pare different defenses for more complex datasets, with
larger capacity networks, on CelebA and TinyImageNet, to
defend against stronger attacks. We use randomly initial-
ized weights and use the attribute gender as the target la-
bel in CelebA to perform binary classification. A pre-trained
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MNIST CIFAR10

Defense PSNR↓ SSIM↓ Acc S↑ Acc T↑ PSNR↓ SSIM↓ Acc S↑ Acc T↑
None 59.20±2.71 1.00±4.87 86.98±0.00 87.16±0.01 20.41±3.15 0.73±0.09 90.35±0.04 80.41±0.01

DP-Gaussian 35.38±2.44 0.83±0.07 85.94±0.00 86.91±0.01 12.34±1.34 0.28±0.06 77.19±0.18 79.65±0.04

Prune 14.13±2.29 0.37±0.06 85.94±0.00 86.91±0.00 11.26±1.75 0.22±0.06 77.80±0.32 79.51±0.08

Soteria 9.67±1.09 0.30±0.07 86.98±0.00 86.94±0.00 11.48±1.42 0.29±0.06 84.70±0.32 79.76±0.04

DCS2 (Ours) 7.84±2.56 0.17±0.09 86.98±0.00 86.98±0.01 8.04±1.10 0.15±0.05 80.39±0.07 79.79±0.03

Table 1: Defenses against GS attack on MNIST and CIFAR10. Values are averaged.

CelebA TinyImageNet

Defense PSNR↓ SSIM↓ Acc S↑ Acc T↑ SSIM↓ LPIPS↑ Acc S↑ Acc T↑
None 19.92±2.18 0.75±0.07 100.0±0.00 93.79±0.07 1.00±0.00 0.00±0.00 73.94±1.21 66.41±0.02

DP-Gaussian 13.95±1.52 0.44±0.08 90.51±0.47 93.19±0.04 1.00±0.00 0.00±0.00 53.28±0.78 65.65±0.07

Prune 9.57±2.66 0.24±0.12 91.41±1.10 93.25±0.06 0.91±0.12 0.16±0.20 52.77±0.07 65.73±0.20
Soteria 8.89±2.63 0.24±0.11 100.0±0.00 93.86±0.01 1.00±0.00 0.00±0.00 41.84±1.14 52.06±1.47

DCS2 (Ours) 8.24±2.71 0.17±0.12 100.0±0.00 94.31±0.01 0.79±0.22 0.22±0.23 59.88±0.71 65.68±0.05

Table 2: Defenses against GGL attack on CelebA and Imprint attack on TinyImageNet. Values are averaged.

λg SSIM↓ LPIPS↑ Acc S↑ Acc T↑
0.5 0.80±0.20 0.22±0.21 60.33±0.71 65.76±0.04
0.7 0.79±0.22 0.22±0.23 59.88±0.71 65.68±0.05

1.0 0.78±0.22 0.23±0.23 58.54±0.46 65.24±0.21

Table 3: DCS2 with different λg on TinyImageNet.

ResNet18 was applied for TinyImageNet. As shown in Ta-
ble 2, our defense provides the best protection while com-
petitively maintaining the original FL performance. Specif-
ically, on CelebA, defending against the GGL attack, our
method provides the best protection, and the FL perfor-
mance is even improved while defenses DP-Gaussian and
Prune drop by around 0.5% on the test set. On TinyIma-
geNet, when defending against the Imprint attack, the de-
fense Soteria cannot know where the adversary would in-
sert the imprint module, so it cannot withstand the Imprint
attack. While most defenses cannot provide protection, our
defense method increases the LPIPS from 0.00 to 0.22.

Fig. 2 shows the example of reconstructions from differ-
ent attacks with defenses on different datasets. The attacks
could still recover some parts of the sensitive data with other
defenses, while they fail with our proposed defense method.
The training process on various datasets with different de-
fenses is illustrated in Fig. 3. Training with these defenses
typically results in convergence. However, in the case of So-
teria on TinyImageNet, approximately 90% of the represen-
tations are perturbed, resulting in a convergence failure.

Tab. 3 presents the results for DCS2 on TinyImageNet un-
der varying values of λg . As λg increases, the protection for
sensitive data improves. However, this leads to a reduction
in the performance of the FL system.

PSNR↓ (None) SSIM↓ (None) PSNR↓ (DCS2) SSIM↓ (DCS2)

59.22±2.71 1.00±4.77 7.87±2.44 0.18±0.09

Table 4: Defend against adaptive attacks.

GT DCS2AvgImg None DCS2

(a) (b)

Figure 1: (a) and (b) are visualization examples for Tab. 4
and Tab. 6 respectively. (Best viewed in color)

Comparison Against Adaptive Attacks
We compared the proposed defense method DCS2 against
two SOTA attacks: Imprint and GGL. Imprint modifies the
architecture, and GGL uses a GAN to learn prior knowledge
from public datasets. As per Gao et al. (2021), both these
attacks are adaptive since the adversary “starts the recon-
struction from an image with certain semantic information”
or “designs attack techniques instead of optimizing the dis-
tance between the real and dummy gradients”. Results in
Tabs. 1 and 2 indicate that our defense provides the best
protection with minimal drop in accuracy. For example, on
TinyImageNet, our defense reduces the SSIM score from 1.0
to 0.79. In comparison, the defense Prune decreases it to ap-
proximately 0.9 and other defenses prove inadequate against
this attack. The accuracy of the FL system using our defense
on the sensitive data decreases by about 14%, whereas other
defenses drop exceeding 20%.

Further, we design another strong attack where the adver-
sary has strong prior knowledge and initializes the GS attack
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GT None DP-Gaussian Prune Soteria DCS2

Figure 2: Example of reconstructions for Tabs. 1 and 2.
From top to bottom are reconstructions from GS attacks on
MNIST, those from GS attacks on CIFAR10, those from
GGL attacks on CelebA, and those from Imprint attacks on
TinyImageNet, respectively. (Best viewed in color)

MNIST Noise MixUP PSNR↓ SSIM↓ Acc S↑ Acc T↑
✓ ✗ ✓ 7.97 0.18 86.56 86.99
✓ ✗ ✗ 7.84 0.17 86.98 86.98
✗ ✓ ✓ 7.69 0.18 86.98 86.99
✗ ✓ ✗ 7.40 0.16 85.94 86.94

Table 5: Different start points on MNIST.

with the average image for each class. Results are shown in
Tab. 4, our proposed method can still provide good protec-
tion against such an attack with prior knowledge about the
sensitive data. Fig. 1 (a) shows an example of the recon-
structions from this attack. The GS attack would initialize
the dummy input with the AvgImg (average image) shown
in Fig. 1. The average image already explicitly includes in-
formation about the sensitive data, while our defense method
could still protect the data against this adaptive attack.

Effect of Starting Points

We further evaluate our defense by choosing different initial
starting points to craft the concealed samples. Tab. 5 show
the performance with different start points. ‘MixUP’ means
that x̃c is initialized with 0.7x0 + 0.3xs. Tab. 6 and Fig. 1
(b) show the results when the start points are from CIFAR10,
which has different distribution than the target task dataset
CelebA. As shown in Tabs. 5 and 6, even starting from ran-
dom noise and different domains, our defense method could
still provide protection and retain the model’s performance.

Defense PSNR↓ SSIM↓ Acc↑
None 19.92±2.18 0.75±0.07 93.79±0.07

DCS2 8.68±2.78 0.18±0.12 94.13±0.03

Table 6: Start points from CIFAR10 for CelebA.
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Figure 3: Training process. (Best viewed in color)

Defense PSNR↓ SSIM↓ Acc S↑ Acc T↑
Prune 14.13 0.37 85.94 86.91
DCS2 7.84 0.17 86.98 86.98
Prune&DCS2 6.08 0.12 86.15 86.92

Table 7: Combination of defenses.

Combination With Existing Defenses

An illustration of combining DCS2 with the defense ‘Prune’
is presented in Tab. 7. In this scenario, the enhancement
of protection for private training data is notable. While the
performance experiences a slight decrease compared to the
standalone proposed defense method, it still surpasses the
performance of the defense ‘Prune’ alone.

Limitations
While our empirical evaluations show that our proposed de-
fense is effective in enhancing privacy and retaining FL per-
formance, it requires additional computation to craft con-
cealed samples (refer to the supplementary material for de-
tails on computation complexity). Future directions to im-
prove concealed sample-based defense include finding the
best starting points and reducing the time to craft concealed
samples. We hope our defense can provide a new perspective
for defending against model inversion attacks in FL.

Conclusion
In this work, we proposed an effective defense algorithm
against model inversion attacks in FL. Our approach crafts
concealed samples that imitate the sensitive data, but can
obfuscate their gradients, thus making it challenging for an
adversary to reconstruct sensitive data from the shared gra-
dients. To enhance the privacy of the sensitive data, the con-
cealed samples are adaptively learned to be visually very
dissimilar to the sensitive samples, while their gradients are
aligned with the original samples to avoid FL performance
drop. Our evaluations on four benchmark datasets showed
that, compared with other defenses, our approach offers the
best protection against model inversion attacks while simul-
taneously retaining or even improving the FL performance.
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