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ABSTRACT

Vision Transformers (ViTs) have significantly advanced person re-identification
(ReID) by providing strong global modeling, but their high computational cost
hinders deployment in real-time applications. Existing lightweight ReID meth-
ods mostly use token pruning, which can discard discriminative contextual infor-
mation. Token merging is a moderate alternative, yet existing merging methods
target image classification and overlook the local cues that ReID requires. This pa-
per proposes STM-ReID, a spatial-aware and training-free token merging frame-
work tailored for ViT-based lightweight ReID. STM-ReID injects information-
enhanced spatial awareness into token assessment and uses the resulting scores to
guide token matching and fusion, preserving identity-relevant local details while
reducing computation. The framework comprises three key components: (i) DSE-
Assess, a dynamic spatial-aware entropy weighting for token importance; (ii)
CCF-Match, a correlation-guided matching scheme for precise pair selection; (iii)
PNR-Fuse, a position response-driven computation strategy for feature aggrega-
tion. Extensive experiments on standard ReID benchmarks and general classifica-
tion datasets show that STM-ReID cuts GFLOPs of the base ViT model by about
24% while keeping accuracy comparable to state-of-the-art methods, yielding a
superior accuracy–efficiency trade-off.

1 INTRODUCTION

Person re-identification (ReID) (Ye et al., 2021; Wu et al., 2023) has emerged as a key problem in
computer vision, aiming to retrieve individuals across multiple non-overlapping cameras. This task
is widely applied in public security, intelligent surveillance, and criminal investigation, where real-
time response and efficient inference are often required. Recent progress in Vision Transformers
(ViTs) has brought significant advances to ReID, as their self-attention mechanism enables strong
global modeling (He et al., 2021; Wang et al., 2022; Zhu et al., 2022; 2024; Li et al., 2022; 2023).
However, ViTs are computationally expensive, and their computational bottleneck primarily resides
in feed-forward network modules, whose complexity is closely related to the number of input to-
kens. Numerous tokens derive from background regions with minimal discriminative contributions
or semantically homogeneous foreground areas, leading to high memory usage and slow inference.
These limitations make it difficult to deploy ViTs in real-world ReID scenarios, especially on edge
devices and real-time surveillance systems.

To reduce this overhead, recent studies on lightweight ReID have mainly adopted token pruning
techniques. The key idea is to discard background or redundant tokens that contribute little to dis-
crimination. For example, RCCReID (Wang et al., 2023) introduces a body-masked token selection
strategy with an adaptive sliding window to reduce complexity while maintaining accuracy. SUReID
(Song & Liu, 2024) further combines hierarchical sparsification with knowledge distillation through
parameter-free feature alignment, enabling progressive token reduction. Despite its efficiency, token
pruning suffers from the loss of contextual information. By permanently removing tokens, pruning
disrupts the spatial and semantic relations among remaining tokens. For ReID, this is especially
harmful: identity matching depends not only on global appearance but also on the contextual con-
sistency among local regions. When tokens are discarded, the continuity of such context is broken,
making it harder for the model to capture discriminative patterns across complex backgrounds and
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Figure 1: The direct application of generic token compression methods leads to a decrease in ReID
accuracy due to the lack of focus on critical local regions.

occluded scenes. This suggests that an ideal compression strategy should not only reduce redun-
dancy but also preserve contextual information across tokens.

A moderate alternative to pruning is token merging, which compresses the sequence by aggregating
similar tokens rather than discarding them (Bolya et al., 2023; Feng & Zhang, 2023). Typical merg-
ing pipelines operate in three stages: token assessment assigns an importance score to each token,
token matching finds suitable token pairs for fusion, and token fusion aggregates the selected tokens
and computes their merged representations. Because merging retains relationships among tokens, it
better preserves spatial and contextual information and is therefore, in principle, more compatible
with ReID, where identity matching depends on both global appearance and local consistency. In
this work, we explore bringing token merging into a lightweight ReID design. However, existing
merging methods are developed almost exclusively for image classification and show two critical
mismatches with ReID needs. First, in the token assessment step, current methods bias importance
toward high-level and class-centric signals (e.g., similarity to the class token), ignoring spatial and
contextual relations between tokens within the image. Second, token matching and fusion are typ-
ically driven exclusively by pair-wise token similarity. While this is adequate for coarse semantic
grouping in classification, it can mistakenly merge crucial tokens (e.g., face, clothing logo) with
nearby but identity-irrelevant tokens, weakening fine-grained cues. As Figure 1 illustrates, opera-
tions that are harmless for classification may remove the very signals ReID requires. These obser-
vations motivate the need for spatial-aware assessment and fusion mechanisms tailored to preserve
identity-relevant tokens.

Based on the aforementioned concerns, we propose STM-ReID, a spatial-aware and training-
free token merging framework tailored for ViT-based lightweight ReID. Our approach introduces
information-enhanced spatial awareness into token assessment and guides token fusion through
these criteria, aiming to preserve discriminative local details while reducing computational cost.
Specifically, to overcome the bias of conventional token assessment, we design a Dynamic Spatial-
aware Entropy Weighting Assessment (DSE-Assess). It evaluates token importance by integrating
spatial layout and local representation concentration, thereby emphasizing identity-relevant regions
without relying on class-centric biases. For the matching and fusion stage, we propose a Compre-
hensive Correlation Function guided Bipartite Soft Matching (CCF-Match) and Position Response
Degree Weighted Norm-preserved Token Fusion (PRN-Fuse) that go beyond pure similarity. By
considering both semantic affinity and information content, they mitigate the misfusion of discrimi-
native tokens and semantic degradation, maintaining representative features.

Our main contributions can be summarized as follows:

• We propose STM-ReID, a novel spatial-aware lightweight token merging framework for ViT-
based ReID. To the best of our knowledge, this is the first work pioneering the adaptation of
token merging to ReID.

• We design DSE-Assess, a dynamic spatial-aware entropy-weighted strategy for token assess-
ment, which effectively identifies and emphasizes critical local regions by integrating spatial
structure and local information richness, ensuring crucial tokens are accurately evaluated.

• We develop CCF-Match and PRN-Fuse for token matching and fusion, which effectively mit-
igate the misfusion of discriminative tokens and semantic degradation, therefore maintaining
representative features.
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• Extensive experiments validate that STM-ReID achieves a significant reduction in computa-
tional cost while maintaining competitive accuracy compared to state-of-the-art methods, es-
tablishing a superior accuracy-efficiency trade-off for lightweight ReID.

2 RELATED WORK

Token Pruning. The token pruning strategy compresses the input sequence by removing low-
score tokens. For example, DynamicViT (Rao et al., 2021) introduces a lightweight prediction
module to estimate token importance scores and dynamically prune low-score tokens at each layer.
EViT (Liang et al., 2022) uses a hierarchical approach, classifying tokens into valid and invalid
categories based on attention scores, retaining the valid tokens and fusing the invalid ones to re-
duce redundancy. SPViT (Kong et al., 2022) adopts a stage-wise, layer-by-layer training strategy to
progressively prune tokens and optimize model performance.

Token Merging. The token merging strategy achieves sequence compression by combining mul-
tiple tokens into a single new token. Unlike the pruning strategy, the merging strategy retains more
information, thus better maintaining model accuracy. For instance, ToMe (Bolya et al., 2023) and
Token Pooling (Marin et al., 2023) methods merge tokens based on semantic similarity, effectively
reducing redundant information. BAT (Long et al., 2023) first prioritizes tokens based on their
importance, and then selectively retains tokens according to the principle of diversity. These ap-
proaches enhance overall efficiency while ensuring the model retains key information.

Lightweight Person Re-Identification. Token compression methods in lightweight ReID can be
divided into two categories. The first category of methods relies on human structural priors. For in-
stance, RCCReID (Wang et al., 2023) utilizes an edge detection network (Xie & Tu, 2015) to extract
image edge maps, and filters background regions by selecting valid tokens, while maintaining recog-
nition accuracy and reducing computational cost. The other category of methods requires no external
priors. PAPReID (Ndayishimiye et al., 2025) introduces dynamic token selection, which evaluates
importance scores to filter tokens and retains only key tokens for computation. SUReID (Song
& Liu, 2024) proposes a hierarchical token sparsification strategy that generates token importance
scores, makes differentiable binarization decisions, and dynamically updates masks to progressively
eliminate redundant tokens. These methods reduce computational overhead while maintaining ac-
curacy, promoting the development of lightweight ReID.

3 METHODOLOGY

In this section, we formally present our STM-ReID, as illustrated in Figure 2. We begin by briefly re-
visiting TransReID (He et al., 2021), which provides the infrastructure of our approach (Section 3.1).
Then, we elaborate on the dynamic spatial-aware entropy weighted token assessment (DSE-Assess)
strategy (Section 3.2). Next, we introduce the comprehensive correlation function guided bipartite
soft matching (CCF-Match) scheme (Section 3.3). Finally, we propose the position response degree
weighted norm-preserved token fusion (PRN-Fuse) paradigm (Section 3.4).

3.1 REVISIT TRANSREID

Given a pedestrian image x ∈ RH×W×C , where H , W , and C represent its height, width, and
number of channels, respectively, it is split into N fixed-sized patches. Notably, TransReID employs
a sliding window to generate overlapping patches so as to preserve local neighbor structures better.
A learnable class token [cls] of dimension D, denoted as zcls ∈ RD, is added at the beginning of the
input sequence. Position embeddings and side information embeddings are then added to form the
token sequence Z0 ∈ R(N+1)×D, which is passed through L transformer layers.

Within each transformer layer, the computational process can be formulated as follows:

Z ′
l = MHSA(LN(Zl−1)) + Zl−1, Zl = FFN(LN(Z ′

l)) + Z ′
l , l ∈ [1, L], (1)

where MHSA(·) represents multi-head self-attention (Vaswani et al., 2017), FFN(·) denotes feed-
forward network, and LN is layer normalization. Let Q,K, V ∈ R(N+1)×D denote the query, key,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The structure of STM-ReID. It is mainly composed of the DSE-Assess strategy, the CCF-
Match scheme, and the PRN-Fuse paradigm.

and value matrices, MHSA performs parallel attention computation on the input:

Attention(Q,K, V ) = A× V, A = Softmax

(
QKT

√
Dh

)
, (2)

where Dh = D/H denotes the output dimension of a single head among H attention heads. Simi-
larly, the attention scores between the class token zcls and other tokens can be denoted as:

A(zcls, :) = Softmax

(
QclsK

T

√
Dh

)
. (3)

Current token assessment approaches typically average outputs across all attention heads, while
neglecting spatial and contextual relations between tokens. This may lead to the underestimation of
discriminative tokens in critical local regions, thereby losing crucial retrieval cues.

3.2 DYNAMIC SPATIAL-AWARE ENTROPY WEIGHTED TOKEN ASSESSMENT

To mitigate information loss caused by naive head averaging, we propose DSE-Assess, which com-
putes an entropy measure for each spatial location of the input image and uses local neighborhood
entropy to differentiate the importance of each attention head dynamically. Attention heads that
exhibit lower entropy, which indicate more concentrated distributions, receive higher weights. This
approach relies only on MHSA outputs and requires no extra supervision, enabling a training-free
assessment mechanism (more details are in the Appendix).

TransReID uses the sliding window to generate overlapping patches, and subsequent merging may
change the number and arrangement of tokens across layers. Traditional approaches based on fixed
dimensions or positions are rendered inapplicable, as they cannot predetermine the variable token
configurations (quantity and arrangement) at each layer. To establish spatial location relationships,
we introduce Dynamic Virtual Coordinates (DVC) that map an arbitrary number of tokens onto a
virtual grid. Given N image tokens at the current layer (excluding the class token), we arrange them
sequentially into a virtual Hv ×Wv grid with Hv = ⌈

√
N⌉, Wv = ⌈N/Hv⌉, and index tokens by

i ∈ {0, . . . , N − 1}. The normalized coordinates of token i are xi =
⌊i/Wv⌋+0.5

Hv
, yi = i%Wv+0.5

Wv
,

so that (xi, yi) ∈ (0, 1)2 and token layout reflects the virtual spatial arrangement.

In ReID datasets, pedestrian crops are typically centered in the image. To encode this prior, we define
Adaptive Gaussian Spatial Template (AdaptGST) that emphasizes central regions. For a layer with
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N tokens, we set the Gaussian scale σ = α
√
N (we use α = 0.1), and the spatial prior for token i is

Wspace(xi, yi) = exp

(
− (xi − 0.5)2 + (yi − 0.5)2

2σ2

)
. (4)

This adaptive template adaptively adjusts the central prior intensity according to the token density
at the current layer.

To eliminate dependency on fixed grids and flexibly perceive spatial and contextual relations, we
form for each token zi a neighborhood N (i) consisting of its k nearest tokens under Euclidean
distance in the virtual coordinates (xi, yi). Let A(h)(zcls, zj) denote the attention weight from the
class token zcls to token zj in head h. The local neighborhood entropy for head h at token i is

H(h) (zi) = −
∑

j∈N (i)

A(h)(zcls, zj) · logA(h)(zcls, zj), (5)

A lower entropy indicates a more concentrated attention distribution of head h on the corresponding
neighborhood. Subsequently, we integrate the local neighborhood entropy with spatial weights to
derive the attention weight of head h for token zi:

R(h)(zi) =
Wspace(zi) · exp

(
−H(h)(zi)

)∑H
h′=1 Wspace(zi) · exp

(
−H(h′)(zi)

) . (6)

The proposed formulation dynamically allocates the attention weights of each head by integrating
spatial priors with local neighborhood entropy through a normalized exponential function. Com-
pared to conventional averaging approaches, our method amplifies contributions from critical heads
(with low entropy and high spatial weights), thereby achieving enhanced focus on crucial details.

Ultimately, the importance of token zi is defined as the weighted summation of attention weights
across all heads with the spatial prior. We call this the Position Response Degree (PR-Degree), which
is used to guide subsequent token merging:

S(zi) =
H∑

h=1

R(h)(zi) ·A(h)(zcls, zj), i ∈ [0, N ]. (7)

3.3 COMPREHENSIVE CORRELATION FUNCTION GUIDED BIPARTITE SOFT MATCHING

PR-Degree Based Grouping. After computing the PR-Degree for each image token, we keep
the class token zcls separate and consider the set of image tokens indexed by I = {1, . . . , N}.
Let S = {S(zi)}i∈I be the PR-Degree values for these tokens. We form a descending per-
mutation Index = (p1, . . . , pN ) by sorting S in decreasing order, i.e. S(zp1) ≥ S(zp2) ≥
· · · ≥ S(zpN

). We then split this ordered list into two subsequences by alternating positions:
IndexA = {0, p1, p3, p5, . . . }, IndexB = {p2, p4, p6, . . . }, where the class token index 0 is ex-
plicitly inserted into IndexA to help preserve core features during matching. Based on this par-
titioning, we extract the corresponding tokens from Z ∈ R(N+1)×D and form two subsequences
ZA = Z[IndexA] and ZB = Z[IndexB ]. The traditional fixed odd-even grouping may lead to
semantically similar or redundant tokens being clustered within the same group, thereby hindering
cross-group pairing (as matching occurs exclusively between groups). Our PR-Degree metric re-
flects task-specific priority of tokens. This priority-ordered grouping strategy effectively disrupts
fixed token distributions and enhances semantically correlated merging.

Comprehensive Correlation Function. Given Z ∈ R(N+1)×D, the goal at each layer is to merge
r pairs of redundant tokens and produce a compressed sequence Ẑ ∈ R(N+1−r)×D. To guide
matching while protecting identity-relevant crucial tokens, we define a Comprehensive Correlation
Function (CC-Function) that combines feature similarity with token responsiveness to evaluate inter-
group token relationships.

Since the key matrix has distilled critical information of each token through self-attention, we use
the key vectors (rows of the key matrix) as compact semantic descriptors for feature similarity. For
tokens zi and zj with key vectors ki, kj ∈ RD, we define a cosine-based similarity:

Fsim(ki, kj) =
1

2

(
ki · kTj

∥ ki ∥2 · ∥ kj ∥2
+ 1

)
, (8)
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where ||·||2 represents the L2-norm. The final results are normalized and shifted to the [0,1] interval.

However, relying solely on inter-token similarity as the merging criterion entails potential risks.
Semantically similar tokens in feature space are not necessarily redundant, particularly when they
are located in critical local regions essential for identity modeling. Erroneous merging of such to-
kens may lead to irreversible loss of discriminative details, ultimately degrading model performance.
Therefore, we design the responsiveness metric as an auxiliary matching criterion to evaluate each
token’s contribution to the global identity representation, thereby determining which tokens should
be prioritized for retention. The aforementioned PR-Degree is leveraged to formulate the respon-
siveness scoring function Fres. Specifically, a higher PR-Degree signifies that the token possesses
stronger semantics for identity discrimination, thus should be preserved from merging so as to mit-
igate the risk of losing crucial details. Conversely, a token with a lower PR-Degree indicates di-
minished global influence and is likely a semantically redundant token. The responsiveness scoring
function between token pairs is expressed as follows:

Fres(zi, zj) = Ŝ(zi)· Ŝ(zj), Ŝ(zi) =
1/S(zi)

maxk (1/S(zk))
, k ∈ [1, N ]. (9)

When both tokens exhibit comparatively high PR-Degree, their responsiveness score remains lower,
thereby effectively preventing the misintegration of crucial tokens. The final CC-Function value is
denoted as the product of the similarity and responsiveness with tunable exponents:

F (zi, zj) = (Fsim(ki, kj))
δ1 · (Fres(zi, zj))

δ2 , (10)

where δ1, δ2 > 0 control the relative emphasis on semantic similarity and responsiveness. A higher
CC-Function value indicates a greater probability of token fusion between the corresponding pair.

Bipartite Soft Matching with CC-Function. We perform bipartite soft matching (Bolya et al.,
2023) between tokens in ZA and ZB using the CC-Function. First, we compute the matrix of
correlation scores F (zi, zj) for all zi ∈ ZA and zj ∈ ZB . Then, we identify the candidate pairs by
selecting the highest-scoring matches. Finally, all candidate pairs are sorted in descending order of
scores, and the top-r highest-scoring token pairs are selected as the ultimate fusion targets, which
are then passed to the fusion module (PRN-Fuse). For more details of the algorithm, please refer to
the Appendix.

3.4 POSITION RESPONSE DEGREE WEIGHTED NORM-PRESERVED TOKEN FUSION

Traditional token-size-based fusion commonly uses weighted averaging to obtain a fused token.
Such averaging, however, ignores differences in token importance: semantically important tokens
can be overly smoothed by redundant ones, degrading feature discriminability.

To this end, we introduce Position Response Degree Weighted Norm-Preserved Token Fusion (PRN-
Fuse), which incorporates PR-Degree into the weighting strategies to mitigate the shortcomings of
token-size-based methods. For T tokens to be merged, the fused feature representation is defined as:

zavg =

T∑
i=1

wizi, wi =
S(zi)∑T

k=1 S(zk)
,

T∑
i=1

wi = 1. (11)

The weighted summation is essentially a linear combination. According to the norm inequality
∥zavg∥ =

∥∥∥∑T
i=1 wizi

∥∥∥ ≤ max ∥zi∥ (i ∈ [1, T ]), the fused norm is inevitably bounded by the max-
imum norm of the original tokens. Notably, as the network depth increases, this norm diminishment
becomes more pronounced, resulting in the weakened expressiveness of crucial tokens (more anal-
ysis can be found in the Appendix). Therefore, we employ max-norm linear interpolation for token
merging. Building upon PR-Degree weighted fusion, we compute the L2-norm of the fused feature
and perform normalization. By selecting the maximum L2-norm from the original features of each
token pair, we apply scaling to the normalized fused feature, thereby restoring the scale information
of the feature representation:

ẑavg =
zavg
∥zavg∥2

× max
1≤i≤T

∥zi∥2 . (12)
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Table 1: Comparison of GFLOPs, inference time (s), throughput (img/s), Rank-1 (%), and mAP (%)
with state-of-the-art token compression methods on MSMT17 and Market1501.

Methods GFLOPs ↓ Inference ↓ Throughput ↑ MSMT17 Market1501

Rank-1 ↑ mAP ↑ Rank-1 ↑ mAP ↑
Specific Compression Methods for ReID

RCCReID (Wang et al., 2023) 17.18 - - 82.2 63.0 94.9 88.0
SUReID (Song & Liu, 2024) - - - - - 94.5 87.2

PAPReID (Ndayishimiye et al., 2025) 16.86 - - - - 79.1 77.3

Generic Compression Methods for ViTs

DPC-KNN (Du et al., 2016) 17.24 54.79 351.89 84.5 65.7 94.7 87.9
DynamicViT (Rao et al., 2021) 19.30 58.31 330.68 84.5 66.6 94.7 87.5

EViT (Liang et al., 2022) 17.50 54.27 355.27 84.9 67.0 94.8 88.0
ATS (Fayyaz et al., 2022) 17.39 55.34 348.43 81.2 58.8 93.4 84.7
ToMe (Bolya et al., 2023) 15.53 45.99 419.25 85.0 67.1 94.9 88.6

TransReID (He et al., 2021) 20.41 57.43 335.73 85.3 68.1 95.6 89.3
STM-ReID (Ours) 15.53 ↓23.9% 46.28 416.62 85.3 67.8 95.8 ↑0.2% 89.2

Table 2: Comparison of GFLOPs and Rank-1 (%) with ToMe on Market1501 when STM-ReID
merges r=17 tokens per layer while ToMe employs different merging numbers r.

(a) r=17

Methods GFLOPs Rank-1

ToMe 10.31 94.4
STM-ReID 10.31 95.2
Comparison ↓ 0% ↑ 0.8%

(b) r=8

Methods GFLOPs Rank-1

ToMe 15.53 94.9
STM-ReID 10.31 95.2
Comparison ↓ 33.6% ↑ 0.3%

(c) r=6

Methods GFLOPs Rank-1

ToMe 16.69 95.1
STM-ReID 10.31 95.2
Comparison ↓ 38.2% ↑ 0.1%

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. We evaluate our method on two public ReID benchmarks: Market1501 (Zheng et al.,
2015) and MSMT17 (Wei et al., 2018). The Market1501 contains 32,668 images of 1,501 identities
acquired from 6 surveillance cameras, while the MSMT17 consists of 126,441 images of 4,101
identities captured by 15 cameras. To further validate the generalization ability of our proposed
method on the image classification task, we also conduct comparative experiments between STM-
ReID and token compression methods (Ndayishimiye et al., 2025; Wang et al., 2023; Song & Liu,
2024; Liang et al., 2022; Fayyaz et al., 2022; Du et al., 2016; Rao et al., 2021; Bolya et al., 2023)
on the ImageNet-1k (Deng et al., 2009) dataset.

Evaluation Metrics. We employ Giga Floating-point Operations (GFLOPs) as the metric to quan-
tify the computational complexity of the model. Besides, we also employ inference time and
throughput to evaluate the computational efficiency, which refer to the time required for the model
to complete inference on a dataset and the number of images processed per second respectively.
Furthermore, we utilize the cumulative matching characteristic (CMC) curve and mean average pre-
cision (mAP) as metrics to evaluate the retrieval accuracy. Rank-k in the CMC curve measures the
probability of finding a correct match within the top-k results, while mAP evaluates average retrieval
performance across all queries.

4.2 IMPLEMENTATION DETAILS

The proposed STM-ReID is implemented in PyTorch following TransReID, with all experiments
conducted on a single A100 GPU. We employ TransReID as our backbone network, where the image
encoder is initialized with ViT-B/16 on ReID datasets. On ImageNet-1k, we adopt three different
backbone networks for fair comparison with other methods, namely DeiT-T, DeiT-S, and DeiT-B.
All images are resized to 256×128. The batch size is set to 64, with each mini-batch containing
16 identities and 4 images per identity. We select k=9 nearest tokens as the neighborhood. Unless
otherwise specified, our token merging is applied to layers 1 to 10 of the model, with the number
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Table 3: Comparison of Rank-1 (%) and mAP (%) with state-of-the-art ReID methods on Mar-
ket1501 and MSMT17. Note that STM-ReID compresses approximately 24% of the tokens,
while other methods DO NOT perform compression here.

Backbone Methods Market1501 MSMT17

Rank-1 ↑ mAP ↑ Rank-1 ↑ mAP ↑

CNN

DRL-Net (Jia et al., 2022) 94.7 86.9 78.4 55.3
AGW (Ye et al., 2022) 95.1 87.8 68.3 49.3

MSINet (Gu et al., 2023) 95.3 89.6 81.0 59.6
HashReID (Nikhal et al., 2024) 94.2 84.9 76.8 51.4

DCR (Yang & Xu, 2025) 95.3 88.3 81.0 56.4

ViT

PFD (Wang et al., 2022) 95.5 89.7 - -
DCAL (Zhu et al., 2022) 94.7 87.5 83.1 64.0

AAformer (Zhu et al., 2024) 95.4 87.7 83.6 63.2
ProFD (Cui et al., 2024) 95.1 90.0 - -

MV-3DSReID (Yu et al., 2024) 95.7 90.2 - -

TransReID (He et al., 2021) 95.6 89.3 85.3 68.1
STM-ReID (Ours) 95.8 89.2 85.3 67.8

Table 4: Comparison of Rank-1 (%) with state-of-the-art token compression methods using multiple
backbones on ImageNet-1k.

Methods DeiT-S DeiT-T DeiT-B

DPC-KNN (Du et al., 2016) 78.85 71.10 79.06
DynamicViT (Rao et al., 2021) 79.17 67.40 80.68

EViT (Liang et al., 2022) 79.30 71.06 80.99
ATS (Fayyaz et al., 2022) 79.09 70.77 80.78
ToMe (Bolya et al., 2023) 79.39 71.10 81.05

STM-ReID (Ours) 79.41 71.43 81.32

of merged tokens per layer set to r=8. Please refer to the Appendix for the determination of the
parameters k and r.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

To verify the effectiveness of the proposed method, we first conduct experiments on computational
complexity and retrieval accuracy using the MSMT17 and Market1501 datasets. We comprehen-
sively compare STM-ReID with previous state-of-the-art token compression methods, and all re-
sults are reported without re-ranking. For fair comparison, we adopt the same settings as ToMe, i.e.,
merging r=8 tokens per layer, resulting in the same GFLOPs. As shown in Table 1, STM-ReID’s
inference efficiency is slightly lower than that of ToMe. This is because ToMe does not evaluate
the semantic importance of tokens and instead directly performs grouping and merging operations.
In contrast, we first employ DSE-Assess to ensure crucial tokens are retained, thus outperforming
ToMe significantly across all four accuracy metrics on both datasets, yet the increased inference
overhead is almost negligible. Compared to TransReID, STM-ReID reduces GFLOPs by 23.9%,
shortens inference time by 19.4%, and increases throughput by 24.1%, while achieving compara-
ble accuracy. This indicates that STM-ReID establishes a favorable balance between recognition
accuracy and computational efficiency for lightweight ReID.

For an intuitive comparison with ToMe, we fix r=17 for STM-ReID and examine the differences
when ToMe adopts different r. As illustrated in Table 2, when STM-ReID merges 17 tokens per
layer, its GFLOPs is 10.31 (half of TransReID) and Rank-1 is 95.2%. (a) When ToMe also uses
r=17, STM-ReID exhibits significant performance advantages. (b) When ToMe chooses r=8, STM-
ReID’s GFLOPs is only 66.4% of ToMe’s, while maintaining a certain performance advantage.
(c) When ToMe adopts r=6 to maximize accuracy as much as possible, STM-ReID’s GFLOPs is
only 61.8% of ToMe’s, while its performance still remains superior to ToMe’s. The above results
fully demonstrate that, in terms of lightweight ReID task, STM-ReID significantly outperforms the
baseline ToMe across multiple dimensions, thanks to the innovative designs of DSE-Assess, CCF-
Match, and PRN-Fuse. These results fully demonstrate the superiority of STM-ReID.
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Table 5: Ablation studies on Market1501 to evaluate the effectiveness of proposed components.

Index Components Market1501

Baseline DSE-Assess CCF-Match PRN-Fuse Rank-1 ↑ mAP ↑
1 ✓ - - - 94.9 88.6
2 ✓ ✓ ✓ - 95.4 88.9
3 ✓ ✓ - ✓ 95.5 89.1
4 ✓ ✓ ✓ ✓ 95.8 89.2

Table 6: The impact of temperature coefficients on model performance on MSMT17.

(a) Temperature coefficient - δ1

δ1 1 1/5 1/10 1/20 1/40

Rank-1 83.0 81.1 78.2 74.6 69.8
mAP 64.3 61.2 57.6 52.5 47.4

(b) Temperature coefficient - δ2

δ2 1 1/5 1/10 1/20 1/40

Rank-1 69.7 79.1 81.9 83.0 82.9
mAP 47.4 58.8 62.0 64.3 63.7

To more comprehensively validate the advantages of STM-ReID, we perform comparative experi-
ments between STM-ReID and state-of-the-art ReID methods on Market1501 and MSMT17. STM-
ReID uses the default setting (r=8) and achieves approximately 24% token compression compared
to TransReID, while other methods do not perform compression. As shown in Table 3, STM-ReID
achieves competitive performance on both datasets. This is attributed to the fact that DSE-Assess
fully considers the semantic importance of tokens, thus retaining the crucial retrieval cues for ReID.

To demonstrate the generalization ability of STM-ReID, we also conduct experiments on the
ImageNet-1k dataset. Table 4 compares the Rank-1 accuracy of various state-of-the-art token com-
pression methods. When using the same backbone networks as other methods (i.e., DeiT-S, DeiT-T,
and DeiT-B), STM-ReID achieves the highest accuracy in all cases. This indicates that our method
is not only applicable to the ReID task but also able to achieve favorable performance in the classi-
fication task.

4.4 ABLATION STUDY

To evaluate the effectiveness of key components in our STM-ReID, we conduct a series of ablation
studies on the Market1501 dataset. ToMe is adopted as the baseline method. The evaluated compo-
nents include the DSE-Assess strategy, the CCF-Match scheme, and the PRN-Fuse paradigm, with
results summarized in Table 5. Progressive component additions yield consistent metric gains, val-
idating each module’s contribution to feature representation and retrieval accuracy. The full model
(Index 4) achieves optimal performance, demonstrating the cumulative effectiveness of integrating
DSE-Assess, CCF-Match, and PRN-Fuse.

The temperature coefficients are employed to balance the contributions of similarity and responsive-
ness in the CC-Function guided bipartite soft matching process. Therefore, to evaluate the impact
of temperature coefficients on model performance, we also perform comparative experiments on
the MSMT17 dataset using two distinct settings. As can be seen from Table 6, as δ1 increases, the
model performance gradually decreases; whereas for δ2, it exhibits a trend of first increasing and
then decreasing. The model performance reaches its best when adopting δ1 = 1 and δ2 = 1/20.

5 CONCLUSION

This paper presents STM-ReID, a novel training-free spatial-aware token merging paradigm for ViT-
based lightweight ReID. It achieves robust performance through three core designs: a DSE-Assess
strategy, a CCF-Match scheme, and a PRN-Fuse paradigm. Through the DSE-Assess strategy, we
successfully highlight critical local regions and allocate higher weights to crucial tokens. Through
the CCF-Match scheme and PRN-Fuse paradigm, we effectively avoid misintegration of crucial
tokens and alleviate the norm diminishment. Our method achieves a 24% GFLOPs reduction in the
base model while maintaining competitive accuracy with state-of-the-art methods.
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7 REPRODUCIBILITY STATEMENT

Every effort ensures the reproducibility of reported results. Code will be publicly available post-
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Figure 3: Spatial distribution of attentional foci across distinct attention heads. Each row corre-
sponds to an individual image sample, with the left-to-right sequence demonstrating the 12 attention
heads in the fourth transformer layer of TransReID.

A ANALYSIS

A.1 RATIONALE FOR DIFFERENTIAL WEIGHTING ACROSS ATTENTION HEADS

Existing token assessment methods typically compute either similarity scores with the class token or
the sum of attention weights allocated by other query tokens when serving as a key. Then they aver-
age the outputs of these attention heads as the importance of the current token. However, individual
heads usually exhibit differential responses towards different patterns. The simple averaging oper-
ation causes the loss of this diversity, leading to systemic underestimation of crucial tokens located
in critical local regions.

To illustrate this issue, we visualize the spatial distributions of attentional foci across distinct atten-
tion heads. As can be seen in Figure 3, it demonstrates divergent spatial foci across heads: selective
focus on foreground anatomical regions (e.g., head and limbs), appendages (e.g., backpack), and
incidental background elements. This visualization conclusively validates the suboptimal nature of
direct averaging across attention heads. Therefore, we propose the dynamic spatial-aware entropy
weighted token assessment (DSE-Assess) strategy to assign higher importance to tokens in critical
local regions beneficial for identity discrimination.

A.2 RATIONALE FOR UTILIZING PR-DEGREE DURING TOKEN MERGING.

Traditional token size-based methods adopt weighted averaging strategies to accomplish token merg-
ing. We point out that these strategies induce feature attenuation by neglecting contribution disparity
among different tokens in identity matching. This problem becomes particularly pronounced when
merging multiple tokens simultaneously.

To substantiate this claim, Figure 4 quantitatively illustrates the inverse correlation between average
cosine similarity and token merging quantity. It demonstrates that the average cosine similarity pro-
gressively declines as the number of tokens to be merged increases. This downward trend indicates
that merging an excessive number of tokens in a single operation may force the fusion of semanti-
cally divergent tokens, thereby obscuring the salient expression of critical information. Therefore,
we incorporate PR-Degree into the weighting strategy to mitigate the shortcomings of token size-
based methods and preserve feature discriminability.

A.3 RATIONALITY ANALYSIS OF DSE-ASSESS

As formalized in Equation (7), our token assessment strategy (DSE-Assess) employs PR-Degree to
quantify the importance of each token. This dual-gating mechanism requires both high class token
attention score and attention head weight to assign significance to a token. Even if some attention
heads exhibit high activations on redundant regions in terms of class token attention scores, their low
weighting coefficients (derived from high local neighborhood entropy and/or low spatial weights)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 4: The relationship between average cosine similarity and token merging quantity.

inherently suppress such tokens during PR-Degree computation. This composite mechanism relies
solely on the outputs of multi-head self-attention and requires no additional supervision, yet effec-
tively identifies identity-discriminative tokens to enhance the retrieval ability of the ReID model.

A.4 EXPLANATION OF TRAINING-FREE PROPERTY

In this paper, training-free means all mechanisms of STM-ReID are implemented based on pre-
trained models, without introducing new learnable parameters or requiring additional training, fine-
tuning, or distillation of the models. Token merging via designed strategies is completed only dur-
ing the inference phase. The implementation of DSE-Assess, CCF-Match, and PRN-Fuse all rely
on existing attention weights (e.g., outputs of multi-head self-attention) and feature vectors (e.g.,
K vectors) of the pre-trained models. All operations are parameter-free computations, involving
no training updates. This design allows STM-ReID to be directly deployed on pre-trained mod-
els, avoiding extra training costs, and is particularly suitable for resource-constrained real-world
scenarios.

B ALGORITHMS

The details of our proposed CCF-Match scheme and PRN-Fuse paradigm (with a regular merge
operation) are described in Algorithms 1 2 3.

C EXPERIMENTS

C.1 THE RELATIONSHIP BETWEEN GFLOPS AND TOKEN MERGING QUANTITY

Our experiments demonstrate the quantitative relationship between the number of merged tokens per
layer (r) and GFLOPs (with merging applied only to the first 10 layers to preserve performance),
as shown in Figure 5. Increasing r progressively reduces GFLOPs, exhibiting an approximately
linear correlation. This confirms that the token merging quantity directly dictates computational
complexity. Such parametric control enables effective trade-offs between model performance and
computational costs, providing theoretical foundations for optimizing inference efficiency across
deployment scenarios.

C.2 TEST OF THE NUMBER OF NEAREST TOKENS WITHIN A NEIGHBORHOOD

We investigate the optimal number of nearest neighbor tokens k within a neighborhood, as detailed
in Table 7. Both Rank-1 and mAP initially increase with larger k values before declining, achieving
optimal accuracy at k=9. Therefore, we utilize k=9 across all experimental configurations.
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Algorithm 1 CCF-Match
Input: The Key K, PR-Degree S, number of merged tokens r
Output: Indices of unmatched token pairs Tui, reserved indices of matched token pairs Tsi and Tdi

1: sortScore← argsort(S, order = descending)
2: IndexA ← sortScoreeven
3: IndexB ← sortScoreodd
4: Ŝ ← 1/S

maxk(1/Sk)

5: KA ← K[IndexA],KB ← K[IndexB ]

6: SA ← Ŝ[IndexA]),SB ← Ŝ[IndexB ])

7: Fsim ← 1
2

(
KA·KT

B

∥KA∥2·∥KB∥2
+ 1
)

8: Fres ← SA × STB
9: Score← Fsim · Fres

10: Mv ← max(Score, dim = 1)
11: Mi ← argmax(Score, dim = 1)
12: Mvs ← argsort(Mv, order = descending)
13: Tsi ←Mvs[: r]
14: Tui ←Mvs[r :]

Algorithm 2 Merge
Input: Token sequence T , indices of unmatched token pairs Tui, reserved indices of matched token
pairs Tsi and Tdi, aggregation operation mode
Output: Merged token sequence Tm

1: Teven ← T [IndexA], Todd ← T [IndexB ]
2: Tu ← Teven[Tui]
3: Ts ← Teven[Tsi]
4: Td ← Todd · scatter reduce(Tdi, Ts,mode)
5: Tm ← concatenate(Tdi, Ts,mode)

Algorithm 3 PRN-Fuse
Input: Token sequence Z, PR-Degree S, size of token sequence Size
Output: Merged token sequence Zm

1: Zscore ←Merge(Z × S,mode = ”sum”)
2: S ←Merge(S,mode = ”sum”)
3: Size←Merge(Size,mode = ”sum”)
4: Zscore ← Zscore/S
5: Znorm ← ∥Z∥2
6: Zscore norm ← ∥Zscore∥2
7: Znorm max ←Merge(Znorm,mode = ”amax”)
8: Zm ← Zscore

Zscore norm
× Znorm max

Table 7: Rank-1 (%) and mAP (%) under varying k values.

k 1 4 9 16 25

Rank-1 95.4 95.5 95.8 95.5 95.4
mAP 89.1 89.1 89.2 89.1 89.1

C.3 COMPARISON WITH TOME UNDER VARYING GFLOPS ON MARKET1501

We conduct comparative experiments with ToMe on the Market1501 dataset to analyze performance
disparities under varying GFLOPs. As illustrated in Figure 6, STM-ReID demonstrates consistent
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Figure 5: The relationship between GFLOPs and number of merged tokens r.

(a) Comparison of Rank-1. (b) Comparison of mAP.

Figure 6: Comparison with ToMe under varying GFLOPs on Market1501 dataset.

performance superiority across different computational budgets, attributable to our method’s refined
perception of critical local regions.

D VISUALIZATION

D.1 VISUALIZATION OF L2 NORM DISTRIBUTIONS UNDER DIFFERENT STRATEGIES

Taking the fourth layer of the model as an example, Figure 7 illustrates the L2 norm distributions
of features using different strategies on Market1501. ”Original” refers to the norm distribution of
raw features before fusion, shown in blue. ”Strategy1” corresponds to the result of traditional token
size-based weighted averaging, and ”Strategy2” corresponds to our PRN-Fuse. Both Strategy1 and
Strategy2 are shown in light red in both subfigures (areas overlaid on the blue background of the
original distribution appear dark red). ”Density” here refers to the probability density of feature
norms, quantifying the proportion of samples with different norm values. High-norm regions (right
side of each subfigure) usually correspond to highly discriminative key features (e.g., clothing pat-
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Figure 7: The L2 norm distributions of features before and after fusion using different strategies on
Market1501. Strategy 1 denotes token fusion through token size-based weighted averaging, while
strategy 2 denotes our PR-Degree weighted token fusion with norm interpolation.

terns, limb details), while low-norm regions (left side) mostly represent background or redundant
information. Notably, compared with the original norm distribution, Strategy1 exhibits marked
contraction in high-norm regions post-fusion. The global downward shift of feature norms indicates
energy dissipation in original features, potentially compromising identity discriminability. The dis-
tribution shows that the density of high-norm regions in Strategy1 decreases significantly, indicating
that traditional fusion causes norm diminishment of key features; in contrast, the distribution of
Strategy2 is closer to ”Original”, especially with high-norm regions preserved, confirming the ef-
fectiveness of PRN-Fuse in alleviating norm diminishment.

D.2 VISUALIZATION OF TOKEN MERGING RESULTS ON MARKET1501

We conduct visualization experiments demonstrating the compression effects across the first 10
layers, as shown in Figure 8. The number of merged tokens progressively increases as the layers
deepen. Notably, our strategy predominantly merges tokens in background regions while effectively
preserving foreground critical information.

D.3 VISUALIZATION OF RETRIEVAL RESULTS ON MARKET1501

To provide an intuitive evaluation of our method, we conduct visualization experiments comparing
ToMe and STM-ReID on the Market1501 dataset, as illustrated in Figure 9. Specifically, given a
query image, we retrieve the top-5 gallery images ranked by similarity scores. The visual results
demonstrate that our STM-ReID exhibits superior robustness compared to ToMe across diverse sce-
narios. With the proposed token merging mechanism, STM-ReID effectively focuses on critical
local regions and achieves good retrieval results.

D.4 VISUALIZATION OF FEATURE DISTRIBUTIONS

We perform t-SNE visualization to analyze feature distributions, as shown in Figure 10. From left
to right are TransReID, ToMe, and our STM-ReID, respectively. The regions highlighted by red and
black bounding boxes reveal two critical limitations of ToMe: 1) features of the same identity exhibit
substantial intra-class distances; 2) features from different identities become erroneously entangled.
It leads to degraded matching performance during inference. In contrast, our STM-ReID achieves
significantly reduced intra-class distances and well-separated cluster-like distributions across iden-
tities. These results substantiate the superiority of our token merging strategy, which stems from its
focused attention on critical local regions.

E LLM USAGE

Large Language Models (LLMs) aided this manuscript’s writing and polishing, focusing solely
on linguistic improvements—such as refining language, enhancing readability, and rephrasing sen-
tences. The LLM was not involved in ideation, methodology, or experimental design; all scientific
content and analyses are the authors’ work. The authors take full responsibility for the manuscript,
including LLM-polished text, which adheres to ethical guidelines.
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Figure 8: Visualization of token merging results.
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Figure 9: Visualization of retrieval results.

Figure 10: Visualization of 10 randomly selected identities from the MSMT17 dataset via t-SNE,
where different identities are indicated in different colors.
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