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ABSTRACT

Recommender systems are seen as an effective tool to address infor-

mation overload, but it is widely known that the presence of various

biases makes direct training on large-scale observational data re-

sult in sub-optimal prediction performance. In contrast, unbiased

ratings obtained from randomized controlled trials or A/B tests are

considered to be the golden standard, but are costly and small in

scale in reality. To exploit both types of data, recent works proposed

to use unbiased ratings to correct the parameters of the propensity

or imputation models trained on the biased dataset. However, the

existing methods fail to obtain accurate predictions in the presence

of unobserved confounding or model misspecification. In this paper,

we propose a theoretically guaranteed model-agnostic balancing

approach that can be applied to any existing debiasing method with

the aim of combating unobserved confounding and model misspeci-

fication. The proposed approach makes full use of unbiased data by

alternatively correcting model parameters learned with biased data,

and adaptively learning balance coefficients of biased samples for

further debiasing. Extensive real-world experiments are conducted

along with the deployment of our proposal on four representative

debiasing methods to demonstrate the effectiveness.
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1 INTRODUCTION

Recommender systems (RS) are designed to accurately predict users’

preferences and make personalized recommendations. In recent

years, many studies have focused on deep learning for rating predic-

tions, aiming to fit the collected data using proper deep model struc-

tures [7, 13, 15, 40]. Despite the ease of collection and large scale of

observed ratings, it is known that such data always contain various

biases and fail to reflect the true preferences of users [6, 22, 44].

For instance, users always choose the desired items to rate, which

causes the collected ratings to be missing not at random, and train-

ing directly on those would leads to long-tail effects [1] and bias

amplification [41].

To perform debiasing directly from the biased ratings, previous

studies can be summarized into three categories:

• Inferring missing and biased ratings, then replacing them

using pseudo-labels [31, 38]. However, the data sparsity in RS

and unobserved features of users and items make it difficult

to estimate those missing values accurately.

• Estimating the probability of a rating being observed, called

propensity, then reweighting the observed data using the

inverse propensity [35–37, 42]. However, the unobserved

confounding, affecting both the missing mechanism and the

ratings, makes it fail to completely eliminate the biases.

• Modeling missing mechanisms and data generating process

using generative models [26]. However, it may leads to viola-

tion of model specification and data generating assumptions

in the presence of unobserved variables, resulting in biased

estimates.

It can be summarized that these methods would lead to biased

estimates in the presence of unobserved confounding or model mis-

specification. To mitigate the effects of unobserved confounding,

Robust Deconfounder (RD) proposes an adversarial learning that

uses only biased ratings [10]. Specifically, RD assumes that the true

propensity fluctuates around the nominal propensity and uses sen-

sitivity analysis to quantify the potential impact of unobserved con-

founding. However, the assumption cannot be empirically verified

from a data-driven way, and it is essential to relax the assumptions

while reducing the bias due to the unobserved confounding and

model misspecification.

https://doi.org/10.1145/3543507.3583495
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In contrast to observational ratings, uniform ratings are consid-

ered the golden standard and can be obtained from A/B tests or

randomized controlled trials (RCTs), but harm users’ experience

and are costly and time-consuming [11, 12]. Due to its small scale

property, it is impractical to train prediction models directly on

unbiased ratings. Recent studies propose to use a few unbiased

ratings for the parameter selection of the propensity and imputa-

tion models using bi-level optimization, which has a more favorable

debiasing performance comparedwith the RCT-free debiasingmeth-

ods [5, 43]. However, we show that using unbiased ratings only to

correct propensity and imputation model parameters still leads to

biased predictions, in the presence of unobserved confounding or

model misspecification. This motivates a more sufficient use of the

unbiased ratings to combat the effects of unobserved confounding.

In this paper, we propose a model-agnostic approach to balance

unobserved confounding with a few unbiased ratings. Different

from the previous debiasing methods, our approach enlarges the

model hypothesis space to include the unbiased ideal loss. The train-

ing objective of the balancing weights is formalized as a convex

optimization problem, with balancing the loss estimation between

biased and unbiased ratings as constraints. Through theoretical anal-

ysis, we prove the existence of the global optimal solution. Then,

we propose an efficient training algorithm to achieve the training

objectives, where the balancing weights are reparameterized and

updated alternatively with the prediction model. Remarkably, the

proposed balancing algorithm can be applied to any exsiting de-

biased recommendation methods. The main contributions of this

paper are summarized as follows.

• We propose a principled balancing training objective with a

few unbiased ratings for combating unmeaseured confound-

ing in debiased recommendations.

• To optimize the objectives, we propose an efficient model-

agnostic learning algorithm that alternatively updates the

balancing weights and rating predictions.

• Extensive experiments are conducted on two real-world

datasets to demonstrate the effectiveness of our proposal.

2 PRELIMINARIES

Let {𝑢1, 𝑢2, . . . , 𝑢𝑀 } be a set of 𝑀 users, {𝑖1, 𝑖2, . . . , 𝑖𝑁 } be the set
of 𝑁 items, and D = {(𝑢𝑚, 𝑖𝑛) | 𝑚 = 1, . . . , 𝑀 ;𝑛 = 1, . . . , 𝑁 } be the
set of all user-item pairs. Denote R = {𝑟𝑢,𝑖 | (𝑢, 𝑖) ∈ D} ∈ R |D |
be a true rating matrix, where 𝑟𝑢,𝑖 is the rating of item 𝑖 by user 𝑢.

However, users always selectively rate items based on their interests,

resulting in observed ratings, denoted as RB ∈ R | B | (B ⊆ D), are
missing not at random and thus biased. For a given user-item pair

(𝑢, 𝑖), let 𝑥𝑢,𝑖 be the feature vector of user 𝑢 and item 𝑖 , such as user

gender, age, and item attributes, etc. Let 𝑜𝑢,𝑖 be the binary variable

indicating whether 𝑟𝑢,𝑖 is observed 𝑜𝑢,𝑖 = 1 or missing 𝑜𝑢,𝑖 = 0.

Given the biased ratings RB , the prediction model 𝑟𝑢,𝑖 = 𝑓 (𝑥𝑢,𝑖 ;\ )
in the debiased recommendation aims to predict all true ratings

accurately. Ideally, it can be trained by minimizing the prediction

error between the predicted rating matrix R̂ = {𝑟𝑢,𝑖 | (𝑢, 𝑖) ∈ D} ∈
R |D | and the true rating matrix R, and is given by

L𝑖𝑑𝑒𝑎𝑙 (\ ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝛿 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑒𝑢,𝑖 , (1)

where 𝛿 (·, ·) is a pre-specified loss, and 𝑒𝑢,𝑖 is the prediction error,

such as the squared loss 𝑒𝑢,𝑖 = (𝑟𝑢,𝑖 − 𝑟𝑢,𝑖 )2.
For unbiased estimates of the ideal loss in Eq. (1), previous studies

proposed to model the missing mechanism of the biased ratings RB .
Formally, the probability 𝑝𝑢,𝑖 = Pr(𝑜𝑢,𝑖 = 1|𝑥𝑢,𝑖 ) of a user 𝑢 rating

an item 𝑖 is called propensity. The inverse probability scoring (IPS)

estimator [37] is given as

L𝐼𝑃𝑆 (\ ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
,

where 𝑝𝑢,𝑖 = 𝜋 (𝑥𝑢,𝑖 ;𝜙𝑝 ) is an estimate of the propensity 𝑝𝑢,𝑖 , and

the IPS estimator is unbiased when 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 . The doubly robust

(DR) estimator [35, 42] is given as

L𝐷𝑅 (\ ) =
1

|D|
∑︁
(𝑢,𝑖 ) ∈D

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
,

where 𝑒𝑢,𝑖 =𝑚(𝑥𝑢,𝑖 ;𝜙𝑒 ) fits the prediction error 𝑒𝑢,𝑖 using 𝑥𝑢,𝑖 , i.e.,

it estimates 𝑔𝑢,𝑖 = E
[
𝑒𝑢,𝑖 | 𝑥𝑢,𝑖

]
, and DR has double robustness, i.e.,

it is unbiased when either 𝑒𝑢,𝑖 = 𝑔𝑢,𝑖 or 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 .

In industrial scenarios, randomized controlled trials or A/B tests

are considered to be the golden standard, and users might be asked

to rate randomly selected items to collect unbiased ratings, denoted

as RU ∈ R |U | (U ⊆ D). The ideal loss can be estimated unbiasedly

by simply taking the average of the prediction errors over the

unbiased ratings

LU (\ ) =
1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 ≈ L𝑖𝑑𝑒𝑎𝑙 (\ ) .

However, unbiased ratings are costly and small in scale in reality. To

exploit both types of data, recent works proposed to use unbiased

ratings to correct the parameters of the propensity or imputation

models trained on the biased dataset. Learning to debias (LTD) [43]

and AutoDebias [5] propose to use bi-level optimization, using

unbiased ratings RU to correct the propensity and imputation

model parameters, and then the prediction model is trained by

minimizing the IPS or DR loss estimated on the biased ratings RB .
Formally, this goal can be formulated as

𝜙∗ = argmin

𝜙
LU

(
\∗ (𝜙);U

)
(2)

s.t. \∗ (𝜙) = argmin

\
LB (\, 𝜙 ;B), (3)

where LB is a pre-defined loss on the biased ratings, such as IPS

with 𝜙 = {𝜙𝑝 }, DR with 𝜙 = {𝜙𝑝 , 𝜙𝑒 }, and AutoDebias with an

extra propensity that 𝜙 = {𝜙𝑝1, 𝜙𝑝2, 𝜙𝑒 }. The bi-level optimization

first performs an assumed update of \ (𝜙) by Eq. (3), then updates

the propensity and imputation model parameters 𝜙 by Eq. (2), and

finally updates the prediction model parameters \ by Eq. (3).

3 PROPOSED APPROACH

We study debiased recommendations given biased ratings with a

few unbiased ratings. Different from previous studies [5, 9, 14, 22–

24, 37, 42, 43], we consider there may be unmesaured confounding

in the biased ratings, making the unconfoundedness assumption no

longer hold. In Section 3.1, we show that simply using unbiased rat-

ings to perform model selection of propensity and imputation does

not eliminate the bias from unobserved confounding and model
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misspecification. In Section 3.2, we propose a balancing training

objective to combat the unobserved confounding and model mis-

specification by further exploiting unbiased ratings. In Section 3.3,

we propose an efficient model-agnostic algorithm to achieve the

training objective.

3.1 Motivation

First, the unbiasedness of IPS and DR requires not only that learned

propensities or imputed errors are accurate, but also the uncon-

foundedness assumption holds, i.e., 𝑜𝑢,𝑖 ⊥⊥ 𝑒𝑢,𝑖 | 𝑥𝑢,𝑖 . However,
there may exist unobserved confoundingℎ, making 𝑜𝑢,𝑖 ⊥̸⊥ 𝑒𝑢,𝑖 | 𝑥𝑢,𝑖
and 𝑜𝑢,𝑖 ⊥⊥ 𝑒𝑢,𝑖 | (𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ). Let 𝑝𝑢,𝑖 = Pr(𝑜𝑢,𝑖 = 1 | 𝑥𝑢,𝑖 , ℎ𝑢,𝑖 ) be
the true propensity, then the nominal propensity 𝑝𝑢,𝑖 ≠ 𝑝𝑢,𝑖 , and

Lemma 1 states that the existing IPS and DR on RB are biased esti-

mates of the ideal loss in the presence of unobserved confounding.

Lemma 1. The IPS and DR estimators are biased in the presence of
unobserved confounding, even the learned propensities and imputed
errors are accurate, i.e., 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 , 𝑒𝑢,𝑖 = 𝑔𝑢,𝑖 , then

E[L𝐼𝑃𝑆 (\ )] − E[L𝑖𝑑𝑒𝑎𝑙 (\ )] = Cov

(
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖
, 𝑒𝑢,𝑖

)
≠ 0,

and

E[L𝐷𝑅 (\ )] − E[L𝑖𝑑𝑒𝑎𝑙 (\ )] = Cov

(
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖
, 𝑒𝑢,𝑖 − 𝑔𝑢,𝑖

)
≠ 0.

Proof. For DR estimator, if 𝑝𝑢,𝑖 = 𝑝𝑢,𝑖 , 𝑒𝑢,𝑖 = 𝑔𝑢,𝑖 , we have

E[L𝐷𝑅 (\ )] = E
[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

(
𝑒𝑢,𝑖 − 𝑔𝑢,𝑖

) ]
= E[L𝑖𝑑𝑒𝑎𝑙 (\ )] + E

[
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖

(
𝑒𝑢,𝑖 − 𝑔𝑢,𝑖

) ]
= E[L𝑖𝑑𝑒𝑎𝑙 (\ )] + Cov

(
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖
, 𝑒𝑢,𝑖 − 𝑔𝑢,𝑖

)
.

The last equation follows by noting that

E

[
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖

]
= E

[
E

{
𝑜𝑢,𝑖 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖
| 𝑥𝑢,𝑖

}]
= 0,

and E[𝑒𝑢,𝑖 − 𝑔𝑢,𝑖 ] = 0. In the presence of hidden confounding,

Cov((𝑜𝑢,𝑖 − 𝑝𝑢,𝑖 )/𝑝𝑢,𝑖 , 𝑒𝑢,𝑖 − 𝑔𝑢,𝑖 ) ≠ 0. The conclusions of the IPS

estimator can be obtained directly from taking 𝑔𝑢,𝑖 = 0 in DR. □

In addition, the existing methods using bi-level optimization, as

shown in Eq. (2) and Eq. (3), simply uses unbiased ratings for pa-

rameter tuning of the propensity and imputation models. It follows

that the prediction models in hypothesis spaceH𝜙 = {LB (\, 𝜙) |
𝜙 ∈ Φ} are as a subset of DR, where Φ is the parameter space of

𝜙 . Though the unbiased ratings correct partial bias, in the pres-

ence of unobserved confounding or model misspecification, i.e.,

L𝑖𝑑𝑒𝑎𝑙 ∉ H𝜙 , it is still biased due to the limitedH𝜙 .

Proposition 2. The IPS and DR estimators are biased, in the
presence of (a) unobserved confounding or (b) model misspecification.

Proposition 2 concludes the biased property of IPS and DR in the

presence of unobserved confounding or model misspecification.

3.2 Training Objective

To combat unobserved confounding and model misspecification on

biased ratings, we propose a balancing approach to fully leverage

the unbiased ratings for debiased recommendations. First, when

there is no unobserved confounding, we have

E[LB (\, 𝜙 ;B)] = E[LU (\ (𝜙);U)] .

To obtain unbiased estimates in the presence of unmeasured con-

founding or model misspecification, we propose to enlarge the

hypothesis space to include the ideal loss, from H𝜙 to H𝐵𝑎𝑙 =

{𝒘𝑇LB (𝒙;\, 𝜙) | 𝜙 ∈ Φ,𝒘 ∈ R |D | }, where LB (𝒙;\, 𝜙) ∈ R |D |
consists of the contribution of (𝑢, 𝑖) to LB . The effects of the unob-
served confounding and model misspecification can be balanced

through introducing the coefficients𝑤𝑢,𝑖 for each (𝑢, 𝑖), by making

E[𝒘𝑇LB (𝒙 ;\, 𝜙)] = E[LU (\ (𝜙);U)] = E[L𝑖𝑑𝑒𝑎𝑙 (\ )] . (4)

Proposition 3 is the empirical version of Eq. (4) in terms of the

balanced IPS, DR, and AutoDebias loss.

Proposition 3. (a) There exsits𝑤𝑢,𝑖 > 0, (𝑢, 𝑖) ∈ B such that∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖
𝑒𝑢,𝑖

𝑝𝑢,𝑖
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 .

(b) There exsits𝑤𝑢,𝑖,1 > 0, (𝑢, 𝑖) ∈ D and𝑤𝑢,𝑖,2 > 0, (𝑢, 𝑖) ∈ B such
that∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1𝑒𝑢,𝑖 +
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖

𝑝𝑢,𝑖
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 .

(c) There exsits𝑤𝑢,𝑖,1 > 0, (𝑢, 𝑖) ∈ D and𝑤𝑢,𝑖,2 > 0, (𝑢, 𝑖) ∈ B such
that ∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1
𝑒𝑢,𝑖

𝑝𝑢,𝑖,1
+

∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖

𝑝𝑢,𝑖,2
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 .

From Proposition 3(a), when 𝑤𝑢,𝑖 ≡ |D|−1, the left-hand side

(LFS) degenerates to the standard IPS with maximal entropy of the

balancing weights. The training objectives of the balanced IPS are

max

𝒘∈R|B|

∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖 log(𝑤𝑢,𝑖 ) (5)

s.t. 𝑤𝑢,𝑖 > 0, (𝑢, 𝑖) ∈ B (6)

1

|B|
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖 =
1

|D| (7)∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖
𝑒𝑢,𝑖

𝑝𝑢,𝑖
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 , (8)

where the training objective in Eq. (5) is to maximize the empirical

entropy of the balancing weights and to be able to prevent extreme

weights. The positivity and normality of the balancing weights are

guaranteed by Eq. (6) and Eq. (7), respectively, and the influence of

unobserved confounding and model misspecification is balanced

out by reweighting the IPS estimates on biased ratings in Eq. (8).

Similarly, for balanced DR and AutoDebias in Proposition 3(b)

and 3(c), the estimators are re-weighted by 𝑤𝑢,𝑖,1 and 𝑤𝑢,𝑖,2 on

the entire and biased user-item pairs, respectively, to combat un-

observed confounding and model misspecification. The training
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objectives of the balanced DR are

max

𝒘1,𝒘2

∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1 log(𝑤𝑢,𝑖,1) +
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2 log(𝑤𝑢,𝑖,2) (9)

s.t. 𝑤𝑢,𝑖,1 > 0, (𝑢, 𝑖) ∈ D, 𝑤𝑢,𝑖,2 > 0, (𝑢, 𝑖) ∈ B (10)∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1 = 1,
1

|B|
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2 =
1

|D| (11)

∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1𝑒𝑢,𝑖 +
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖

𝑝𝑢,𝑖
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 ,

(12)

where𝒘1 = [𝑤𝑢,𝑖,1 | (𝑢, 𝑖) ∈ D],𝒘2 = [𝑤𝑢,𝑖,2 | (𝑢, 𝑖) ∈ B], and the

difference in balanced AutoDebias is that Eq. (12) comes to∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1
𝑒𝑢,𝑖

𝑝𝑢,𝑖,1
+

∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖

𝑝𝑢,𝑖,2
=

1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖 , (13)

where the LFS of Eq. (12) and Eq. (13) degenetates to standard

DR and AutoDebias, respectively, when𝑤𝑢,𝑖,1 ≡ |D|−1 on D and

𝑤𝑢,𝑖,1 ≡ |D|−1 on B. Theorem 4 proves the existence of global

optimal solutions corresponding to the proposed balanced IPS, DR

and AutoDebias using Karush-Kuhn-Tucker conditions.

Theorem 4. There exists global optimal solutions to the optimiza-
tion problem in balanced IPS, DR and AutoDebias.

Proof. Note that the empirical entropy as the optimization ob-

jectives in Eq. (5) and Eq. (9) are strictly convex. The inequality

constraints in Eq. (6) and Eq. (10) are strictly feasible, i.e., there ex-

ists𝑤𝑢,𝑖 inD such that𝑤𝑢,𝑖 > 0. The equality constraints are affine

in Eq. (7), Eq. (8), Eq. (11), and Eq. (12). By the Karush-Kuhn-Tucker

condition, there exist global optimal solutions. □

Theoretically, due to the convexity of the objective function,

its local optimal solution is same as the global optimal solution.

The generalized Lagrange multiplier method can be used to solve

the primal and the dual problem, and such balancing weights can

effectively combat the unobserved confounding as in Proposition 3.

3.3 Training Algorithm

Next, we propose an efficient mode-agnostic training algorithm to

achieve the training objective in Section 3.2. The algorithm con-

sists of three parts: first, training the propensity and imputation

models using a bi-level optimization, but without updating the pre-
diction model; then, reparameterizing and updating the gradients

of the balancing weights to combat the effects of unobserved con-

founding and model misspecification; and finally, minimizing the
estimated balancing loss, named Bal-IPS, Bal-DR, or Bal-AutoDebias,

and updating the prediction model to achieve unbiased learning.

3.3.1 Propensity and Imputation Model Training. Different from
LTD and AutoDebias that use bi-level optimization to update the

prediction model, we only perform assumed updates of the pre-

diction model parameters \ (𝜙) using bi-level optimization by Eq.

(3), and updates of the propensity and imputation model parame-

ters 𝜙 by Eq. (2). Since there may exist unobserved confounding

or model misspecification, we postpone the true update of the pre-

diction model parameters \ to Section 3.3.3, after performing the

Algorithm 1: Propensity and Imputation Model Training

Input: 𝑆 , RB , RU , 𝜙0, \0, [
1 for 𝑠 = 0, . . . , 𝑆 − 1 do
2 Sample mini-batches B𝑠 ⊆ B andU𝑠 ⊆ U;

3 Compute the lower loss in Eq. (3) on B𝑠 ;
4 Compute an assumed update

\𝑠+1 (𝜙𝑠 ) ← \𝑠 − [∇\𝑠LB (\, 𝜙 ;B𝑠 );
5 Compute the upper loss in Eq. (2) onU𝑠 ;

6 Update the propensity and imputation model

𝜙𝑠+1 ← 𝜙𝑠 − [∇𝜙𝑠
LU (\𝑠+1 (𝜙);B𝑠 );

7 end

Output: 𝜙𝑆

balancing steps in Section 3.3.2. We summarized the propensity and

imputation model training algorithm in Alg. 1.

3.3.2 Balancing Unobserved Confounding Training. One challenge
in solving the balancing optimization problem is that as the number

of user-item pairs increases, the number of balancing weights also

increases, resulting in a significant increase in solution time for

large-scale datasets. To address this issue, we propose to reparame-
terize 𝑤𝑢,𝑖 in the balanced IPS, i.e.,𝑤𝑢,𝑖 = 𝑔(𝑥𝑢,𝑖 ; b), where b is the
balancing model parameter. To satisfy the optimization constraints

Eq. (6) and Eq. (7), the last layer of 𝑔(𝑥𝑢,𝑖 ; b) uses Sigmoid as the

activation function to guarantee positivity and batch normalization

to guarantee normality. The balancing weights in the balanced IPS

are trained by minimizing the negative empirical entropy with the

violation of the balanced constraint Eq. (8) as regularization

L𝑊 −𝐼𝑃𝑆 (b) = −
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖 log(𝑤𝑢,𝑖 )

+ _
[ ∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖
𝑒𝑢,𝑖

𝑝𝑢,𝑖
− 1

|U|
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖

]
2

,

where _ > 0 is a hyper-parameter, for trade-off the original loss

estimation with the correction due to the unobserved confounding.

Similarly, 𝑤𝑢,𝑖,1 and 𝑤𝑢,𝑖,2 in the balanced DR and balanced

AutoDebias are also reparameterized as 𝑤𝑢,𝑖,1 = 𝑔(𝑥𝑢,𝑖 ; b1) and
𝑤𝑢,𝑖,2 = 𝑔(𝑥𝑢,𝑖 ; b2). The balancing weights in the balanced DR and

balanced AutoDebias are trained by minimizing

L𝑊 −𝐷𝑅 (b ) = −
∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1 log(𝑤𝑢,𝑖,1 ) −
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2 log(𝑤𝑢,𝑖,2 )

+ _
[ ∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1𝑒𝑢,𝑖 +
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2

𝑒𝑢,𝑖 − 𝑒𝑢,𝑖
𝑝𝑢,𝑖

− 1

|U |
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖

]
2

,

and

L𝑊 −𝐴𝑢𝑡𝑜 (b ) = −
∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1 log(𝑤𝑢,𝑖,1 ) −
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2 log(𝑤𝑢,𝑖,2 )

+ _
[ ∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1

𝑒𝑢,𝑖

𝑝𝑢,𝑖,1
+

∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2

𝑒𝑢,𝑖

𝑝𝑢,𝑖,2
− 1

|U |
∑︁
(𝑢,𝑖 ) ∈U

𝑒𝑢,𝑖

]
2

,

where _ > 0 is a hyper-parameter, and b ≡ {b1, b2} are the parame-

ters of the balancing model.
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Algorithm 2: Balancing Unobserved Confounding Training

Input: 𝑇 , 𝑆 , RB , RU , 𝜙0, \0, b0, [, _
1 for 𝑡 = 0, . . . ,𝑇 − 1 do
2 Call Alg. 1 by 𝜙𝑡+1 ← Alg. 1(𝑆,RB ,RU , 𝜙𝑡 , \𝑡 , [);
3 for 𝑠 = 0, . . . , 𝑆 − 1 do
4 Sample mini-batches D𝑠

𝑡 ⊆ D, B𝑠𝑡 ⊆ B and

U𝑠
𝑡 ⊆ U;

5 Compute unmeasured confounding balancing loss;

6 Update the balancing weight

b𝑠+1𝑡 ← b𝑠𝑡 − [∇b𝑠𝑡 L𝑊 (b);
7 Compute the balanced prediction error loss;

8 Update the prediction model

\𝑠+1𝑡 ← \𝑠𝑡 − [∇\𝑠𝑡 L𝐵𝑎𝑙 (\ );
9 end

10 Copy the balancing model’s parameters b0
𝑡+1 ← b𝑆𝑡 ;

11 Copy the prediction model’s parameters \0
𝑡+1 ← \𝑆𝑡 ;

12 end

Output: \𝑇

3.3.3 Prediction Model Training. Since the optimization of the bal-

ancing weights aims to balance the prediction errors on the biased

and unbiased ratings, which also depends on the prediction model,

we propose to update the balancing model and the prediction model

alternatively. Specifically, given the balancing weights of IPS, the

predictionmodel is trained byminimizing the balanced IPS (Bal-IPS)

L𝐵𝑎𝑙−𝐼𝑃𝑆 (\ ) =
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖
𝑒𝑢,𝑖

𝑝𝑢,𝑖
. (14)

Similarly, for balanced DR (Bal-DR) or balanced AutoDebias

(Bal-AutoDebias), the prediction model is trained by minimizing

L𝐵𝑎𝑙−𝐷𝑅 (\ ) =
∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1𝑒𝑢,𝑖 +
∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖

𝑝𝑢,𝑖
, (15)

or

L𝐵𝑎𝑙−𝐴𝑢𝑡𝑜 (\ ) =
∑︁
(𝑢,𝑖 ) ∈D

𝑤𝑢,𝑖,1
𝑒𝑢,𝑖

𝑝𝑢,𝑖,1
+

∑︁
(𝑢,𝑖 ) ∈B

𝑤𝑢,𝑖,2
𝑒𝑢,𝑖

𝑝𝑢,𝑖,2
. (16)

Next, given the prediction model, the balancing weights are up-

dated again as described in Section 3.3.2. The balancing weights

and the prediction model are updated alternately, allowing a more

adequate use of unbiased ratings, resulting in unbiased learning of

the prediction model.

Themain difference compared with LTD [43] and AutoDebias [5]

is that we do not only use unbiased ratings to select the parameters

of the propensity and imputation models, and then use standard IPS

or DR for the prediction model update. Instead, we combat the ef-

fects of unobserved confounding by introducing a balancing model,

and then perform prediction model updates based on the balanced

losses. Remarkably, the proposed method is model-agnostic and can

be applied to any of the debiased recommendation methods. Here

we use IPS, DR and AutoDebias for illustration. We summarized

the whole training algorithm in Alg. 2.

Figure 1: The proposed workflow for balancing unobserved

confounding consists of four steps: (1) assumed updating the

prediction model parameters from \ (𝜙) to \ ′ (𝜙) using RB

(green arrow); (2) updating the propensity and imputation

model parameters 𝜙 using RU (blue arrow); (3) updating the

balancing model parameters 𝜙 using both RB and RU (red

arrow); (4) actually updating the prediction model parame-

ters \ using the balanced loss𝒘𝑇LB (red arrow).

Table 1: Summary of the datasets.

Users Items Training Uniform Validation Test

Music 15,400 1,000 311,704 2,700 2,700 48,600

Coat 290 300 6,960 232 232 4,176

3.3.4 Training Efficiency. The proposed workflow for balancing

the unobserved confounding is shown in Figure 1. In Section 3.3.1,

our algorithm performs two forward and backward passes for the

prediction model on RB and RU , respectively, and one forward and

backward pass for the propensity and imputation model on RB . The
backward-on-backward pass is used to obtain the gradients of the

propensity and imputationmodels. In Section 3.3.2, one forward and

one reverse pass are performed for the balancing model. In Section

3.3.3, a backward pass is used to actually update the prediction

model. We refer to [33, 43] that the running time of a backward-

on-backward pass and a forward pass are about the same. As a

result, the training time of the proposed algorithm does not exceed

3x learning time compared to two-stage learning and about 1.5x

learning time compared to LTD and AutoDebias.

4 REAL-WORLD EXPERIMENTS

In this section,We conduct extensive experiments on two real-world

datasets to answer the following research questions (RQs):

RQ1. Do the proposed Bal-methods improve the debiasing perfor-

mance compared with the existing methods?
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Table 2: Performance comparison in terms of AUC, NDCG@5, and NDCG@10. The best results to each base method are bolded.

Method

Music Coat

AUC RI NDCG@5 RI NDCG@10 RI AUC RI NDCG@5 RI NDCG@10 RI

CausE 0.731 - 0.551 - 0.656 - 0.761 - 0.500 - 0.605 -

KD-Label 0.740 - 0.580 - 0.680 - 0.750 - 0.504 - 0.610 -

MF (biased) 0.727 - 0.550 - 0.655 - 0.747 - 0.500 - 0.606 -

MF (uniform) 0.573 - 0.449 - 0.591 - 0.579 - 0.358 - 0.482 -

MF (combine) 0.730 - 0.554 - 0.659 - 0.750 - 0.503 - 0.611 -

Bal-MF 0.739 1.23% 0.579 4.51% 0.679 3.03% 0.761 1.47% 0.511 1.59% 0.620 1.47%

IPS 0.723 - 0.549 - 0.656 - 0.760 - 0.509 - 0.613 -

Bal-IPS 0.727 0.55% 0.564 2.73% 0.668 1.83% 0.771 1.45% 0.521 2.36% 0.628 2.45%

DR 0.724 - 0.550 - 0.656 - 0.765 - 0.521 - 0.620 -

Bal-DR 0.731 0.97% 0.569 3.45% 0.669 1.98% 0.770 0.65% 0.523 0.38% 0.628 1.29%

AutoDebias 0.741 - 0.645 - 0.725 - 0.766 - 0.522 - 0.621 -

Bal-AutoDebias 0.749 1.08% 0.670 3.88% 0.744 2.62% 0.772 0.78% 0.544 4.21% 0.640 3.06%

Note: RI refers to the relative improvement of Bal-methods over the corresponding baseline.

RQ2. Do our methods stably perform well with different initializa-

tions of the prediction model?

RQ3. How does the balancing model affect the performance of our

methods?

RQ4. What factors influence the effectiveness of our methods?

4.1 Experimental Setup

Dataset and preprocessing. Following the previous studies [5,

35, 42, 43], we conduct extensive experiments on the two widely

used real-world datasets with both missing-not-at-random (MNAR)

and missing-at-random (MAR) ratings: Music
1
and Coat

2
. In par-

ticular,Music dataset contains 15,400 users and 1,000 items with

54,000 MAR and 311,704 MNAR ratings. Coat dataset contains

290 users and 300 items with 4,640 MAR and 6,960 MNAR ratings.

Following [5, 28], we take all the biased data as the training set and

randomly split the uniform data as three parts: 5% for balancing

the unobserved confounding, 5% for validation set and 90% for test

set. We summarize the datasets and splitting details in Table 1.

Baselines. In our experiments, we compare the proposed Bal-

methods with the following baselines:

• Base Model [21]: the Matrix Factorization (MF) model is trained

on biased data, uniform data and both of them respectively, denoted

as MF (biased), MF (uniform) and MF (combine).

• Inverse Propensity Scoring (IPS) [37]: a reweighting method

using inverse propensity scores to weight the observed events.

• Doubly Robust (DR) [35, 42]: an efficient method combining

imputations and inverse propensities with double robustness.

• CausE [28]: a sample-based knowledge distillation approach to

reduce computational complexity.

• KD-Label [28]: an efficient framework for knowledge distillation

to transfer unbiased information to teacher model and guide the

training of student model.

• AutoDebias [5]: a meta-learning based method using few unbi-

ased data to further mitigate the selection bias.

1
http://webscope.sandbox.yahoo.com/

2
https://www.cs.cornell.edu/~schnabts/mnar/

Experimental protocols and details. Following [5, 43], AUC,

NDCG@5 and NDCG@10 are adopted as the evaluation metrics to

measure the debiasing performance. Formally,

𝐴𝑈𝐶 =

∑
(𝑢,𝑖 ) ∈U+ 𝑍𝑢,𝑖 −

��U+�� · (��U+�� + 1)/2
|U+ | · ( |U| − |U+ |) ,

and NDCG@k measures the quality of ranking list as

𝐷𝐶𝐺𝑢@𝑘 =
∑︁
(𝑢,𝑖 ) ∈U

I(𝑍𝑢,𝑖 ≤ 𝑘 )
log(𝑍𝑢,𝑖 + 1)

, 𝑁𝐷𝐶𝐺@𝑘 =
1

𝑀

𝑀∑︁
𝑚=1

𝐷𝐶𝐺𝑢𝑚@𝑘

𝐼𝐷𝐶𝐺𝑢𝑚@𝑘
,

whereU+ ⊆ U denotes the positive ratings in the uniform dataset,

𝑍𝑢,𝑖 is the rank position of (𝑢, 𝑖) given by the rating predictions,

and 𝐼𝐷𝐶𝐺𝑢𝑚@𝑘 is the ideal 𝐷𝐶𝐺𝑢𝑚@𝑘 .

All themethods are implemented on PyTorch. Throughout,Adam

optimizer is utilized for propensity and imputation model with

learning rate and weight decay in [1e-4, 1e-2]. SGD optimizer is uti-

lized for prediction model and balancing model with learning rate

in [1e-7, 1] and weight decay in [1e-4, 1]. We tune the regularization

hyper-parameter _ in {0, 2−9, 2−6, 2−3, 1}. All hyper-parameters are

tuned based on the performance on the validation set.

4.2 Real World Performance Comparison (RQ1)

Table 2 compares the prediction performance of the various meth-

ods on two real-world datasetsMusic and Coat. We find that the

proposed model-agnostic Bal-methods have significantly improved

performance when applied to MF, IPS, DR and AutoDebias with

respect to all metrics. Overall, Bal-AutoDebias exhibits the best

performance. Impressively, although AutoDebias hardly improves

the performance on Coat compared with DR as reported in [5], the

proposed Bal-AutoDebias improves 4.21% and 3.06% on NDCG@5

and NDCG@10 compared with the best baseline, respectively, vali-

dating the effectiveness of the proposed balancing approach.

In addition, MF using only uniform data exhibits the worst per-

formance, due to its small size which causes unavoidable overfitting.

Directly combining the biased and unbiased ratings increases the

MF performance slightly and insignificantly. As in [5], AutoDebias
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Table 3: Performance of the Bal-methods under different prediction models as initializations onMusic and Coat.

Initial Method Initial with IPS Initial with DR Initial with AutoDebias

Dataset Method AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10

Baseline 0.723 0.549 0.656 0.724 0.550 0.656 0.741 0.645 0.725

Music

Bal-IPS 0.726
0.4%↑ 0.561

2.2%↑ 0.666
1.5%↑ 0.726

0.3%↑ 0.562
2.2%↑ 0.666

1.5%↑ 0.747
0.8%↑ 0.656

1.7%↑ 0.733
1.1%↑

Bal-DR 0.725
0.3%↑ 0.556

1.3%↑ 0.665
1.4%↑ 0.726

0.3%↑ 0.559
1.6%↑ 0.667

1.7%↑ 0.748
0.9%↑ 0.658

2.0%↑ 0.734
1.2%↑

Bal-AutoDebias 0.739
2.2%↑ 0.584

6.4%↑ 0.683
4.1%↑ 0.740

2.2%↑ 0.586
6.5%↑ 0.684

4.3%↑ 0.749
1.1%↑ 0.670

3.9%↑ 0.744
2.6%↑

Baseline 0.760 0.509 0.613 0.765 0.521 0.620 0.766 0.522 0.621

Coat

Bal-IPS 0.771
1.4%↑ 0.521

2.4%↑ 0.628
2.4%↑ 0.770

0.7%↑ 0.523
0.4%↑ 0.627

1.1%↑ 0.770
0.5%↑ 0.523

0.2%↑ 0.629
1.3%↑

Bal-DR 0.770
1.3%↑ 0.523

2.8%↑ 0.628
2.4%↑ 0.771

0.8%↑ 0.522
0.2%↑ 0.629

1.5%↑ 0.770
0.5%↑ 0.523

0.2%↑ 0.629
1.3%↑

Bal-AutoDebias 0.771
1.4%↑ 0.531

4.3%↑ 0.632
3.1%↑ 0.772

0.9%↑ 0.539
3.5%↑ 0.637

2.7%↑ 0.772
0.8%↑ 0.544

4.2%↑ 0.640
3.1%↑

Table 4: Effects of balancing models on Bal-AutoDebias.

Method Music Coat

𝑤𝑢,𝑖,1 𝑤𝑢,𝑖,2 AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10

MF MF 0.749 0.670 0.744 0.772 0.544 0.640

MF NCF 0.745 0.667 0.742 0.769 0.539 0.635

NCF MF 0.762 0.675 0.748 0.774 0.548 0.646

NCF NCF 0.749 0.671 0.745 0.771 0.545 0.639

has the most competitive performance among the existing methods,

due to the use of unbiased ratings for the parameter selection of

the propensity and imputation models. However, as discussed in

previous sections, the previous methods were unable to combat the

potential unobserved confounding in the biased data. The proposed

Bal-methods address this issue by further utilizing unbiased ratings

to balance the loss estimates from biased ratings.

4.3 In-depth Analysis (RQ2)

We further conduct an in-depth analysis by using the pre-trained

prediction model parameters given by IPS, DR and AutoDebias as

initialization in Alg. 2, respectively, to verify that the proposed

Bal-methods can be effectively applied to any existing debiasing

methods. The results are presented in Table 3. We find that all Bal-

methods show significant performance improvement in all metrics

compared to the pre-trained prediction models. Notably, applying

the Bal-methods to any initialized predictions can stably boost the

performance compared with AutoDebias on Coat, which can be

explained by the possible presence of unobserved confounding and

model misspecification in the biased data, while our method can

mitigate the potential bias via a model-agnostic manner.

4.4 Ablation Study (RQ3)

To explore the impact of the proposed balancing model on the

debiasing performance, we conduct ablation experiments using

varying regularization hyperparameters _ for trade-offs between

the original loss estimation and the correction due to the unob-

served confounding. Note that when _ = 0, the globally optimal

balancing weights equal to 1/|D| with maximum entropy, degen-

erating to the standard IPS, DR and AutoDebias. We tune _ in {0,

2
−9
, 2
−6
, 2
−3
, 1} on Bal-IPS, Bal-DR and Bal-AutoDebias, and the

results are shown in Figure 2, where the black dashed line is used

as the most competitive baseline for reference. We find that the

AUC and NDCG@K of all methods first increase and then decrease
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Figure 2: Effect of regularization strength _ on Music and

Coat, degenerating to standard AutoDebias when _ = 0.

with the increasing constraint strength, with optimal performance

around _ = 2
−6
. This is interpreted as the best tradeoff between

estimated loss and unobserved confounding. All methods using

_ > 0 stably outperform the standard AutoDebias and the case

without considering unobserved confounding, i.e., _ = 0, so it can

be concluded that the proposed balancing model plays an important

role in the debiasing.
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Figure 3: Effect of varying size of uniform data.

4.5 Exploratory Analysis (RQ4)

Effect of balancing model selections. We further explore the

effect of model selections on the balanced weights to the debiasing

performance. Specifically, we take different combinations of MF and

NCF as balancing models for𝑤𝑢,𝑖,1 on D and𝑤𝑢,𝑖,2 on B, and the

results are shown in Table 4. The performance can be significantly

improved when NCF and MF are used to model 𝑤𝑢,𝑖,1 and 𝑤𝑢,𝑖,2,

respectively. We argue that the main reason is that |D| ≫ |B|, lead-
ing to a reasonable reparameterization of𝑤𝑢,𝑖,1 using deep models

(e.g., NCF), and𝑤𝑢,𝑖,2 using simple models (e.g., MF).

Effect of uniform data size. Figure 3 shows the sensitivity of the

debiasing methods to the size of the uniform data ranging from 1%

to 10%. We find that the proposed Bal-AutoDebias stably outper-

forms the existing methods for varying sizes of unbiased ratings.

For the previous methods, AutoDebias has a more competitive per-

formance compared with KD-label and CausE. When providing

with a small size (e.g., 1%) of the unbiased ratings, CausE performs

even worse than the biased MF, while Bal-AutoDebias achieves the

optimal performance. Compared with AutoDebias, our methods

make significant improvements on both NDCG@5 and NDCG@10,

validating the effectiveness of the proposed balancing learning.

5 RELATEDWORK

Debiased Recommendation. Recommender algorithms are often

trained based on the historical interactions. However, the histor-

ical data cannot fully represent the user’s true preference [6, 44],

because user behavior is affected by various factors, such as con-

formity [29] and item popularity [46], etc. Many methods were

developed for achieving unbiased learning, aiming to capture the

true user preferences with biased data. For example, [37] noticed the

missing data problem in RS and recommended using the IPS strat-

egy to remove the bias, [42] designed a doubly robust (DR) loss and

suggested adopting the joint learning method for model training.

Subsequently, several approaches enhanced the DR method by pur-

suing a better bias-variance trade-off [9, 14], leveraging parameter

sharing and multi-task learning technique [30, 39, 45], combing a

small uniform dataset [4, 5, 28, 43], addressing the problem of small

propensities and weakening the reliance on extrapolation [24], and

reducing bias and variance simultaneously when the imputed er-

rors are less accurate [23]. In addition, [22] proposed a multiple

robust learning method that allows the use of multiple candidate

propensity and imputation models and is unbiased when any of

the propensity or imputation models is accurate. [6, 44] reviewed

the recent progress in debiased recommendation. To mitigate the

effects of unobserved confounding, [10] proposed an adversarial

learning method that uses only biased ratings. Unlike the existing

methods, this paper combats the effect of unmeasured confounding

with a small uniform dataset to achieve exact unbiasedness.

Causal Inference under Unmeasured Confounding. Unmea-

sured confounding is a difficult problem in causal inference and the

main strategies for addressing it can be divided into two classes [3,

17, 19, 25]. One is the sensitivity analysis [8, 20, 34] that seeks

bounds for the true causal effects with datasets suffering from

unmeasured confounders. The other class methods aim to obtain

unbiased causal effect estimators by leveraging some auxiliary in-

formation, such as instrument variable methods [2, 16], front door

adjustment [32], and negative control [27]. In general, finding a

reliable instrument variable or a mediator that satisfies the front

door criterion [16, 18] is a challenging task in practice. Different

from these methods based on an observational dataset, this paper

considers a more practical scenario in debiased recommendations,

i.e., addressing unmeasured confounding by fully exploiting the

unbiasedness property of a small uniform dataset.

6 CONCLUSION

This paper develops a method for balancing unobserved confound-

ingwith few unbiased ratings.We first show theoretically that previ-

ous methods that simply using unbiased ratings to select propensity

and imputation model parameters is not sufficient to combat the

effects of unobserved confounding and model misspecification. We

then propose a balancing optimization training objective, and fur-

ther propose a model-agnostic training algorithm to achieve the

training objective using reparameterization techniques. The bal-

ancing model is alternately updated with the prediction model to

combat the effect of unobserved confounding. We conduct exten-

sive experiments on two real-world datasets to demonstrate the

superiority of the proposed approach. To the best of our knowledge,

this is the first paper using a few unbiased ratings to combat the

effects of unobserved confounding in debiased recommendations.

For future works, we will derive theoretical generalization error

bounds for the balancing approaches, as well as explore more effec-

tive ways to leverage the unbiased ratings to enhance the debiasing

performance of the prediction models.
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