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Abstract—The last decade of machine learning has seen drastic
increases in scale and capabilities. Deep neural networks (DNNs)
are increasingly being deployed in the real world. However,
they are difficult to analyze, raising concerns about using them
without a rigorous understanding of how they function. Effective
tools for interpreting them will be important for building more
trustworthy AI by helping to identify problems, fix bugs, and im-
prove basic understanding. In particular, “inner” interpretability
techniques, which focus on explaining the internal components
of DNNs, are well-suited for developing a mechanistic under-
standing, guiding manual modifications, and reverse engineering
solutions.

Much recent work has focused on DNN interpretability, and
rapid progress has thus far made a thorough systematization of
methods difficult. In this survey, we review over 300 works with
a focus on inner interpretability tools. We introduce a taxonomy
that classifies methods by what part of the network they help to
explain (weights, neurons, subnetworks, or latent representations)
and whether they are implemented during (intrinsic) or after
(post hoc) training. To our knowledge, we are also the first
to survey a number of connections between interpretability
research and work in adversarial robustness, continual learning,
modularity, network compression, and studying the human visual
system. We discuss key challenges and argue that the status quo
in interpretability research is largely unproductive. Finally, we
highlight the importance of future work that emphasizes diag-
nostics, debugging, adversaries, and benchmarking in order to
make interpretability tools more useful to engineers in practical
applications.

Index Terms—interpretability, explainability, transparency

I. INTRODUCTION

A defining feature of the last decade of deep learning is
drastic increases in scale and capabilities [143], [263], with
the training compute for machine learning systems growing
by ten orders of magnitude from 2010 to 2022 [262]. At
the same time, deep neural networks (DNNs) are increasingly
being deployed in the real world. If rapid progress continues,
broad-domain artificial intelligence could be highly impactful
[39], [59], [208], [226], [245], [276].

Given this potential, it is important that practitioners can
understand how AI systems make decisions, especially their is-
sues. Models are most typically evaluated by their performance
on a test set for a particular task. This raises concerns because
a black box performing well on a test set does not imply that
the learned solution is adequate. Testing sets typically fail to
capture the full deployment distribution, including potential
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adversarial inputs. They also fail to reveal problems with a
model that do not directly relate to test performance (e.g.
learning harmful biases). Moreover, even if a user is aware
of inadequacies, the black-box nature of a system can make
it difficult to fix issues. Thus, a key step to building safe and
trustworthy AI systems is to have an expanded toolbox for
detecting and addressing problems.

We define an interpretability method as any process by
which an AI system’s computations can be characterized in
human-understandable terms. This encompasses a broad set
of techniques in the literature on DNNs, but in this paper,
we focus specifically on methods for understanding internal
structures and representations (i.e. not data, inputs, outputs,
or the model as a whole). We call these inner interpretability
methods. We introduce a taxonomy for these methods, pro-
vide an overview of the literature, highlight key connections
between interpretability and other topics in deep learning, and
conclude with directions for continued work. Our central goals
are twofold: (1) to provide a thorough resource for existing
inner interpretability work and (2) to propose directions for
continued research.

A. The Importance of Interpretable AI

Here, we outline several major motivations.

Open-ended evaluation: Short of actually deploying a sys-
tem, any method of evaluating its performance can fundamen-
tally only be a proxy for its performance. In particular, test sets
can fail to reveal–and often incentivize–undesirable solutions
such as dataset bias, socially harmful biases, or developing
deceptive solutions. Thus, it is important to have additional
ways of rigorously evaluating systems’ performance. One of
the most important advantages of interpretability techniques
lies in their unique ability to, unlike standard evaluation
methods, allow humans to more open-endedly study a model
and search for flaws.

Showcasing failure: Uncovering why a model fails to produce
a correct output can offer insights into what failures look like
and how to detect them. This can help researchers avoid issues
and help regulators establish appropriate rules for deployed
systems.

Fixing bugs: By understanding a problem and/or producing
examples that exploit it, a network can be redesigned, probed,
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Fig. 1. A taxonomy of inner interpretability methods and hazards associated with them. This mirrors our organization of Sections II-V. We organize methods
first by what part of the network’s computational graph they help to explain: weights, neurons, subnetworks, or latent representations. Second, we organize
approaches by whether they are intrinsic (implemented during training), post hoc (implemented after training), or can rely on a mix of intrinsic and post hoc
techniques. Finally, we also discuss prominent hazards for different approaches.

fine-tuned, and/or adversarially-trained to better align it with
the user’s goals.

Determining accountability: Properly characterizing behav-
ior is essential for establishing responsibility in the case of
misuse or deployment failures.

Improvements in basic understanding: By offering users
more basic insights on models, data, and/or algorithms, in-
terpretability techniques could be useful for reducing risks
in deployed systems or better forecasting progress in AI.
However, improved basic understanding could also be harmful
if it causes advancements in risky capabilities to outpace
effective oversight. We discuss this in Section VII.

“Microscope” AI: Rigorously understanding how an AI
system accomplishes a task may provide additional domain
knowledge. This could include insights about solving the
task as a whole or the properties of specific examples. This
goal has been referred to as “microscope” AI [133], and
it could allow for reverse engineering more understandable
or verifiable solutions. This may be especially valuable for
studying systems with superhuman performance.

B. Scope

Inner Interpretability: Our focus is on inner interpretability
methods for DNNs. Black-box techniques, adversarial tech-
niques, input attribution methods, neurosymbolic methods,
and “good old-fashioned AI” are all valuable but beyond the

scope of this survey. This is not to say that they are of
less value to building safer AI than the methods we focus
on – many of them have major advantages, and a diverse
interpretability toolbox is important. However, we focus on
inner interpretability methods because (1) there is a great deal
of current interest in them and (2) they are well-equipped for
certain goals such as guiding manual modifications, reverse
engineering solutions, and detecting inner “latent” knowledge
which may contribute to deceptive behavior.

Contrasts with past survey works: See also several previous
surveys and critiques of interpretability work that overlap
with ours [3], [69], [71], [79], [112], [136], [155], [178],
[200], [202]–[204], [242], [243], [250], [253], [254], [313].
Unlike this survey, [79], [155], [178], [200], [242] are cri-
tique/position papers that do not extensively survey existing
work, [3], [71], [112], [203], [204], [243], [253], [254] focus
mostly or entirely on approaches out of the scope of this
work (e.g. non-DNNs or feature attribution), [69], [136] only
survey methods for language models, [313] only focuses
on convolutional networks, [250] only surveys single-neuron
methods, [203], [253] only focus on post-hoc methods, and
[3], [79], [112], [178], [200], [242], [254], [313] are relatively
old (before 2020). This survey is also distinct from all of
the above in its focus on inner interpretability, implications
for diagnostics and debugging, and the intersections between
interpretability and a number of other research paradigms.
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Fig. 2. Inner interpretability methods for weights can focus on (1) continual learning techniques that make weights specialize in particular tasks or (2)
weight-masking techniques which learn a mask over weights as a way of discovering which weights are key for a certain task.

C. Taxonomy

Our taxonomy divides inner interpretability techniques by
what part of the DNN’s computational graph they explain:
weights, neurons, subnetworks, or latent representations.
We dedicate Sections II-V respectively to each of these
approaches. Interpretability techniques can also be divided
by whether they are used during or after training. Intrinsic
interpretability techniques involve training models to be eas-
ier to study or come with natural interpretations. Post hoc
techniques aim to interpret a model after it has been trained.
We divide methods by whether they are intrinsic or post hoc
at the subsection level.

Fig. 1 depicts our taxonomy and previews the organization
of Sections II-V. Note that this taxonomy sometimes divides
related methods. For example, continual learning methods
for weights (Section II-A) and neurons (Section III-A) are
conceptually similar, and methods for interpreting subnetworks
(Section IV) frequently involve variations or applications of
methods for weights II) or neurons III). We note these connec-
tions as we discuss the families of methods below. However,
we divide methods first by what part of the network they
target because how a technique operates on a network typically
matters more for goal-oriented engineering than whether it
occurs during or after training.

II. WEIGHTS

A. Continual Learning (Intrinsic):

One research paradigm in deep learning is to train systems
that can learn new tasks without forgetting old ones. This is
known as continual learning or avoiding catastrophic forget-
ting [72], [266]. Some techniques are based on the principle
of having weights specialize for particular types of input data,
updating more for some than others [8], [11], [150], [175],
[191], [277], [311]. This offers a natural way to characterize
weights based on the tasks or classes that they specialize in.
Unfortunately, current research on these methods has not been
done with an emphasis on improving interpretations of weights
or subnetworks. This may be a useful direction for future
work. See also methods for continual learning that operate
on neurons in Section III-A.

B. Weight-Masking (Post Hoc):

In contrast to intrinsic methods, one can also train weight
masks over a network to determine which weights are essential
for which tasks [65], [303], [318]. For example, a mask over
a classifier’s weights can be trained to cover as many as
possible while preserving performance on a subset of data.
The resulting mask identifies a subset of weights (and a
corresponding subnetwork) that can be causally understood
as specializing in that subtask. This approach also works for
identifying subnetworks that specialize in a task (Section IV).

C. Frivolous Weights (Hazard):

A difficulty in interpreting weights is that many are often
unimportant to the network. Past works have shown that
networks can often be pruned to contain a very small fraction
of their original weights with little to no loss in performance
(though sometimes with fine-tuning) [33], [102], [282]. See
also frivolous neurons (Section III-G).

III. INDIVIDUAL NEURONS

As is common in the literature, we use “neuron” to refer
both to units in dense layers and elements of feature maps
in convolutional layers.

A. Continual Learning (Intrinsic):

Just as continual learning [72], [266] can be facilitated via
specialization among weights (see Section II-A), the same can
be done with neurons. Unlike weight-based continual learning
methods, which have weights update more for some tasks
than others, neuron-based ones typically rely on adding new
neurons to the architecture upon encountering a new task
[167], [246], [309]. This discourages neurons from learning
to simultaneously detect features from multiple unrelated tasks
and allows for natural interpretations of neurons in terms of
what subtasks they specialize in. As with continual learning
methods that operate on weights, current research on these
methods has not been done with an emphasis on improving
interpretations of neurons or subnetworks. This may be a
useful direction for future work. See also Section IV-B, which
discusses methods for modularity among neurons.



…

Continual Learning Dataset-based

x1 xn

x

Feature Synthesis
Perturbation & 

Ablation Gradient-based Attribution

xi

yj

∂yj /∂xi

Fig. 3. Inner interpretability methods for individual neurons can focus on (1) continual learning techniques that make neurons specialize in particular tasks,
(2) dataset-based techniques that aim to find which neurons respond to which features, (3) feature synthesis to construct inputs that excite individual neurons,
(4) perturbation or ablation of neurons coupled with analysis of changes to network behavior, and (5) gradient-based attribution methods that analyze
partial derivatives of outputs w.r.t. neural activations.

B. Dataset-Based (Post Hoc):

A simple way to characterize the role of individual neurons
is to use a dataset to analyze which types of inputs they
respond to. Perhaps the simplest example of this is searching
through a dataset and selecting the inputs that maximally
excite a given neuron [322]. A more sophisticated technique
known as network “dissection” uses a richly-labeled dataset
of semantic concepts to analyze neural responses [25]–[27].
A neuron can then be characterized based on how well its
activations align with different types of input. This line of
work has been extended to assign descriptions to neurons
using compositional logic expressions on a set of labels [207].
This allows the interpretability of neurons to be quantified
as the intersection over union for a logical formula on input
features and the neuron’s activations. This has been further
extended to develop natural language explanations by using
captioning methods to describe a set of image patches that
activate a neuron [125], [218]. These approaches have proven
useful for identifying undesirable biases in networks [125],
[207]. Dissection has also been used to analyze what types of
neurons are exploited by adversarial examples [305], identify
failure modes for text-to-image models [57], and probe neural
responses in transformers to isolate where specific information
is stored [68], [98], [105], [106], [197], [287]. This can then
be followed by improving the model by editing a learned fact
(such as an undesirable bias) [68], [197]. Unfortunately, all
dataset-based methods are limited by the diversity of examples
in the dataset used and the quality of labels. See also probing
methods in Section V-F.

C. Feature Synthesis (Post Hoc):

This approach is based on synthesizing inputs with the
goal of maximally (or minimally) activating a given neuron
or combination of neurons. Synthesis methods come with the
advantage of not being limited to a particular dataset. Several
works have taken this approach, optimizing inputs to excite
particular neurons [189], [212], [222]. One can use a distance
measure in the optimization objective to synthesize a batch
of inputs to be diverse [222]. There has also been work on
using generative models instead of directly optimizing over
input features [49], [51], [210], [211]. A broader survey of
these types of methods is provided by [213]. However [38]
finds that natural exemplars which strongly-activate individual
neurons can be more useful for helping humans predict neural
responses to data than synthesized features.

D. Neural Perturbation and Ablation (Post Hoc):

By analyzing a DNN’s behavior under perturbation to a
neuron, one can gain insight into the type of information it pro-
cesses. For example, if a neuron in an image classifier robustly
and uniquely detects dogs, one should expect performance on
dog classification to worsen when that neuron is ablated (i.e.
dropped out). A key benefit of these methods is that they allow
for testing counterfactuals, helping establish a causal rather
than a correlational relationship between neural activations
and the behavior of the network. Works in this area have
used neural ablation [127], [324], subspace ablation [206],
[235], and non-ablation perturbations [24], [84]. Notably, the
net effect of perturbing a neuron can vary by context and
which others, if any, are also perturbed. To account for this,
one can compute Shapley values for neurons to measure their
importance averaged over the ablation of other neurons [111],



[269], and this has been shown to be a practical way of
identifying neurons that can be removed or modified to reduce
bias or improve robustness [111]. Shapley values, however, are
limited in their ability to provide useful causal explanations
[159].

E. Gradient-Based Attribution (Post Hoc):

Much work has been done on gradient-based feature at-
tribution to study which features are influential for neural
responses or model outputs. There are several surveys and
critiques of feature attribution methods in particular [4], [5],
[15], [74], [77], [99], [129], [139], [141], [215], [265], [317].
Most of this work has been done to study attributions on
inputs and is outside the scope of this survey. However, the
same type of approach has been applied for attribution with
internal neurons. [272] introduce an approach for this using
gradients along with runtime tests for sensitivity and invariance
to evaluate the quality of interpretations. Building off this,
several works have found gradient-based attribution useful in
large language models [14], [81], [187], including to guide a
search for where certain facts are stored [68]. However, these
methods are limited in that explanations are only as valid as
the local linear approximation the gradient is based on, and
they cannot directly provide causal explanations.

F. Polysemantic Neurons (Hazard):

Polysemantic neurons are activated by multiple unrelated
features. They have been discovered via dataset-based methods
[100], [125], [207], various forms of visual feature synthesis
[114], [212], [220], [289], and feature attribution [85]. How
and why they form remains an open question. However, [220]
observed a tendency for monosemantic neurons to become
polysemantic over the course of training and hypothesized that
it is associated with representing information more efficiently.
This would suggest that polysemantic neurons might be useful
for model performance. However, they also pose a significant
challenge for two reasons. First, interpretations of polyseman-
tic neurons are more likely to be incorrect or incomplete.
Second, it has been shown that they can be exploited for
adversarial attacks [125], [207]. See also Section V-C for a
discussion of entanglement, which generalizes the notion of
polysemanticity to layers.

G. Frivolous Neurons (Hazard):

Frivolous neurons are not important to a network. [48]
defines and detects two distinct types: prunable neurons,
which can be removed from a network by ablation, and
redundant neurons, which can be removed by refactoring
weight matrices. They pose a challenge for interpretability
because a frivolous neuron’s contribution to the network may
be meaningless or difficult to detect with certain methods
(e.g., neural perturbation). Network compression may offer
a solution. For example, [122], [131], [188], [249], [267]
each compress networks by eliminating frivolous neurons.
Compression and the interpretability of neurons are linked.
After compressing a network, [174] found that the remaining

neurons were more interpretable with only marginal change in
performance, and [307] used proxies for neuron interpretability
to guide neuron-level pruning. Additionally, the motivation
for pruning to increase interpretability is closely-related to
intrinsically interpretable layer representations. See also Sec-
tion II-C on frivolous weights and Section V-C on neural
disentanglement.

IV. SUBNETWORKS

Note that many of the methods used for analyzing sub-
networks supervene on techniques for weights (Section II) or
neurons (Section III).

A. Sparsity (Intrinsic):

Sparse weights inside of DNNs allow for much simpler
analysis of relationships between neurons. In some cases,
sparsification can reduce the number of weights by almost
two orders of magnitude while causing little to no tradeoff
with performance [102]. Sparsity-aided interpretability has
been explored through pruning [29], [101], [205], [302] reg-
ularization [241], and sparse attention [196]. In particular,
[302] demonstrates how sparsity can be paired with post-hoc
techniques for neuron analysis to help a human to edit a model.
This has direct implications for safety and debiasing. Pruning
portions of the network architecture can also be guided by
measures of interpretability [295], [308]. Meanwhile, as an
alternative to conventional sparsity, [304] introduce a method
to regularize the behavior of a neural network to mimic that
of a decision tree.

While sparsity simplifies the analysis of subnetworks, it
may not improve the interpretability of individual neurons.
[101] find no increase in their interpretability through the
dissection of pruned networks, and [196] fail to find evidence
of improved interpretability of individual neurons with sparse
attention.

B. Modularity (Intrinsic):

Modularity is a common principle of engineered systems
and allows for a model to be understood by analyzing its
parts separately. At a high level, [13] offers a survey of
DNN modularization techniques, and [7], [201] study the
capabilities and generality of modular networks compared
to monolithic ones. The simplest way to design a modular
DNN is to use an explicitly modular architecture. This can be
considered “hard” modularity. This can be a form of “model-
aided deep learning” [264] if domain-specific considerations
are used to guide the design. Modular architectures were
studied by [290] who analyzed the extent to which neurons in
a branched architecture learned to process different features
from those in other branches, and [306] who experimented
with distinct neural modules that were trained to execute
algorithmic subroutines.

Aside from branched architectures, a “softer” form of
modularity can be achieved if neurons in different modules
are connected to each other but must compete for access to
information. This can allow for end-to-end differentiability,
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Fig. 4. Inner interpretability methods for subnetworks can focus on (1) simplifying the computational subgraph via sparsity, (2) either intrinsic methods to
enforce modularity among neurons or post hoc methods to group them into modules, or (3) analysis of neural circuits which can be understood as performing
a specific task.

yet sparse information flow between modules. Methods for
soft modularity have been studied via initialization [96], reg-
ularization [96], a controller [140], [151], or sparse attention
[16], [85], [115], [260]. Notably [260] used attention to both
induce specialization among neurons and reduce catastrophic
forgetting. See also methods for avoiding catastrophic forget-
ting by having subsets of neurons specialize in a given task in
Section III-A.

C. Modular Partitionings (Post Hoc):

A post hoc way of understanding a DNN in terms of
modules is to partition the neurons into a set of subnetworks,
each composed of related neurons. Toward this goal, [96],
[297], [298] divide neurons into modules based on graphical
analysis of the network’s weights and analyze how distinct
the neurons in each module are. These methods involve no
data or runtime analysis. In contrast, [18], [50], [127], [163],
[296] each perform partitioning and cluster analysis based
on how neurons associate with inputs and/or outputs. In
particular, [127] present a statistical pipeline for estimating
the interpretability of neuron clusters without a human in the
loop. Overall, however, these methods have had very limited
success in finding highly-composite partitionings in models.
A useful direction for future work may be to combine this
approach with intrinsic modularity methods.

D. Circuits Analysis (Post Hoc):

Instead of analyzing an entire partition of a network, a much
simpler approach is to study individual subnetworks inside
of it. These have often been referred to as neural “circuits”
which can be as small as just a few neurons and weights. This
has been done with weight masking [65], [294], data-based
methods [94], [256], [279], [314], [315], feature synthesis [45],
[219]–[223], [232], [259], [289], and neural ablation [118],
[198]. However, many of the successes of circuits analysis
to date have focused on toy models and involved intensive
effort from human experts. To be useful for improving models
in practical applications, future methods will likely need to
leverage automation. [238] make progress on this by distilling
a DNN into a sparse symbolic causal graph on a set of concepts
and providing theoretical guarantees for the faithfulness of the

graph. See also Section V-D for a discussion of circuits in
transformers.

V. INTERNAL REPRESENTATIONS

A. Self-Explaining Models (Intrinsic):

Most methods in the literature used for understanding DNNs
aim to help a human “open up” the network and study parts
of it. If one wants to understand another human’s reasoning,
the analogous techniques would involve studying their brain
directly. These are sometimes useful, but in most cases, simply
asking another human for an explanation of what they are
thinking is much more effective. Self-explaining AI systems
are meant to provide such explanations of internal reasoning
in an analogous way to how humans can provide them.
Competing definitions are offered in the literature, but we will
use one based on [87], which simply requires that a model
produces an explanation for its reasoning that can be easily
be understood by a human, ideally paired with a confidence
estimate.

In computer vision, one approach has been to classify
images based on their similarity to a set of learned “proto-
types” [12], [53], [145], [171], [247], [312]. Prototype-based
classification has also been studied in language models [92].
These methods allow the model to attribute its outputs to a set
of exemplary datapoints, allowing its decision to be explained
as “this input resembles these other examples.”

Another self-explaining AI strategy has been to supervise
human-understandable explanations for model outputs that are
computed from the same inner representations. In computer
vision, this has been done for classification and question
answering [9], [123], [124], [149], [229]. In natural language
processing, this has been done for question answering and nat-
ural language inference with explanations [43], [160], [162],
[319]. For large language models that have sufficiently general
language capabilities, explanations can also simply be elicited
via prompts (e.g., [40], [58]). However, the extent to which
these explanations accurately explain the model’s decision
making is very unclear [142].

[12] argues that explanations should meet three criteria: (1)
Explicitness: are explanations direct and understandable? (2)
Faithfulness: do they correctly characterize the decision? And
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Fig. 5. Inner interpretability methods for neural representations can focus on (1) training self-explaining AI systems that explain their decisions, (2) adversarial
training, (3) the disentanglement of latent representations such that each neuron tends to uniquely respond to a single concept in data, (4) analysis of token
evolution or attention maps in transformers, (5) analysis of concept vectors in latent space, (6) probing neural representations to evaluate their transferability
to a target task, and (7) representation comparison between different layers in two networks.

(3) Stability: how consistent are they for similar examples? It
has been shown that explanations from such models can be
unfaithful [12], [283] or vulnerable to adversarial examples
[44], [128], [320], so producing self-explaining models that
meet these remains an open challenge. Toward fixing these
issues, [75] introduces an NLP benchmark, and [36] provides
an interactive debugging method for prototype networks.

B. Adversarial Training (Intrinsic)

[88] found that adversarially trained classifiers exhibited
improvements in a number of interpretability-related prop-
erties, including feature synthesis for neurons (see Section
III-C). It has also been found that these adversarially trained
networks produce better representations for transfer learning
[252], image synthesis [49], [51], [255], and for modeling the
human visual system [89]. Unfortunately, robustness may be
at odds with accuracy [281], potentially due to predictive but
“nonrobust” features in a dataset [135]. This had led to an
understanding that adversarial examples can be used to help
to understand what types of useful or exploitable features a
network detects and represents [49], [51].

C. Disentanglement (Intrinsic):

During a pass through a network, each layer’s activations
can be represented as a vector in latent space. The goal of
disentanglement [30] is ensuring that features can be more
easily identified from studying a latent vector by encouraging
a more bijective relationship between neurons and a set of
interpretable concepts. See also Section III-F for a discussion
of polysemantic neurons. Disentanglement can be done in
a supervised manner by encouraging neurons to align to a
set of predetermined concepts. [56] did this by applying a

whitening operation to decorrelate features followed by a
learned orthogonal transformation to produce latent activations
that could be supervised. Similarly, inner supervision was
used by [152], [183], [184] to train a ‘bottleneck’ layer to
separate features, and by [271] to learn sparse, interpretable
embeddings. However, [190] discusses challenges with these
models, particularly the problem of “leakage” in which unde-
sired information nonetheless makes it through the bottleneck.

Disentanglement can also be done in an unsupervised
manner. A partial example of this is dropout [268] which
prevents co-adaptation among neurons, though at the cost
of increasing redundancy. Other works have explored using
lateral inhibition between neurons in a layer to make them
compete for activation [46], [85], [157], [271], designing a
“capsule” based architecture in which a group of neurons
have activations that each represent a specific feature [73],
[248], aligning activations to components of variation in data
[161], using a mutual information loss [55], using an inter-
class activation entropy-based loss [316], regularizing the
Hessian of the network’s outputs w.r.t a layer [230], training
a classifier and autoencoder from the same latents [258],
or learning a mask over features [121]. Other works have
focused specifically on autoencoders, training them to have
more independently-activated neurons [41], [54], [126], [148],
[158]. However, in a survey of these methods [181], [182]
prove an impossibility result for unsupervised disentanglement
without inductive biases on both the models and data.

D. Tokens and Attention (Intrinsic and Post Hoc):

Transformer architectures process data by passing token
representations through attention and feed forward layers in
alternating fashion. These architectural building blocks pose



unique opportunities for studying the network’s internal rep-
resentations.

First, the tokens can be studied. This can be done by
interpreting token representations in transformers directly [84],
[108], [109], [169], [209], [224] or analyzing how fully-
connected layers process them [110], [209].

Second, key-query products are computed inside of an
attention layer and represent how much each inner token is
attending to others. This notion of studying relations between
token representations has similarities to circuits analysis cov-
ered in Section IV-D. In their seminal work, [20] showed
that an attentional alignment appeared to show the expected
attention patterns for translation. Other recent works have
used this approach more systematically [2], [62], [119], [284]
including for the study of harmful biases [72]. And [239]
introduced a “ConceptTransformer” whose outputs can be
explained as an attention map over user-defined concepts much
like a concept bottleneck network [152]. Interactive tools
for visual analysis of attentional attribution are provided by
[166], [179], [270], [286]. And [52], [84], [224] expanded
on this approach toward the goal of multi-step attribution
across multiple layers. Importantly, the analysis of attention
may not always suggest faithful explanations, and an over-
reliance on them for interpretation can be hazardous [138],
[261], [300]. Finally, transformers may have many frivolous,
prunable attention heads [288], suggesting a further need for
caution because not all heads may be worth interpreting.

E. Concept Vectors (Post Hoc):

While disentanglement aims to align concepts with indi-
vidual neurons, methods for analyzing concept vectors are
post hoc solutions to the same problem. Here, the goal is
to associate directions in latent space with meaningful con-
cepts. Several works have done this by analysis of activations
induced by images from a dataset of concepts [100], [146],
[185], [186], [237], [323] including [1], [310] who used it
explicitly for debugging. A contrasting approach was used
by [258]. Rather than beginning with concepts and then
identifying directions for them, they first identified directions
using a generator and a “layer selectivity” heuristic, and then
sought to find post hoc explanations of what they encoded.
A debugging-oriented approach was taken by [137], [301]
who classified and clustered embeddings of data examples that
were incorrectly labeled by a classifier, including cases due to
demographic biases. This allowed for detection, interpretation,
and intervention for potentially difficult inputs for the model
as well as a way to identify underrepresented subcategories
of data. Unfortunately for these approaches, there is evidence
that networks learn to represent many more useful concepts
than can linearly independently be represented by their internal
layers [86]. And single directions in activation space can
correspond to unrelated concepts depending on the activation
vector’s magnitude [32].

F. Probing (Post Hoc):

Given some way of embedding data, the goal of probing
is to understand whether or not that embedding captures a
certain type of information. Probing leverages transfer learning
as a test for whether embeddings carry information about a
target task. The three steps to probing are to (1) obtain a
dataset that contains examples capturing variation in some
quality of interest, (2) embed the examples, and (3) train a
model on those embeddings to see if it can learn the quality
of interest. Any inner representation from any model can be
used, making this a versatile technique. A survey of probing
works is provided by [28]. The simplest example of probing
is to use an unsupervised learning algorithm as the probe
[130]. Additional work has been done with linear probes for
image classifiers [10]. However, probing has most commonly
been done in language models [6], [63], [91], [117], [153],
[168], [170], [177], [199], [216], [231], [251], [273]. Notably,
a form of contrastive probing was used by [42] for detecting
deception in language models. While versatile, probing is
imperfect [17]. One issue is that a probe’s failure to learn
to represent the desired quality in data is not necessarily an
indicator that it is not represented. For example, this may
be the case with an underparameterized probe. On the other
hand, a successful probe does not necessarily imply that the
model being probed actually uses that information about the
data. This was demonstrated by [236] who argued for the
use of rigorous controls when probing. In a subsequent paper,
[83] aimed to address this problem by pairing probing with
experiments that manipulated the data in order to analyze the
causal influence of perturbations on performance. See also
dataset-based methods for characterizing neurons in Section
III-B.

G. Representation Comparison (Post Hoc):

A somewhat indirect way of characterizing the representa-
tions learned by a DNN is to estimate the similarity between
its inner representations and those of another DNN. This is
challenging to quantify because networks are highly nonlinear
and represent concepts in complex ways that may not reliably
align with neurons or activation vectors. Nonetheless, a set of
works have emerged to address this problem with a variety
of both linear and nonlinear methods. These include single-
neuron alignment [113], [172], [173], [275], vector-space
alignment [293], canonical correlation analysis [206], singular
vector canonical correlation analysis [233], centered kernel
alignment [154], [214], [234], [274], deconfounded representa-
tion similarity [66], layer reconstruction [176], model stitching
[21], [64], [194], representational similarity analysis [195],
representation topology divergence [22], and probing [93].
Methods like these may aid in a better basic understanding
of what features networks learn and how. However, different
methods often disagree about the extent to which layers are
similar. [76] argue that these methods should be sensitive
to changes that affect functional behavior and invariant to
ones that do not. They introduce a benchmark for evaluating
similarity measures and show that two of the most common



methods, canonical correlation analysis and centered kernel
alignment, each fail in one of these respects.

VI. DISCUSSION

Interpretability is closely linked with adversarial robust-
ness research. There are several connections between the two
areas, including some results from non-inner interpretability
research. (1) More interpretable DNNs are more robust to
adversaries [141]. A number of works have studied this
connection by regularizing the input gradients of networks
to improve robustness [37], [80], [90], [97], [120], [144],
[147], [192], [217], [240], [257]. Aside from this, [82] use
lateral inhibition and [280] use a second-order optimization
technique, each to improve both interpretability and robust-
ness. Furthermore, emulating properties of the human visual
system in a convolutional neural network improves robustness
[70]. (2) More robust networks are more interpretable [19],
[86], [88], [227]. Adversarially trained networks also produce
better representations for transfer learning [7], [252], image
generation [49], [51], [255], modeling the human visual system
[89], and fitting symbolic graphs [238]. (3) Interpretability
tools can be used to design adversaries. Doing so is a way
to rigorously demonstrate the usefulness of the interpretability
tool. This has been done by [47], [49], [51], [125], [207] and
has been used to more effectively generate adversarial training
data [326]. As a means of debugging models, [132] argues
for using “relaxed” adversarial training, which can rely on
interpretability techniques to discover distributions of inputs
or latents which may cause a model to fail. (4) Adversarial
examples can be interpretability tools [49], [51], [78], [135],
[278] including adversarial trojan detection methods [104],
[116], [180], [291], [292], [321].

Interpretability is also closely linked with continual learn-
ing, modularity, network compression, and semblance
to the human visual system. Continual learning methods
involving parameter isolation, and/or regularization make neu-
rons and weights more intrinsically interpretable. Sections
II-A and III-A discussed how these methods suggest intrinsic
interpretations for weights and/or neurons. Thus, they allow for
each weight or neuron to be understood as having partial mem-
berships in a set of task-defined modules. Aside from this, a
number of other intrinsic modularity techniques were the focus
of Section IV-B. And as discussed in Section IV-C, networks
can also be interpreted by partitioning them into modules
and studying each separately. Moreover, “frivolous” neurons,
as discussed in Section III-G, can include sets of redundant
neurons which can be interpreted as modules. Networks with
frivolous neurons are compressible, and compression can guide
interpretations, and interpretations can guide compression, as
discussed in Section III-G.

Interpretability techniques should scale to large models.
Small networks and simple tasks such as MNIST classification
[165] are often used for testing methods. However, simple
networks performing simple tasks can only be deployed in a
limited number of real world settings, and they are sometimes

easy to replace with other intrinsically interpretable, non-
network models. As a result, the scalability of a technique
is strongly related to its usefulness. For example, capsule
networks [248] achieve impressive performance on MNIST
classification and have intrinsic interpretability properties that
convolutional networks lack. However, they are much less
parameter efficient and have thus far not achieved competitive
performance beyond the CIFAR-10 [156] level, let alone the
ImageNet [244] level [228]. Methods like these may offer
excellent inspiration for future work, but if they fail to be
tractable for large models, they will be of limited direct value
for practical interpretability. We urge researchers to detail
computational requirements and test the scalability of their
methods.

Interpretability techniques generate hypotheses – not con-
clusions. Producing merely-plausible explanations is in-
sufficient. Evaluating validity and uncertainty are key.
Mistaking hypotheses for conclusions is a pervasive problem
in the interpretability literature [178], [200], [242]. Consider
the goal of explaining a particular neuron. There exist several
methods to do so (Section III). However, if such an approach
suggests that the neuron has a particular role, this does not
offer any guarantee that this explanation is complete and
faithful to its true function. Often, very plausible-seeming
explanations do not pass simple sanity checks [4] or are very
easy to find counterexamples for [35], [128], [220]. A great
number of works in interpretability have failed to go beyond
simply inspecting the results of a method. More care is needed.
Interpretability techniques can only be evaluated to the extent
that they help users make testable predictions. They can only
genuinely be useful inasmuch as those predictions validate.
And the validity of an interpretation is only granted on the
distribution of data for which validating tests were conducted
– extrapolating interpretations is risky (e.g., [35]). Developing
specific methods for evaluating interpretability techniques is
discussed later in Section VII.

In addition to validity, it is important to quantify uncertainty.
Ideally, interpretations should be paired with confidence esti-
mates. How to measure certainty depends on the method at
hand, but some approaches have been used such as supervising
explanations (e.g., [123]), conducting multiple trials (e.g.,
[220]), comparisons to random baselines (e.g., [127], [236]),
comparisons to other simple methods [4]. or searching for
cases in which an interpretation fails (e.g., [25], [35], [128]).

Cherry-picking is harmful and pervasive. Evaluation of
methods should not fixate on best-case performance. Due to
the inherent difficulty of interpreting DNNs, many works in the
literature showcase individual, highly successful applications
of their method, often in toy models. This can be useful for
providing illustrative examples or specific insights. But the
evaluation of interpretability techniques should not be biased
toward their best case performance. One hazard of doing this
could be from overestimating the value of techniques. And in
fact, some works have found that certain methods only tend to



perform well on a fraction of examples (e.g., [25], [35], [45],
[48], [85], [127], [181], [182], [196], [197], [225], [288]).

Another harm of cherrypicking might come from biasing
progress in interpretability toward methods that fail to explain
complex subprocesses. Some methods are better equipped for
this than others. For example, attributing a feature’s repre-
sentation to a linear combination of neurons is strictly more
general than attributing it to a single neuron. It is likely that
some kinds of features or computations in DNNs are more
naturally human-understandable than others, so methods that
are only useful for explaining simple subprocesses may be
poorly-equipped for studying networks in general.

Works should evaluate how their techniques perform on
randomly or adversarially sampled tasks. For example, a work
on characterizing neural circuits should not focus only on
presenting results from circuits that were particularly amenable
to interpretation. It should also aim to explain the role of
randomly or adversarially sampled neurons inside of circuits
or find circuits that can explain how the network computes
randomly or adversarially selected subtasks. If a method like
this only succeeds in limited cases, this should be explicitly
stated.

Ideally, progress in interpretability should neither decrease
performance in general nor increase certain risky capabili-
ties. On one hand, interpretable AI techniques should maintain
competitiveness. It is key to avoid costs such as degraded
task performance, increases in bias, higher compute demands,
or difficulty to use in modern deep learning frameworks.
Competitive shortcomings like these could lead to “value
erosion” [67] in which safer, more interpretable AI practices
are not adopted in favor of more competitive approaches.

On the other hand, certain types of performance improve-
ments from interpretability research may also be undesirable.
Interpretability work should also not lead to increased capabil-
ities if they make safety-related oversight more difficult. For
example, advances toward general intelligence may lead to
serious harms if not managed appropriately [39], [59], [208],
[226], [245], [276]. One risky possibility is if interpretability
is a byproduct of increased general capabilities. For example,
large language models can often be prompted to “explain”
their reasoning, but only as a result of having advanced,
broad-domain abilities. Another way for this to occur is if
interpretability leads to advancements in capabilities via basic
model insights. From the perspective of avoiding risks from
advanced AI systems, neither of these is ideal. A focus on
improving interpretability techniques without commensurate
increases in capabilities offers the best chance of preventing
advancements in AI from outpacing our ability for effective
oversight. From this perspective, we argue that improvements
in safety rather than capabilities should be the principal goal
for future work in interpretability.

VII. FUTURE WORK

The connections between interpretability, modularity, ad-
versarial robustness, continual learning, network compres-
sion, and semblance to the human visual system should

be better understood. One of the most striking findings
of modern interpretability work is its connections with other
paradigms in deep learning. One of the central goals of this
survey has been to highlight these connections (see Section
VI). Currently, the intersections in the literature between inter-
pretability and these other areas are relatively sparse. Moving
forward, an interdisciplinary understanding of interpretability
may lead to insights and advancements spanning multiple
domains.

Scaling requires efficient human oversight. Many explana-
tions obtained by state of the art interpretability techniques
have involved a degree of human experimentation and cre-
ativity in the loop. In some cases, many hours of meticulous
effort from experts have been required to explain models or
subnetworks performing very simple tasks (e.g., [45], [209]).
But if the goal is to obtain a thorough understanding of
large systems, human involvement must be efficient. Ideally,
humans should be used for screening interpretations instead of
generating them. Solutions can include using active learning
(e.g., [103]), weak supervision (e.g., [34]), implicit supervision
using proxy models trained on human-labeled data (e.g., [49],
[51]), and/or rigorous statistical analysis of proxies (e.g., [127],
[325]) to reduce the need for human involvement. Toward this
end, obtaining additional high-quality datasets (e.g., [25]) with
richly-labeled samples may be valuable.

Focus on discovering novel behaviors – not just analyzing
them. Many existing methods are only well-equipped to study
how models behave in limited settings. For example, any
interpretability method that relies on a dataset is limited to
characterizing the model’s behavior on that data distribution.
But ideally, methods should not be limited to a given dataset
or to studying potential failures when the failure modes are
already known. For instance, an important practical problem
is the detection of offensive or toxic speech, but no dataset
contains examples of all types of offensive sentences, and
having a human hand-specify a function to perfectly identify
offensive from inoffensive speech is intractable. Humans can,
however, usually identify offensiveness when they see it with
ease.

This highlights a need for techniques that allow a user to
discover failures that may not be in a typical dataset or easy to
think of in advance. This represents one of the unique potential
benefits of interpretability methods compared to other ways
of evaluating models such as test performance. Toward this
end, some inner interpretability methods that generate abstract
understandings of subnetworks have proven to be useful (e.g.,
[68], [125], [197], [207], [256]. However, methods based on
synthesizing adversarial examples may offer a particularly
general approach for discovering novel failure modes (e.g.,
[49], [51], [116], [291]).

Interpretability work may help better understand con-
vergent learning of representations. Some works have hy-
pothesized that similar features or concepts tend to occur
across different model instances or architectures [220], [299].



Better understanding the extent to which systems learn similar
concepts would lead to a more basic understanding of their
representations and how interpretable we should expect them
to be. If these hypotheses are true, interpreting one model
in depth may be much more likely to lead to generalizable
insights. Continued work on measuring representational simi-
larity between neural networks (see Section V-G) may be well-
suited for making progress toward this goal.

“Mechanistic interpretability” and “microscope AI” are
ambitious but potentially very valuable goals. One direction
for interpretability research is mechanistic interpretability,
which aims to gain an algorithmic-level understanding of a
DNN’s computations. This can be operationalized as con-
verting the DNN into some form of human-understandable
pseudocode [95]. This is related to the goal of microscope AI,
which refers to gaining domain insights by thoroughly inter-
preting high-performing AI systems [133]. These capabilities
would have advantages, including predicting counterfactual
behaviours and reverse engineering models. Thus far, there
have been a limited number of attempts towards this goal
that have had some success by using small models, simple
tasks, and meticulous effort from human experts [45], [85],
[209], [285]. Future work in this direction may benefit by using
techniques from program synthesis and analysis to automate
the generation and validation of hypotheses.

Detecting deception and eliciting latent knowledge may
be valuable for advanced systems. A system is deceptive if
it passes false or incomplete information along some com-
munication channel (e.g., to a human), despite having the
capability to pass true and complete information. Relatedly,
latent knowledge [60] is something that a system “knows”
but shows no signs of knowing. For example, a language
model might babble a common misconception like “bats
are blind” in some contexts despite having the “knowledge”
that this is false. Hidden knowledge like this may lead to
deceptive behavior. As an example, [60] discusses a system
that intentionally and deceptively manipulates the observations
that a human sees for monitoring it. In this case, knowledge
about the true nature of the observations is latent.

Being able to characterize deceptive behavior and latent
knowledge has clear implications for safer highly intelligent
AI by allowing humans to know when a model may be
untrustworthy. But this may be difficult for several reasons
including that (1) by definition, deceptive behavior and latent
knowledge cannot be determined by observing the model’s
deployment behavior alone, (2) any mismatches between the
features/concepts used by humans and the model require a
method for ontology translation, and (3) it is unclear the
extent to which a human can interpret an AI system that
is superhuman on some task. However, inner interpretability
methods offer a unique approach to these challenges via
scrutinizing parts of the model’s computational graph that may
process latent knowledge. Probing has shown potential for this
[42].

Rigorous benchmarks are needed. Ideally, they should
measure how helpful methods are for producing useful in-
sights that have relevance to engineers. These could involve
rediscovering known flaws in networks. Interpretability
work on DNNs is done with numerous techniques, not all of
which have the same end goal. For example, some methods
aim to explain how a DNN handles a single input while
others are aimed at a more generalizable understanding of it.
For these reasons, plus the rapid development of techniques,
widely-accepted benchmarks for interpretability do not yet
exist. This may be a limitation for further progress. A well-
known example of a benchmark’s success at driving immense
progress is how ImageNet [244] invigorated work in super-
vised image classification.

The weakest form of evaluation for an interpretability
method is by its ability to merely suggest a particular charac-
terization. For example, if feature synthesis is used to visualize
a neuron, having a human look at the visualization and say
“this looks like X” is a fraught basis for concluding that the
neuron is an X-detector. This would be to conflate a hypothesis
with a conclusion. A somewhat more rigorous approach to
evaluation is to make a simple testable prediction and validate
it. For example, suppose the hypothesized X-detector activates
more reliably for inputs that contain X than ones that do not.
Another example is if the use of some method improves some
quantitative proxy for interpretability (e.g., [127]). This type
of approach is valuable but still not ideal.

The end goal for interpretability tools should be to provide
valid and useful insights, so methods for evaluating them
ought to measure their ability to guide humans in doing
useful things with models. In other words, interpretability tools
should be useful for engineers, particularly ones who want to
diagnose and debug models. Some works have made progress
toward this. Examples include designing novel adversaries
(e.g., [47], [49], [51], [107], [125], [135], [137], [164], [207],
[301], [326]), manually editing a network to repurpose it or
induce a predictable change in behavior (e.g., [27], [42], [68],
[111], [197], [302]), or reverse-engineering a system using
interpretability techniques (e.g., [45], [84], [209]).

One tractable approach for benchmarking suggested by
[134] would be to evaluate interpretability techniques by
their ability to help a human find flaws that an adversary
has implanted in a model. Judging techniques by how well
they help humans rediscover these flaws would offer a much
more direct measure of their practical usefulness than ad
hoc approaches to evaluation. Related techniques for feature
attribution methods have been argued for [129] and used [5],
[23], [74] but have not yet popularized. Competitions for
implanting and rediscovering flaws (e.g., [193]) hosted at well-
known venues or platforms may be a useful way to drive
progress in both techniques and benchmarking.

Combining techniques may lead to better results. Inter-
pretability techniques can often be combined. For example,
almost any intrinsic method could be used with almost any
post hoc one. However, the large majority of work in inter-



pretability focuses on studying them individually. Studying
the interplay between methods is relatively unexplored. Some
works have identified useful synergies (e.g., [88], [302]) But
to the best of our knowledge, there are no works dedicated to
thoroughly studying interactions between different methods.
We hope that new baselines and increased demand for rig-
orously interpretable systems will further incentivize results-
oriented interpretability work.

Consider an example. The ImageNet benchmark was very
effective at advancing the state of the art on image clas-
sification performance in the 2010s. Over this time period,
improvements in classification performance were not due
to single techniques, but a combination of breakthroughs –
batch normalization, residual connections, inception modules,
deeper architectures, etc. Similarly, we should not expect to
best advance capabilities related to interpretability without a
combination of methods.

Applying interpretability techniques for debugging and
debiasing in the wild. Working to apply interpretability tools
to find issues with real-world models (e.g. [61]) both helps
for discovering issues in consequential applications and to
test methods to see which ones may be the most practically
useful. In doing so, researchers should be critical of the ethical
frameworks used in machine learning and particularly how
they may diverge from the interests of people–particularly
from disadvantaged groups–who may be the most adversely
affected by these technologies [31].

Growing the field of interpretability. Many ethical or safety
concerns with AI systems can be reduced via tools to better
understand how models make decisions and how they may
fail. As a result, we argue that instead of being a separate
interest, interpretability should be seen as a requirement for
systems that are deployed in important settings. As discussed
above, a compelling path forward is via benchmarking and
competitions. There are some reasons for optimism. The
field is maturing, and a number of techniques have now
proven their worth for practical insights and debugging. And
although they are our focus here, we emphasize that that inner
interpretability methods will not be the only valuable ones for
improving AI safety.

It is time for a paradigm shift toward engineering.
Currently, the field of interpretability in DNNs is largely
unproductive. Being able to rigorously study the solutions
learned by DNNs seems to have important potential for making
DNNs safer, but they are currently rarely used for evaluation or
engineering practical applications. As discussed above, works
in the literature too often treat hypotheses as conclusions
[178], [200], [242] and fail to connect a method to useful
applications. Some amount of exploratory work is clearly
valuable for generating insights, and it should continue. But
the field has yet to produce many methods that are competitive
in real applications.

In large part, the lack of productivity in interpretability
seems due to a lack of direction. Motivations for interpretabil-
ity work are “diverse and discordant” [178] and the term itself,

as used in the literature, “lacks precise meanings when applied
to algorithms” [155]. We join with [79], [242], [200], and
[155] in calling for grounding interpretability in meaningful
applications. If interpretability tools are ultimately meant to
help engineers diagnose and debug DNNs, the field should
design and evaluate methods based on this.

We argue that moving forward, the most pressing change
that is needed in the field is a focus on producing tools
that are useful to engineers. To better realize the potential of
interpretability work for human-aligned AI, a more deliberate,
interdisciplinary, and application-focused field will be impor-
tant. It will be valuable to have more research that emphasizes
diagnostics, debugging, adversaries, benchmarking, and lever-
aging useful combinations of different interpretability tools.
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