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Abstract
Most written natural languages are composed001
of sequences of words and sentences. Similar002
to humans, large language models (LLMs) ex-003
hibit flexibility in handling textual positions - a004
phenomenon we term position generalization.005
They can understand texts with position pertur-006
bations and generalize to longer texts than those007
encountered during training with the latest tech-008
niques. These phenomena suggest that LLMs009
handle positions in a tolerant manner, but how010
LLMs computationally process positional rele-011
vance remains largely unexplored. In this work,012
we show how LLMs enforce certain computa-013
tional mechanisms to allow for the aforemen-014
tioned tolerance in position perturbations. De-015
spite the complex design of the self-attention016
mechanism, this work reveals that LLMs learn017
a counterintuitive disentanglement of attention018
logits. Their values show a 0.959 linear corre-019
lation with an approximation of the arithmetic020
sum of positional relevance and semantic im-021
portance. Furthermore, we identify a prevalent022
pattern in intermediate features that enables this023
effect, suggesting that it is a learned behavior024
rather than a natural result of the model archi-025
tecture. Based on these findings, we provide026
computational explanations and criteria for the027
aforementioned position flexibilities observed028
in LLMs.029

1 Introduction030

Most natural languages are written as sequences031

of textual elements such as characters, words, and032

sentences. Despite this sequential nature, large lan-033

guage models (LLMs) exhibit remarkable tolerance034

in handling textual positions, just as observed in035

human studies (Bruner and O’Dowd, 1958; Rawl-036

inson, 2007). LLMs can comprehend text with037

position perturbations (Sinha et al., 2021b; Pham038

et al., 2021) and generalize to longer sequences039

than those seen during training with techniques like040

LM-Infinite (Han et al., 2024) and InfLLM (Xiao041
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Figure 1: (a) LLMs, like humans, exhibit position gen-
eralization in various forms. (b) Self-attention in LLMs
disentangles positional and semantic relevance, so as
not to be sensitive over position perturbations. The “dis-
tance pattern” and “semantic relevance” shows two sub-
components of the logit map that depend on positional
and semantic relation between tokens, respectively.

et al., 2024). These raise the question of how posi- 042

tional relevance is handled internally. While prior 043

research has explored various positional encoding 044

strategies (Su et al., 2021; Press et al., 2021), the 045

underlying computational mechanisms of LLMs’ 046

position robustness remain largely unexplored. 047

In this work, we analyze the self-attention mech- 048

anism of modern LLMs to investigate how they pro- 049

cess positional relevance information. Our findings 050

reveal that LLMs learn a counter-intuitive disentan- 051

glement in attention logits (Sec 3.1, 3.2). With a 052
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Figure 2: As a starting point of our study, we find that a 3-axis linear approximation is surprisingly similar to the
original attention logit maps. Fig (e) is a set of original logit maps (upper ones) and their constructions (lower ones).
More details are in Sec 3.1.

linear sum of two components f(q, i→j)+g(q,k),053

which are about positional relation i → j and se-054

mantical relation g(q,k), respectively, the atten-055

tion logits can be approximated with >0.95 linear056

correlation. Furthermore, we identify a systematic057

pattern in intermediate representations that enables058

this effect (Sec 3.3), suggesting that it is a learned059

behavior rather than an inherent consequence of060

model architecture.061

Finally, we apply these findings to provide a062

computational explanation for the position general-063

ization phenomenon in LLMs (Sec 4). We demon-064

strate how text order transpositions on up to 5% of065

all words only marginally affect the LLM’s perplex-066

ity and downstream performance. This linguistic067

observation can be simulated by transposing the068

order of hidden features or perturbing the posi-069

tional indices in relative position encoding, sug-070

gesting an analogy between human behaviors and071

the LLM computational mechanism. We further072

explain how length generalization techniques can073

extend LLMs to extreme lengths without param-074

eter updates. Taking insights that attention logits075

are approximately linearly additive terms over a076

pool of features, we show how self-attention is rel-077

atively tolerating while still ensuring the attention078

output vectors o fall within the training-time distri-079

bution. This explains how feature distribution shift080

is avoided in length generalization techniques.081

2 Related Work and Background082

2.1 Self-Attention and Positional Encoding083

Self-attention is the core design in most modern084

LLMs for information flow to words from their con-085

texts (Vaswani et al., 2017). It is also the primary 086

(and often the only) component to inject text posi- 087

tion information since the introduction of relative 088

position encoding (Su et al., 2021; Touvron et al., 089

2023; Dubey et al., 2024; OpenAI, 2023), which is 090

the subject of investigation in this work. Despite 091

architecture variants, it is generally designed as a 092

Softmax-based weighted average over contextual 093

“value” vectors {vj |j ↑ i} before current position 094

i. The average weights w(qi,kj , i → j) are deter- 095

mined by the relevance between the current word’s 096

“query” vector qi, contextual words’ “key” vectors 097

{kj |j ↑ i}, and their relative position i → j. The 098

output feature vector for the current token oi is 099

therefore: 100

oi =
∑

j→i

w(qi,kj , i→ j)∑
j→→i expw(qi,kj→ , i→ j↑)

vj (1) 101

. In spite of the existence of other choices of func- 102

tion w(· · · ) like Alibi (Press et al., 2021), the de- 103

facto mainstream choice is RoPE (Su et al., 2021). 104

It decomposes q and k vectors into 2-D tuples and 105

lets them rotate in angle (i→ j)ωr, where each 2-D 106

tuple r has a different rotating “angular speed” ωr. 107

2.2 Position Generalization (of both LLMs 108

and Humans) 109

Both humans and LLMs exhibit the ability to un- 110

derstand language with variable word or sentence 111

positions. This phenomenon is related to mul- 112

tiple concepts from different perspectives. Al- 113

though written languages are usually represented 114

as sequences of textual elements (such as charac- 115

ters, words, and sentences), they differ in their 116
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Word Order Flexibility (Bakker, 1998; Kaiser117

and Trueswell, 2004). Some languages (e.g., En-118

glish, Chinese, Vietnamese, Indonesian) require119

a strict word order, while others (e.g., Hungarian,120

Japanese and Latin) allow more flexibility in or-121

der, which encodes pragmatic information such122

as emphasis (Payne, 1992). This aspect has been123

computationally measured (Kahane et al., 2023)124

and used to evaluate linguistic complexity (Szm-125

recsanyi, 2016).126

Nevertheless, even when texts are perturbed to127

the extent that they no longer conform to regular128

language, humans can still understand them under129

certain conditions. The Transposed Letter Ef-130

fect (Bruner and O’Dowd, 1958; Rawlinson, 2007)131

describes the ability to understand texts when the132

letter order is scrambled within words. Language133

models also demonstrate the ability to perform134

downstream tasks on syntactically scrambled in-135

puts, as shown in Unnatural Language Process-136

ing (Sinha et al., 2021b; Pham et al., 2021). Sinha137

et al. (2021a) report comparable or improved qual-138

ity of masked language models after pre-training139

on such corpora. At the sentence level, models140

pre-trained on randomly ordered corpora show im-141

proved performance on tasks involving complex142

contextual reasoning (Shi et al., 2024).143

Preliminary studies on neural mechanisms un-144

derlying these phenomena in humans have been145

conducted in cognitive neuroscience (Garcia-Orza146

et al., 2010; Duñabeitia et al., 2012; Carreiras et al.,147

2015), showing prevalent while varying robustness148

to transposition effects on letters, digits, and sym-149

bols in human brains. This work offers a computa-150

tional counterpart, interpreting how position gener-151

alization is reflected in the internal mechanism of152

LLMs.153

3 LLMs Disentangle Position and154

Semantics in Attention155

How do LLMs handle the interaction between po-156

sitional relation and semantic relation? The atten-157

tion logit function does not need to be smooth or158

simple across distances. It can be designed with159

arbitrary complexity so that at every distance i→ j,160

the function w(i→ j, ·, ·) behaves drastically differ-161

ently. In fact, RoPE adopts a complex design that162

could theoretically implement (inverse) discrete163

Fourier transform, allowing it to approximate arbi-164

trary functions with a sufficiently large dimension165

size. Unless otherwise stated, we use Llama-3.2-166

7B model as subject of study, and extend results to 167

other models in Appendix. 168

Counter-intuitively, in this section, we reveal 169

that LLMs learn a special feature pattern to em- 170

pirically simplify the logit function w(· · · ). The 171

resulting attention logits can be approximately dis- 172

entangled as an arithmetic addition of position rel- 173

evance (determined by i → j and qi) and seman- 174

tic importance (determined by kj). We will start 175

with an interesting observation of low-rank com- 176

ponents in attention maps in Sec 3.1. Taking it 177

as an inspiration, Sec 3.2 shows how the attention 178

logits can be approximately disentangled into po- 179

sition and semantic-related components. Finally, 180

Sec 3.3 shows how LLMs computationally achieve 181

this mechanism by enforcing a special pattern in 182

key and query vectors. 183

3.1 Starting Point: 3-Axis Linear 184

Approximation of Logit Matrix 185

Let us start by looking at an attention head’s 186

logit matrix W ↓ Rn↓n with elements Wi,j = 187

w(qi,kj , i → j) in Fig 2(a). It is lower-triangular 188

in causal language models where only past tokens 189

are within the attention scope of the current token. 190

Despite combining information of three variables 191

i → j, qi,kj , there are visible 1-d patterns along 192

horizontal, vertical, and (off-)diagonal axes. These 193

three axes are coincidentally the ones associated 194

with the three variables as depicted in Fig 2(b): in 195

axis 1, i → j does not vary in a diagonal line (the 196

“distance axis”); in axis 2, kj and j do not vary in a 197

vertical column (the “key axis”); in axis 3, qi and i 198

do not vary in a horizontal row (the “query axis”). 199

Inspired by this observation, we operate a ternary 200

linear approximation of the logit map along the 201

three axes. In other words, we examine if the logit 202

map can be approximated with 203

Wi,j ↔ ai↔j + bi + cj (2) 204

with three arrays (or three linear components) of 205

variables a, b, c. To obtain an approximation, we 206

formulate this as a ridge regression, with more 207

details in Appendix A. An example set of solved 208

arrays is illustrated in Fig 2(c). 1 209

By summing the three obtained components, the 210

reconstructed logit matrix in Fig 2(d) shows strik- 211

ing similarity with the original matrix. With more 212

1Note that this is different from low-rank approximation
of matrices, which approximates the full matrix (instead of the
lower-trangular part), and only involves the row and column
axes without diagonal components.
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(a) logits with fake distances

fake distance d

key vectors kj

(b) approximated with vector addition

W′ dj = w(d, qi, kj)

real logit = w(i − j, qi, kj) fake logit matrix

fake-distance logits

key-axis 
component

distance-axis 
component summation

(c) more examples

Figure 3: After replacing the distance value i→ j with a controlled fake distance d (illustrated in (a)), we find that a
distance-axis + key-axis decomposition closely resembles the logit calculation. (b) illustrates the disentanglement
process. The key-axis and distance-axis components align well with the patterns of the fake-distance logit matrix and
sum up to a close approximation at the lower right corner. (c) presents additional examples, showing the prevalent
applicability of such approximation. More details are provided in Sec. 3.2.

comparative examples shown in Fig 2(e) and Ap-213

pendix D, we show the prevalence of this trend214

across layers and attention heads. This simple ap-215

proximation has a correlation coefficient of 0.8650.216

This shows that a great majority of W ’s variance217

can be explained by Eq 2. Interestingly, its linear218

nature implies the logit map contains simple com-219

ponents that vary only depending on key, query,220

or position information individually, but not their221

combinations.222

This approximation, however, only serves as a223

starting point for our study, as the a component224

assumes a static and global positional pattern ai↔j225

depending on token distance i→j, due to the course226

granularity of the analysis. We will move to a more227

fine-grained analysis in the next subsection.228

3.2 The Disentanglement Law of Attention229

Logits230

The previous section identified independent linear231

patterns in the logit map. However, in the calcu-232

lation of the attention logits w(i → j, qi,kj), the233

three variables still depend on each other. This pre-234

vents us from studying their effects on the logits235

individually. Additionally, the “query axis” does236

not have an actual effect on LLMs. It applies a237

uniform offset on each logit row, which is also a238

uniform offset in Eq 1. However, the softmax op-239

erator is invariant under uniform offsets. 2 So, it240

would make more sense to control the query axis241

while fully disentangling the effect of the position242

2The softmax weights remain the same after an offset:
exp(wi+c)∑
j exp(wj+c) = expwi·exp c∑

j expwj ·exp c = expwi∑
j expwj

.

and semantics axes. 243

Therefore, instead of studying the real attention 244

logits, we use a fake distance value d to replace 245

the real distance i→ j: w(d, qi,kj). In light of the 246

previous discussion, we fix a query vector q and vi- 247

sualize the following fake logit matrix W ↑ ↓ Rn↓n 248

where W ↑
d,j = w(d, q,kj) in Fig 3(a). After this 249

substitution, the new matrix W ↑ shows apparent 250

vertical and horizontal patterns, suggesting promi- 251

nent distance-wise and key-wise components. 252

We follow on disentangling W ↑ along these di- 253

rections as W ↑
d,j ↔ ad+bj .3 The least-square ridge 254

regression solution of this approximation has an 255

explicit-form solution (with more details in Ap- 256

pendix B): 257

ad =
1

n

∑

j→

W ↑
d,j→ →

1

2n2

∑

d→,j→

W ↑
d→,j→

bj =
1

n

∑

d→

W ↑
d→,j →

1

2n2

∑

d→,j→

W ↑
d→,j→

(3) 258

. Essentially, a and b are the average column and 259

row of W ↑, respectively, with a constant offset of 260

→ 1
2n2

∑
d→,j→ W

↑
d→,j . This disentanglement process 261

is visualized in Fig 3(b), where the key-axis and 262

distance-axis components at two corners align with 263

the patterns of the original fake logit matrix well. 264

Once we combine these two components, their sum- 265

mation again demonstrates high similarity with the 266

original matrix with details. This approximation 267

has a correlation coefficient of 0.9470, explaining 268

the vast majority of the logits’ variance by the two 269

simple 1-dimensional components. We list more 270

3This is a simplification of rank-2 matrix approximation.
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attention 
dim id

std

norm

total rotation degree 
over maximum length

1. long-range 
rotating dimensions

2. static 
dimensions

3. high-frequency, 
residual terms, local

(a) rotating pattern graph (b) more examples

Figure 4: Visualization of rotating query-key vector tuples in RoPE-based attention described in Section 3.3. (a)
The rotating tuples averaged over tokens are plotted as arrows, with tuple indices annotated from 0 to d/2 → 1.
Standard deviations over the tokens are shown as circles around endpoints, and the arc indicates the maximum
rotation over the pre-training cutoff length. The sum of the tuples’ projection along the horizontal axis is the actual
logit value. (b) lists more of such figures, with more details in Sec 3.3

examples of such approximation in Fig 3(c) and Ap-271

pendix D. These results indicate an approximated272

disentanglement of attention logits between posi-273

tional relevance and semantic relevance:274

w(i→ j, q,k) ↔ f(q, i→ j) + g(q,k) (4)275

. In other words, the majority of contribution from276

the position relation of two tokens f(qi, i → j) is277

computed independently from their semantic rela-278

tion g(qi,kj) and added together.279

3.3 The Mechanism in Query-Key Space280

What caused the phenomena mentioned in the last281

two sections? Using the most prevalent positional282

encoding of RoPE as the subject of study, we delve283

deeper into the hidden features to show that cer-284

tain feature dimensions of q and k are enforced285

with a large fixed norm and direction so that the286

approximation in Eq 4 is possible. Recall that the287

d-dimensional q and k are composed of a number288

of d/2 2-tuples rotating at different angular speeds,289

with lower-indexed tuples rotating much faster than290

high-indexed ones. The overall logit291

w(i→ j, q,k)

=
∑

r

k↗
r M

rot
r ((i→ j)ωr)qr

=
∑

r

↗kr↗↗qr↗ cos ((i→ j)ωr + ωqr → ωkr)

292

, which are sums of cos values of rotating vectors293

with norms of ↗kr↗↗qr↗, starting angle of ωqr→ωkr294

and rotating speed ωr per distance.295

We plot how these vectors would rotate together 296

on a 2-D plane in Fig 4(a). The starting positions 297

of these rotating vectors are plotted as arrows point- 298

ing from the point of origin. Each arrow’s tuple 299

index (↓ {0 . . . d/2 → 1}) is annotated beside the 300

arrowheads. To visualize the randomness in these 301

vectors, we also plot their standard deviation as 302

circles around the endpoints. We also plot an arc 303

to show the maximum rotation angle over the max- 304

imum distance allowed, i.e., the pre-training cutoff 305

length ωmax
r = ωrLpre-train. Notably, there exist a 306

few (two in the shown example) slow dominating 307

tuple dimensions with the following properties. We 308

also provide asymptotic expressions of them for 309

analysis later: 310

Observation 1. Properties observed in slow- 311

dominating features: 312

1. (Prominent dimensions) A relatively fixed av- 313

erage starting vector Ekr with significantly 314

larger norms than other dimensions. ↘Rslow 315

≃r↑ ⇐↓ Rslow, r ↓ Rslow, ↗kr→↗↗qr→↗ = 316

o(↗kr↗↗qr↗). Also ≃r ↓ Rslow, ↗kr → 317

Ekr↗ = o(↗Ekr↗). 318

2. (Dimensions that are mostly static) The to- 319

tal rotation angle ωmax
r = ωrLpre-train is usu- 320

ally small if initial angle is close to ε, i.e, 321

ωrLpre-train = o(ωqr → ωkr → ε). 322

More similar patterns can be found in Fig 4(b) 323

and Appendix D. 324

We theoretically demonstrate how these patterns 325

account for the previous entanglement in the sense 326
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(a) Effects of text transposition on LLM
perplexity. x-axis controls the ratio of
tokens perturbed, and y-axis controls
the maximum distance of shuffled token
pairs.

(b) Effects of feature transposition on
LLM perplexity. x-axis controls ratio of
tokens with position indices perturbed,
and y-axis controls the maximum value
position offset.

(c) Effects of position encoding manipu-
lation on LLM perplexity. x-axis controls
ratio of tokens with position indices per-
turbed, and y-axis controls the maximum
value position offset.

Figure 5: Evaluating the impact of position information perturbation on LLMs’ perplexity on ArXiv documents.
With the vanilla perplexity being 3.688, our results show that shuffling text order in inputs and altering positional
encodings in self-attention layers have limited effects on model perplexity and attention outputs.

that the contributions of slow dominating tuple di-327

mensions to logits disentangle the positional and se-328

mantic components. Other tuple dimensions, how-329

ever, contribute to relatively smaller variations in330

the logits. We have the following asymptotic dis-331

entanglement of the logit function (with proof in332

Appendix C):333

Theorem 1. If feature properties described in334

Observations 1 holds, then there exists functions335

f(q, i→ j), g(q,k) that so that the effect of i→ j336

and k can be asymptotically disentangled as:337

w(i→j, q,k) = (f(q, i→ j) + g(q,k)) (1+o(1))
(5)338

.339

The logit function is approximated as the sum340

of two functions f, g, which are only related to the341

positional and semantic relation between tokens.342

This provides computational explanations for the343

observations in the previous two sections. Not344

only are these functions existential, but the proof345

in Appendix C provides explicit-form solutions346

for f, g, which obtains a 0.959 linear correlation347

with the original logits. This further validates the348

observations in Section 3.1 and 3.2.349

4 Position Generalization of LLMs350

Taking insights of findings in Sec 3, this section351

explains how LLMs achieve position generaliza-352

tion towards perturbed text positions and unseen353

lengths. These phenomena reflect the aforemen-354

tioned computational mechanism of disentangling355

position and semantics in attention: positional rele-356

vance is not tightly bonded with semantic informa-357

tion in attention inference. Instead, they contribute358

Operation Qasper Accuracy

0.5 0.1 0.05 0.01 0.001

Original 42.53

Text Order 37.39 41.44 42.34 42.37 42.53
Feature Order 35.11 41.15 41.98 42.33 42.56
Position Encod-
ing

37.19 42.44 42.42 42.74 42.64

Table 1: Effect of different levels of positional infor-
mation perturbation on the Qasper Question-Answering
dataset. Up to 5% of the tokens can be transposed or
applied with perturbed position encoding (within token
distance ±5), while only resulting in a marginal effect
on model accuracy.

linearly independently to attention logits. In the 359

following sections, we will empirically examine 360

various forms of position generalization on the rep- 361

resentation level. 362

4.1 Tolerance to Position Perturbations 363

Why can LLMs (like humans) read the language 364

in shuffled word and sentence order? In light of 365

the analysis in Sec 3, the positional information 366

does not tightly bond with semantic relation but 367

is more of an additive factor to the attention logit. 368

We experimentally examine how this mechanism 369

affects the capability of LLMs on various levels. 370

At the superficial level, we show that transposing 371

the positions of a ratio of words in a text sequence 372

has marginal effects on model behaviors. To inves- 373

tigate the reason further at the representation level, 374

we also mimic the effect of text word perturba- 375

tions in the LLM representations, such as shuffling 376
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the order of the feature sequences or modifying377

the position indices in positional encoding. More378

specifically:379

1. randomly shuffling a ratio ϑ of the text orders380

in inputs within a maximum length lmax (Text381

Transposition),382

2. randomly shuffling a ratio ϑ of the k feature383

order in each attention layer within a maxi-384

mum length lmax (Feature Order Transposi-385

tion),386

3. randomly offsetting a ratio of ϑ of the k’s387

position indices within self-attention layers388

within a range of lmax (Position Encoding389

Manipulation)390

. We analyze the effects on attention output vectors391

and the corresponding LLMs’ performance under392

these conditions.393

The results, presented in Fig. 5, show that LLMs394

exhibit robustness to these perturbation methods.395

The original model has a perplexity of 3.688 on the396

ArXiv documents (Gao et al., 2020). Text trans-397

position has a minimal impact on perplexity, with398

only a 0.02 increase when 1% of tokens are shuf-399

fled up to a distance of 1000 tokens. This sug-400

gests that LLMs do not rigidly depend on strict401

word order. Our intervention techniques simulate402

this linguistic transposition effect in Fig. 5b and403

5c. Feature transposition also introduces a modest404

increase in perplexity, indicating that while posi-405

tion indices contribute to contextual representation,406

their precise ordering is not always critical in each407

self-attention layer. As further analysis, when the408

position encoding contains perturbed indices, the409

perplexity still has a marginal increase when 10%410

of token positions were perturbed by ±10, or in-411

crease by an absolute value of 0.01 when 1% of412

tokens has position encoding perturbed by ±10.413

These phenomena further align with the previous414

observations that position information acts as a dis-415

entangled additive factor rather than being tightly416

entangled with semantic relationships.417

As perplexity might not reflect a model’s ac-418

tual performance on downstream tasks, we eval-419

uate how Llama-3.2-3B-Instruct performs on the420

Qasper dataset (Dasigi et al., 2021) under these421

conditions. Results are listed in Table 1. Similar to422

the findings on the model perplexity, the model can423

tolerate 5% or word order being shuffled up to 5 to-424

ken distance in the inputs, with only a 0.6% drop in425

accuracy. When we perturb the positional informa- 426

tion inside the model, the model exhibits flexibility 427

(<0.1% drop in accuracy) under both feature order 428

transposition and position encoding manipulation 429

when the position information of up to 10% of the 430

features is perturbed. 431

4.2 When and How LLMs Generalize to 432

Longer Texts 433

Recent techniques like LM-Infinite and InfLLM en- 434

able LLMs to generalize to longer text sequences 435

than those encountered during training. The com- 436

mon practice adopted by these techniques is to 437

modify the relative position before applying the 438

original self-attention mechanism. This is equiva- 439

lent to applying self-attention over a modified [ki] 440

and [vi] sequence with probably, which might be 441

different (sometimes significantly shorter) than the 442

original [ki] and [vi] sequences. More specifically, 443

in those techniques, the resulting sequence of fea- 444

tures usually appears as if they are of the following 445

positional distances: 446

[LPT , · · · , LPT , LPT→1, · · · , lL, · · · , lL, · · · , 1, 0] 447

, where LPT is the pre-training maximum length, 448

and lL is a position used technically for storing a 449

few automatically retrieved feature vectors in the 450

extremely long context. The retrieved features are 451

usually used to enhance information retrieval. 452

This is in contrast to the intuition we obtained 453

from common machine learning practices: why do 454

LLMs train purely from shorter texts that general- 455

ize to extreme lengths (e.g., 200M in LM-Infinite) 456

with only minor modifications to the model archi- 457

tecture? Moreover, little explicit design was im- 458

plemented in modern SotA LLMs to enable this 459

extreme generalization. This phenomenon could 460

find support in our analysis: even though posed 461

to unseen extreme lengths, LLMs do not bind po- 462

sitional relevance information with the semantic 463

features of the contextual tokens. In other words, 464

the k and v vectors could be interpreted as a pool 465

of semantic features. The self-attention mechanism 466

approximately and additively applies the position 467

component to the pool. As long as the resulting 468

distance sequence is similar to its normal shape 469

[LPT , LPT → 1, . . . , 1, 0], the attention output vec- 470

tor will reside in its normal distribution. Therefore, 471

technically, the attention output vector is still in- 472

distribution, so the remaining parts of LLMs on 473

top of the attention outputs will not take out-of- 474

distribution features as inputs. 475
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Figure 6: Visualization of attention output vectors projected onto a 2-D plane using PCA. Colored broken lines trace
attention output vectors o across a sliding window of key and value vectors in length extension techniques. This
shows that the output vectors remain within the normal distribution, supporting our explanation of the possibility of
length generalization.

To verify this claim, we visualize the attention476

output vectors of an arbitrary layer using the tech-477

nique above. This is a projection down to a 2-478

D plane using PCA4. The blue dots are the nor-479

mal attention output vectors, which mark their480

normal distribution. Then, we select a set of481

q vectors and associate them with different col-482

ors. For each vector, we apply it over a sub-483

sequence of length LPT : [ki,ki+1, . . . ,ki+LPT ]484

and [vi,vi+1, . . . ,vi+LPT ]. As we vary the value485

of starting position i, we trace the output vector486

with colored broken lines. As shown in Figure 6,487

these lines, though extending to different directions488

and different ranges depending on the q, still wan-489

der within the range of normal attention output490

vector distribution. This further validates our expla-491

nation of the length generalization and provides in-492

sights for future manipulation of the self-attention493

module for research purposes.494

4https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

5 Conclusions and Future Work 495

In this work, we investigated the computational 496

mechanisms behind the position generalization ca- 497

pabilities of LLMs. We first demonstrated that 498

attention logits in LLMs can be approximately dis- 499

entangled into independent components represent- 500

ing positional and semantic relevance. This find- 501

ing suggests a structured decomposition within the 502

model’s internal computations. Through empiri- 503

cal analysis, we further examined various forms of 504

position generalization at the LLM representation 505

level. These insights provide both computational 506

explanations and insights into controlling these phe- 507

nomena. 508

Future research could delve deeper into the spe- 509

cific architectural choices and training data patterns 510

that contribute to this robustness. Additionally, this 511

work serves only as a starting point in mechanically 512

analyzing position processing. 513
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Limitations514

While our study provides new insights into the515

computational mechanisms behind position gen-516

eralization in LLMs, several limitations remain.517

First, our study primarily evaluates position robust-518

ness involving text order and length generalizations.519

While these are valuable computational linguistic520

phenomena, real-world language processing tasks521

often involve more complex positional dependen-522

cies, such as discourse coherence, document-level523

reasoning, and hierarchical structures. Future work524

could explore much more complicated scenarios.525

Second, our findings suggest that position and se-526

mantic components of attention logits can be dis-527

entangled, but the extent to which models actively528

leverage this property during training is unclear.529

Future explanations on how such a mechanism is530

acquired during training dynamics could greatly531

enhance the work.532
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A Details of Solving Ternary Linear648

Approximation in Sec 3.1649

The total residue square in Eq 2 is represented as:650

L(W ;a, b, c) =
∑

j→i

(Wi,j →ai↑j → bi→ cj)
2 (6)651

. This is a strictly convex function, so one single op-652

timal solution exists. At the optimum, the objective653

has zero gradient ↑L(W ;a, b, c) = 0. Taking654

derivative over all variables, this requirement is655

equivalent to a linear system:656

(n→ i)ai +
∑

j→n↑i

bj +
∑

j↓i

cj =
∑

j↓i

Wi+j,j

∑

j→n↑i

aj + (n→ i)bi +
∑

j↓i

cj =
∑

j↓i

Wj,i

∑

j→i

(aj + bj) + (i+ 1)ci =
∑

j→i

Wi,j

(7)657

. We then apply a linear equation solver5 to this658

system.659

B Details of the Approximation in Sec 3.2660

The total residue square in Eq 2 is represented as:661

L(W ↔;a, b) =
∑

d,j

(W ↔
d,j → ad → bj)

2 (8)662

. Taking derivative over all variables, the optimal663

point satisfies a linear system:664

nad +
∑

j→

bj→ =
∑

j→

W ↔
d,j→

∑

d→

ad→ + nbj =
∑

d→

W ↔
d→,j

(9)665

. The solution set is the following family of values,666

where c can take arbitrary values.667

ad =
1

n

∑

j→

W ↔
d,j→ + c→ 1

n2

∑

d→,j→

W ↔
d→,j→

bj =
1

n

∑

d→

W ↔
d→,j → c

(10)668

. Adding an l2-norm regularization term with any669

weight, as c is the only free variable here, the opti-670

mal solution will be the point where.671
∑

d

ad →
∑

j

bj = 0 (11)672

5Adopted solver in NumPy: https://numpy.org/doc/2.
2/reference/generated/numpy.linalg.solve.html. We
add a 1e-6 l2-norm regularization for numerical stability

. That will require c = 1
2n2

∑
d→,j→ W

↔
d→,j→ . The final 673

solution will become: 674

ad =
1

n

∑

j→

W ↔
d,j→ →

1

2n2

∑

d→,j→

W ↔
d→,j→

bj =
1

n

∑

d→

W ↔
d→,j →

1

2n2

∑

d→,j→

W ↔
d→,j→

(12) 675

. 676

C Asymptotic Disentanglement of 677

Attention Logit Function 678

Proof. In those slow-dominating dimensions r ↓ 679

Rslow, denote ωω = ωqr → ωkr → ε and k̄ = Ek. 680

We have: 681

k↗
r M

rot
r ((i→ j)ωr)qr

=↔kr↔↔qr↔ cos(ωqr → ωkr + (i→ j)ωr)

=↔k̄r + (kr → k̄r)↔↔qr↔
cos(ε + ωω + (i→ j)ωr)

↗→ (↔k̄r↔+ ↔kr → k̄r↔)↔qr↔
cos(ωω + (i→ j)ωr)

=→ ↔k̄r↔↔qr↔ cos(ωω + (i→ j)ωr)

→ ↔kr → k̄r↔↔qr↔(
cos ωω → sin (ωω +

1

2
(i→ j)ωr) sin

1

2
(i→ j)ωr

)

=→ (↔k̄r↔↔qr↔ cos(ωω + (i→ j)ωr)

+ ↔kr → k̄r↔↔qr↔ cos ωω)(1 + o(1))

682

683

Then, the faster-rotating dimensions have contri- 684

butions smaller than slower ones: 685

∑

r/↘Rslow

k↗
r M

rot
r ((i→ j)ωr)qr)

(r0 ↓ Rslow) =|R|o(↔kr0↔↔qr0↔)

=o




∑

r↘Rslow

k↗
r M

rot
r ((i→ j)ωr)qr





(13)

686

In summary: 687

w(i→ j, q,k)

=→
∑

r↘Rslow

(↔k̄r↔↔qr↔ cos(ωω + (i→ j)ωr)

+ ↔kr → k̄r↔↔qr↔ cos ωω)(1 + o(1))

= (f(q, i→ j) + g(q,k)) (1 + o(1))

(14) 688
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if we define689

f(q, i→ j) = →
∑

r↘Rslow

↔k̄r↔↔qr↔ cos(ωω + (i→ j)ωr)

g(q,k) = →
∑

r↘Rslow

↔kr → k̄r↔↔qr↔ cos ωω

(15)

690

, respectively.691

D More Example Visualization from 692

Other Models 693

12



Figure 7: More examples of 3-axis approximation of logit matrix on Llama-2 model.
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Figure 8: More examples of disentanglement of fake-distance logit matrix on Llama-2 model.
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(a) Llama-2.

(b) Llama-3

Figure 9: More examples of the rotating vector tuples in RoPE-based attention in other models.
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