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Abstract

Interpretable methods to reveal the internal001
reasoning processes behind machine learning002
models have attracted increasing attention in003
recent years. To quantify the extent to which004
the identified interpretations truly reflect the in-005
trinsic decision-making mechanisms, various006
faithfulness evaluation metrics have been pro-007
posed. However, we find that different faith-008
fulness metrics show conflicting preferences009
when comparing different interpretations. Mo-010
tivated by this observation, we aim to conduct011
a comprehensive and comparative study of the012
widely adopted faithfulness metrics. In partic-013
ular, we introduce two assessment dimensions,014
namely diagnosticity and complexity. Diagnos-015
ticity refers to the degree to which the faithful-016
ness metric favors relatively faithful interpreta-017
tions over randomly generated ones, and com-018
plexity is measured by the average number of019
model forward passes. According to the ex-020
perimental results, we find that sufficiency and021
comprehensiveness metrics have higher diag-022
nosticity and lower complexity than the other023
faithfulness metrics.024

1 Introduction025

NLP has made tremendous progress in recent years.026

However, the increasing complexity of the mod-027

els makes their behavior difficult to interpret. To028

disclose the rationale behind the models, various029

interpretable methods have been proposed.030

Interpretable methods can be broadly classified031

into two categories: model-based methods and post-032

hoc methods. Model-based approaches refer to033

designing simple and white-box machine learning034

models whose internal decision logic can be easily035

interpreted, such as linear regression models, de-036

cision trees, etc. Post-hoc method is applied after037

model training and aims to disclose the relation-038

ship between feature values and predictions. As039

pre-trained language models (Devlin et al., 2019a;040

Liu et al., 2019; Brown et al., 2020) become more041

popular, deep learning models are becoming more 042

and more complex. Therefore, post-hoc meth- 043

ods are the only option for model interpretations. 044

Post-hoc interpretable methods can be divided into 045

two categories: gradient-based (Simonyan et al., 046

2014; Sundararajan et al., 2017; Shrikumar et al., 047

2019) and perturbation-based (Robnik-Šikonja and 048

Kononenko, 2008; Zeiler and Fergus, 2013; Ribeiro 049

et al., 2016). Gradient-based methods assume the 050

model is differentiable and attempt to interpret the 051

model outputs through the gradients information. 052

Perturbation-based methods interpret model out- 053

puts by perturbing the input data. 054

To verify whether, and to what extent, the inter- 055

pretations actually reflect the intrinsic reasoning 056

process, various faithfulness metrics have been pro- 057

posed. Most faithfulness metrics use a removal- 058

based criterion, i.e., removing or retaining only the 059

important tokens identified by the interpretation 060

and observing the changes in model outputs (Ser- 061

rano and Smith, 2019; Chrysostomou and Aletras, 062

2021; Arras et al., 2017; DeYoung et al., 2020). 063

However, we observe that the existing faithful- 064

ness metrics are not always consistent with each 065

other and even lead to contradictory conclusions. 066

As shown in the example from our experiments 067

(Table 1), the conclusions drawn by two different 068

faithfulness metrics, Sufficiency (SUFF) and De- 069

cision Flip - Fraction of Tokens (DFFOT), are in 070

conflict with each other. More specifically, DFFOT 071

concludes that the interpretations of LIME method 072

is the best among the four interpretations, while 073

SUFF ranks it as the worst. In this case, which 074

faithfulness metric should we adopt to compare 075

interpretations? 076

Motivated by the above observation, we aim to 077

conduct a comprehensive and comparative study of 078

faithfulness metrics. We argue that a good faithful- 079

ness metric should be able to effectively and effi- 080

ciently distinguish between faithful and unfaithful 081

interpretations. To quantitatively assess this capa- 082

1



Faithfulness MetricMethod Interpretation Visualization SUFF DFFOT

LIME A cop story that understands the medium amazingly well 4 1
Word Omission A cop story that understands the medium amazingly well 1 4

Saliency Map A cop story that understands the medium amazingly well 3 3

Integrated Gradients A cop story that understands the medium amazingly well 2 2

Table 1: An example where different interpretable methods assign different importance scores for the same trained
CNN model on SST dataset. The tints of blue mark the magnitude of importance scores for positive sentiment.
The numbers 1, 2, 3 and 4 are the rankings of the faithfulness values evaluated by the corresponding faithfulness
metrics. Where rank 1 indicates the best, while 4 indicates the worst.

bility, we introduce two dimensions, diagnosticity083

and complexity.084

Diagnosticity refers to the extent to which a faith-085

fulness metric prefers faithful rather than unfaithful086

interpretations. However, due to the opaque nature087

of deep learning models, it is not easy to obtain the088

ground truth for faithful interpretation (Jacovi and089

Goldberg, 2020). To concretize this issue, we use090

random interpretations, i.e., randomly assigning im-091

portance scores to tokens regardless of the internal092

processes of the model, as the relatively unfaithful093

interpretations. In contrast, we treat interpretations094

generated by interpretable methods as relatively095

faithful interpretations. In this way, we constructed096

the hypothesis that a faithfulness metric is diag-097

nostic only if it can clearly distinguish between098

random interpretations and interpretations gener-099

ated from interpretable methods. In addition, we100

introduce time complexity to estimate the compu-101

tational speed of each metric, by using the average102

number of model forward passes.103

In this paper, we evaluate six commonly adopted104

faithfulness metrics. We find that the sufficiency105

and comprehensiveness metrics outperform the106

other faithfulness metrics, which are more diagnos-107

tic and less complex. Secondly, the two correlation108

metrics, namely Correlation between Importance109

and Output Probability, and Monotonicity, have110

a promising diagnosticity but fail in terms of the111

high computation complexity. Last but not least,112

decision flip metrics, such as Fraction of Tokens113

and Most Informative Token, perform the worst in114

the assessments.115

The main contributions of this paper are as follows:116

• We conduct a comparative study of six widely117

used faithfulness metrics and identify the in-118

consistencies issues.119

• We propose a quantitative approach to assess120

faithfulness metrics through two perspectives,121

namely diagnosticity and complexity. 122

2 Terminology and Notations 123

We first introduce the prerequisite terminology and 124

notations for our discussions. 125

Terminology A “classification instance” is the 126

input and output values of a classification model, 127

which we apply interpretation methods on. An 128

“interpretation” of a classification instance is a se- 129

quence of scores where each score quantifies the 130

importance of the input token at the corresponding 131

position. An “interpretation pair” is a pair of inter- 132

pretations of the same classification instance. An 133

“interpretation method” is a function that generates 134

a interpretation from a classification instance with 135

its associated classification model. 136

Notations Let x be the input tokens. Denote the 137

number of tokens of x as lx. Denote the predicted 138

class of x as c(x), and the predicted probability 139

corresponding to class j as pj(x). 140

Assume an interpretation is given. Denote the 141

k-th important token as xk. Denote the input se- 142

quence containing only the top k (or top q%) impor- 143

tant tokens as x:k (or x:q%). Denote the modified 144

input sequence from which a token sub-sequence 145

x′ are removed as x \ x′. 146

Let (x, y) be a classification instance associated 147

with classification model m, and g be an interpreta- 148

tion method. Denote the interpretation of z gener- 149

ated by g as g(x, y,m). Let u be an interpretation, 150

(u, v) be an interpretation pair, and F be a faithful- 151

ness metric. Denote the importance score that u 152

assigns to the i-th input token as [u]i. Denote the 153

statement “u is more faithful than v” as “u � v”, 154

and the statement “F considers u as more faithful 155

than v” as “u �F v”. 156
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3 Faithfulness Metrics157

An interpretation is called faithful if the identified158

important tokens truly contribute to the decision159

making process of the model. Mainstream faith-160

fulness metrics are removal-based metrics, which161

measure the changes in model outputs after remov-162

ing important tokens.163

We compare the most widely adopted faithful-164

ness metrics, introduced as follows.165

Decision Flip - Most Informative Token166

(DFMIT) Introduced by Chrysostomou and Ale-167

tras (2021), this metric focuses on only the most168

important token. It assumes that the interpretation169

is faithful only if the prediction label is changed170

after removing the most important token, i.e.171

DFMIT =

{
1 if c(x) 6= c(x \ x:1))
0 if c(x) = c(x \ x:1))

172

A score of 1 implies that the interpretation is faith-173

ful.174

Decision Flip - Fraction of Tokens (DFFOT)175

This metric measures faithfulness as the minimum176

fraction of important tokens needed to be erased in177

order to change the model decision (Serrano and178

Smith, 2019), i.e.179

DFFOT =

{
min k

lx
s.t. c(x) 6= c(x \ x:k)

1 if c(x) = c(x \ x:k) for any k
180

If the predicted class change never occurs even if181

all tokens are deleted, then the score will be 1. A182

lower value of DFFOT means the interpretation is183

more faithful.184

Comprehensiveness (COMP) As proposed by185

DeYoung et al. (2020), comprehensiveness as-186

sumes that an interpretation is faithful if the im-187

portant tokens are broadly representative of the188

entire input sequence. It measures the faithfulness189

score by the change in the output probability of190

original predicted class after the important tokens191

are removed, i.e.192

COMP =
1

|B|
∑
q∈B

(pc(x)(x)− pc(x)(x \ x:q%))193

We use q ∈ B = {1, 5, 10, 20, 50} as in the origi-194

nal paper. A higher comprehensiveness score im-195

plies a more faithful interpretation.196

Sufficiency (SUFF) Also proposed by DeYoung 197

et al. (2020), this metric measures whether the im- 198

portant tokens contain sufficient information to re- 199

tain the prediction. It keeps only the important 200

tokens and calculates the change in output proba- 201

bility compared to the original specific predicted 202

class, i.e. 203

SUFF =
1

|B|
∑
q∈B

(pc(x)(x)− pc(x)(x:q%)) 204

We use q ∈ B = {1, 5, 10, 20, 50} as in the origi- 205

nal paper. The lower the value of SUFF means that 206

the interpretation is more faithful. 207

Correlation between Importance and Output 208

Probability (CORR) This metric assumes that 209

the interpretation is faithful if the importance of the 210

token and the corresponding predicted probability 211

when the most important token is continuously re- 212

moved is positively correlated (Arya et al., 2019), 213

i.e. 214

CORR = −ρ(u,p) 215

where u denotes the token importance in de- 216

scending order and p = [pc(x)(x \ x1), pc(x)(x \ 217

x2), ..., pc(x)(x \ xlx)]. ρ(·) denotes the Pearsons 218

correlation. The higher the correlation the more 219

faithful the interpretation is. 220

Monotonicity (MONO) This metrics assumes 221

that an interpretation is faithful if the probability of 222

the predicted class monotonically increases when 223

incrementally adding more important tokens (Arya 224

et al., 2019). Starting from an empty vector, the 225

features are gradually added in ascending order of 226

importance, and the corresponding classification 227

probabilities are noted. Monotonicity is calculated 228

as the correlation between the feature importance 229

and the probability after adding the feature, i.e. 230

MONO = ρ(u,p) 231

where u denotes the token importance in de- 232

scending order and p = [pc(x)(x), pc(x)(x \ 233

x:1), pc(x)(x \x:2), ..., pc(x)(x \x:(lx−1))]. ρ(·) de- 234

notes the Pearsons correlation. The higher the 235

monotonicity the more faithful the interpretation 236

is. 237

4 Evaluation of Faithfulness Metrics 238

In this section, we propose an evaluation paradigm 239

for faithfulness metrics by addressing two aspects: 240

(1) diagnosticity and (2) time complexity. They are 241
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the two complementary and important factors in242

selecting a faithfulness metric for assessing faith-243

fulness of interpretations.244

4.1 Diagnosticity of Faithfulness Metric245

As we have observed in Table 1, faithfulness met-246

rics might disagree to each other on faithfulness247

assessment. This naturally raises a question: Which248

faithfulness metric should we believe?249

To the best of our knowledge, there is no pre-250

ceding work in quantifying the effectiveness of251

faithfulness metrics. As a first attempt, we intro-252

duce diagnositicity, which is intended to measure253

“the degree to which a faithfulness metric favours254

faithful interpretations over unfaithful interpreta-255

tions”. Intuitively, the higher the diagnosticity the256

more effective the faithfulness metric is.257

4.1.1 Definition of Diagnosticity258

Definition 4.1 (Diagnosticity). We define the di-259

agnosticity of a faithfulness metric as the probabil-260

ity that given an interpretation pair (u, v) such that261

u is more faithful than v, the faithfulness metric262

also considers u as more faithful than v, i.e.263

D(F ) = P(u �F v|u � v)264

As we will see later in this section, a set of in-265

terpretation pairs (u, v) such that u � v is required266

for estimating diagnosticity. Constructing such a267

dataset leads us to a paradox: we cannot be guar-268

anteed that some generated interpretation is more269

faithful than the others when the measurement of270

faithfulness is still under debate. It is more realistic271

to assume that we can generate an interpretation272

pair (u, v) such that u is very likely to be more273

faithful than v. Thus, we relax the condition in274

Definition 4.1 to a probabilistic one as follows.275

Definition 4.2 (ε-diagnosticity). Let (u, v) be any276

interpretation pair, and 0 ≤ ε ≤ 1. The ε-277

diagnosticity of a faithfulness metric F is defined278

as279

Dε(F ) = P(u �F v|P(u � v) > 1− ε)280

In the above definition, ε represents the uncer-281

tainty in comparing the faithfulness of u and v. In282

the next Theorem, we show that ε-diagnosticity ef-283

fectively approximates diagnosticity as long as ε is284

small enough.285

Theorem 4.1 (Error Bound of ε-diagnosticity).286

We can approximate diagnosticity with ε-287

diagnosticity with error less than ε, i.e.288

|Dε(F )− D(F )| < ε289

The proof is provided in Appendix A. 290

4.1.2 Estimation of Diagnosticity 291

In the following, we show how we estimate ε- 292

diagnosticity with a set of interpretation pairs (u, v) 293

where the u is very likely to be more faithful than 294

v, namely an ε-faithfulness golden set where ε is 295

small. 296

Definition 4.3 (ε-faithfulness golden set). Let 297

0 ≤ ε ≤ 1. A set Zε of interpretation pairs is 298

called a ε-faithfulness golden set, if it satisfies the 299

following conditions. 300

1. All interpretation pairs in Zε are independent 301

and identically distributed (i.i.d.). 302

2. P(u � v) > 1− ε for any interpretation pair 303

(u, v) ∈ Zε. 304

Lemma 4.2. Let 1(·) be the indicator function 305

which takes a value 1 when the input statement 306

is true and a value 0 when it is false. Then 1(u �F 307

v)|(P(u � v) > 1 − ε) is a random variable and 308

its expected value is equal to ε-diagnosticity, i.e. 309

Dε(F ) = E[1(u �F v)|P(u � v) > 1− ε] 310

The proof is provided in Appendix B. 311

As a result, given an ε-faithfulness golden set 312

Zε, we can estimate the ε-diagnosticity of a faith- 313

fulness metric F by estimating the expected value 314

in Lemma 4.2. Then by the law of large numbers, 315

we can simply estimate the expected value by com- 316

puting the average value of 1(u �F v) on Zε, i.e. 317

318

Dε(F ) ≈
1

|Zε|
∑

(u,v)∈Zε

1(u �F v) (1) 319

When |Zε| is large enough, we will have 320

| 1
|Zε|

∑
(u,v)∈Zε

1(u �F v) − D(F )| < ε accord- 321

ing to Theorem 4.1. 322

4.1.3 Generation of an ε-faithfulness golden 323

set 324

According to Theorem 4.1 and Lemma 4.2, we 325

can estimate the diagnosticity of any faithfulness 326

metric using Equation 1 as long as we have an 327

ε-faithfulness golden set where ε is small enough. 328

We called the u and v in Definition 4.3 a rela- 329

tively faithful interpretation and a relatively un- 330

faithful interpretation respectively. Next, we dis- 331

cuss the processes to generate them respectively. 332
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Generating Relatively Unfaithful Interpreta-333

tions By definition, a faithful interpretation is an334

interpretation that truly reflects the underlying de-335

cision making process of the classification model.336

Therefore, a unfaithful interpretation is one that337

is completely irrelevant to the underlying decision338

making process of the classification model. We pro-339

pose to generate relatively unfaithful interpretations340

by assigning a random importance score to each to-341

ken in the input sequence, i.e. [v]i ∼ Uniform(0, 1)342

for any token 1 ≤ i ≤ l, where Uniform denotes343

the uniform distribution.344

Generating Relatively Faithful Interpretations345

We propose to generate relatively faithful interpre-346

tations with the interpretation methods that infer in-347

terpretations from the underlying mechanism of the348

classification model. There are two mainstream cat-349

egories of interpretations methods that satisfy this350

requirement (Alvarez-Melis and Jaakkola, 2018):351

• Perburbation based: Relying on querying352

the model around the classification instance353

to infer the importance of input features.354

• Gradient based: Using information from gra-355

dients to infer the importance of input fea-356

tures.357

We select the representative methods from both358

categories, and introduce them in the following.359

• Perturbation based - LIME (Ribeiro et al.,360

2016): For each classification instance, a lin-361

ear model on the input space is trained to ap-362

proximate the local decision boundary, so that363

the learned coefficients can be used to quan-364

tify the importance of the corresponding input365

features on model prediction.366

• Perturbation based - Word Omission367

(WO) (Robnik-Šikonja and Kononenko,368

2008): For each i-th input token, WO quan-369

tifies the importance of the input token by370

the change in output probability after remov-371

ing it from the original input sequence, i.e.372

pc(x)(x)− pc(x)(x\{i}).373

• Gradient based - Saliency Map (SA) (Si-374

monyan et al., 2014): For each i-th input to-375

ken, SA computes the gradients of the orig-376

inal model output with respect to the em-377

bedding associated with the input token, i.e.378
∂pc(x)(z)

∂e(z)i
|z=x, and quantifies the importance379

Algorithm 1 An ε-faithfulness golden set genera-
tion mechanism.
Input: X: A set of i.i.d. classification instances

associated with classification model m;
G: The set of interpretation methods for generat-
ing relatively faithful interpretations, i.e. {LIME,
WO, SAµ, SAl2, IGµ, IGl2};
K: Sample size;

Output: An ε-faithfulness golden set Zε;
Zε ← {};
For 1 to K;

(x, y)← RandomSampler(X);
g ← RandomSampler(G);
u← g(x, y,m)
v ← r ∈ Rlx where [r]i ∼ Uniform(0, 1);
Zε ← Zε ∪ {(u, v)};

return Zε;

of the input token by taking either the mean or 380

the l2 norm of the gradients in the embedding 381

dimension. We denote the former approach as 382

SAµ and the later approach as SAl2 383

• Gradient based - Integrated Gradients 384

(IG) (Simonyan et al., 2014): As shown 385

by Simonyan et al. (2014), Integrated Gra- 386

dients provides more robust interpretations 387

than Saliency Map in general. For each i-th 388

input token, it approximates the integral of the 389

gradients of the original model output with 390

respect to the embedding corresponding to the 391

input token along a straight line from a ref- 392

erence point x0 to the origin input sequence, 393

i.e.
∫
x0→x

∂pc(x)(z)

∂e(z)i
dz , and quantifies the im- 394

portance of the input token by taking either 395

the mean or the l2 norm of the integral in the 396

embedding dimension. We denote the former 397

approach as IGµ and the later approach as 398

IGl2. 399

As a consequence, the interpretations generated 400

using the above methods are highly likely to be 401

more faithful than the randomly generated interpre- 402

tations because the generation processes of the for- 403

mer ones involve inferences from model behaviors, 404

while the random generation process is indepen- 405

dent of any model behavior. 406

In Algorithm 1, we propose a mechanism to 407

generate an ε-faithfulness golden set from a set of 408

i.i.d. classification instances based on the above 409

processes. Note that the generated interpretation 410
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Dataset Splits (Train / Test) Model perf. (F1)
BERT CNN

SST 6,920 / 1,821 .917 .804
IMDB 25,000 / 25,000 .918 .864
AG 120,000 / 7,600 .946 .919

Table 2: Dataset statistics and model performances
(Macro-F1) on test sets.

pairs will satisfy the first condition in Definition411

4.3 because they are generated from i.i.d. samples,412

and will satisfy the second condition in Definition413

4.3 with a small ε as we have discussed.414

4.2 Time Complexity of Faithfulness Metric415

Time complexity is another important aspect in416

evaluating faithfulness metrics because a fast faith-417

fulness metric could (1) shorten the feedback loop418

in developing faithful interpretation methods, and419

(2) enable faithfulness checking of interpretations420

in production environment.421

From the definitions of the faithfulness metrics422

in Section 3, we can see that their computations423

are dominated by model forward passes. Thus,424

we measure their time complexities in number of425

model forward passes.426

5 Experimental Setup427

Datasets We conduct experiments on three text428

classification datasets used in (Wiegreffe and Pin-429

ter, 2019): (i) Standford Sentiment Treebank (SST)430

(Socher et al., 2013); (ii) IMDB Large Movie Re-431

views (IMDB) (Maas et al., 2011); (iii) AG News432

Corpus (AG) (Zhang et al., 2015). We summarize433

the dataset statistics in Table 2.434

Text classification models We adopt two most435

common model architectures for text classification:436

(i) BERT (Devlin et al., 2019b); (ii) CNN (Kim,437

2014). The former one encodes contextualized rep-438

resentations of tokens, and has a higher accuracy in439

general, but at a cost of comsuming more memory440

and computational resources. The later one simpily441

uses pre-trained embeddings as token representa-442

tions, and is lighter and faster. Their performances443

on test data sets are shown in Table 2. The imple-444

mentation details of both models can be found in445

Appendix C.1.446

ε-faithfulness golden set For each dataset and447

text classification model, we transform the test set448

into a set of classification instances, and feed it into449

Algorithm 1 to generate an ε-faithfulness golden450

Faithfulness Diagnosticity (%)
metric SST IMDB AG Average

BERT
DFMIT 14.79 6.07 3.34 8.07
DFFOT 65.16 72.02 65.68 67.62
SUFF 71.03 79.33 70.42 73.60
COMP 75.38 80.44 74.23 76.69
CORR 65.46 68.06 67.23 66.91
MONO 75.87 75.82 68.33 73.34

CNN
DFMIT 17.29 9.27 4.84 10.47
DFFOT 63.76 70.74 57.61 64.04
SUFF 71.54 75.91 77.97 75.14
COMP 71.39 73.46 81.73 75.53
CORR 72.17 68.92 71.82 70.97
MONO 72.39 77.09 75.12 74.87

Table 3: Diagnosticities of all faithfulness metrics on
all datasets for both BERT and CNN models. The right-
most column states the average diagnosticities over
three datasets. In each column, we underline the high-
est value.

set with a size of 8,000. The implementation details 451

of interpretation methods can be found in Appendix 452

C.2. 453

6 Results and Discussion 454

Diagnosticity We estimate the diagnositicities of 455

the faithfulness metrics in Section 3 on all datasets 456

for both CNN and BERT models. The results are 457

shown in Table 3. 458

COMP and SUFF have the highest and the sec- 459

ond highest average diagnosticites for both mod- 460

els. Hence, they are the most effective faithfulness 461

metrics. We also observe that COMP has higher 462

diagnosticities than SUFF on all datasets for BERT 463

model. This can be explained by the contextual- 464

ization property of Transformer encoders (Vaswani 465

et al., 2017): the hidden state of each token de- 466

pends on all other tokens in the input sequence. 467

Removing a portion of the important tokens will 468

alter the whole context, and is likely to cause dra- 469

matic change in model output. 470

DFMIT and DFFOT have the lowest and the 471

second lowest average diagnosticities. Removing 472

the most important token is usually not creating 473

enough perturbation to flip the original model de- 474

cision. In fact, the probability of decision flipping 475

by removing the most important token is ≤ 14% 476

for recent state-of-the-art interpretation methods 477

(Chrysostomou and Aletras, 2021). As a result, up 478

to 86% of interpretations are considered as indif- 479

ferent by DFMIT. For DFFOT, the probability of 480

6



Faithfulness Time complexity - Analysis
metric (#(model forward passes))

Deterministic Value or range

DFMIT 3 1
DFFOT 7 [1, lx]
SUFF 3 min(5, lx)
COMP 3 min(5, lx)
CORR 3 lx
MONO 3 lx

Table 4: Analysis of the time complexities of faithful-
ness metrics. lx denotes the number of input tokens.

Faithfulness Time complexity - Actual
metric (#(model forward passes))

SST IMDB AG Average

DFMIT 1.0 1.0 1.00 1.0
DFFOT 9.3 78.7 30.0 39.4
SUFF 5.0 5.0 5.0 5.0
COMP 5.0 5.0 5.0 5.0
CORR 20.3 193.1 47.7 87.1
MONO 20.3 193.1 47.7 87.1

Table 5: Actual time complexities of faithfulness met-
rics measured by the average number of model passes
on each dataset.

decision flipping by removing the important tokens481

in order does not only depend on the quality of482

interpretation, but also depends on any model bias483

towards certain classes. For instance, decision flip-484

ping will be less likely to occur if the predicted485

class on the original input is the same as the one486

on the empty input sequence. Therefore, we found487

that decision flipping metrics (DFMIT, DFFOT) are488

less effective than the metrics that operate on output489

probabilities (SUFF, COMP, CORR, MONO).490

Time complexity We compare the time complex-491

ities of the faithfulness metrics in Section 3 mea-492

sured in number of model forward passes. We first493

analyze their time complexities based on their def-494

initions in Table 4, and then measure their actual495

time complexities on all datasets in Table 5.496

DFMIT is the fastest faithfulness metric, which497

requires only one model forward pass. DFFOT498

has a non-deterministic time complexity, which de-499

pends on how fast the decision flipping occurs, and500

it is the second slowest faithfulness metric on all501

datasets. SUFF and COMP are the second fastest502

faithfulness metric on average, which require at503

most 5 model forward passes. CORR and MONO504

are the slowest faithfulness metrics, which have505

time complexity equals to the number of input to-506

kens.507

020406080
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Figure 1: Average diagnosticity vs average time com-
plexity for faithfulness metrics. The averages are taken
over all datasets and classification models. The faith-
fulness metrics near the top-right corner are more desir-
able than those near the bottom-left corner.

Which faithfulness metrics should we adopt? 508

In Figure 1, we evaluate the faithfulness metrics by 509

both their diagnosticities and time complexities. 510

Figure 1 suggests that we should always adopt 511

COMP and SUFF. Because (i) they have higher 512

diagnosticities and lower time complexities than 513

DFFOT, ; (ii) they have a similar level of diag- 514

nosticity and much lower time complexities than 515

CORR and MONO; (iii) DFMIT has diagnosticity 516

less than 0.1, which is below any acceptable level. 517

We would prefer COMP and SUFF over DFMIT 518

even though it has the lowest time complexity. 519

Note that our evaluation framework can be used 520

to compare any faithfulness metrics. In general, we 521

prefer faithfulness metrics that have higher diagnos- 522

ticities and lower time complexities, i.e. closer to 523

the top-right corner in Figure 1. But what if one has 524

a higher diagnosticity and the other one has a lower 525

time complexity? In this case, we should consider 526

diagnosticity first: a faithfulness metric should not 527

be used if it cannot effectively assess faithfulness, 528

i.e. diagnosticity below a certain threshold. In 529

scenarios where we are subject to constraints of 530

hardware or timeliness, we might need to select a 531

faster metric with a lower but acceptable level of 532

diagnosticity. 533

7 Related Work 534

Interpretable methods Interpretable methods 535

can be roughly classified into two categories: 536

model-based methods and post-hoc methods. 537

Model-based methods refer to the construction of 538

simple machine learning models whose internal de- 539

7



cision logic can be easily interpreted, such as linear540

regression models, decision trees, etc. Post-hoc541

methods interpret the internal reasoning process be-542

hind the model after training. Generally, post-hoc543

methods can be divided into gradient-based and544

perturbation-based. Gradient-based interpretable545

method assumes deep learning model is differen-546

tiable and discloses the decision making mecha-547

nism of model according to the gradient informa-548

tion (Simonyan et al., 2014; Sundararajan et al.,549

2017; Shrikumar et al., 2019). Perturbation-based550

interpretable method interprets the model by per-551

turbing the input of data samples and measuring552

how the predictions change (Robnik-Šikonja and553

Kononenko, 2008; Zeiler and Fergus, 2013; Ribeiro554

et al., 2016).555

Interpretable method evaluation To assess the556

quality of different interpretable methods, vari-557

ous evaluation metrics have been proposed. Ex-558

isting evaluation methods on interpretations can be559

broadly classified into two categories, plausibility560

and faithfulness. Plausibility measures if the in-561

terpretation agrees with human judgments on how562

a model makes a decision (Ribeiro et al., 2016;563

Doshi-Velez and Kim, 2017; Lundberg and Lee,564

2017; DeYoung et al., 2020). However, even if565

the interpretation conforms human criteria, it is566

not certain that it truly reflects the underlying de-567

cision mechanism behind the model. To this end,568

faithfulness measures the extent to which the inner569

decision-making mechanism actually relies on the570

identified important features (Arras et al., 2017;571

Serrano and Smith, 2019; Jain and Wallace, 2019;572

Wiegreffe and Pinter, 2019; DeYoung et al., 2020;573

Chrysostomou and Aletras, 2021).574

Generally, faithfulness metric is developed575

through a removal-based criteria, which measures576

the changes in model output when perturbing or577

removing tokens identified as important by the in-578

terpretation. Serrano and Smith (2019) proposed579

a decision filpping metric that evaluates the pro-580

portion of tokens that need to be erased in order to581

change the model decision. Also using decision flip582

as an indicator, Chrysostomou and Aletras (2021)583

introduces a metric that counts the average flips584

occur when removing the most important token585

marked by the interpretable method. In addition586

to decision flips, changes in model output proba-587

bilities by removing or retaining important tokens588

is also widely used to measure faithfulness (Ar-589

ras et al., 2017; Arya et al., 2019; DeYoung et al.,590

2020). 591

Some recent work also focuses on the study of 592

faithfulness metrics. Jacovi and Goldberg (2020) 593

argued that the definition of faithfulness remains 594

inconsistent and informal, and provided concrete 595

guidelines on how evaluations of interpretation 596

methods should and should not be conducted. More 597

recently, Yin et al. (2021) claimed that removal- 598

based faithfulness metric has limitations and pro- 599

posed two other quantitative criteria, namely sen- 600

sitivity and stability. Different from the aforemen- 601

tioned previous work that does not focus on assess- 602

ing faithfulness metrics, we mainly focus on the 603

measurement of faithfulness and conduct a compre- 604

hensive study of existing faithfulness metrics. 605

8 Conclusion 606

In this paper, we propose a framework to quanti- 607

tatively evaluate six widely adopted faithfulness 608

metrics in terms of diagnosticity and complexity. 609

In particular, diagnosticity measures whether the 610

faithfulness metric correctly favors relatively faith- 611

ful interpretations over random ones; complexity 612

is concerned with time efficiency, estimated by the 613

average number of forward passes of the model. 614

The experimental results show that sufficiency and 615

comprehensiveness metrics outperform the other 616

faithfulness metrics with higher diagnosticity and 617

lower complexity. For this reason, we suggest us- 618

ing these two metrics for faithfulness evaluation. 619

We hope our work will bring more awareness to the 620

standardization of faithfulness measurement. In fu- 621

ture work, we would like to continue investigating 622

a better faithfulness metric. 623
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A Proof of Theorem 4.1800

Proof. Let (u, v) be an interpretation pair. Then801

P(u �F v|P(u � v) = 1− ε)
= P(u �F v|u � v)(1− ε) + P(u �F v|u � v)ε

= D(F ) + [P(u �F v|u � v)− P(u �F v|u � v)]ε
802

Since −1 ≤ P(u �F v|u � v) − P(u �F v|u � 803

v) ≤ 1, we have 804

|P(u �F v|P(u � v) = 1− ε)− D(F )| ≤ ε 805

806

B Proof of Lemma 4.2 807

Proof. From Definition 4.2, we have 1(u �F 808

v)|(P(u � v) > 1−ε) ∼ Bernoulli(p), where p = 809

D(F ). Then based on the property of Bernoulli dis- 810

tribution, we know that the expected value of the 811

random variable is equal to p. 812

C Implementation Details 813

C.1 Text classification models 814

The text classification models are all implemented 815

in PyTorch 1. 816

For BERT, we use pretrained bert-base-uncased 817

model from transformers library (Wolf et al., 2020). 818

We use a set of hyperparameters for every datasets 819

for the fine-tuning of base model: dropout rate 820

0.2, AdamW (Loshchilov and Hutter, 2019) with 821

an initial learning rate 2e-5, batch size 32 with no 822

warmup steps. We set the maximum number of 823

finetuning epochs to be 3 and adopt interpretable 824

methods to explain the model after training. 825

For CNN classifier, we use a one-layer CNN 826

encoder with a linear classifier. The embedding 827

is initialized with the 300-dimensional pretrained 828

GloVe word embedding (Pennington et al., 2014). 829

The CNN layer has 256 kernels and the size of the 830

kernels is 3. We use max-pooling and AdamW with 831

an initial learning rate 1e-3, batch size 32, with no 832

warmup steps for training. We set the maximum 833

number of epochs to be 40 but perform early stop- 834

ping when the performance on the development set 835

doesn’t improve for three epochs. 836

C.2 Interpretation methods 837

For LIME, Saliency Map, Integrated Gradients and 838

DeepLift, we apply the implementation in Captum 839
2. For Word Omission, we simply use our own 840

implementation. 841

1https://pytorch.org/
2https://github.com/pytorch/captum
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