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ABSTRACT

Efficient generative inference in Large Language Models (LLMs) is impeded by
the growing memory demands of Key-Value (KV) cache, especially for longer
sequences. Traditional KV Cache eviction strategies, which discard less critical
KV-pairs based on attention scores, often degrade generation quality, leading to
issues such as context loss or hallucinations. To address this, we introduce Dynamic
Discriminative Operations (D2O), a novel method that optimizes KV cache size
dynamically and discriminatively at two levels without fine-tuning, while preserv-
ing essential context. At layer-level, by observing the varying densities of attention
weights between shallow and deep layers, we dynamically determine which layers
should avoid excessive eviction via our proposed dynamic allocation strategy
to minimize information loss. At token-level, for the eviction strategy in each
layer, D2O innovatively incorporates a compensation mechanism that maintains
a similarity threshold to re-discriminate the importance of currently discarded to-
kens, determining whether they should be recalled and merged with similar tokens.
Extensive experiments on various benchmarks and LLM architectures have shown
that D2O1 not only achieves significant memory savings and enhances inference
throughput by more than 3× but also maintains high-quality long-text generation.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Meta, 2024; Jiang et al.,
2023; Wan et al., 2023; Wang et al., 2024) excel in tasks requiring long contexts such as dialog systems
(Chiang et al., 2023), document summarization (Zhang et al., 2023), question answering (Kamalloo
et al., 2023), and code completion (Roziere et al., 2023). Such long contexts demand a significant
amount of KV cache. For instance, a model with 30 billion parameters, processing inputs of 1024
tokens at a batch size of 128, requires up to 180 GB for KV cache (Zhang et al., 2024c). Such
bottleneck underscores the critical need for KV cache optimization.

To minimize memory demands of KV cache, one of the most effective methods is KV cache
eviction (Xiao et al., 2023b; Zhang et al., 2024c; Liu et al., 2023; Ren & Zhu, 2024; Zhang et al.;
Ge et al., 2023), where the key is to precisely identify a subset of KVs to be evicted from the
cache. However, existing studies all suffer from both layer-level and token-level information loss.
Specifically, at layer-level, existing methods equally treat all the layers and indiscriminately evicts
KV pairs at each layer. However, not all the layers exhibit the same patterns. Figure 1 visualizes
the attention weights on the GSM8K dataset (Cobbe et al., 2021a). The shallower layers (layers 0
and 1) display densely interconnected attention maps, while the deeper layers (layers 30 and 31)
exhibit a staircase sparse pattern, where attention is localized to specific context segments, with
only a few tokens in each segment receiving substantial attention. This observation aligns with
findings from (Zhao et al., 2024a;b), indicating that while shallower layers primarily engage with
syntactic structures through global attention, deeper layers target task-related semantic knowledge
with localized attention. Consequently, applying the same eviction strategy indiscriminately across
all the layers will compromise important information in long contexts. At token-level, as shown in
Figure 2 (a), existing methods enable models to operate within a constrained KV cache budget by
either directly dropping KV pairs (e.g., StreamingLLM (Xiao et al., 2023b)) or selectively removing
them based on specific eviction strategies, such as using cumulative attention scores (e.g., H2O (Zhang
et al., 2024c)) or mean attention scores (e.g., RoCo (Ren & Zhu, 2024)). However, the irreversible

1All data and code will be released upon acceptance.
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Figure 1: Attention map density comparisons of selected shallow (layers 0, 1) and deep layers (layers 16, 30,
31) of LLaMA-2-7B on the GSM8K dataset. We use the mean value of heads for each layer.

nature of eviction and the difficulty in accurately predicting which KV pairs are essential for future
text generation can lead to information loss, causing hallucinations, contextual inconsistencies (Yang
et al., 2024b), and challenges in maintaining long content integrity (Bai et al., 2024).
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Figure 2: Illustration of D2O VS. existing
methods. More details are shown in Figure 3.

In this paper, we introduce Dynamic Discriminative
Operations (D2O), a KV compression method that tackles
the two fundamental issues of existing methods described
above. The key idea of D2O is to incorporate dynamic
discriminative operations at both layer-level and token-
level. Specifically, at layer-level, based on the findings
in Figure 1, unlike existing methods that indiscriminately
evict KV pairs, D2O implements a novel dynamic allo-
cation strategy using inverse variance softmax, adjusting
the KV cache budget for each layer based on the density
metric of the attention weights. At token-level, given
the uncertainties about how discarded tokens might affect
future outputs, D2O introduces an effective compensa-
tion mechanism by maintaining an exponential moving
average (EMA) threshold that assesses the degree of sim-
ilarity between previously discarded and retained tokens,
allowing D2O to dynamically decide whether a currently
discarded token should be recalled and merged with a similar token retained in the current KV cache
according to the current EMA threshold in order to compensate the information loss of KV cache
eviction, as shown in Figure 2 (b). Through these operations at two levels, D2O maintains the KV
cache at a consistent size while being able to preserve valuable information from evicted tokens,
enabling LLMs to handle the generation of extended texts with improved memory efficiency and
high-throughput inference while minimizing the loss of contextual information.

We compare D2O with state-of-the-art KV cache eviction methods StreamingLLM (Xiao et al.,
2023b), H2O (Zhang et al., 2024c), RoCo (Ren & Zhu, 2024), and CaM (Zhang et al.). To demonstrate
the generability of D2O, we conduct our evaluation on four models from three different LLM
families (Llama, Falcon, and Mistral) and a range of tasks involving math and commonsense
reasoning, long-context QA, summarization, and code completion, drawn from LM-Eval (Gao et al.,
2021), LongBench (Bai et al., 2023), long-context fact retrieval (Kamradt, 2023), and language
modeling (Rae et al., 2019) benchmarks. We highlight five of our findings: (1) D2O significantly
enhances performance on reasoning tasks, especially with reduced budgets compared to baselines.
(2) D2O manages KV cache compression effectively with minimal accuracy impact, outperforming
other eviction-based baselines on LongBench. (3) D2O demonstrates superior long-context retrieval
capabilities with a compressed KV cache compared to baselines. (4) D2O effectively leverages
long-distance dependencies in language modeling with a limited KV cache. (5) D2O reduces memory
usage, enabling up to larger batch sizes and 3 times higher throughput than the full cache setting in
our experimental setting.

2 RELATED WORK

KV Cache Eviction. KV cache eviction compresses KV caches by retaining key KVs and discarding
less crucial ones. For example, Mistral-7B (Jiang et al., 2023) and Streaming LLM (Xiao et al., 2023a)
and SirLLMs (Yao et al., 2024) focus on tokens crucial for near-sequence generation. H2O (Zhang
et al., 2024c), Scissorhands (Liu et al., 2023), and RoCo (Ren & Zhu, 2024) maintain a small set of
influential tokens based on attention scores. FlexGen (Ge et al., 2023) adopts importance policies
based on attention scores for KV eviction, while SnapKV (Li et al., 2024) uses a recent window
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strategy to compress KV cache for long prompts. Besides, PyramidKV (Cai et al., 2024b) and
PyramidInfer (Yang et al., 2024a) propose the layer-wise eviction strategy. NaCL (Chen et al., 2024)
combines proxy-tokens and random eviction to keep robustness of LLMs. However, these methods
can significantly lose context from evicted KVs.

KV Cache Trainable Compression. Some methods attempt to adapt LLMs to learn KV cache
compression by training on select datasets. LESS (Dong et al., 2024) learns the residuals be-
tween the original and approximated attention outputs from a sparse policy applied during training.
DMC (Nawrot et al., 2024) pre-trains on original data to learn parameters that control compression
across various heads and layers in the KV cache. However, training on partial datasets poses chal-
lenges in adapting these methods to diverse downstream tasks due to limited generalizability. Unlike
these approaches, D2O employs a plug-and-play method that requires no additional training, offering
broader applicability without the need for dataset-specific tuning.

Token Merging. Token merging (Bolya et al., 2022; Shi et al., 2023) consolidates tokens into fewer,
more meaningful units while preserving information integrity. This approach has emerged as a
preferred alternative to token pruning for reducing the token count. Methods such as ToMe (Bolya
et al., 2022), TPS (Wei et al., 2023), MG-ViT (Zhang et al., 2024b), and PPT (Wu et al., 2023) have
applied token merging and pruning techniques for visual representation. However, these approaches
mainly focus on merging the hidden states and are primarily designed for visual classification tasks.
Recently, CaM (Zhang et al.) pioneers using a bernoulli process to generate a mask for value state
merging on the KV cache during long-text generation. It still employs a uniform merging strategy
across all layers, disregarding variations in attention density between layers. D2O addresses the
above issues by performing merging directly on the KV cache with a dynamic layer-level KV cache
allocation and a dynamic merging strategy based on an EMA threshold. This prevents excessive
information loss during KV cache compression in long-text generation tasks and improves efficiency
for autoregressive tasks in LLMs.

3 PRELIMINARY: GENERATIVE INFERENCE WITH KV CACHE

The standard generative inference of an LLM includes prompt encoding and token generation.

Prompt Encoding. In the prompt encoding stage, a prompt sequence is utilized to generate a KV
cache for each transformer layer within LLMs. Consider an input prompt tensor X ∈ RLprompt×D,
where Lprompt represents the length of the prompt and D denotes the hidden dimension of the model.
For simplicity, the indices for heads and layers have been omitted. The key and value tensors are
derived as follows:

K = XWK ,V = XWV , (1)

With WK ,WV ∈ RD×D representing the weights for the key and value layers, respectively. Once
K and V are computed, they are stored in the KV cache to facilitate the token generation process Ott
et al. (2019); Wolf et al. (2020).

Token Generation. In the Token Generation phase, the KV cache is both utilized and updated to
sequentially produce tokens. For each time step i, only the keys and values for the new token xi are
computed whereas those for x<i are retrieved from the cache. We define the concatenation as [·].
Then the cache is updated and the output of newly generated token is as:

K = [K,xiWK ],V = [V,xiWV ], (2)

xi,out = Softmax
(
qiK

⊤/
√
D
)
V,qi = xiWQ, (3)

where WQ ∈ RD×D is the weight matrix of the query layer, the linear expansion of the KV cache
with each new token significantly increases memory usage and latency, particularly for longer prompts
or during token generation. It underscores the importance of compressing the KV cache.

4 METHOD: DYNAMIC DISCRIMINATIVE OPERATIONS

The overview of D2O is shown in Figure 3. For simplicity, each layer with a single attention head in
the figure. The layer-level and token-level operations are illustrated in Section 4.1 and Section 4.2.
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Figure 3: Overview of D2O. Firstly, for the layer cache size allocation at the layer level, D2O addresses the
issue of inconsistent attention density across higher and lower layers by incorporating a dynamic cache at each
layer. The size of the cache is determined by the variance metric of attention and dynamic allocation strategy.
Then, at the token level, D2O addresses long-context information loss by incorporating a combination of a token
eviction scheme and a dynamic token merging technique (where compensation mechanism is located).

4.1 DYNAMIC LAYER-LEVEL DISCRIMINATIVE OPERATION

Employing a uniform layer-wise size such as the ones proposed in H2O (Zhang et al., 2024c)
and StreamingLLM (Xiao et al., 2023b) across all the layers could potentially compromise model
performance. To address this, we propose to utilize a specific metric, F l

v, to evaluate the attention
density of each layer l:

Al
p = Softmax

(
Ql

pK
l
p

⊤
/
√
D
)
, andF l

v = Var

Lprompt∑
i=0

Al
p[i, :]

 , (4)

0 5 10 15 20 25 30
Layer

0

100

200

300

400

500

600

700

800

Sc
or

e 
Va

ria
nc

e

Llama 7B
Llama2 7B
Llama3 8B

Figure 4: Variances of attention score across
different layers for various models.

where Al
p denotes the attention score of prompt encoding

in each layer, Ql
p,K

l
p ∈ RLprompt×D. We sum the elements

of each column in Al
p to establish the initial state of the

cumulative attention sequence. The attention density for
each layer is then quantified by the variance of this se-
quence, as denser attention weights correspond to smaller
variances. This relationship is illustrated in Figure 4, we
observe a consistent phenomenon across all models on
the GSM8K dataset: the variance of attention scores is
lower in the shallow layers (e.g., 0, 1, 2) and the middle
layers (e.g., 13, 14), indicating that the attention weights
are dense, as also shown in Figure 1. This density makes
it difficult to distinguish which tokens should be discarded.
In deeper layers, the variance increases and the attention weights display a sparse pattern.

Dynamic Allocation Strategy. Leveraging this consistency, we propose a new dynamic allocation
Strategy using inverse variance softmax to adjust the KV cache size in each layer: layers with higher
variance F l

v are allocated a smaller cache size, while shallower layers with lower variance receive a
larger cache allocation. Specifically, for a given compression ratio ρ, the cache size for each layer Sl

is calculated as:

Sl = αl · S, whereαl =
exp(−F l

v)∑L
l=1 exp(−F l

v)
· L · ρ, (5)

Here, ρ represents the compression ratio of the cache size, S is the original cache size, which is
equal to Lprompt in the prompt encoding phase, and L is the number of model layers. We adopted
a softmax-like function to dynamically distribute cache proportions αl. The derivation details and
theoretical analysis can be found in Appendix A.2 and Appendix A.9, respectively.

4.2 DYNAMIC TOKEN-LEVEL DISCRIMINATIVE OPERATION

After the layer-level discriminative operation, to compensate for the loss of long context information,
we introduce two critical steps in the token-level discriminative operation: token eviction and dynamic

4
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token merging strategies. Note that our D2O is compatible with any token eviction technique. Here,
D2O primarily utilizes an eviction strategy based on accumulative attention (Zhang et al., 2024c) to
dynamically prune the KV cache in generation tasks. For token merging, we introduce a new strategy
that uses a similarity threshold based on the exponential moving average (EMA) to dynamically
determine whether to merge discarded tokens back into the preserved KV cache by weighted merging.

4.2.1 TOKEN EVICTION

The core concept of token eviction involves dynamically updating the KV cache by leveraging
cumulative attention scores. This process systematically excludes the least essential KV pairs to
maintain the compressed cache size Sl for each layer, thereby preserving only the most valuable
tokens for efficient inference. A recent study (Xiao et al., 2023a) suggests that retaining crucial
attention sink tokens within the most recent KV cache window enhances the stability of attention
score distributions across extended texts. Unlike traditional accumulation-based approaches such as
H2O (Zhang et al., 2024c), our strategy improves performance by maintaining attention sink tokens
from the initial T tokens of the input and integrating them within a recent size window M . The
attention score is formulated as follows:

AttnScore =

{∑Lprompt
i=0 Ap[i, :], if token i <= Lprompt,

Softmax
(
qiK

⊤/
√
D
)
+
∑Lprompt

i=1 Ap[i, :], otherwise, token generation
(6)

After obtaining the current cumulative attention scores, we retain the most recent window consisting
of size M and include T attention sink tokens. We then select the top N tokens with the highest
scores from the remaining KV cache to complete the eviction. The process is defined as follows:

Kc = [K[: T, :],K[I, :],K[−M :, :]], Vc = [V[: T, :],V[I, :],V[−M :, :]], (7)

and I = TopN (AttnScore[T : −M ], N) , (8)
where TopN (·, N) selects the top N important tokens with the indices I in AttnScore, (Kc,Vc) is
the conserved KV cache after eviction, and S = T +N +M denotes the current cache size.

4.2.2 DYNAMIC TOKEN MERGING

Then, we obtain the eviction set Ke = K − Kc. However, directly discarding these tokens will
compromise the integrity of the long context. To compensate the information loss, we propose the
dynamic token merging approach that retrieves tokens still containing potential value at minimal
computational cost and integrates these selected tokens with similar reserved tokens. Considering
the alignment properties of KV-pairs, we only compute the similarity matrix on the key’s tokens and
share the similarity metric and weighted merging weights with the value’s tokens. We outline this
approach in three key steps: nearest-neighbor matching, EMA threshold judgment, and weighted
merging.

Nearest Neighbor Matching. We implement a many-to-one nearest-neighbor matching algo-
rithm (Dang et al., 2021) to calculate the similarity matrix U between Ke and Kc. We subsequently
identify the most similar tokens from Kc as candidates for merging. Specifically, let Ie and Ic denote
the indices, and Le and Lc represent the lengths of tokens in Ke and Kc, respectively. Each element
ui,j in U represents the interaction between tokens for matching, where i ∈ Ie and j ∈ Ic. We then
determine the closest token knearest

∗ in Kc for each evicted token ki. The formulas are as follows:

knearest
∗ = Argmax

j∈Ic

(ui,j) , where ui,j =
k⊤
i kj

∥ki∥ ∥kj∥
(9)

Here, we adopt cosine similarity, and ∥ · ∥ is the norm. Given that the similarity matrix U ∈ RLe×Lc

is derived directly from input prompts and U ∈ RLc

during token generation, it introduces no
additional parameters and ensures that the computation remains efficient.

EMA Threshold. After calculating similarities and identifying candidate tokens {Knearest
∗ }, directly

applying average weighted fusion to token pairs can lead to feature dispersion (Liang et al., 2022).
Additionally, as depicted in Figure 1, attention patterns in higher layers exhibit a staircase-like
pattern, indicating a focus on local window information. Besides, since only a few critical tokens

5
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exist outside these local windows, indiscriminately merging all candidate tokens can introduce
redundant information or noise, ultimately impacting inference accuracy. Inspired by the exponential
moving average (EMA) (Hunter, 1986; Busbridge et al., 2023) feature used in time-series tasks, which
prioritizes more recent data thus enhancing sensitivity to data changes, we propose EMA threshold for
token-level operation. Our approach emphasizes the importance of recent similarity between current
evicted tokens and conserved tokens while smoothing historical similarity information between
previously evicted tokens and conserved tokens. Specifically, the impact of past token similarity
thresholds diminishes exponentially over time, assigning increased weight to more recent thresholds.
The EMA threshold is shown as:

τt =

{
1
Le

∑Le

i=0 Max(Ut[i, :]), if t = 0 for prompt encoding <= Lprompt,Ut ∈ RLe×Lc

βMax(Ut[:]) + (1− β) τt−1 otherwise, t > 0 for token generation,Ut ∈ RLc

(10)
where the initial threshold τ is set to the average of the highest similarity values from the eviction
token to the conserved set, as calculated within the similarity matrix Ut at each forward step t.
The smoothing constant β modulates the balance between the current similarity matrix Ut and
the previous similarity thresholds τt−1, with higher values of β increasing sensitivity to changes
in current similarity. If the maximum similarity of the current evicted token is less than τi, it is
permanently discarded. Otherwise, a weighted merge strategy is used.

Weighted Merging. Specifically, for a conserved token, eviction tokens that exhibit higher similarity
should be assigned greater weights. Thereby, we use weighted merging instead of averaged merging
since the approach mitigates potential errors stemming from imperfect token scoring. The weighted
merging formulas are defined as:

kcj = wcjkcj +
∑

kei∈Ke

weike, vcj = wcjvcj +
∑

vei∈Ve

weive, (11)

where wc and we represent the weights assigned to each reserved and evicted key-value pair,
respectively. We adopt a similarity-based weighting strategy, inspired by Graph Attention Net-
work (Veličković et al., 2017). The weight calculation is as follows:

wcj =
e∑

kei∈Ke
exp(uij)mij + e

, wei =

∑
kei∈Ke

exp(uij)mij∑
kei∈Ke

exp(uij)mij + e
. (12)

According to the formulas, mi,j ∈ M is the mask matrix of U. If xj ∈ Kc is the most similar token
to xi ∈ Ke, then mi,j = 1; otherwise, mi,j = 0. The fusion weights wcj and wei are determined by
the mask values mi,j and similarities ui,j . Specifically, wei represents the weight for each evicted
token kei, while wcj pertains to the weight of the conserved token itself. Each conserved token kcj

retains the highest fusion weight, as its self-similarity equals 1. Thereby, conserved tokens are not
selected as the most similar tokens remain unchanged, whereas evicted tokens are integrated into the
most similar ones, replacing the originals.

5 EXPERIMENTS AND ANALYSIS

5.1 EXPERIMENTAL SETUP

Backbones. We evaluate D2O using four models: Llama-2 (Touvron et al., 2023), Llama-3 (Meta,
2024), Falcon (Almazrouei et al., 2023), and Mistral (Jiang et al., 2023). For Llama-2, we employ
model sizes ranging from 7B to 13B. For Llama-3, we use an 8B model. Notably, both Llama-2 and
Mistral models utilize multi-head attention, while Falcon employs multi-query attention (Shazeer,
2019) and Llama-3 uses grouped query attention (Ainslie et al., 2023). We implement the D2O
algorithm using the Hugging Face Transformers codebase (Wolf et al., 2019).

Tasks. We evaluate D2O using datasets with both standard and extended context lengths. For standard
contexts, we utilize generation tasks from LM-Eval (Gao et al., 2021), assessing model performance
across commonsense and math reasoning on CoQA (Exact Match Accuracy) (Reddy et al., 2019),
TruthfulQA (BLEU score) (Lin et al., 2022), and GSM8K (Exact Match Accuracy)Cobbe et al.
(2021b). For long-context tasks, we apply LongBench (Bai et al., 2023), which is particularly suited
for evaluating the effects of compressed KV cache. This involves tasks from subgroups such as Single-
Document QA, Multi-Document QA, Summarization, Synthetic, and Code Completion. Additionally,
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we assess D2O’s capability in long-context retrieval with the Needle-in-a-Haystack test (Briakou
et al., 2023), challenging the model to retrieve a specific sentence within a large document. We also
validate our method’s long sequence modeling ability using PG-19 (Rae et al., 2019). More details
are illustrated in Appendix A.1.

Implementation. In our principal experiment, we choose the β value for EMA threshold merging
from the range 0.5 ∼ 0.9. The hyper-parameter experiment in Appendix A.3 shows that β = 0.7
achieves optimal performance. Besides, the number of top N important tokens and the recent token
M are typically set as N = 3 : 1, with N +M + T = αl · S. The overall KV cache compression
ratio ρ varied across settings, including values such as 0.2, 0.4, and 0.8. All experiments were
conducted on NVIDIA A100 80GB GPUs. Further details on implementation and determination
of hyper-parameters are provided in Appendix A.1 and Appendix A.3, respectively, and additional
ablation studies are included in Section 5.6.
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Figure 5: Performance of D2O and other methods for LLama backbones on reasoning datasets including CoQA,
GSM8k, TruthfulQA.

5.2 COMPARATIVE ANALYSIS OF KV CACHE COMPRESSION RATIOS

In Figure 5, we benchmark D2O on GSM8K, CoQA, and TruthfulQA datasets.We compare models
equipped with a full KV cache against those utilizing our D2O compression technique over several
Llama models: Llama-1-7B, Llama-2-7B, Llama-2-13B, and the latest Llama-3-8B. The ratio
represents the proportion of the overall compressed KV cache budget to the prompt length Lprompt.
Results indicate that D2O consistently outperforms all other KV compression methods across all
configurations. Notably, D2O significantly enhances performance, particularly under reduced budgets.
This performance reflects the ability of D2O’s context retention strategy to compensate for the severe
loss of contextual information inherent in eviction-based methods and prevent the degradation of
LLMs’s reasoning capabilities, particularly for Llama-3-8B on the GSM8K and CoQA datasets.
Intriguingly, on the TruthfulQA dataset, D2O even outperforms the full model across four Llama
backbone settings and most of the budget ratios, demonstrating that D2O’s unified eviction and
dynamic merging strategies can prune irrelevant tokens from LLMs’ input texts, preserving essential
context and then enhancing reasoning accuracy.

5.3 ACCURACY COMPARISON ON LONG-CONTEXT TASKS

7
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Table 1: LongBench Code Performance
on 34B model.

Code-LLama-34B Lcc RB-P

Full 75.52 65.46

Local 37.38 21.49
StreamLLM 63.42 55.27
H2O 68.85 61.02
RoCo 67.21 59.21
CaM 69.21 58.71

D2O 75.28 64.77

LongBench Results. We evaluate D2O on five models us-
ing LongBench, as shown in Table 21, including Falcon-7B,
Mistral-7B, Llama-2-7B, Llama-2-13B, and Llama-3-8B. To
assess the performance of D2O and various baselines under
high compression conditions, we set the default KV cache
budget ratio ρ = 0.2. Table 21 demonstrates that D2O effec-
tively manages KV cache compression with minimal impact
on accuracy, and successfully captures key information in
lengthy texts compared to the full model. In particular, the lo-
cal window method exhibits severe performance degradation
due to significant context loss. Furthermore, we compare
D2O with other recent eviction-based baselines to further
demonstrate D2O’s capability to retain key information. The results show that D2O significantly
outperforms other eviction-based methods, such as StreamingLLM (Xiao et al., 2023a), H2O (Zhang
et al., 2024c), RoCo (Ren & Zhu, 2024), and CaM Zhang et al., especially on the Llama-3-8B
backbone. In addition to the experiments involving 7B, 8B, and 13B models presented in Table 21,
we have also conducted additional experiments with the Code-LLama-34B model in Table 1. We
tested the 34B model on the LongBench code task type. As shown in the table, D2O’s performance
surpasses other eviction-based baselines and closely matches the results of the Full Cache. This
demonstrates that D2O effectively generalizes to larger LLM scales, validating its scalability and
robustness across different model sizes.

Table 2: Performance evaluation of D2O on various models in LongBench benchmarks. For each baseline,
except for the full model, we retain 20% of Lprompt (ρ = 0.2, S = Lprompt) as the preserved KV cache size and
highlight the best method.

Methods

Single-Document QA Multi-Document QA Summarization Summarization Synthetic Code

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Fa
lc

on
-7

B

Full Model 1.03 3.82 7.62 1.75 1.78 1.25 3.77 2.48 6.04 5.00 8.27 2.73 0.49 0.41 9.98 7.33
Local Window 0.43 2.60 4.80 1.26 1.31 0.50 1.79 0.61 2.31 4.67 7.00 1.72 0.84 0.39 8.95 7.28
StreamingLLM 0.32 2.61 4.85 1.56 1.04 0.54 1.80 0.53 4.54 4.67 6.53 1.68 1.60 0.36 9.67 7.16
H2O 0.43 4.01 5.65 1.66 1.70 0.50 2.61 0.61 4.36 4.33 7.57 2.20 0.53 0.0 10.57 6.72
RoCo 0.38 3.82 5.33 1.31 1.61 0.38 2.25 0.53 3.88 4.35 7.42 1.88 0.49 0.22 9.78 6.75
CaM 0.58 3.80 5.77 1.79 1.65 0.65 2.68 0.59 4.13 4.57 7.38 2.41 0.66 0.23 10.35 6.85
D2O 0.94 4.27 6.50 1.72 2.16 0.79 3.01 3.22 4.75 5.32 8.36 2.47 2.05 0.85 11.25 7.32

M
is

tr
al

-7
B

Full Model 26.28 29.8 49.44 41.77 26.52 19.35 33.32 24.44 26.28 66.67 86.16 41.11 4.43 90.5 56.91 49.09
Local Window 16.25 15.72 29.25 27.88 19.55 12.80 21.64 15.71 15.45 33.65 26.54 18.57 2.35 41.25 28.50 26.50
StreamingLLM 18.75 16.22 33.54 29.77 19.42 13.34 18.55 17.78 17.54 50.52 62.76 20.88 2.39 45.22 52.31 33.28
H2O 22.45 23.52 42.78 33.56 23.45 15.58 28.48 18.88 20.22 56.72 75.52 32.88 3.45 78.55 52.38 37.25
RoCo 19.55 21.22 38.54 29.88 19.98 13.38 25.22 15.32 16.85 52.45 76.23 30.50 2.88 75.58 49.54 38.75
CaM 22.47 23.40 42.64 33.83 23.02 15.90 28.36 18.99 19.82 56.25 75.28 32.62 3.39 78.79 52.68 36.85
D2O 24.54 25.72 45.07 34.84 24.92 17.29 29.70 21.90 24.06 62.99 84.02 38.03 4.18 86.26 55.17 46.15

L
la

m
a-

2-
7B

Full Model 15.02 8.92 21.89 9.12 10.2 3.71 19.45 21.29 1.42 61.00 89.81 39.73 2.49 4.94 67.95 55.14
Local Window 3.27 6.56 2.3 8.88 7.29 1.25 0.06 2.07 0.28 17.67 4.55 4.70 1.44 5.88 17.69 13.81
StreamingLLM 10.31 5.62 19.75 6.65 8.75 2.49 1.29 19.86 1.32 52.67 88.96 37.13 0.59 6.10 64.76 50.49
H2O 14.31 7.15 20.45 8.61 9.93 3.29 9.96 20.22 0.40 59.67 88.46 39.61 2.31 7.75 65.00 53.40
RoCo 12.22 6.58 18.45 7.76 7.95 3.52 8.88 19.56 0.55 57.65 85.54 36.14 2.55 4.84 61.59 50.55
CaM 11.31 6.24 18.95 8.06 8.44 3.91 9.35 19.40 1.46 57.83 85.19 36.61 3.38 4.98 61.73 49.94
D2O 16.69 7.88 21.45 9.26 10.58 4.06 16.18 21.37 1.41 59.82 89.70 40.43 3.86 7.09 66.56 53.82

L
la

m
a-

2-
13

B Full Model 12.91 9.37 19.65 11.19 10.84 5.59 19.39 21.37 4.74 63.33 87.37 42.3 4.67 7.92 67.36 54.62
Local Window 3.77 5.17 2.78 13.83 11.76 3.98 0.14 1.48 0.32 17.67 7.54 3.63 0.67 3.89 18.44 13.64
StreamingLLM 7.19 5.70 11.62 14.06 10.20 4.51 2.28 17.91 0.39 52.00 85.25 37.64 2.17 5.00 64.05 46.34
H2O 13.52 6.53 15.10 10.74 10.74 5.28 12.13 20.48 0.29 60.33 85.73 42.23 3.25 9.52 64.98 51.31
RoCo 11.01 4.88 14.05 10.22 9.88 4.95 9.54 19.85 1.07 55.56 84.78 38.95 3.22 6.02 63.21 51.95
CaM 11.17 5.59 13.98 10.64 10.72 4.81 9.40 20.59 2.01 56.04 85.07 39.20 3.61 6.27 63.36 52.11
D2O 14.66 8.09 16.59 10.83 12.41 5.88 16.13 21.16 3.36 62.57 88.15 42.75 6.07 9.83 67.19 52.81

L
la

m
a-

3-
8B

Full Model 14.25 12.89 22.45 11.03 12.17 6.98 30.80 23.25 4.02 71.00 90.10 42.08 6.33 12.51 72.94 61.26
Local Window 1.78 4.64 4.10 6.11 6.91 2.81 0.56 10.33 0.02 33.5 28.67 10.56 5.69 2.00 32.80 23.68
StreamingLLM 10.47 9.96 13.82 9.64 11.05 5.53 19.99 20.53 3.13 62.67 90.05 41.30 5.44 14.05 70.44 57.93
H2O 13.27 11.05 17.72 10.38 11.23 6.38 21.29 21.33 3.38 66.63 89.19 41.12 5.52 11.11 71.86 58.29
RoCo 10.77 10.55 16.54 9.98 8.95 9.52 20.78 20.15 2.59 63.98 86.26 38.59 5.55 10.05 68.78 56.66
CaM 11.15 11.02 16.84 10.47 8.83 9.45 21.23 20.73 2.57 64.10 87.21 38.69 5.86 10.40 69.72 57.51
D2O 14.43 12.66 19.93 11.92 12.79 9.88 24.36 23.42 3.95 69.72 90.99 42.36 6.61 14.67 72.43 60.00

Long Context Fact Retrieval Task. To validate D2O’s retrieval capabilities in long contexts
after compressing the KV cache, we employ the’Needle In A Haystack’ task (Kamradt, 2023),
Designed to retrieve specific ’needles’ from extensive documents, we adopted the evaluation settings
from the Retrieval Head study, with Llama-2-7B-80k as the backbone of the experiment. For a
fair comparison, the KV cache budget was set to 4096 and 8192, and both D2O and the baseline

8
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Table 3: Needle-in-a-haystack results.

Methods L=50k L=100k L=50k L=100k

Full Model 97.88 94.46 97.88 94.46

4096 8192

StreamingLLM 58.64 47.93 62.84 51.34
H2O 79.84 69.81 82.32 72.34
SnapKV 83.55 76.22 86.63 80.42
CaM 82.66 78.22 87.59 78.88

D2O 91.27 87.74 94.48 91.88

models were tested on contexts with maximum
lengths of 50k and 100k. The average accuracy
is reported in Table 3. D2O not only outperforms
other eviction-based methods but also exhibits
the smallest drop in performance accuracy when
compared to the full model without the help of
a well-designed retriever, especially when the
cache budget is 8192. These results underscore
D2O’s robust long-context retrieval capabilities
even with a compressed KV cache.

0k 8k 16k 24k 32k 40k 48k 56k 65k
Token Length

1.7

1.8

1.9

2.0

2.1

2.2

2.3

NL
L
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D2O

50000 60000
1.7

1.8

Figure 6: Long sequence modeling PPL.

Long Sequence Modeling Perplexity. We sample data
from the PG-19 (Rae et al., 2019) and to evaluate the long
language modelling perplexity of To ensure a fair compari-
son, we set the capacity of the KV cache to 2048. Figure 6
depicts the cumulative average negative log-likelihood
(NLL) as a function of context length. D2O enables LLMs
to handle long sequences and achieve superior perfor-
mance (lower perplexity) compared to other eviction-based
compression methods. The results demonstrate that D2O
can effectively leverage long-distance dependencies in lan-
guage modeling with a limited KV cache.

5.4 DYNAMIC ALLOCATION POLICY ANALYSIS

Table 4: Comparison of Cache Allocation Strategies.

Method CoQA TREC
Exponential Decay 48.26 57.46
Uniform Allocation 55.30 65.10
Reciprocal of Variance 58.10 68.00

Inverse Variance Softmax (Ours) 59.25 69.72

To evaluate the impact of our proposed dynamic
allocation policy at layer-level, we conduct an
experiment comparing various designs for the
cache allocation factor αl, where each design
influences how the cache is distributed across
layers based on their attention variance F l

v . We
consider several settings:

(1) Inverse Variance Softmax (Ours): αl =
exp(−F l

v)∑L
l=1 exp(−F l

v)
· L · ρ, which allocates smaller cache sizes

to layers with higher variance; (2) Reciprocal of Variance: αl =
1
F l

v
· 1∑L

l=1
1

Fl
v

· L · ρ, where the

cache allocation is inversely proportional to the attention variance; (3) Exponential Decay Allocation:
αl = e−F l

v , where cache is allocated in an exponentially decreasing manner based on the variance.
(4)Uniform Allocation: αl = ρ, where all layers are assigned equal cache sizes. As shown in Table 4,
the comparison of these settings demonstrates the effectiveness of our proposed approach in efficiently
distributing cache based on variance, leading to superior performance in key metrics.

5.5 THROUGHPUT ANALYSIS

Table 5: Throughput comparison of full model and D2O. 32 (256)
means the max batch size is 32 with a 256 cache budget.
Prompt+Gen 256+1024 512+2048 1024+4096 2048+8192

Max Batch Size

Full Model 8 4 2 1
H2O 32 (256) 16 (512) 8 (1024) 4 (2048)
D2O 32 (256) 16 (512) 8 (1024) 4 (2048)

Throughput: tokens /s

Full Model 374.79 198.94 96.95 43.44
H2O 919.77 (2.45×) 511.75 (2.57×) 281.36 (2.90×) 134.66 (3.10×)
D2O 878.62 (2.34×) 495.50 (2.49×) 272.28 (2.80×) 132.45 (3.04×)

We demonstrate that reducing the
KV cache with D2O significantly en-
hances real-world throughput, as il-
lustrated in Table 5. All experiments
are conducted using the Llama-3-8B
architecture on an A100-80G GPU
without CPU offloading. The KV
cache budget is set to be the same as
the length of the prompts to maintain
the contextual integrity of the input
prompts. We observe that D2O reduces memory usage, enabling larger batch sizes and higher
throughput. Specifically, as text length increases, D2O’s throughput advantage over the entire model
also grows. For example, throughput improves from 2.34× at the 256+1024 setting to 3.04× at the
2048+8192 setting, showing D2O’s efficiency in processing longer texts. Moreover, the table above
also shows that our method achieves throughput comparable to H2O for long sequence inference,

9
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with a throughput 3.0-3.1 times that of the Full Model. This validates the GPU memory efficiency of
our merging strategy in increasing throughput compared to the full cache size. While our merging
strategy incurs some computational overhead compared to H2O’s evicted-based strategy, the benefits
are clear in long text generation and inference tasks. As demonstrated in Table 5 (Longbench Results)
and Appendix A.4 (Multi-turn Conversations) in the main text, D2O significantly reduces information
loss due to eviction, enhancing inference accuracy. Furthermore, more details about computational
cost analysis are shown in Appendix A.5.

5.6 ABLATION ANALYSIS

In this section, we conduct a series of experiments to investigate the importance of each component
and parameter setting in our proposed method. Unless otherwise specified, Llama-3-8B is used as the
default model under the cache budget 20%.

Table 6: Performance of Each Component.

MF-en 2WikiMQA GovReport PRe

Full Model 22.45 12.17 30.8 12.51
H2O 17.22 11.23 21.29 11.11

D2O 19.93 12.79 24.36 14.67
w.o. Layer Operation 18.89 11.67 22.45 13.44
w.o. EMA-Threshold 19.23 11.88 22.85 13.23
w.o. Both 17.85 11.58 21.87 11.98

Ablation Study of Each Component. To
demonstrate the effectiveness of each compo-
nent, we have included a table comparing the
Full Model, H2O, D2O, and its key components.
We evaluated these models on four datasets
from Longbench: Single-Document QA (MF-
en), Multi-Document QA (2WikiMQA), Sum-
marization (GovReport), and Synthetic (PRe). As shown in the following table, the removal of any
component of D2O results in performance degradation. When two components are removed (leaving
only the weighted merging), the performance loss is even greater, but still better than the H2O method,
which is purely evicted-based. These results demonstrate that each component of D2O effectively
mitigates the information loss associated with evicted-based KV optimization.

Table 7: Feature choice.

Feature CoQA TREC

K 59.25 69.72
V 53.88 64.34
K/V 53.54 62.76

Table 8: Performance comparison
with different merge policy.

Methods CoQA TREC

Average 56.58 67.12
Weighted average 59.25 69.72

Table 9: Ratio impact

Methods CoQA TREC

1:1 56.52 66.45
1:3 55.43 65.41
3:1 59.25 69.72

Token Similarity Metric. Here we discuss various choices based on keys, values, or both of them
for token similarity metrics to determine which tokens should be merged. As shown in Table 7, the
attention keys (K) exhibit significantly higher performance than the attention values (V). Additionally,
we observe a notable decrease in performance when using independent metrics for the key-value (K/V)
cache, which we attribute to the disruption of the corresponding relationships between key-value
pairs within the cache.

Merge Policy. After deciding what tokens to merge, we explore the policy for token merging in our
proposed method. Specifically, we compare the performance of average merging and weighted merg-
ing. The results in Table 8 reflect that the weighted average policy can achieve better performance.

Balancing Important Token Size (N ) and Recent Size (M ). We also investigates the impact of
different important token sizes and recent size ratios on performance, given a fixed budget. This ratio
determines the emphasis placed on influential tokens from a historical context (larger ratio) versus
tokens from a recent context (smaller ratio). The results in Table 9 suggest that important tokens
reflecting global information seem to have a larger impact on performance.

6 CONCLUSION

In this paper, we propose Dynamic Discriminative Operations (D2O) that can effectively address the
challenges of KV cache management in LLMs by dynamically merging tokens to maintain essential
contextual information without requiring fine-tuning. By leveraging the varying densities of attention
features across layers, D2O minimizes information loss during eviction and significantly reduces
both computational and memory demands. Our experiments confirm that D2O not only preserves
the quality of generation in long-text scenarios but also achieves an optimal balance between KV-
cache compression and performance. Future research could explore integrating D2O with additional
compression methods like quantization, distillation, and efficient attention architectures.
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A APPENDIX

A.1 MORE SETTING DETAILS

In all our experiments, we used model weights downloaded from Huggingface as follows: for
all Llama architectures, the Llama-1-7B model employed the ’huggyllama/llama-7b’2 checkpoint,
Llama-2-7B used the ’meta-llama/Llama-2-7b-hf’3 version, Llama-2-13B utilized ’meta-llama/Llama-
2-13b-hf’4, and for the latest Llama-3-8B, we used ’meta-llama/Meta-Llama-3-8B’5. In the Mistral
architecture, the ’mistralai/Mistral-7B-Instruct-v0.2’6 checkpoint was employed. For the Falcon
architecture, ’tiiuae/falcon-7b’7 was used. Additionally, for the evaluation metrics of the various
sub-tasks such as "narrativeqa," "qasper," "multifieldqa_en," and "hotpotqa" within the LongBench
benchmark, please refer to the official benchmark repository8.

A.2 DERIVATION OF CACHE ALLOCATION FACTOR αl

In this section, we provide the derivation for the cache allocation factor αl, which dynamically adjusts
the KV cache size based on the variance of attention scores in each layer.

We begin by noting that the total cache size across all layers is constrained by the original fixed cache
size S for each layer and the compression ratio ρ. The total cache size after compression is given by:

L∑
l=1

Sl = S · L · ρ (13)

where Sl is the cache size allocated to layer l, L is the total number of layers, and ρ represents the
compression ratio. To allocate cache dynamically, we introduce αl, which governs the proportion of
the total cache assigned to each layer. The cache size for layer l is therefore:

Sl = αl · S (14)

and αl must satisfy the constraint:
L∑

l=1

αl = L · ρ (15)

To ensure layers with higher variance F l
v receive smaller cache sizes, we propose an inverse rela-

tionship between αl and F l
v. A softmax-like function is adopted to distribute cache proportions as

follows:

αl =
exp(−F l

v)∑L
l=1 exp(−F l

v)
· L · ρ (16)

This formulation ensures that layers with higher attention variance are allocated less cache, while
those with lower variance receive more. The normalization factor

∑L
l=1 exp(−F l

v) guarantees that
the total allocation across all layers satisfies

∑L
l=1 αl = L ·ρ. Thus, the above formulas concludes the

derivation of the dynamic cache allocation factor, where αl is inversely proportional to the attention
variance of each layer.

A.3 MORE DETAILS OF HYPER-PARAMETERS DETERMINATION

Our hyper-parameters are designed to be both generalizable and robust across all tasks in the paper.
We select hyper-parameters by first conducting hyper-parameter searches on specific long-text datasets
from Longbench (e.g., TREC) and reasoning datasets from LM-Eval (e.g., COQA), as detailed in
Section 5.6 (Ablation Study) of our paper. We then use the best-performing parameters for global

2https://huggingface.co/huggyllama/llama-7b
3https://huggingface.co/meta-llama/Llama-2-7b-hf
4https://huggingface.co/meta-llama/Llama-2-13b-hf
5https://huggingface.co/meta-llama/Meta-Llama-3-8B
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/tiiuae/falcon-7b
8https://github.com/THUDM/LongBench
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experiments. For token-level hyper-parameters such as β, we conducted searches within the range of
0.5-0.9 {0.5, 0.6, 0.7, 0.8, 0.9}. For N (important tokens) and M (recent tokens), we tested ratios
{3:1, 2:1, 1:1, 1:2, 1:3}.

In addition to the TREC and COQA datasets used in the main text, we have conducted additional hyper-
parameter ablation studies on the GSM8K (mathematical reasoning) and TruthfulQA (commonsense
reasoning) datasets, as shown in Table 10 and 11. We found that the ratio of N:M =3:1 yielded the
best performance across most datasets, as stated in Section 5.1 of our paper. For the EMA threshold
parameter Beta, we observed that a value around 0.7 produced optimal results in most datasets, and
we set the default Beta to 0.7.

N:M COQA GSM8K TruthfulQA

3:1 57.92 41.24 44.92
2:1 57.68 39.95 41.49
1:1 56.87 37.26 26.72
1:2 54.90 36.32 36.47
1:3 54.58 36.79 34.52

Table 10: N:M Comparison

β COQA GSM8K TruthfulQA

0.5 56.35 40.04 44.13
0.6 57.12 41.02 44.92
0.7 57.92 41.24 43.1
0.8 57.18 40.18 42.4
0.9 56.92 39.89 38.8

Table 11: Beta Comparison

A.4 GENERATED SAMPLES OF MULTI-TURN CONVERSATIONS

To validate our D2O method’s ability to preserve critical context information and generate correct
and fluent responses in multi-turn dialogues, we employed the MT-bench dataset (Zheng et al., 2024).
This dataset consists of 3.3K expert-level pairwise human preferences for responses generated by six
models, including GPT-4 and LLaMA-13B, in response to 80 multi-turn questions. It is specifically
designed to assess the performance of language models in producing contextually appropriate
conversations. To ensure a fair experimental comparison, we followed the settings (Xiao et al., 2023b;
Zhang et al., 2024c) of using a KV cache budget of 2048 tokens. For D2O and H2O, we set the
quantity of the top N important tokens at 48 and recent tokens M at 2000.

Notably, due to the extremely long texts in streaming multi-turn dialogues, the full model will
encounter out-of-memory issue. Therefore, we primarily compare D2O with H2O (Zhang et al.,
2024c) and StreamingLLM (Xiao et al., 2023b). As illustrated in Figure 8, we randomly sample
outputs according to the running order of the MT bench dialogue data, with samples 1 and 2 appearing
in the earlier dialogue data and samples 3 and 4 in the latter part. From the outputs, we observe that
during the early stages of multi-turn conversations, both D2O and two other eviction-based KV cache
compression methods effectively captured the context and yielded accurate responses. However, after
the second sample, H2O and StreamingLLM start to produce irrelevant content, losing conversational
coherence. This deterioration underscores a significant loss of contextual information and a decline
in future generation performance, illustrating the drawbacks of methods that directly drop the middle
KV cache, such as StreamingLLM, or employ eviction strategies based on attention scores, like H2O.
Meanwhile, we observe that Full Cache encounters an out-of-memory error when processing the
third sample. It highlights the critical necessity of optimizing KV cache to retain complete contextual
information during multi-turn dialogues with ultra-long texts. This experiment demonstrates the
efficacy of our two-level discriminative operations for context retention.

A.5 COMPUTATIONAL COST ANALYSIS

To better understand the time overhead associated with prompt encoding and token generation after
implementing token-level discriminative operations, we compared the time costs of prompt encoding
to the total inference time. Our results, as illustrated in Table 12, show that the prompt encoding
process, which utilizes token eviction and dynamic token merging operations, constitutes only a small
fraction of the total time. Moreover, as the length of generation tokens increases, this proportion
continues to decrease to 0.224%, indicating that the token merging operation is both efficient and less
time-consuming.

Additionally, we compare the computational overhead of our method (D2O) with eviction-based
method (H2O) in Table 13, we observe that the inference time for D2O is not significantly different
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USER: Edit the following paragraph to correct any grammatical errors:
She didn't remembre where is her purse, so I thinks its in the car but he's say it's on 
kitchen table but he are not sure, and then they asked me to looking for it, she's say, 
"Can you?", and I responds with, "Maybe, but ain't no sure," and he not heard me, and, 
"What?", he asks, "Did you found it?".

D2 O
ASSISTANT:  Yes. She didn't remember where she put her purse, so she thought it 
was in the car, but she wasn't sure. She asked me to help her find it, and I replied 
with "Maybe it's in the kitchen table?". She didn't hear me, and then he asked again, 
"Did you find it?".

H2 O
ASSISTANT:  Of course! Here's the revised paragraph with the requested 
corrections: She didn't remember where her purse was, so I think it's in the car, but 
he's say it's on the kitchen table, but he's not sure. And then they asked me to help 
find it, she says, "Can you?" And I respond with, "Maybe, but I'm not sure." He 
didn't hear me, and he asks, "What? Did you find it?"

StreamingLLM
ASSISTANT: Sure, I'd be happy to help! Here's the corrected paragraph:
She didn't remember where her purse was, so I thought it was in the car, but he said 
it was on the kitchen table, but he wasn't sure. They asked me to look for it, and she 
said, "Can you?" I responded, "Maybe, but I'm not sure," and he didn't hear me. He 
then asked, "What? Did you find it?"

Sample 1

✔

✔

✔

Full Cache
ASSISTANT:  Yes, She didn’t remember where her purse was, so I thought it was 
in the car, but he said it was on the kitchen table, though he wasn’t sure. Then they 
asked me to look for it. She said, “Can you?” and I responded, “Maybe, but 
I’m not sure.” He didn’t hear me and asked, “What? Did you find it?”

✔

USER: Please assume the role of an English translator, tasked with correcting and 
enhancing spelling and language. Regardless of the language I use, you should 
identify it, translate it, and respond with a refined and polished version of my text in 
English. Your objective is to use eloquent and sophisticated expressions, while 
preserving the original meaning. Focus solely on providing corrections and 
improvements. My first request is "衣带渐宽终不悔 为伊消得人憔悴".

ASSISTANT:  The provided text in the user's request is written in Chinese. Here is 
the English translation of the text: "Clothes are not enough to cover up one's 
shame."

D2 O

H2 O
ASSISTANT: Ah, *adjusts sunglasses* the patient's prognosis could also be a factor 
in their abdominal discomfort. *adjusts sunglasses* The patient's abdominal 
discomfort could persist *adjusts sunglasses* for several more weeks or *adjusts 
sunglasses* months, depending on the underlying cause. *adjusts sunglasses* It's 
also possible that the patient may experience *adjusts sunglasses* improvement in 
their abdominal discomfort, *adjusts sunglasses* depending on the effectiveness of 
their treatment. 

StreamingLLM
ASSISTANT:  Certainly! As an English translator, I will be happy to help you refine 
and enhance your text. The phrase you provided, "衣带渐宽终不悔 为伊消得人憔
悴," can be translated to English as:
"The belt gradually widens, never to be regretted, for the sake of the people who are 
exhausted."

Sample 2

✔

✔

❌

Full Cache
ASSISTANT:  The original text is in Chinese. Here is the refined and polished 
translation: "I grow thinner, my belt loosens, yet I regret nothing; for her, I endure 
this longing and weariness."

✔

USER:  How have the Alps and Rhine River influenced settlement and agriculture in 
Western Europe? List three impacts.
.

D2 O
ASSISTANT:The Alps and Rhine River have had a significant impacts on settlement and 
agriculture in Western Europe. The Alps have been a source of freshwater ice, which has shaped 
the landscape and influenced the course of rivers. The Rhine River has been a major 
transportation route for goods and people, and its deltaic plains have been used for agriculture.  
The Alps and Rhine River have also been a source of floods, which have damaged settlements and 
agriculture in the region.

H2 O

ASSISTANT: Ah, *adjust sunglasses* the patient's prognosis could also be a factor in their 
abdominal discomfort. *adjust sunglasses* The patient's abdominal discomfort could persist 
*adjust sunglasses* for several more weeks or months, depending on the underlying cause. *adjust 
sunglasses* It's also possible that the patient may experience *adjust sunglasses* improvement in 
their abdominal discomfort, *adjust sunglass US:  What do you think about the patient's prognosis?

❌

✔

StreamingLLM
ASSISTANT:  [INST]/n [INST] /n [INST] 
/n [INST] /n [INST]/n [INST] /n [INST] /n [INST] /n [INST] /n [INST] /n [INST] /n 
[INST] .....

❌

Sample 3

Full Cache

Out Of Memory ❌

USER: Describe five key principles in evaluating an argument in analytical writing

D2 O
ASSISTANT:  Certainly! Here are five key principles in evaluating an argument in analytical 
writing:
1. Clarity: The argument should be clear and easy to understand, with each point clearly stated 
and supported by evidence.
2. Relevance: The argument should be relevant to the topic and directly.
3. Logic: The argument should be logically sound, with each logical reasoning and evidence.
4. Evidence: The argument should be supported by evidence, including facts, statistics, and 
examples.
5. Adequacy: The argument should be consistent with other arguments and with other arguments
By following these principles, you can evaluate an argument and determine whether it is 
persuasive and convincing.

H2 O

ASSISTANT:  Ah, *adjust sunglasses* the patient's prognosis could also be a factor in their 
abdominal discomfort. *adjust sunglasses* The patient's abdominal discomfort could persist 
*adjust sunglasses* for several more weeks or months, depending on the underlying cause. 
*adjust sunglasses* It's also possible that the patient may experience *adjust sunglasses* 
improvement in their abdominal discomfort, *adjust sunglass US:  What do you think about the 
patient's prognosis?

StreamingLLM
ASSISTANT: �� MS. �� MS. �� MS. �� �� �� �� �� �� �� � �
� � �� � �� � �� � �� �......

✔

❌

❌

Full Cache

Out Of Memory ❌

Sample 4

Figure 7: Overall caption for the two images.

Figure 8: A comparative visualization of text generation by the D2O, H2O, StreamingLLMs, and Full Cache
methods is presented, with samples 1 to 4 collected sequentially according to the multiple rounds of dialogue
from the MT Bench dataset. All three methods were tested on the Llama-2-7b-chat-hf model. The correct
responses have been highlighted.
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from that of H2O. This indicates that the token similarity calculation and the merging strategy are
lightweight and do not affect the overall inference efficiency.

We also included additional experiments comparing latency across different model sizes, specifically
Meta-Llama-3-8B, Llama-2-13B, Code-Llama-34B, and Meta-Llama-3-70B, under varying sequence
lengths for encoding/prompt encoding. For these tests, we used a single A100 80G GPU for the
8B and 13B models, two GPUs for the 34B model, and four GPUs for the 70B model. As shown
in the results in Table 14, inference time scales with both sequence length and model size, with
larger models experiencing increased latency due to computational complexity and communication
overhead, even with a fixed-size KV cache optimization.

Furthermore, to assess inference time and generation quality during long-generation tasks, we
conducted additional tests on the longbook_sum_eng dataset from InfiniteBench (Zhang et al.,
2024a), which has an average output length of 1.1K tokens. Due to computational constraints, we
tested the first 20 samples using the Llama-3.1-8B-Instruct (128K) model, comparing D2O with
representative baselines, including the eviction-based method (H2O), layer-wise KV cache reduction
(PyramidKV), and value token merge (CaM). The experiment was conducted using four A100 GPUs
with 80GB. As shown in Table 15, D2O achieved the best performance, with a total inference time
between H2O and PyramidKV and minimal latency differences.

For Table 16 of the Needle-in-a-haystack experiment, using a four-A100 80GB setup, our inference
speed falls between SnapKV and CaM, while achieving the best performance among the methods.

Table 12: Inference time cost analysis of Llama 3-8B. The overall generation duration is calculated from the
beginning of the decoding process to the conclusion of the generation sequence. Prompt encoding time spans
from the initial prompt input to the completion of token eviction and dynamic token merging by D2O. The KV
cache budget is established at 256 tokens with a ratio of M : N set at 1:3.

Prompt Len +
Decoding Len

Overall Generation
Duration (s)

Prompt Encoding
Duration (s)

Decoding Time
Per Token (s) Prompt Encoding/Overall (%)

256+512 29.454 0.235 0.057 0.798%
512+1024 58.528 0.246 0.057 0.420%
1024+2048 121.191 0.328 0.059 0.271%
2048+4096 232.398 0.520 0.057 0.224%

Table 13: Computational overhead comparison (Cache size = 256, Reported by LLama 3-8B).

Prompt Len +
Decoding Len

Overall Generation
Duration (s)

Prompt Encoding
Duration (s)

Decoding Time
Per Token (s) Prompt Encoding/Overall (%)

H2O

512+1024 52.253 0.214 0.051 0.410%
2048+4096 214.425 0.315 0.523 0.153%

D2O

512+1024 58.475 0.245 0.057 0.419%
2048+4096 232.225 0.518 0.057 0.223%

Table 14: Computational overhead analysis by model size and context length.

Overall Generation Duration (s)

Prompt Len + Decoding Len 8B 13B 34B 70B

256+512 29.454 53.02 147.27 279.81
512+1024 58.528 105.35 292.64 556.02

1024+2048 121.191 218.14 585.36 1151.31
2048+4096 232.398 418.32 998.79 2015.78

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 15: Lookbook_sum_eng (Llama-3.1-8B-Instruct ) / (20% KV Cache)

Llama-3.1-8B-Instruct (128K) Rouge_Lsum (f1) Inference time (min)

Full 36.87 259.64

H2O 28.12 190.91
PyramidKV 31.92 206.06
CaM 33.82 181.51

D2O 35.48 201.27

Table 16: Needle-in-a-haystack results with inference time.

Methods L=50k L=100k L=50k L=100k

Full Model 97.88 (93.6 min) 94.46 (175.4 min) 97.88 (93.6 min) 94.46 (175.4 min)

4096 8192

StreamingLLM 58.64 / 53.49 min 47.93 / 100.23 min 62.84 / 64.17 min 51.34 / 110.92 min
H2O 79.84 / 69.33 min 69.81 / 125.93 min 82.32 / 75.17 min 72.34 / 138.88 min
SnapKV 83.55 / 78.00 min 76.22 / 146.17 min 86.63 / 86.82 min 80.42 / 154.34 min
CaM 82.66 / 66.73 min 78.22 / 116.24 min 87.59 / 75.12 min 78.88 / 129.80 min

D2O 91.27 / 71.53 min 87.74 / 129.85 min 94.48 / 79.37 min 91.88 / 142.22 min

A.6 EXTENDED ANALYSIS OF LONGBENCH EXPERIMENT

This experiment mainly validate the capability of our D2O to handle longer text data under a
low KV cache budget, we selected several representative tasks from the LongBench, including
single-document QA (e.g., MultifieldQA), multi-document QA (such as HotpotQA and 2wikimQA),
summarization (GovReport, TREC, and SAMSum), and code completion (Lcc RB-P). We specifically
chose datasets exceeding 8k in length and only retained 20% KV cache budget. As shown in Table 17,
D2O still demonstrates significant advantages even on datasets larger than 8k. Specifically, within
the Llama-2-7B architecture, D2O outperforms the best baseline by 5.94 and 7.23 points in two
summarization tasks, GovReport and TREC, respectively. This robustly validates the effectiveness
of D2O’s dynamic layer and token-level strategies, which effectively compress extended textual
information under a low KV cache budget.

A.7 VISUALIZATION OF LONG CONTEXT FACT RETRIEVAL TASK

We visualized the Needle-in-a-Haystack (Kamradt, 2023) test performance comparison of the full
model, H2O, and our D2O method to show the effectiveness of our dynamic token merging strategy
for long-context information retrieval. As illustrated in Figure 9, we observed that the eviction-based
method H2O, which relies on attention scores to prune the KV cache, loses significant contextual
information, especially when the retrieval task reaches a maximum length of 100k. In contrast, our
D2O method, which employs a dynamic token merging strategy, effectively preserves the information
of evicted tokens and mitigates the impact of KV cache compression on long-context retrieval.

A.8 VISUALIZATION OF ATTENTION WEIGHTS ACROSS VARIOUS DATASETS

In Figure 10, we visualize the attention weight results of the prompts across various layers of models
such as Llama-1-7B and Llama-3-8B on reasoning datasets like GSM8K (Cobbe et al., 2021b) and
COQA (Reddy et al., 2019). Consistent with the observations noted in Section 1 of the main text, a
similar pattern exists across different models and datasets, wherein the lower layers of the models
exhibit a higher density than the higher layers. Thus, this strongly corroborates our motivation for the
layer-level discriminative operation, which employs different eviction ratio strategies for layers with
varying densities of attention weights.

A.9 THEORETICAL ANALYSIS OF THE DYNAMIC ALLOCATION STRATEGY

In this section, we provide a detailed theoretical analysis demonstrating why the proposed dynamic
KV cache allocation strategy is superior to using a uniform compression ratio ρ across all layers
during the inference phase of LLMs. Our proof is grounded in information theory (Ash, 2012) and
considers the multi-head attention mechanism inherent in Transformer-based models.
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Table 17: Performance evaluation of D2O across various models using a range of benchmarks from LongBench
at 8k settings.

Model MultifieldQA HotpotQA 2wikimQA GovReport TREC SAMSum Lcc RB-P

Llama-2-7B

Full Model 15.97 8.83 6.97 12.15 61.00 42.93 66.4 53.34

Local Window 0.00 0.17 0.00 0.38 0.00 0.00 4.70 4.69
StreamingLLM 15.05 6.68 5.77 6.72 52.67 41.39 62.17 46.82
H2O 15.06 8.53 7.00 7.31 52.67 42.44 61.66 50.70
RoCo 12.56 6.23 6.65 5.58 48.80 40.78 61.55 49.54
CaM 12.46 6.44 7.02 5.61 49.07 41.18 61.46 49.71

D2O 16.58 9.89 8.68 14.07 60.00 44.75 65.88 54.31
⇑ 1.53 1.36 1.68 6.76 7.33 1.79 2.31 3.61

Llama-3-8B

Full Model 22.48 11.64 12.17 24.8 73.00 43.43 73.81 54.42
Local Window 2.84 3.81 6.08 0.59 35.00 10.18 37.20 22.26
StreamingLLM 12.93 9.25 8.70 19.20 67.00 39.40 71.99 52.08
H2O 15.50 10.54 9.30 20.57 70.00 42.23 71.54 50.40
RoCo 14.23 10.11 8.88 18.56 66.89 40.12 69.98 51.12
CaM 14.04 10.57 8.78 18.97 67.29 40.00 70.04 50.98

D2O 18.57 12.50 10.43 22.72 71.96 44.64 73.95 54.57
⇑ 3.07 1.96 1.13 2.15 1.96 2.41 1.96 2.49
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(a) 50k long-context fact retrieval of Full model.
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(b) 100k long-context fact retrieval of Full model.
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(c) 50k long-context fact retrieval of H2O method.
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(d) 100k long-context fact retrieval of H2O method.
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(e) 50k long-context fact retrieval of our D2O.
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(f) 100k long-context fact retrieval of our D2O.

Figure 9: Visualization comparisons of long-context fact retrieval tasks for several methods.

A.9.1 PROBLEM FORMULATION

Consider an LLM with L layers, where each layer l contains H attention heads. During inference,
each layer maintains its own key-value (KV) cache with a limited size due to resource constraints.
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(a) Attention weight visualization for Llama-1-7b on GSM8K dataset.

(b) Attention weight visualization for Llama-1-7b on COQA dataset.

(c) Attention weight visualization for Llama-2-7b on GSM8K dataset.

(d) Attention weight visualization for Llama-2-7b on COQA dataset.

(e) Attention weight visualization for Llama-3-8B on GSM8K dataset.

(f) Attention weight visualization for Llama-3-8B on COQA dataset.

Figure 10: Attention weight visualization across various models and datasets.

The total cache size is constrained by:
L∑

l=1

H∑
h=1

Sh
l = Stotal = ρ · L ·H · S, (17)
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where Sh
l denotes the cache size allocated to the h-th attention head in the l-th layer, S is the original

cache size per head, and ρ is the compression ratio. Our goal is to maximize the model’s output
quality during inference by optimally allocating the limited cache resources among different layers
and attention heads.

A.9.2 ATTENTION VARIANCE AND INFORMATION ENTROPY

Attention Weights as Probability Distributions. For each attention head h in layer l, the attention
weight matrix Al,h

p ∈ RLprompt×Lprompt is computed as:

Al,h
p = Softmax

(
Ql,h

p Kl,h
p

⊤

√
D

)
, (18)

where Qpl,h and Kl,h
p are the query and key matrices for the prompt encoding, respectively, and D is

the dimensionality. The attention weights can be viewed as probability distributions over tokens:

pl,hi =
exp(el,hi )∑
j exp(e

l,h
j )

, (19)

where el,hi is the attention score for token i.

Calculating Attention Variance and Information Entropy. The attention variance for head h in
layer l is:

Fl,h
v = Var

(
sl,h
)
, and sl,h =

Lprompt∑
i=0

Al,h
p [i, :] (20)

where sl,h is the cumulative attention sequence obtained by summing the columns of Al,h
p . The

information entropy for the attention distribution is:

H l,h = −
∑
i

pl,hi log pl,hi . (21)

Typically, a lower attention variance Fl,h
v indicates a more uniform distribution (higher entropy H l,h),

implying that information is more evenly distributed across tokens.

A.9.3 INFORMATION RETENTION AND CACHE SIZE

The information retained by attention head h in layer l depends on its cache size Sh
l and information

entropy H l,h:
I l,h = f(Sh

l , H
l,h), (22)

where f is a monotonically increasing function, indicating that a larger cache size leads to higher
information retention. The marginal information gain for head h in layer l is:

∆I l,h =
∂I l,h

∂Sh
l

. (23)

During the inference phase, the attention weight distributions (and thus the information entropy H l,h)
are determined by the model’s parameters and input data, not by the cache size Sh

l . Therefore, H l,h

is treated as a constant and does not appear in ∆I l,h because it does not depend on Sh
l .

A.9.4 OPTIMIZATION OBJECTIVE

Our objective is to maximize the total information retention Q under the cache size constraint:

max
Sh
l

Q =

L∑
l=1

H∑
h=1

I l,h =

L∑
l=1

H∑
h=1

f(Sh
l , H

l,h), s.t.
L∑

l=1

H∑
h=1

Sh
l = Stotal. (24)
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To maximize Q under the constraint, we use the Lagrange multiplier method from optimization
theory. By introducing the Lagrange multiplier µ, we construct the Lagrangian function:

L =

L∑
l=1

H∑
h=1

I l,h − µ

(
L∑

l=1

H∑
h=1

Sh
l − Stotal

)
. (25)

To find the optimal cache allocation that maximizes Q, under the constraint, we take the partial
derivative of the Lagrangian L with respect to each Sh

l and set it to zero:

∂L
∂Sh

l

=
∂I l,h

∂Sh
l

− µ = 0. (26)

This yields the condition:
∂I l,h

∂Sh
l

= µ, ∀l, h. (27)

This equation indicates that, at the optimal allocation, the marginal information gain for each attention
head equals the Lagrange multiplier µ. In other words, we achieve the maximum total information
retention Q when the marginal information gains are balanced across all attention heads.

Optimal Allocation of Cache Size. Under the constraint of limited total resources, if the marginal
information gain of a particular attention head ∆I l,h is greater than µ, increasing its cache size will
enhance the total information retention Q. Conversely, if the marginal information gain of an attention
head ∆I l,h is less than µ, reducing its cache size and reallocating those resources to attention heads
with higher marginal information gain will increase Q.

A.9.5 DYNAMIC ALLOCATION STRATEGY.

Cache Size Allocation Based on Attention Variance. We propose allocating cache sizes inversely
proportional to the attention variances:

Sh
l = αh

l · Stotal, where αh
l =

exp(−Fl,h
v )∑L

l=1

∑H
h=1 exp(−Fl,h

v )
. (28)

This strategy ensures that attention heads with lower variance (higher entropy) receive more cache,
adhering to the principle of allocating more resources to where the marginal information gain is
higher. The total cache size for layer l with the layer-level allocation proportion are:

Sl =

H∑
h=1

Sh
l , and αl =

H∑
h=1

αh
l . (29)

Limitations of Uniform Compression. Under a uniform compression ratio ρ, each attention head
receives the same cache size:

Sh
l = ρ · S. (30)

However, due to varying attention variances and entropies across different heads and layers, the
marginal information gains ∆I l,h are unequal. This imbalance leads to suboptimal total information
retention compared to the dynamic allocation strategy.

A.9.6 THEORETICAL PROOF OF SUPERIORITY

Total Information Retention Comparison.

Dynamic Allocation Strategy. The total information retention is:

Qdynamic =

L∑
l=1

H∑
h=1

I l,hdynamic =

L∑
l=1

H∑
h=1

f
(
Sh,dynamic
l , H l,h

)
. (31)

Uniform Compression Strategy. The total information retention is:

Quniform =

L∑
l=1

H∑
h=1

I l,huniform =

L∑
l=1

H∑
h=1

f
(
ρ · S,H l,h

)
. (32)
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Since the dynamic allocation strategy balances the marginal information gains across all attention
heads, it maximizes the total information retention Qdynamic. In contrast, the uniform compression
strategy cannot balance the marginal gains due to the diversity in H l,h, resulting in Quniform < Qdynamic.
Next, we give a numerical example.

Numerical Example. Since I l,h is monotonically increasing function, we assume the information
retention function of cache memory (Smith, 1982; Thomas & Joy, 2006) is:

I l,h = H l,h
(
1− exp

(
−kSh

l

))
, (33)

where k is a positive constant. The marginal information gain is:

∆I l,h =
∂I l,h

∂Sh
l

= H l,hk exp
(
−kSh

l

)
. (34)

Set the marginal gains equal:

H1,1k exp
(
−kS1

1

)
= · · · = HL,Hk exp

(
−kSH

L

)
= µ. (35)

Solving for Sh
l yields:

Sh
l = −1

k
ln
( µ

H l,hk

)
. (36)

The total cache size constraint is:
L∑

l=1

H∑
h=1

Sh
l = Stotal. (37)

By iteratively solving for µ, we obtain the optimal cache sizes Sh
l .

Comparison of Total Information Retention.

Dynamic Allocation. The total information retention is:

Qdynamic =

L∑
l=1

H∑
h=1

H l,h
(
1− exp

(
−kSh,dynamic

l

))
. (38)

Uniform Compression. The total information retention is:

Quniform =

L∑
l=1

H∑
h=1

H l,h (1− exp (−kρS)) . (39)

Since Sh,dynamic
l is adjusted based on H l,h, it follows that Qdynamic > Quniform. By considering the

attention variances and information entropies of individual attention heads, the dynamic KV cache
allocation strategy effectively balances the marginal information gains, leading to maximal total
information retention during inference. This theoretical analysis demonstrates that the dynamic
allocation strategy outperforms the uniform compression strategy, as it optimally utilizes limited
cache resources to enhance model output quality.

A.10 COMPARISON OF D2O WITH OTHER NEW BASELINES

Table 18: Comparison of D2O with other new methods in LongBench (20% KV cache).

Model Qasper QMSum MultiNews TREC TriviaQA SAMSum Lcc RB-P

Mistral-7B-Instruct-v0.2

Full Cache 29.8 24.44 26.28 66.67 86.16 41.11 56.91 49.09

SnapKV 23.32 20.18 23.97 60.62 82.46 36.99 52.68 45.53
PyramidKV 23.80 20.60 24.22 59.44 82.90 35.31 53.52 42.11
PyramidInfer 23.38 19.80 21.23 58.35 78.24 35.18 52.35 41.88
SirLLMs 21.48 18.81 23.12 54.79 78.57 31.72 53.42 43.54
LoCoco 22.55 19.42 24.80 58.71 75.32 35.85 54.15 41.58

D2O 25.72 21.90 24.06 62.99 84.02 38.03 55.17 46.15

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We also conducted additional comparisons with more contemporary baselines: token eviction ap-
proaches such as SnapKV (Li et al., 2024) and SirLLM (Yao et al., 2024), as well as token compression
techniques like LoCoco (Cai et al., 2024a), and layer-wise KV cache compression methods like
PyramidKV (Cai et al., 2024b) and PyramidInfer (Yang et al., 2024a). These experiments were
performed on the LongBench dataset using the Mistral-7B model and followed the setting from Liu
et al. (2024).

As shown in the Table 18, D2O consistently outperforms these baseline methods across most datasets.
This demonstrates that D2O’s combination of dynamic token-level merging and dynamic layer-
wise cache allocation effectively preserves context and delivers robust performance in long-context
scenarios.

A.11 D2O PERFORMANCE IN 100K+ LONG CONTEXTS

To validate the capability of D2O in handling ultra-long contexts, we also conducted additional
evaluations on datasets with longer contexts, including InfiniteBench (Zhang et al., 2024a) and
RULER (Hsieh et al., 2024), both featuring instances exceeding 100K tokens. To ensure a fair
comparison, we utilized the Llama-3.1-8B-Instruct (128K) model and benchmarked D2O against
representative baselines, such as H2O (based on eviction), PyramidKV (layer-wise reduction of KV
cache) and CaM (mergency of value tokens). All experiments were performed on four A100 GPUs
with 80GB memory.

The results, provided in the tables 19 and 20, demonstrate that D2O consistently outperforms
these baselines across both InfiniteBench and RULER. These findings highlight D2O’s ability to
effectively preserve context and maintain strong performance in extreme long-context scenarios,
further validating its robustness.

Table 19: Comparison of D2O with other baselines in InfiniteBench (20% KV cache).

Model R.PK R.Num R.KV Choice QA Math.F Code.Debug

Llama-3.1-8B-Instruct (128K)

Full Cache 100 99.52 28.66 62.15 25.78 35.86 26.94

H2O 62.15 63.84 18.85 51.42 16.13 27.65 19.35
PyramidKV 65.25 73.88 19.82 52.91 19.36 28.19 24.08
CaM 76.95 78.55 23.99 51.03 20.72 32.07 23.59

D2O 86.75 91.35 25.88 54.35 24.84 33.85 25.54

Table 20: Comparison of D2O with other baselines in Ruler (20% KV cache).

Model 4K 8K 16K 32K 64K 128K

Llama-3.1-8B-Instruct (128K)

Full Cache 95.5 93.8 91.6 87.4 84.7 77.0

H2O 90.5 88.2 85.7 83.2 77.8 72.5
PyramidKV 89.5 88 86.2 82.1 79.1 71.7
CaM 91.6 86.6 85.4 81.8 79.6 72.6

D2O 92.1 89.7 86.2 83.7 80.6 74.7

A.12 COMPARISON OF D2O USING OTHER LONGBENCH SETTING

To validate the effectiveness of D2O under other LongBench settings (Cai et al., 2024b), we conducted
additional experiments, including using LLaMA-3-8B-Instruct and Mistral-7B-Instruct models as
backbones, and conducted experiments under two KV cache scenarios (KV size = 64 and 2048).
For D2O, the total compressed KV cache size was configured as 64×L or 2048×L, where L is
the number of layers. For comparison, results of SnapKV Li et al. (2024), StreamingLLM Xiao
et al. (2023a), H2O Zhang et al. (2024c), and PyramidKV Zhang et al. (2024c) were taken directly
from the PyramidKV Cai et al. (2024b) paper. The evaluation for D2O was conducted using the
PyramidKV-provided LongBench settings. The results demonstrate that under extreme compression
settings (KV size = 64), D2O outperforms all baselines, highlighting the effectiveness of D2O’s
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combination of layer-level dynamic KV cache allocation and token-level dynamic merging. With
higher KV sizes (KV size = 2048), D2O still achieves better performance than baselines on most
datasets, confirming the importance of our two-level operation approach.

Table 21: Performance evaluation of D2O on various models in LongBench benchmarks following other
setting (Cai et al., 2024b).

Methods
Single-Document QA Multi-Document QA Summarization Summarization Synthetic Code

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Full Model 25.7 29.75 41.12 45.55 35.87 22.35 25.63 23.03 26.21 73.00 90.56 41.88 4.67 69.25 58.05 50.77

LLaMa-3-8B-Instruct (KV size = 64)
SnapKV 19.86 9.09 27.89 37.34 28.35 18.17 15.86 20.08 16.41 38.50 85.92 36.32 5.22 69.00 51.78 48.38
StreamLLM 17.44 8.68 22.25 35.37 31.51 15.97 15.46 20.06 14.64 38.00 72.33 29.10 5.42 69.50 46.14 45.09
H2O 20.80 11.34 27.03 37.25 30.01 17.94 18.29 21.49 19.43 38.40 84.70 37.76 5.65 69.33 53.44 50.15
PyramidKV 21.13 14.18 30.26 35.12 23.76 16.17 18.33 21.65 19.23 58.00 88.31 37.07 5.23 69.50 52.61 45.74
D2O 22.50 15.30 33.45 39.18 30.12 17.80 21.15 23.10 22.15 60.12 89.50 39.00 5.80 68.88 54.50 47.00

LLaMa-3-8B-Instruct (KV size = 2048)
SnapKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 56.65 49.94
StreamLLM 21.71 25.78 38.13 40.12 32.01 16.86 23.14 22.64 26.48 70.00 83.22 31.75 5.74 68.50 49.94 45.58
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.08 23.14 26.16 53.00 90.56 41.84 4.91 69.25 56.4 49.68
PyramidKV 25.40 29.71 40.25 44.76 35.32 21.98 23.30 23.30 26.19 73.00 90.56 42.14 5.22 69.25 58.76 51.18
D2O 25.92 30.01 41.25 45.32 35.97 22.45 25.78 23.21 26.55 73.20 90.60 42.02 5.35 69.54 58.8 51.22
Full Model 26.90 33.07 49.20 43.02 27.33 18.78 32.91 24.21 26.99 71.00 86.23 42.65 2.75 86.98 56.96 54.52

Mistral-7B-Instruct (KV size = 64)
SnapKV 16.94 17.17 39.51 36.87 22.26 15.18 14.75 20.35 21.45 37.50 84.16 37.28 4.50 61.13 42.40 38.44
StreamLLM 15.01 13.84 28.74 30.97 24.50 13.42 13.25 19.46 19.17 35.50 76.91 29.61 4.67 27.33 38.71 35.29
H2O 18.19 19.04 37.40 30.18 22.22 13.77 16.60 21.52 21.98 37.00 81.02 38.62 5.00 66.03 43.54 40.46
PyramidKV 20.91 20.21 39.94 33.57 22.87 15.70 17.31 21.23 21.41 54.00 81.98 36.96 3.58 60.83 44.52 37.99
D2O 22.50 22.38 41.26 38.15 23.50 16.20 23.54 22.50 22.00 55.00 82.50 38.00 2.32 67.00 47.53 41.81

Mistral-7B-Instruct (KV size = 2048)
SnapKV 25.89 32.93 48.56 42.96 27.42 19.02 26.56 24.47 26.69 70.00 86.27 42.57 5.50 88.90 50.42 46.72
StreamLLM 20.31 26.64 45.72 35.25 24.31 12.20 27.47 21.57 24.51 68.50 71.95 31.19 5.00 22.56 43.38 37.08
H2O 25.76 31.10 49.03 40.76 26.52 17.07 23.64 23.64 26.60 55.00 86.35 42.48 5.50 88.15 49.93 46.57
PyramidKV 25.53 32.21 48.97 42.26 27.50 19.36 23.93 23.97 26.73 71.00 86.25 42.94 4.50 87.90 53.12 47.21
D2O 26.18 33.12 48.88 43.50 27.38 19.45 33.20 24.55 26.88 71.50 86.12 43.10 5.35 87.21 57.10 54.75
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