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ABSTRACT

Originating from model-based reinforcement learning (MBRL) methods, algo-
rithms based on world models have been widely applied to boost sample efficiency
in visual environments. However, existing world models often struggle with irrel-
evant background information and omit moving tiny objects that can be essential
to tasks. To solve this problem, we introduce the Motion-Aware World Model
(MAWM), which incorporates a fine-grained motion predictor and entails action-
conditional video prediction with a motion-aware mechanism. The mechanism
yields compact and robust representations of environments, filters out extraneous
backgrounds, and keeps track of the pixel-level motion of objects. Moreover, we
demonstrate that a world model with action-conditional video prediction can be
interpreted as a variational autoencoder (VAE) for the whole video. Experiments
on the Atari 100k benchmark show that the proposed MAWM outperforms cur-
rent prevailing MBRL methods. We further show its state-of-the-art performance
across challenging tasks from the DeepMind Control Suite.

1 INTRODUCTION

Recent model-based reinforcement learning (MBRL) algorithms utilize world models (Kalweit &
Boedecker, 2017) to capture the dynamics of the environment and endow agents with the ability
to learn compact representations from high-dimensional images (Watter et al., 2015; Ebert et al.,
2018; Hafner et al., 2019b; Zhang et al., 2019), imagine future frames (Denton et al., 2017; Hafner
et al., 2019a; Kaiser et al., 2020) and plan (Chua et al., 2018; Schrittwieser et al., 2020; Ye et al.,
2021; Wang et al., 2024). As a notable example of MBRL approaches, DreamerV3 (Hafner et al.,
2023) learns a world model, which consists of a recurrent state-space model (RSSM; Hafner et al.,
2019b), a variational autoencoder (VAE; Kingma, 2013), and predictors for accessible signals. Then
an actor-critic network utilizes predictions from the world model to learn long-horizon behaviors.

Due to aleatoric uncertainty and epistemic uncertainty (Lakshminarayanan et al., 2017), it is difficult
for world models to have a perfect prediction for rewards. Prediction errors often hinder a guarantee
of policy improvement for a model-based method (Janner et al., 2019). When it comes to visually
complex environments with many moving small objects, the situation gets even worse. Motivated
by diffusion models (Song et al., 2021; Karras et al., 2022; Ho et al., 2022c), Alonso et al. (2024)
designed a diffusion world model which predicts future frames conditioning on past observations and
actions to keep small details in the visual inputs. To avoid reconstruction of irrelevant details such
as textures or environment noise at the expense of smaller but important elements, Sun et al. (2024)
randomly masked a portion of pixels in the video clip to reduce the spatio-temporal redundancy.
However, the methods proposed above failed to deal with moving tiny objects and neglected their
connections with tasks.

Current representation learning methods in MBRL via the task of image reconstruction could not
concentrate on the moving object that indicates the result of actions but may lay much emphasis
on the background, which occupies most of the area of images. To give an illustration, imagine a
moving tiny object in an environment, a neural network model that simply reconstructs the images
of the environment can exhibit low error enough. That is to say, the model is not encouraged to focus
on the tiny object but pays attention to the background. Representation learning via video prediction
may tackle the above problem. However, there are often subtle differences between neighboring
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frames. It is necessary to develop an appropriate motion-aware mechanism to address the above
problem.
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Figure 1: Comparison of methods on Atari 100k and challenging tasks from DeepMind Control
Suite benchmarks. MAWM achieves consistently strong performance with fixed parameters for all
tasks across both domains.

To draw the attention of the agent to moving tiny objects and inter-frame discrepancy, we present
MAWM (Motion-Aware World Model), a deep neural network framework that learns compact world
models via fine-grained motion prediction and action-conditional video prediction. MAWM focuses
on moving objects in video and pays attention to meaningful small objects via pixel-level attention
mechanisms. MAWM has an adaptive control scheduler to deal with rapid changes in the environ-
ment, similar to the causes of visually-induced dizziness in humans, which enables robust repre-
sentation learning for the foreground region in different environments. We conduct experiments and
demonstrate the strong adaptability of MAWM for diverse control scenarios. The main contributions
of this work are summarized as follows.

• We design a framework of world models, called MAWM, which incorporates a new motion-
aware mechanism and learns visual representations via video prediction and motion pre-
diction with an Adaptive Motion-Aware Scheduler (AMAS).

• We introduce a novel theoretical model named Recurrent State Space Model for Video Pre-
diction (RSSM-VP), which establishes the foundation for applying RSSM to world model
learning via video prediction, and infer the training objective of MAWM from it.

• We show MAWM masters visual control tasks across diverse domains, encompassing dis-
crete and continuous actions. Specifically, MAWM outperforms DreamerV3 by a large
margin, on both Atari 100k and challenging tasks from DeepMind Control Suite.

2 RELATED WORK

2.1 MODEL-BASED REINFORCEMENT LEARNING

Recent years have witnessed the growing importance of sample-efficient reinforcement learning
in complex visual environments (Hafner, 2022) and MBRL has been a research focus in recent
decades (Sutton, 1991; Moerland et al., 2023). Currently, MBRL reduces the number of interactions
between the agent and the environment by learning policy within a world model. Ha & Schmidhuber
(2018) first proposed a simple world model composed of Mixture Density Network (Graves, 2013)
combined with an LSTM (Hochreiter, 1997) model and a VAE (Kingma, 2013) model to learn the
dynamics in visual environments. Dreamer, a notable series of methods (Hafner et al., 2019a; 2020;
2023), is based on the recurrent state-space model, which enables forward predictions purely in
latent space. Descendants of RSSM, such as C-RSSM (Gumbsch et al., 2023) and HRSSM (Sun
et al., 2024), were proposed to learn hierarchical and robust latent representations. However, RSSM
and its variants were limited to representation learning via image reconstruction (Ha et al., 2023).
In contrast, RSSM-VP is a universal theoretical model that enables world models based on RSSM
to learn from video prediction and is applicable to other variants of RSSM.

Encouraged by the huge success of Transformer architecture (Vaswani, 2017) in natural language
processing and computer vision, several works attempted to use a transformer-based world model to
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Figure 2: MAWM architecture that predicts future frames conditioned on the history of frames
o0:t−1 and actions a0:t−1. The image decoder predicts the next-frame image ôt via deterministic
states ht and prior stochastic states ẑt. The representation model combines features extracted by
the image encoder from frames ot with deterministic states ht to obtain posterior stochastic states
zt. The motion decoder learns to predict masks for the motion of objects by minimizing the focal
loss (Lin et al., 2017) for binary classification.

learn the dynamics in environments, such as Transdreamer (Chen et al., 2022), IRIS (Micheli et al.,
2023), MWM (Seo et al., 2023), TWM (Robine et al., 2023), STORM (Zhang et al., 2024) and
REM (Cohen et al., 2024). Planning using the world model at inference time can improve the accu-
racy of action selections. Building upon MuZero (Schrittwieser et al., 2020) which leveraged Monte
Carlo Tree Search (Coulom, 2006), EfficientZero (Ye et al., 2021) introduced a self-supervised con-
sistency loss and used imagined rollouts with current policy to obtain the value target. By utilizing
sampled-based Gumble search (Danihelka et al., 2022) and search-based value estimation, Effi-
cientZero V2 (Wang et al., 2024) has been the state-of-the-art algorithm on the Atari 100k bench-
mark so far. Meanwhile, some works (Seo et al., 2022; Wu et al., 2024) tried to pre-train a model
from off-the-shelf video via unsupervised representation learning and stack an action-conditional
latent prediction model on top of the pre-trained model. TD-MPC2 (Hansen et al., 2024) optimizes
local trajectories in a learned implicit world model without the decoder. HarmonyDream (Ma et al.,
2024a) proposed task harmonizers, i.e., learnable parameters, with which world models can balance
various loss terms automatically. To our best knowledge, MAWM is the first world model that in-
corporates a motion-aware mechanism, which can be incorporated into existing MBRL methods to
capture moving tiny objects.

2.2 ACTION-CONDITIONAL VIDEO PREDICTION

Oh et al. (2015) made and evaluated long-term predictions on visual images conditioned on actions
in Atari games in their pioneering research. They extracted high-level feature vectors from a fixed
number of frames using convolutional neural networks and utilized LSTM to capture temporal cor-
relations among these feature vectors. Later works further improved this architecture by adding skip
connections between the convolutional encoder and decoder (Finn et al., 2016), discretizing feature
vectors, and utilizing a variational autoencoder to get a stochastic model (Kaiser et al., 2020). COS-
MOS (Sehgal et al., 2024) extracted objects in the images and applied the neurosymbolic attention
mechanism that binds these objects to learned rules of interaction from an object-centric perspective.
In recent years, the focus has shifted towards generative video prediction, which makes it necessary
to have a profound understanding of the physical principles (Ming et al., 2024a). Alonso et al. (2024)
proposed a diffusion world model conditioned on a sequence of images and actions. To estimate and
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generate the next observation, they concatenate the past images to a noisy image channel-wise and
input actions through adaptive group normalization layers (Zheng et al., 2020). However, they sim-
ply used predicted frames as states for policy learning. By contrast, our algorithm utilizes the latent
states for policy learning on the foundation of our proposed RSSM-VP.

3 METHODS

Visual reinforcement learning is formalized as a Partially Observable Markov Decision Pro-
cess (POMDP; Kaelbling et al., 1998) with image observations ot ∈ Ω ⊆ Rh×w×3, actions at ∈ A,
rewards rt ∈ R, states st, and a discount factor γ ∈ (0, 1]. An agent takes an action according to
the policy π(·|o≤t, a<t), which is a mapping from the history of past observations and actions to
a probability distribution on actions to take. The object is to learn a policy π that maximizes the
expected value of accumulated discounted reward Eπ[

∑∞
t=0 γ

trt|s0 = s].

We focus on visual representation learning for world models. We first provide the framework of
MAWM and how to learn latent representations and dynamics for our world model in Section 3.1.
We then present details of visual representation learning by fine-grained motion prediction and
action-conditional video prediction in Section 3.2 and 3.3, respectively. We summarize the train-
ing protocol of MAWM in Appendix C.

3.1 MAWM FRAMEWORK

Components We utilize images ot , rewards rt, motion hints mt, and episode continuation flags ct
to learn the world model in a self-supervised manner. MAWM consists of the following components:

Sequence model: ht = hϕ(st−1, at−1)

Representation model: zt ∼ qϕ(zt|ht, ot)

Dynamics model: ẑt ∼ pϕ(ẑt|ht)

Video predictor: ôt ∼ pϕ(ôt|ht, ẑt)

Motion predictor: m̂t ∼ pϕ(m̂t|st, ẑt)
Reward predictor: r̂t ∼ pϕ(r̂t|st)
Continue predictor: ĉt ∼ pϕ(ĉt|st),

(1)

where st is the hidden state, zt the posterior stochastic state, and ht the deterministic state. Though
st can be a function of zt and ht theoretically, we concatenate ht to zt into the hidden state st in
practice. The stochastic state zt is sampled from a vector of categorical distributions and the prior
stochastic state ẑt is sampled similarly. Detailed architecture of each component is presented in
Appendix B.

Loss function Given a sequence of images o0:T , motion hints m1:T , actions a0:T−1, rewards
r0:T−1, continuation flags c0:T−1, parameters ϕ of world model are optimized end-to-end to mini-
mize the following loss

L(ϕ, σ) =
T∑

t=1

Eq(st−1|o<t,a<t−1)[
∑

x∈{m,o,r,c,dyn,rep}

βx(σxLx
t(ϕ) + log(1 + σx))], (2)

where βx are the weights of loss terms and σx are learnable parameters, dubbed as harmonizers (Ma
et al., 2024a), which rescale losses during training. Reward loss Lr

t(ϕ) and continuation loss Lc
t(ϕ)

are both negative log-likelihood losses. By contrast, details of motion loss Lm
t (ϕ) and video predic-

tion loss Lo
t(ϕ) are demonstrated in Section 3.2 and 3.3, respectively. Dynamics loss Ldyn

t (ϕ) and
representation loss Lrep

t (ϕ) de facto constitute the KL loss DKL (q(st|o≤t, a<t)||p(st|st−1, at−1))
via KL balancing (Hafner et al., 2020), differing in the domain of stop-gradient operator sg(·) and
their loss scale. To avoid a trivial solution where the prior stochastic state ẑt contains not enough
information about images, free bits (Kingma et al., 2016) clipping the dynamics and representation
losses are employed:

Ldyn
t (ϕ) = max (1, DKL [sg(qϕ(zt|st))||pϕ(zt|ht)])

Lrep
t (ϕ) = max (1, DKL [qϕ(zt|st)||sg(pϕ(zt|ht))]) .

(3)
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Behavior learning To learn behaviors from imagined hidden states within world models, we opt for
the standard actor-critic framework from DreamerV3 (Hafner et al., 2023). It is noteworthy that the
prediction of motion hints or frames is unnecessary during policy learning and thus computational
overhead of the video predictor and the motion predictor can be avoided.

3.2 FINE-GRAINED MOTION PREDICTION

As we aim to learn motion-aware representation by explicitly predicting fine-grained motion, the
motion map for every frame is necessary. To avoid labeling motion information by hand, we first
use an adaptive Gaussian Mixture Model (GMM) for pixel-level motion extraction, which involves
judgment of whether the pixel belongs to background or not (Zivkovic, 2004; Zivkovic & Van
Der Heijden, 2006) and outputs binary masks mt ∈ Rh×w. The important components related
to the proposed motion-aware mechanism are elaborated below.

Image encoder Attention plays an essential role in human perception by selective focus on inter-
esting parts of the environment, especially motions and moving objects. It has been proposed that
bottom-up sensory-driven mechanisms are parts of mechanisms of human attention (Ungerleider &
G., 2000; Petersen & Posner, 2012). To focus on important features and the regions of interest, we
integrate into our image encoder network the Convolutional Block Attention Module (CBAM; Woo
et al., 2018), as detailed in Appendix B.1.

Motion predictor To entail the world model to learn motion-aware representations, we design a
motion predictor to capture moving objects and changes in the environment. We use a decoder net-
work to extract motion hints m̂t from video and estimate pi,j ∈ [0, 1], probability of the foreground
class of every pixel in the image, as shown in Equation 1. The total loss for motion prediction is the
sum of focal loss (Lin et al., 2017) of every pixel in the image

h−1∑
i=0

w−1∑
j=0

FocalLoss(pti,j) =

h−1∑
i=0

w−1∑
j=0

−α(1− pti,j)
γ log pti,j , (4)

where α ∈ [0, 1] balances the importance of foreground and background loss. The larger α is, the
more emphasis a world model puts on the foreground. γ ≥ 0 is a parameter to deal with pixels that
are hard to classify. The auxiliary variable pti,j is equal to pi,j when the binary mask of a pixel is 1.
Otherwise, pti,j = 0.

Adaptive motion-aware scheduler When the environment changes rapidly, the background will
take over from motion clues in the binary masks predicted by background subtraction methods. To
address the above issue, we develop an adaptive motion-aware scheduler (AMAS) that can automat-
ically terminate the focus on motion hints, just as humans feel dizzy when confronted with complex
patterns or movement (Kim et al., 2020; Keshavarz et al., 2023). Give the threshold of the number
of pixels that agents can pay attention to, denoted as rdizzy, AMAS is a function that depends on
motion masks mt:

AMAS(mt) = I(

h−1∑
i=0

w−1∑
j=0

mt,i,j > rdizzy × h× w), (5)

where I is the indicator function. From Equation 4, the motion prediction loss with AMAS is:

Lm
t (ϕ) = −AMAS(mt)

h−1∑
i=0

w−1∑
j=0

α(1− pti,j)
γ log pti,j (6)

3.3 ACTION-CONDITIONAL VIDEO PREDICTION

Ma et al. (2024b) formulates Action-conditional World Model (AWM) as ŝt+1 = g(s0, a0, ..., at)
and demonstrates that actions are sufficient to predict future states in stochastic environments just as
they are sufficient in a deterministic Markov Decision Process. Since an agent with only visual inputs
may not be able to capture the actual hidden state in a POMDP, it’s unrealistic for the agent to predict
frames only with an action sequence in the far future when it comes to a stochastic environment.
Nevertheless, we hypothesize that agents can exactly predict the next frame given the history of
observations and actions. In contrast to the vanilla RSSM (Hafner et al., 2019b) designed for image
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Figure 3: Imagined images and motion when the imagination step equals 9. The third row is the
difference between the ground truth and imagined images. Each column is sampled from a different
trajectory. It is noteworthy that positions of motion estimated by the motion predictor remain accu-
rate even when imagined images are different in positions of objects from the ground truth, which
are particularly noticeable in the second and the last column.

reconstruction, we employ RSSM to model the stochasticity of future frames. That is to say, we
predict the next frame without access to it, which can be regarded as an action-conditional video
prediction problem. Furthermore, the exploitation of RSSM for video prediction can provide latent
states for policy learning while other MBRL methods based on video prediction only provide image
embeddings (Micheli et al., 2023; Cohen et al., 2024) for policy learning.

We here present RSSM-VP, a theoretical model that changes the traditional concept of RSSM and
makes it applicable to video prediction. Instead of traditionally interpreting the world model as a se-
quential VAE, we interpret the world model as a single VAE for video and demonstrate that the VAE
for video can be decomposed into the representation model and the dynamics model. Furthermore,
we derive the training objective from the VAE for video for completeness and clarity. Finally, we
propose motion-aware video prediction loss, in concert with motion prediction loss in Section 3.2,
to learn compact motion-aware representations.

VAE for video Given the first frame and a sequence of actions, we interpret the world
model as a VAE for the whole video, where a video encoder qϕ(s0:T−1|a0:T−1, o1:T , o0) =∏T−1

t=0 qϕ(st|o≤t, a<t) parameterizes the approximate posterior distribution of all hidden states
from the video, and a state transition function pϕ(s0:T−1|a0:T−1, o0) parameterizes the
prior distribution of hidden states without the video input, which can be regarded as the
video decoder. We formulate the latent dynamics model as pϕ(o1:T , s0:T−1|a0:T−1, o0) =∏T

t=1 pϕ(ot|st−1, at−1, o0)pϕ(st−1|st−2, at−2, o0)), where pϕ(s0|s−1, a−1, o0) is defined as
pϕ(s0|o0) and pϕ(st−1|st−2, at−2, o0)) is the state transition function conditioned on the first frame
for time step t (1 < t ≤ T ). As illustrated in Appendix A.1, we can decompose the video encoder
into the representation model qϕ(zt|ht, ot) and the state transition function into the dynamics model
pϕ(ẑt|ht) for every time step t. Thus the video prediction problem for world models with RSSM
can be regarded as a problem of next-frame prediction in sequence.
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Training objective Though Hafner et al. (2019b) has proved an objective for world model training
via image reconstruction, it is unclear what the training objective is to learn a world model with
RSSM for video prediction. A direct objective is to maximize the log-likelihood of video data.
Therefore, we derive the Evidence Lower BOund (ELBO) of the log-likelihood conditioned on the
action sequence and the first frame. We only describe the video prediction loss here and omit the
symbol ϕ for simplicity. Using importance weighting and Jensen’s inequality, as shown in Appendix
A.2, we can obtain the ELBO as follows:

ln p(o1:T |a0:T−1, o0) ≜ lnEp(s0:T−1|a0:T−1,o0)

[
T∏

t=1

p(ot|st−1, at−1)

]

≥
T∑

t=1

Eq(st−1|o<t,a<t−1) [ln p(ot|st−1, at−1)−DKL (q(st|o≤t, a<t)||p(st|st−1, at−1))]

−DKL(q(s0|o0)||p(s0|o0)),

(7)

where DKL(·||·) is the Kullback-Leibler divergence of two distributions and q(s0|o≤0, a<0) is de-
fined as q(s0|o0). We can set q(s0|o0) ≡ p(s0|o0) to save the hassle of dealing with inputs with
different dimensions.

Motion-aware video prediction loss To entail more concentration on the area where changes occur,
we propose the motion-aware video prediction loss instead of the log-likelihood loss, which is also
a part of our motion-aware mechanism. Specifically, given the ground truth ot and outputs of the
video predictor ôt, with the AMAS from Equation 5, the video prediction loss is:

Lo
t(ϕ) = et + ωAMAS(mt)(mt − 1)⊙ et, (8)

where et = (ot − ôt)⊙ (ot − ôt), ω ∈ [0, 1] is the motion-aware weight to balance attention of the
whole images and attention of motion hints. If every pixel of masks mt equals 1 or the AMAS is
disabled, then video prediction loss Lo

t(ϕ) is equivalent to the mean squared error between predicted
video frames and the ground truth.

4 EXPERIMENTS

We evaluate our world model MAWM on the well-established Atari 100k Benchmark for data ef-
ficiency. To further explore the ability of MAWM, we also conducted experiments on DeepMind
Control Suite (Tassa et al., 2018). Details for benchmarks and baselines are included in Section 4.1.
A comprehensive evaluation of results on the two benchmarks is presented in Section 4.2. Ablation
studies of the key elements proposed for MAWM are shown in Section 4.3. We also include an addi-
tional experiment on the DMC-GB2 (Almuzairee et al., 2024) benchmark in Appendix L to evaluate
the generalization ability of MAWM.

4.1 EXPERIMENTAL SETUP

Atari 100k benchmark is comprised of 26 different Atari video games (Bellemare et al., 2013)
across a diverse range of genres. The benchmark challenges general algorithms to sample-efficient
learning within 100k interactions in various environments, equivalent to 400k environment steps
with 4 repeated actions or 2 hours of human gameplay. Standard measurement for a game is human-
normalized score (HNS; Mnih et al., 2015), calculated as HNS = sa−sh

sh−sr
, where sa denotes the game

score of the algorithm, sh denotes the game score of a human player, and sr denotes the game score
of a random policy.

DeepMind Control Suite is a set of classical continuous control tasks for robotics and reinforcement
learning research. On this benchmark, we restrict inputs of algorithms to high-dimensional images.
By convention (Hafner et al., 2023), the number of environment steps is 1M, which amounts to
500k interactions with 2 repeated actions. We select hard tasks (Hubert et al., 2021) that are not
satisfactorily resolved by existing MBRL methods, resulting in 8 tasks, which are listed in Table 2.

We choose competent baselines for both domains. On the Atari 100k benchmark, besides Dream-
erV3 (Hafner et al., 2023) and HarmonyDream (Ma et al., 2024a), we choose world models via
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Table 1: Game scores and human normalized aggregate metrics on the 26 games of the Atari 100k
benchmark. We highlight the highest and the second highest scores among all baselines in bold and
with underscores, respectively.

Game Random Human SimPLe IRIS DreamerV3 HarmonyDream REM MAWM (Ours)

Alien 227.8 7127.7 616.9 420.0 1024.9 1179.3 607.2 776.4
Amidar 5.8 1719.5 88.0 143.0 130.8 166.3 95.3 144.2
Assault 222.4 742.0 527.2 1524.4 723.6 701.7 1764.2 883.4
Asterix 210.0 8503.3 1128.3 853.6 1024.2 1260.2 1637.5 1096.9
BankHeist 14.2 753.1 34.2 53.1 1018.9 627.1 19.2 742.6
BattleZone 2360.0 37187.5 5184.4 13074 11246.7 11563.3 11826 13372.0
Boxing 0.1 12.1 9.1 70.1 84.8 86.0 87.5 85.4
Breakout 1.7 30.5 16.4 83.7 26.9 34.9 90.7 71.8
ChopperCommand 811.0 7387.8 1246.9 1565.0 709.7 627.0 2561.2 904.0
CrazyClimber 10780.5 35829.4 62583.6 59324.2 81414.7 54687.3 76547.6 89038.6
DemonAttack 152.1 1971.0 208.1 2034.4 226.5 267.0 5738.6 152.2
Freeway 0.0 29.6 20.3 31.1 9.5 0.0 32.3 0.0
Frostbite 65.2 4334.7 254.7 259.1 251.7 1937.9 240.5 692.6
Gopher 257.6 2412.5 771.0 2236.1 4074.9 9564.7 5452.4 4415.8
Hero 1027.0 30826.4 2656.6 7037.4 4650.9 9865.3 6484.8 8801.8
Jamesbond 29.0 302.8 125.3 462.7 331.8 327.8 391.2 337.2
Kangaroo 52.0 3035.0 323.1 838.2 3851.7 5237.3 467.6 3875.6
Krull 1598.0 2665.5 4539.9 6616.4 7796.6 7784.0 4017.7 8729.6
KungFuMaster 258.5 22736.3 17257.2 21759.8 18917.1 22131.7 25172.2 23434.6
MsPacman 307.3 6951.6 1480.0 999.1 1813.3 2663.3 962.5 1580.7
Pong -20.7 14.6 12.8 14.6 17.1 20.0 18.0 20.1
PrivateEye 24.9 69571.3 58.3 100.0 47.4 -198.6 99.6 -472.5
Qbert 163.9 13455.0 1288.8 745.7 873.2 1863.3 743 1664.4
RoadRunner 11.5 7845.0 5640.6 9614.6 14478.3 12478.3 14060.2 12518.6
Seaquest 68.4 42054.7 683.3 661.3 479.1 540.7 1036.7 557.9
UpNDown 533.4 11693.2 3350.3 3546.2 20183.2 10007.1 3757.6 28408.2
#Superhuman(↑) 0 N/A 1 10 10 9 12 12
Mean(↑) 0.0 1.000 0.332 1.046 1.150 1.200 1.222 1.290
Median(↑) 0.0 1.000 0.134 0.289 0.575 0.634 0.280 0.651

Table 2: Scores achieved across eight challenging tasks from DeepMind Control Suite with a budget
of 500k interactions. We highlight the highest and the second highest scores among all baselines in
bold and with underscores, respectively.

Task CURL DrQ-v2 DreamerV3 TD-MPC2 MAWM (Ours)

Acrobot Swingup 5.1 128.4 210.0 295.3 452.1
Cartpole Swingup Sparse 236.2 706.9 792.9 790.0 666.7
Cheetah Run 474.3 691.0 728.7 537.3 874.3
Finger Turn Hard 215.6 220.0 810.8 885.2 935.0
Hopper Hop 152.5 189.9 369.6 302.9 311.5
Quadruped Run 141.5 407.0 352.3 283.1 648.7
Quadruped Walk 123.7 660.3 352.6 323.5 580.3
Reacher hard 400.2 572.9 499.2 909.6 654.9

Mean(↑) 218.6 447.1 514.5 540.9 640.4
Median(↑) 184.1 490.0 434.4 430.4 651.8

video prediction, including SimPLe (Kaiser et al., 2020), IRIS (Micheli et al., 2023), and REM (Co-
hen et al., 2024). Apart from DreamerV3 and TD-MPC2 (Hansen et al., 2024) , our baselines also
include CURL (Laskin et al., 2020) and DrQ-v2 (Yarats et al., 2022), which are model-free RL
methods. As suggested by aforementioned methods (Micheli et al., 2023; Robine et al., 2023; Co-
hen et al., 2024; Zhang et al., 2024), we here exclude lookahead search methods because we aim
to learn a compact and meaningful world model itself. Nevertheless, lookahead search techniques
like Monte-Carlo Tree Search (Coulom, 2006) and Gumbel search (Danihelka et al., 2022) can be
integrated with MAWM at the expense of computational burden. Appendix J provides a broader
comparison to lookahead search methods.
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Figure 4: Ablation studies of key contributions of MAWM on Atari 100k. The shaded region indi-
cates the standard deviation.
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Figure 5: Ablation studies key contributions of MAWM on DeepMind Control Suite.

4.2 PERFORMANCE EVALUATION

Atari 100k benchmark The score of each game and aggregate performance metrics on the Atrai
100k benchmark are showcased in Table 1. MAWN was trained from scratch and evaluated by
conducting 100 evaluation episodes at the end of training. The results for Random, Human, Sim-
PLe, and REM are sourced from previous work (Cohen et al., 2024). We reproduce the results of
DreamerV3 and HarmonyDream and implementation details of both algorithms can be found in Ap-
pendix D.2 and D.3. MAWM obtains a mean human-normalized score of 129.0%, surpassing all
the baselines. Following the recommendations of (Agarwal et al., 2021) on the reliable evaluation
for reinforcement learning methods, we also report stratified bootstrap confidence intervals for all
aggregate metrics in Appendix E.

DeepMind Control Suite Table 2 displays the scores across challenging tasks from DeepMind
Control Suite. MAWM reaches a mean score of 640.6 and a median score of 651.8, setting new
state-of-the-art results for RL methods. MAWM outperforms all baselines on four out of eight
challenging tasks and performs consistently well on the remaining tasks, except Cartple Swingup
Sparse. Due to a sparse reward setting in this task, the agent may never obtain any positive feedback
from the environment under some seeds, which strangles policy learning within the world model.

4.3 ABLATION STUDIES

In this section, we discuss the effectiveness of key contributions of our MAWM, that is, the adap-
tive motion-aware scheduler, the motion predictor, and the substitution of action-conditional video

9
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prediction for image reconstruction. We randomly select 6 tasks for Atari 100k and 4 tasks for
DeepMind Control Suite, the results of which are illustrated in Figure 4 and Figure 5, separately.
For ablation studies on CBAM, harmonizers, and the choice of the autoencoder, please refer to
Appendix F for more details.

No AMAS The green curve shows the performance of MAWM without the AMAS. On both bench-
marks, we observe that the green curve always follows the blue curve or the red curve in each task,
which demonstrates its adaptive control capability of scheduling the two predictors across diverse
domains.

No motion predictor The motion predictor plays an essential role in environments where moving
small objects matter, such as Breakout and Krull in Figure 4. While MAWM achieves a mean of
2.501, the HNS mean of six Atari tasks decreases to 2.110 without the motion predictor, which
demonstrates the ability of the motion predictor to learn compact motion-aware representations in
visual environments.

With image reconstruction Though MAWM is designed to learn representations via video pre-
diction, we configure it to reconstruct images from posterior stochastic states and deterministic
states. Under this configuration, we notice a sharp performance drop on the DeepMind Control
Suite. Specifically, the average score of four tasks declines from 683.1 to 512.1, as shown in Fig-
ure 5. Our results suggest that visual representation learning via video prediction instead of image
reconstruction is an important improvement for efficient policy learning. Obviously, it is only when
RL agents understand the correlation of actions and resulting observations that they can predict
satisfactory future frames.

5 CONCLUSION

In this paper, we have introduced MAWM, which is a general world model framework for visual
MBRL that enables compact visual representation learning with a novel motion-aware mechanism.
MAWM masters tasks across different domains for visual control, be it discrete or continuous.
Specifically, compared with DreamerV3, MAWM achieves a 12% and 24% performance boost on
average on Atari 100k benchmark and challenging tasks from DeepMind Control Suite, separately.
Moreover, MAWM has established a new state-of-the-art result on these tasks for visual continuous
control, even surpassing specialized model-free RL algorithms.

We identify three potential limitations of our work for future research. MAWM has difficulties in
long-horizon video prediction, which is also the key problem in current MBRL methods (Alonso
et al., 2024). Specifically, if the imagination step is large, predicted images may be incorrect in
certain cases, even though predicted motion by MAWM remains accurate. Future work can try
to find whether perfect long-horizon video prediction improves policy learning. Besides, although
MAWM has been trained with fixed hyperparameters across domains, we currently train a standalone
model for each task. An exciting avenue is to explore the potential of MAWM to finish different
tasks within a model by effectively sharing common knowledge. Since MAWM learns task-specific
relationships between actions and images, another promising avenue might be to integrate text-
guided video generative models (Rombach et al., 2022; Wang et al., 2022; Brooks et al., 2023;
Zhang et al., 2023a; Blattmann et al., 2023; Jeong et al., 2024; Luo et al., 2024) with world models.
As text can be used to describe and aligned with actions, we believe this avenue can provide world
models with more general ability.

10
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A DERIVATIONS

A.1 INTERPRETATIONS OF REPRESENTATION MODEL AND DYNAMICS MODEL

Since the recurrent state space model for video prediction is a Markov process as shown in Fig-
ure 6, the encoder can be formulated as q(s0:T−1|a0:T−1, o1:T , o0) =

∏T−1
t=0 q(st|o≤t, a<t) =∏T−1

t=0 q(st|ot, ht), where ht = h(st−1, at−1) and st = s(ht, zt) are deterministic functions. There-
fore, the distribution of st can be obtained if we know the distribution of the stochastic state zt. We
parameterize the distribution of zt via representation model qϕ(zt|ot, ht), where ht = h(st−1, at−1)
can be implemented as a recurrent neural network. Similarly, we can obtain p(st|st−1, at−1) from
p(zt|st−1, at−1) = p(zt|ht), which necessitates the dynamics model pϕ(ẑt|ht). Furthermore, we
have DKL(q(st|ot, ht)||p(st|ht)) = DKL(q(zt|ot, ht)||p(zt|ht)) due to our implementation of st,
which is the concatenation of ht and zt.

A.2 PROOF OF EQUATION 7

Since we want to predict the next frame conditioned on the current state and action, the latent dy-
namics model is p(o1:T , s0:T−1|a0:T−1, o0) =

∏T
t=1 p(ot|st−1, at−1, o0)p(st−1|st−2, at−2, o0) =∏T

t=1 p(ot|st−1, at−1)p(st−1|st−2, at−2), where p(s0|s−1, a−1) is defined as p(s0|o0). Accord-
ingly, the variational posterior is q(s0:T−1|a0:T−1, o1:T , o0) =

∏T−1
t=0 q(st|o≤t, a<t), where we

define q(s0|o≤0, a<0) as q(s0|o0). Using importance weighting and Jensen’s inequality, the ELBO
of the likelihood of the image conditioned on the first frame and history of actions is:

ln p(o1:T |a0:T−1, o0) ≜ lnEp(s0:T−1|a0:T−1,o0)

[
T∏

t=1

p(ot|st−1, at−1)

]

= lnEq(s0:T−1|a0:T−1,o0)


T∏

t=1
p(ot|st−1, at−1)p(st−1|st−2, at−2)

q(s0:T−1|a0:T−1, o0)


= lnEq(s0:T−1|a0:T−1,o0)

[
T∏

t=1

p(ot|st−1, at−1)p(st−1|st−2, at−2)/q(st−1|o<t, a<t−1)

]

≥ Eq(s0:T−1|a0:T−1,o0)

[
T∑

t=1

ln p(ot|st−1, at−1) + ln p(st−1|st−2, at−2)− ln q(st−1|o<t, a<t−1)

]

=

T∑
t=1

Eq(st−1|o<t,a<t−1) [ln p(ot|st−1, at−1)]

−
T∑

t=1

Eq(st−2|o<t−1,a<t−2) [DKL (q(st−1|o<t, a<t−1)||p(st−1|st−2, at−2))] .

For T → ∞, we always minimize the KL divergence of the latent dynamics models
p(st−1|st−2, at−2) and the variational posterior q(st−1|o<t, a<t−1). Set t′ = t− 1 and then substi-
tute t′ for t. The second term will be

∞∑
t=0

Eq(st−1|o<t,a<t−1) [DKL (q(st|o≤t, a<t)||p(st|st−1, at−1))] .

We sample a batch from episodes and it would be helpful to minimize the KL divergence if we wish
to have a better prediction of the next frame from other batches. Therefore, the modified objective
is to maximize

T∑
t=1

(
Eq(st−1|o<t,a<t−1) [ln p(ot|st−1, at−1)−DKL (q(st|o≤t, a<t)||p(st|st−1, at−1))]

)
−DKL(q(s0|o0)||p(s0|o0)).
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Figure 6: RSSM with video prediction.

B MAWM ARCHITECTURE

B.1 REPRESENTATION MODEL

The representation model consists of an image encoder and a representation predictor. Table 3 shows
the process of the image encoder to obtain embeddings of an image et. Following that, the represen-
tation predictor takes as input et and imagined deterministic hidden state ht to obtain the posterior
stochastic hidden state zt, as described in Table 4. LayerNorm denotes layer normalization (Ba,
2016), and SiLU is short for sigmoid-weighted linear units, an activate function which is formulated
as SiLU(x) = x

1+e−x . For clarity, we provide detailed descriptions of the implementation of the
CBAM (Convolutional Block Attention Modul) stage.

Table 3: Structure of the image encoder
Stage name Output size Submodule

CBAM 64× 64
ChannelAttention, r = 1
SpatialAttention, k = 3

Conv1 32× 32
4× 4, 32, stride 2

LayerNorm + SiLU

Conv2 16× 16
4× 4, 64, stride 2

LayerNorm + SiLU

Conv3 8× 8
4× 4, 128, stride 2
LayerNorm + SiLU

Conv4 4× 4
4× 4, 256, stride 2
LayerNorm + SiLU

CBAM 4× 4
ChannelAttention, r = 2
SpatialAttention, k = 1

Flatten 4096 the embedding of image et

For feature map Fl ∈ RC×H×W in the lth layer of the encoder network, the output of the Chan-
nelAttention submodule F c

l is

F c
l = σ(W2 ×ReLU(W1 ×AvgPool(Fl)) +W2 ×ReLU(W1 ×MaxPool(F c

l )))⊙ Fl, (9)

where AvgPool(·) and MaxPool(·) stand for adaptive average-pooling and max-pooling opera-
tions, respectively. W1 ∈ RC/r×C and W2 ∈ RC×C/r are weights of fully-connected layers, where
r is the reduction ratio. ReLU represents the ReLU activation function (Glorot et al., 2011) after
W1. σ denotes the sigmoid function and ⊙ denotes element-wise multiplication. Similarly, the
spatial attention submodule takes F c

l as inputs and the outputs are

F c
s = σ(Convk([ChAvg(F c

l ), ChMax(F c
l )]))⊙ F c

l , (10)
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Table 4: Structure of the representation predictor
Stage name Output size Submodule

Inputs 4096 +Ndeter Concatenate ht and et

FC1 Nhid
Linear

LayerNorm + SiLU

FC2 Znum × Zclass

Linear
LayerNorm + SiLU

Reshape

Table 5: Structure of the video predictor
Stage name Output size Submodule

Inputs Nstoch +Ndeter Concatenate ht and ẑt

FC1 4× 4
Linear

Reshape into tensors of 256 channels

Deconv1 8× 8
4× 4, 128, stride 2
LayerNorm + SiLU

Deconv2 16× 16
4× 4, 64, stride 2

LayerNorm + SiLU

Deconv3 32× 32
4× 4, 32, stride 2

LayerNorm + SiLU

Deconv4 64× 64 4× 4, 3, stride 2

where ChAvg(·) and ChMax(·) calculate the mean and the maximum value across channels of the
feature map. The results of the above two operations are concatenated and convolved with the filters
of size k × k.

B.2 PREDICTORS

Predictors in decoder structure Both the video predictor and motion predictor are expected to
output tensors of height and width 64× 64. To that end, we implement similar decoder networks for
video and motion prediction, as depicted in Table 5 and Table 6.

Table 6: Structure of the motion predictor
Stage name Output size Submodule

Inputs 2Nstoch +Ndeter Concatenate ht and ŝt

FC1 4× 4
Linear

Reshape into tensors of 256 channels

Deconv1 8× 8
4× 4, 128, stride 2
LayerNorm + SiLU

Deconv2 16× 16
4× 4, 64, stride 2

LayerNorm + SiLU

Deconv3 32× 32
4× 4, 32, stride 2

LayerNorm + SiLU

Deconv4 64× 64
4× 4, 1, stride 2

Sigmoid
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Predictors for scalars To enable agents to learn to behave well, it is necessary to predict reward
and continuation flags. Table 7 displays MLP structures of reward predictor and continue predictor.

Table 7: Reward predictor and continue predictor
Details of MLP Reward predictor continue predictor

Inputs Nstoch +Ndeter Nstoch +Ndeter
Hidden units Nunit Nunit
Outputs units 255 1

Activation function SiLU SiLU
Normalization LayerNorm LayerNorm

Layers 2 2

C ALGORITHM

The training process of MAWM is sketched out in Algorithm 1.

Algorithm 1 MAWM Training
Input: An initialized replay buffer D
repeat
o0, r0, c0 ← env.reset()
Initialize parameters of GMM using o0 (Section 3.2)
for t = 0 to MAX STEP do
at ∼ π(at|o≤t, a<t)
ot+1, rt+1, ct+1 ← env.step()
mt+1 ← GMM.predict(ot+1)
if ct+1 = 0 then

tm = t+ 1
break

end if
Sample B data of length T from D
Encode images:{et}k+T−1

t=k ← Image Encoder({ot}k+T−1
t=k )

Predict {ôt, m̂t, ẑt, zt, r̂t, ĉt}k+T−1
t=k (Formula 1)

Compute total loss L(ϕ, σ)(Formula 2, 3, 6, 8)
Update parameters ϕ and σ
Actor-critic learning in imagined trajectories

end for
D.add( {ot,mt, at−1, rt, ct}tmt=0 )

until Training is stopped

D HYPERPARAMETERS

D.1 MAWM

Table 8 shows hyperparameters of MAWM. These hyperparameters are fixed on both Atari 100k
and DeepMind Control benchmarks.

D.2 DREAMERV3

We used the default parameters and reproduced the results based on the implementation of Dream-
erV3 in PyTorch, which performs slightly better than the original implementation of DreamerV3 in
TensorFlow (Hafner et al., 2023).
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Table 8: Hyperparameters in our world model, MAWM. Nstoch de facto denotes the dimension of
the flattened version of zt. That is to say, Nstoch = Znum ·Zclass for discrete representations, which is
our choice. Nstoch = Znum when continuous representations are applied.

Type Hyperparameter Value

General

Image size 64× 64× 3

Batch size 16

Batch length T 64

Gradient Clipping 1000

Discount factor γ 0.997

Lambda λ 0.95

World model

Number of stochastic variables Znum 64

Classes per stochastic variable Zclass 32

Number of deterministic units Ndeter 512

Number of stochastic units Nstoch 2048

Number of MLP units Nunit 512

Number of RSSM units Nhid 512

Imagination horizon 15

First frame prediction False
Motion prediction True
Ratio of motion-aware region rdizzy 0.05
Updatation per interaction 1

Harmonizers True
Optimizer AdamW (Loshchilov, 2017)
AdamW episilon ϵ 1× 10−8

AdamW betas (β1, β2) (0.9, 0.999)

Learning rate 1× 10−4

Gradient clipping 1000

Loss term

Video prediction weight βo 1.0

Motion prediction weight βm 0.5

Reward prediction weight βr 1.0

Continuation flags prediction weight βc 1.0

Dynamics weight βdyn 0.5

Representation weight βrep 0.1

Focal loss alpha α 0.15

Focal loss gamma γ 4

Motion-aware weight ω 0.5

D.3 HARMONYDREAM

Since no hyperparameter is introduced in HarmonyDream (Ma et al., 2024a), we implemented har-
monizers following recommendations from the authors. We reproduced the results based on the
aforementioned implementation of DreamerV3 with harmonious loss, as suggested by the authors
in their articles.
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D.4 TD-MPC2

Results for seven out of eight tasks from DeepMind Control Suite can be found at the official repos-
itory in Github, except Hopper Hop. We follow the official implementation of TD-MPC2 (Hansen
et al., 2024), use the default hyperparameters, and select the default 5M parameters for the single
task.

E ADDITIONAL RESULTS ON ATARI 100K
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Figure 7: Mean, median, and inter-quantile mean (IQM) human-normalized scores and the optimal-
ity gap (Agarwal et al., 2021) with 95% stratified bootstrap confidence intervals on the Atari 100k
benchmark.
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Figure 8: Performance profiles (Agarwal et al., 2021). The curve of each algorithm shows the
proportion of runs in which human-normalized scores are greater than the given score threshold.
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Figure 9: Each row represents the probability of improvement (Agarwal et al., 2021) that our algo-
rithm outperforms the corresponding baseline in a randomly selected task from all tasks with 95%
stratified bootstrap confidence intervals.
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F ADDITIONAL ABLATION STUDIES

F.1 CBAM AND HARMONIZERS

We conduct additional ablation studies on CBAM and Harmonizers to study the function of both
modules on the Atari 100k benchmark. Table 9 demonstrates that MAWN without both modules still
attains a mean human-normalized score of 1.289, outperforming the best baseline, REM, which has
a mean human-normalized score of 1.222. Although the average performance of MAWM without
both modules is very close to MAWM with the standard configuration, MAWM with the standard
configuration performs more consistently on all tasks.

Table 9: Ablation studies on CBAM and Harmonizers on the Atari 100k benchmark. Both: CBAM
and Harmonizers, Standard: standard configurations of MAWM in the body of our paper.

Game REM MAWM(Ours)

- Both - CBAM Standard

Alien 607.2 1089.0 1165.4 776.4
Amidar 95.3 210.9 110.8 144.2
Assault 1764.2 1075.1 790.9 883.4
Asterix 1637.5 1466.3 1201.8 1096.9
BankHeist 19.2 517.2 987.5 742.6
BattleZone 11826 8060.0 10696.7 13372.0
Boxing 87.5 80.9 84.2 85.4
Breakout 90.7 108.7 40.6 71.8
ChopperCommand 2561.2 899.0 818.0 904.0
CrazyClimber 76547.6 82506.7 89538.3 89038.6
DemonAttack 5738.6 149.1 157.4 152.2
Freeway 32.3 0.0 0.0 0.0
Frostbite 240.5 2040.0 2449.2 692.6
Gopher 5452.4 3403.1 8012.3 4415.8
Hero 6484.8 11482.4 8139.8 8801.8
Jamesbond 391.2 477.0 376.3 337.2
Kangaroo 467.6 1726.7 1836.0 3875.6
Krull 4017.7 8312.8 8408.5 8729.6
KungFuMaster 25172.2 19122.7 21415.3 23434.6
MsPacman 962.5 1557.3 1573.7 1580.7
Pong 18.0 20.2 18.3 20.1
PrivateEye 99.6 3288.6 1423.8 -472.5
Qbert 743 4237.2 1145.1 1664.4
RoadRunner 14060.2 20635.7 14725.3 12518.6
Seaquest 1036.7 440.0 554.0 557.9
UpNDown 3757.6 15716.1 15952.4 28408.2
#Superhuman(↑) 12 10 11 12
Mean(↑) 1.222 1.289 1.258 1.290
Median(↑) 0.280 0.512 0.578 0.651

F.2 CHOICE OF THE AUTOENCODER

To further explore whether our variational autoencoder for video is a better choice than a masked
autoencoder (MAE; He et al., 2022) for image reconstruction, we also utilize a masking strategy
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on the image embeddings encoded by the representation model in the same way as MWM (Seo
et al., 2023). Specifically, we disentangle training of the representation model from training of
MAWM and input frozen image embeddings without masking to the dynamics model. We denote
the resulting world model without the AMAS and motion predictor as MAE with a masking ratio
of 75%, as suggested by Seo et al. (2023). Results in Table 10 demonstrate that our variational
autoencoder for video ensures consistent excellent performance on tasks from DeepMind Control.
Furthermore, the AMAS and the motion predictor are instrumental in enhancing compact visual
representation learning for MAE.

Table 10: Ablation studies on VAE for video on eight challenging tasks from DeepMind Control
Suite. AMASMO: AMAS and motion predictor.

Task TD-MPC2 MAE MAE + AMASMO MAWM(ours)

Acrobot Swingup 295.3 236.6 416.1 452.1
Cartpole Swingup Sparse 790.0 472.9 548.7 666.7
Cheetah Run 537.3 565.7 765.3 874.3
Finger Turn Hard 885.2 433.4 856.5 935.0
Hopper Hop 302.9 52.5 399.3 311.5
Quadruped Run 283.1 860.3 537.0 648.7
Quadruped Walk 323.5 883.7 835.3 580.3
Reacher hard 909.6 705.0 627.3 654.9

Mean(↑) 540.9 526.3 623.2 640.4
Median(↑) 430.4 519.3 588.0 651.8
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Figure 10: Training curves of MAWM and DreamerV3 on the Atari 100k benchmark. 100k interac-
tion data amounts to 400k frames.
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Figure 11: Training curves of MAWM and TD-MPC2 on the challenging tasks from DeepMind
Control. 1M frames corresponds to 500k interaction data.

I COMPUTATIONAL RESOURCES

MAWM consists of 45M parameters. We report our results for each task on Atari 100k and Deep-
Mind Control Suite based on experiments over 5 random seeds. Experiments on Atari 100k were
conducted with NVIDIA V100 32GB GPUs. Training on Atari 100k, with three tasks running on
the same GPU in parallel, took about 1.2 days, resulting in an average of 0.4 days per environment.
Experiments on DMC were conducted with NVIDIA GeForce RTX 4090 24GB GPUs. Training on
DMC, with three tasks running on the same GPU in parallel, took 1.8 days, resulting in an average
of 0.6 days per environment. As a reference, DIAMOND (Alonso et al., 2024) took approximately
2.9 days on a single NVIDIA GeForce RTX 4090 for training on a task of Atari 100k.

J BROADER COMPARISONS ON ATARI 100K

Table 11 showcases MBRL methods with lookahead search, including EfficientZero V2 (Wang
et al., 2024), the state-of-the-art MBRL method on the Atari 100k benchmark. We here exclude
DIAMOND (Alonso et al., 2024) because it relies on the video generation quality of the diffusion
model, which is out of the scope of this study.

K EXTENDED RESULTS ON DEEPMIND CONTROL SUITE

For a more comprehensive evaluation of MAWM, we conducted an extensive experiment on all the
20 tasks from DeepMind Control Suite. As demonstrated in Table 12, MAWM has set a state-of-the-
art result on the DeepMind Control Suite. Moreover, MAWM achieves the highest scores on half of
the tasks among the baselines and performs consistently well.
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Table 11: Game scores and human normalized aggregate metrics on the Atari 100k benchmark with
MBRL methods. We highlight the highest and the second highest scores among all baselines in bold
and with underscores, respectively.

Game Random Human Lookahead search No lookahead search

MuZero EZ-V2 SimPLe IRIS DreamerV3 STORM HarmoyDream REM Ours

Alien 227.8 7127.7 530.0 1557.7 616.9 420.0 1024.9 983.6 1179.3 607.2 776.4
Amidar 5.8 1719.5 38.8 184.9 88.0 143.0 130.8 204.8 166.3 95.3 144.2
Assault 222.4 742.0 500.1 1757.5 527.2 1524.4 723.6 801.0 701.7 1764.2 883.4
Asterix 210.0 8503.3 1734.0 61810.0 1128.3 853.6 1024.2 1028.0 1260.2 1637.5 1096.9
BankHeist 14.2 753.1 192.5 1316.7 753.1 53.1 1018.9 641.2 627.1 19.2 742.6
BattleZone 2360.0 37187.5 7687.5 14433.3 5184.4 13074.0 11246.7 13540.0 11563.3 11826 13372.0
Boxing 0.1 12.1 15.1 75.0 9.1 70.1 84.8 79.7 86.0 87.5 85.4
Breakout 1.7 30.5 48.0 400.1 16.4 83.7 26.9 15.9 34.9 90.7 71.8
ChopperCommand 811.0 7387.8 1350.0 1196.6 1246.9 1565.0 709.7 1888.0 627.0 2561.2 904.0
CrazyClimber 10780.5 35829.4 56937.0 112363.3 35829.4 59324.2 81414.7 66776.0 54687.3 76547.6 89038.6
DemonAttack 152.1 1971.0 3527.0 22773.5 1971.0 2034.4 226.5 164.6 267.0 5738.6 152.2
Freeway 0.0 29.6 21.8 0.0 20.3 31.1 9.5 0.0 0.0 32.3 0.0
Frostbite 65.2 4334.7 255.0 1136.3 254.7 259.1 251.7 1316.0 1937.9 240.5 692.6
Gopher 257.6 2412.5 1256.0 3868.7 771.0 2236.1 4074.9 8239.6 9564.7 5452.4 4415.8
Hero 1027.0 30826.4 3095.0 9705.0 2656.6 7037.4 4650.9 11044.3 9865.3 6484.8 8801.8
Jamesbond 29.0 302.8 87.5 468.3 125.3 462.7 331.8 509.0 327.8 391.2 337.2
Kangaroo 52.0 3035.0 62.5 1886.7 323.1 838.2 3851.7 4208.0 5237.3 467.6 3875.6
Krull 1598.0 2665.5 4890.8 9080.0 4539.9 6616.4 7796.6 8412.6 7784.0 4017.7 8729.6
KungFuMaster 258.5 22736.3 18813.0 28883.3 258.5 21759.8 18917.1 26182.0 22131.7 25172.2 23434.6
MsPacman 307.3 6951.6 1265.6 2251.0 6951.6 999.1 1813.3 2673.5 2663.3 962.5 1580.7
Pong -20.7 14.6 -6.7 20.8 12.8 14.6 17.1 11.3 20.0 18 20.1
PrivateEye 24.9 69571.3 56.3 99.8 69571.3 100.0 47.4 7781.0 -198.6 99.6 -472.5
Qbert 163.9 13455.0 3952.0 16058.3 1288.8 745.7 873.2 4522.5 1863.3 743 1664.4
RoadRunner 11.5 7845.0 2500.0 27516.7 7845.0 9614.6 14478.3 17564.0 12478.3 14060.2 12518.6
Seaquest 68.4 42054.7 208.0 1974.0 683.3 661.3 479.1 525.2 540.7 1036.7 557.9
UpNDown 533.4 11693.2 2896.9 15224.3 533.4 3546.2 20183.2 7985.0 10007.1 3757.6 28408.2
#Superhuman(↑) 0 N/A 5 15 1 10 10 9 9 12 12
Mean(↑) 0.000 1.000 0.562 2.428 0.322 1.046 1.150 1.222 1.200 1.222 1.290
Median(↑) 0.000 1.000 0.227 1.286 0.134 0.289 0.575 0.425 0.634 0.280 0.651
IQM(↑) 0.000 1.000 N/A N/A 0.130 0.501 0.521 0.561 0.561 0.673 0.593
Optimality gap(↓) 1.000 0.000 N/A N/A 0.729 0.512 0.501 0.472 0.473 0.482 0.474

Table 12: Scores achieved for all the 20 tasks from DeepMind Control Suite with a budget of 500k
interactions. We highlight the highest and the second highest scores among all baselines in bold and
with underscores, respectively.

Task CURL DrQ-v2 DreamerV3 TD-MPC2 MAWM (Ours)

Acrobot Swingup 5.1 128.4 210.0 241.3 452.1
Cartpole Balance 979.0 991.5 996.4 993.0 999.4
Cartpole Balance Sparse 981.0 996.2 1000.0 1000.0 1000.0
Cartpole Swingup 762.7 858.9 819.1 831.0 871.4
Cartpole Swingup Sparse 236.2 706.9 792.9 790.0 666.7
Cheetah Run 474.3 691.0 728.7 537.3 874.3
Cup Catch 965.5 931.8 957.1 917.5 966.9
Finger Spin 877.1 846.7 818.5 984.9 596.7
Finger Turn Easy 338.0 448.4 787.7 820.8 916.6
Finger Turn Hard 215.6 220.0 810.8 865.6 935.0
Hopper Hop 152.5 189.9 369.6 267.6 311.5
Hopper Stand 786.8 893.0 900.6 790.3 926.2
Pendulum Swingup 376.4 839.7 806.3 832.6 835.0
Quadruped Run 141.5 407.0 352.3 283.1 648.7
Quadruped Walk 123.7 660.3 352.6 323.5 580.3
Reacher Easy 609.3 910.2 898.9 982.2 937.7
Reacher Hard 400.2 572.9 499.2 909.6 654.9
Walker Run 376.2 517.1 757.8 671.9 784.8
Walker Stand 463.5 974.1 976.7 878.1 966.6
Walker Walk 828.8 762.9 955.8 939.6 942.6

Mean(↑) 504.7 677.4 739.6 743.0 793.4
Median(↑) 431.8 734.9 808.5 831.8 872.8
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L DMC-GB2

DMC-GB2 (Almuzairee et al., 2024) is an extension of the DMControl Generalization Benchmark
(Hansen & Wang, 2021), which consists of six continuous control tasks, i.e., Cartpole Swingup,
Cheetah Run, Cup Catch, Finger Spin, Walker Stand, and Walker Walk. It provides various test
environments that are visually distinct from the training environment, as shown in Figure 12, and
challenges RL agents to the ability of visual generalization. Specially designed algorithms, such as
SVEA (Hansen et al., 2021) and SADA (Almuzairee et al., 2024) on the benchmark need pairs of
original images and augmented images. In comparison, MAWM applies to the benchmark without
any change. We train MAWM on DMC-GB2 with the same fixed hyperparameters over 5 random
seeds. To evaluate the generalization ability of MAWM, we evaluate its performance on the whole
Photometric Test Set. As shown in tables 13 to 18, MAWM is competitive with SADA, the state-
of-the-art algorithm designed specifically for the benchmark. However, the comparison is unfair to
our method since MAWM does not require original images and augmented images. Nevertheless,
the generalization ability of MAWM on the DMC-GB2 benchmark indicates that MAWM has the
potential to master a broader range of environments and work in a real-world application.

Figure 12: Snapshots of the Cheetah Run task in DMC-GB2 (Almuzairee et al., 2024). The test
environments consist of Color Easy, Color Hard, Video, Video Hard, Color Video Easy, and Color
Video Hard (from left to right). Color refers to environments with randomized colors while Video
refers to the substitution of the original background for video from natural environments.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 13: Scores achieved in Color Easy test environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 696 542 704 812
Cheetah Run 341 203 252 538
Cup Catch 833 821 969 954
Finger Spin 795 924 895 587
Walker Stand 826 900 965 970
Walker Walk 582 755 837 686

Mean(↑) 679 691 770 758

Table 14: Scores achieved in Color Hard test environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 441 478 716 774
Cheetah Run 178 133 239 567
Cup Catch 520 779 961 914
Finger Spin 466 802 868 576
Walker Stand 527 861 963 964
Walker Walk 265 667 825 705

Mean(↑) 400 620 762 750

Table 15: Scores achieved in Video Easy test environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 375 427 524 586
Cheetah Run 75 102 121 615
Cup Catch 523 736 934 691
Finger Spin 441 774 875 512
Walker Stand 603 945 923 969
Walker Walk 390 788 791 728

Mean(↑) 401 629 695 684

Table 16: Scores achieved in Video Hard test environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 98 259 363 449
Cheetah Run 25 28 82 240
Cup Catch 111 416 662 288
Finger Spin 7 263 566 400
Walker Stand 154 429 702 872
Walker Walk 36 264 270 613
Mean(↑) 72 277 441 477
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Table 17: Scores achieved in Color Video Easy test environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 327 427 570 571
Cheetah Run 60 100 153 470
Cup Catch 447 716 931 645
Finger Spin 310 705 850 510
Walker Stand 487 852 945 960
Walker Walk 208 681 791 695

Mean(↑) 307 580 707 642

Table 18: Scores achieved in Color Video Hard environments.
Task DrQ SVEA SADA MAWM (Ours)

Cartpole Swingup 94 294 426 437
Cheetah Run 26 44 99 531
Cup Catch 122 484 697 573
Finger Spin 2 307 633 398
Walker Stand 170 659 906 952
Walker Walk 42 421 686 648

Mean(↑) 76 368 575 590

M VIDEO PREDICTION ON ATARI 100K

Since current video generation models were not pre-trained with low-resolution images, we resize
images to 512× 512 as inputs for pre-trained video generation models. We tried several pre-trained
video generation models (Blattmann et al., 2023; Esser et al., 2024) originating from Stable Diffu-
sion (Rombach et al., 2022) to generate future frames conditioned on the past frames and proper
prompts. As shown in Figure 13 and Figure 14, the pre-trained Stable Diffusion model often fails
to catch the moving patterns of small targets, while MAWM can make fine-grained predictions of
future frames.
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Figure 13: Comparison of predicted frames for the game Breakout by MAWM and Stable Diffusion
(Rombach et al., 2022). Notably, at time t = 11, MAWM succeeds in predicting the change of
score from 5 to 6 in the upper part of the frame and the color change of the tiny ball. However, the
pre-trained Stable Diffusion model even misses information about the tiny ball at time t = 51.
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Figure 14: Comparison of predicted frames for the game Pong by MAWM and Stable Diffusion
(Rombach et al., 2022). MAWM succeeds in predicting the change of score from 3 to 4 in the upper
part of the frame at time t = 11 and has a more accurate estimation of the moving tiny objects than
the pre-trained Stable Diffusion model.
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N EXTENDED RELATED WORK

Model-free visual reinforcement learning It has been a crucial challenge for reinforcement learn-
ing algorithms to learn policy from high-dimensional images. UNREAL (Jaderberg et al., 2017)
showed the significance of auxiliary unsupervised objectives by achieving amazing scores on 57
games of Atari after 25M steps, averaging 880% mean human-normalized score. Following this
work, several attempts (Gelada et al., 2019; Schwarzer et al., 2021; Yu et al., 2021) were made
to train agents via predicting future latent states. After Oord et al. (2018) introduced Contrastive
Predictive Coding (CPC), a general method that integrates video prediction with a probabilistic
contrastive loss, called InfoNCE, contrastive representation learning method s (Anand et al., 2019;
Mazoure et al., 2020; Laskin et al., 2020; Yarats et al., 2021a) were explored. To avoid issues of
distraction from task-relevant elements, Deep Bisimulation for Control (DBC; Zhang et al., 2021)
applied bisimulation metrics (Ferns & Precup, 2014; Castro, 2020) to learning representations that
are invariant to task-irrelevant visual details. To enable robust learning directly from images in-
stead of auxiliary loss, DrQ (Yarats et al., 2021b) proposed a data augmentation technique, which
was incorporated and combined with linear decay for the variance of the exploration noise with
DDPG (Lillicrap, 2015) algorithm in later DrQ-v2 (Yarats et al., 2022). By using the above tech-
niques, DrQ-v2 established a strong baseline on the DMC benchmark for model-free RL algorithms.

Moving object detection Real-world Applications such as video surveillance and optical motion
capture, often require a moving object detection step to locate moving objects in a video. Therefore,
moving object detection has attracted much attraction in recent decades (Kulchandani & Dangar-
wala, 2015). Approaches for moving object detection can be divided into three main categories:
frame difference, optical flow, and background subtraction. Traditional frame difference meth-
ods (Jain & Nagel, 1979; Haritaoglu et al., 2000) employ pixel-wise difference between two suc-
cessive frames. Optical flow methods (Horn & Schunck, 1981; Beauchemin & Barron, 1995) detect
objects by establishing the optical flow field of images and calculating the motion vector of the as-
sociated pixels but their applications were limited by the significant computational demands (Agar-
wal et al., 2016; Shah & Xuezhi, 2021). Using semantic segmentation network (Ravi et al., 2024;
Xie et al., 2024) to produce motion clues needs labeled data or extra demonstrations. Background
subtraction is the most popular method (Chapel & Bouwmans, 2020) due to an excellent balance
between robustness and computational overhead. The adaptive GMM method we employ in Section
3.2 falls in this category. We recommend comprehensive surveys (Bouwmans, 2014; Bouwmans
et al., 2018; Chapel & Bouwmans, 2020; Kalsotra & Arora, 2022) for more details.

Video Prediction Video prediction is to generate future frames based on existing video content.
Current video prediction algorithms can be divided into three categories, i.e., deterministic predic-
tion, stochastic prediction, and generative prediction (Ming et al., 2024b). Algorithms that make
deterministic prediction aims to perform pixel-level fitting based on deterministic models. Pred-
Net (Lotter et al., 2016) pioneered the application of the recurrent convolutional network in video
prediction. ConvLSTM (Shi et al., 2015) integrated LSTM with a convolutional neural network to
proficiently capture spatiotemporal dynamics, which has a significant impact on subsequent video
prediction models . (Xu et al., 2018; Wang et al., 2018; Gao et al., 2022; Straka et al., 2023). Sev-
eral studies (Luc et al., 2017; Wu et al., 2020; Hu et al., 2023) incorporate additional information
such as optical flow and semantic maps to enhance prediction quality. Qi et al. (2019) introduced
a 3D motion decomposition module to predict ego-motion and foreground motion, which are then
combined to generate a future 3D scene. With the predicted 3D scene, future frames are synthesized
by projective transformations. However, deterministic algorithms often produce blurry images due
to confining possible outcomes to fixed results (Oprea et al., 2020). To that end, several works in-
troduced stochastic distributions into deterministic models (Kalchbrenner et al., 2017; Babaeizadeh
et al., 2018) or leveraged probabilistic models (Mathieu et al., 2015; Lee et al., 2018). MOSO (Sun
et al., 2023)is a notable approach that addresses the problem of dynamic background shifts via mo-
tion, scene, and object decomposition under a two-stage framework. It first utilizes the VQVAE
Van Den Oord et al. (2017) to learn token-level representations via an image reconstruction task
and then employs transformers to predict tokens of future frames. With diffusion models thriving
in the realm of image generation, the extensions of diffusion models for video prediction have been
research highlights (Ho et al., 2022b;a; Xing et al., 2024; Gupta et al., 2025). Text-guided generative
video prediction algorithms (Fu et al., 2023; Gu et al., 2023; Zhang et al., 2023b; Chen et al., 2025)
have been designed to complete video clips under the guidance of text.
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