Tail-Optimized Caching for LLM Inference

Wenxin Zhang Yueying Li
Columbia Business School Cornell University, Department of Computer Science
wz25740@columbia.edu y13469Q@cornell.edu
Ciamac C. Moallemi Tianyi Peng
Columbia Business School Columbia Business School
ciamac@gsb.columbia.edu tp28450@columbia.edu
Abstract

Prompt caching is critical for reducing latency and cost in LLM inference—OpenAl
and Anthropic report up to 50-90% cost savings through prompt reuse. Despite
its widespread success, little is known about what constitutes an optimal prompt
caching policy, particularly when optimizing tail latency—a metric of central
importance to practitioners. The widely used Least Recently Used (LRU) policy
can perform arbitrarily poor on this metric, as it is oblivious to the heterogeneity
of conversation lengths. To address this gap, we propose Tail-Optimized LRU,
a simple two-line modification that reallocates KV cache capacity to prioritize
high-latency conversations by evicting cache entries that are unlikely to affect
future turns. Though the implementation is simple, we prove its optimality under a
natural stochastic model of conversation dynamics, providing the first theoretical
justification for LRU in this setting—a result that may be of independent interest to
the caching community. Experimentally, on real conversation data WildChat [[Zhao
et al.;2024], Tail-Optimized LRU achieves up to 27.5% reduction in P90 tail Time
to First Token latency and 23.9% in P95 tail latency compared to LRU, along with
up to 38.9% decrease in SLO violations of 200ms. We believe this provides a
practical and theoretically grounded option for practitioners seeking to optimize
tail latency in real-world LLM deployments.

1 Introduction

Prompt Caching is Essential. Al capabilities have exploded in recent years, and so has the demand.
By December 2024, ChatGPT handled !/ billion user messages every day with 300 million weekly
active users [OpenAl Newsroom, [2024]. To efficiently use scarce and costly GPU resources, prompt
caching was proposed [|Gim et al.| |2024]): it caches the KV cache of existing queries, allowing a
new query to skip some computation by reusing the KV cache it shares with existing queries [VLLM
Team, 2025]]. Prompt caching can reduce prefill computation thus Time to First Token (TTFT).
This technique has been adopted by OpenAl and Anthropic, both reporting a significant amount
(50-90%) of latency and cost reductions [OpenAll 2024} |Anthropicl [2024]. Despite the practical
impact of prompt caching, little is known about how much existing caching policies—such as the
Least Recently Used (LRU) policy—can be improved upon with respect to key metrics in LLM
inference systems, which is the main motivation of this work.

Challenges of Optimizing Tail Latency. One of such key metrics is tail latency. In real-time
user-facing applications, companies care about high-percentile response time, e.g., 95% of requests
complete within 200 ms. In LLM conversation-based applications, users arrive to request services
through an alternating sequence of prompts and responses that we call turns. Each prompt, along with

Preprint. Under review.

Arrival Sequence

A:.lgo B:100 Aiﬁo ® conva

! Conv B

of blocks
o

Cache Allocation Comparison: LRU vs T-LRU

Y, LRU T-LRU LRU T-LRU LRU TLRU
19) 100 - " R . -
u_o] /// @ LRU: Conv A
- 75 / 4 ©/" LRU: Conv B
2 /// mEm T-LRU: Conv A
g 50 7/ - T-LRU: Conv B
v N el Cache Capacity
A 7 Ee
b3

0 1 2

Timestep

Figure 1: Failure of LRU on Tail Latency. Consider an example with two conversations (A and
B) and a total of three turns (A has two turns; B has one). The top panel shows the total job size
(conversation history plus user prompt) at each step. For simplicity, we assume the response length is
zero and that each user prompt consists of 100 blocks. The bottom panel shows the number of cached
blocks updated after each turn. The cache capacity is 100 blocks. We measure tail latency as the
maximum processing time among the three requests (i.e., the 66.7%-th percentile). Under LRU, all
of conversation A’s cache blocks are evicted immediately after step 2, resulting in a maximum of 200
uncached blocks at step 3. Therefore, the tail latency under LRU corresponds to the time required to
process 200 blocks. In contrast, if at step 2 we partially evict A’s cache so that both A and B retain 50
cached tokens each, then regardless of whether the third request comes from A or B, the maximum
number of uncached blocks is reduced to 150—an improvement of 25%. This improvement is what
our proposed policy, T-LRU, is designed to achieve.

all previous conversation history, is treated as a job request. When the cache is full, the server must
decide which KV cache blocks to evict, under four layers of uncertainty: 1) when new conversations
are arriving; 2) the number of future turns of existing conversations; 3) the size of future user prompt
and model response; and 4) the arrival order of turns from concurrent conversations competing for
cache space. Here, KV cache blocks are the atomic cacheable units of tokens, e.g., a single block may
consist of 128 tokens [OpenAll [2024]. These intertwined dynamics make tail latency optimization in
LLM inference uniquely challenging.

Existing Approaches. Classic caching/paging policies mostly focus on maximizing cache hit rate,
not tail latency. Among these, the LRU policy is perhaps the most representative, evicting the cache
item that was accessed least recently. LRU has been widely adopted in LLM inference systems,
including vLLM [Kwon et al.,2023|], SGLang [Zheng et al.|[2024], and Mooncake [Qin et al.;2025].
However, LRU does not account for the fact that different blocks within a request may have varying
effects on tail latency, thus leaving room for further optimization. See Figure [I]for an illustrative
example.

Our Approach: Tail-Optimized LRU (T-LRU). In this work, we focus on optimizing the tail latency
of TTFT (Time to First Token) through improved cache eviction policies. To this end, we introduce
the metric Tail Excess Latency (TEL):

TEL = » max{TTFT(i) - &, 0}, (1)

where TTFT(7) denotes the Time to First Token for the i-th request, and £ > 0 is a user-specific
latency threshold (e.g., £ = 200 ms). TEL captures the total TTFT exceeding the threshold, serving
as a practical proxy for tail latency while treating each request independently. See Section [2] for
further discussion of this objective.

Empirically, TTFT is known to be approximately linear in the number of uncached tokenﬂ ie.,
TTFT(i) ~ « - b(3), 2)

'This approximation holds well when the uncached length is not excessively long and the prefill of the
request is not batched with others. We use this approximation for analytical purposes, while the actual TTFT is
measured in our experiments.

where « is a constant determined by the model and GPU configuration, and b(¢) is the number of
uncached blocks for request ¢ (see [Horton et al., 2024]] and Figure[3). We use this approximation to
motivate our policy design and simplify the analysis. By defining £ = £, /«, TEL can be equivalently
expressed as

TEL ~ a Y _max{b(i) — ¢, 0}. 3)

Our intuition is the following: for a conversation turn with conversation history length L and whose
next prompt is expected to add) blocks, caching more than L + @ — & blocks for this turn cannot
improve TEL as the number of uncached blocks is already lower than £. Any blocks beyond this TEL-
safe budget can therefore be evicted “for free". See Figure 2] for illustration of this idea. Motivated by
this observation, we propose Tail-Optimized LRU (T-LRU), a simple modification of LRU. Upon
cache overflow, T-LRU works in two phases:

1. TEL-safe trimming: first evict blocks from conversations whose cache size exceeds the
TEL-safe budget L + Q — &;
2. LRU-as-usual: If space is still needed, evict blocks using LRU.

In Figure[T] the performance of T-LRU with £ = 150 is shown. In practice, the next-prompt length is

unknown; T-LRU can use a constant Q such as the empirical average for estimating the length of
the next-promptﬂ Implementation requires only one extra bookkeeping: mark TEL-safe blocks as
“infinitely old,” after which any existing LRU engine can evict them as usual.

of uncached blocks

Turn1 Turn2 Turn 3

Time
Cached blocks at Turn 2

Figure 2: A three-turn conversation {(Q1, A1), (Q2, A2), (@3, A3)} is shown, L; denotes conver-
sation history (i.e., L1 = Q1 + A1, Ly = L1 + Q2 + As). Bars indicate the number of uncached
blocks each turn incurs; the red dashed line marks the latency threshold &£. Turn 1: projected load for
next request is L1 + @2 < &; no caching is needed. Turn 2: now Lo + Q3 > &, atleast Ly + Q3 — &
blocks must be cached (green), but caching more won’t improve TEL further.

Theoretical Optimality. On the theoretical front, we establish the following results:

1. Belady’s algorithm [Beladyl 1966, which evicts the block whose next use is furthest in the
future, is a clairvoyant caching strategy known to achieve the hindsight-optimal hit rate. We
show that combining TEL-safe trimming with Belady’s algorithm yields an policy being
hindsight optimal for TEL (Theorem[I). This result justifies the use of T-LRU, as LRU is a
widely used heuristic for Belady’s algorithm.

2. In the caching literature, the settings under which LRU is online optimal are not well
understood. To address this, we introduce a novel stochastic model for multi-turn conversa-
tions that captures both uncertainty and temporal locality in LLM workloads. Within this
framework, we prove that a generalized T-LRU is optimal (Theorem 2)), incorporating the
optimality of classical LRU (for average latency) and T-LRU as special cases. 7o the best of

Furthermore, Q — ¢ can be combined and interpreted as one tunable parameter that determines how many
blocks at the end of the conversation history are considered safe to evict.

our knowledge, this is the first result demonstrating the optimality of LRU under a natural,
conversation-driven arrival model, and may be of broad interest to the caching community.

Strong Practical Performance. Finally, we evaluate the performance of T-LRU and LRU on real
multi-turn chat traces from ShareGPT [[Contributors, [2025]] and WildChat [Zhao et al.,[2024]]. Our
policy achieves up to a 23.9% reduction in P95 tail latency compared to LRU, and up to a 38.9%
decrease in SLO violations relative to the strongest baseline. We also provide insights into selecting
the latency threshold £ (Section[3)). These results highlight the practical advantages of T-LRU.

The rest of the paper is organized as follows. We discuss related work in Section[A] In Section[2] we
describe the problem setting and present the hindsight-optimal policy for TEL. Section [3]introduces
the T-LRU policy and demonstrates that it is never worse than LRU for optimizing TEL. In Section 4}
we prove the optimality of T-LRU for a class of stochastic models that capture conversational arrivals.
Section [5] presents the experimental results. Finally, Section [6]discuss future directions.

2 Hindsight Optimal Policy

Deterministic Arrival Trace. To begin, we describe the prompt caching problem for LLM inference
under a deterministic arrival trace to study the hindsight optimality, deferring the stochastic model to
Sectionf]for online optimality. Consider a discrete time horizont = 1,2, ..., 7T with IV conversations
over T steps. For each conversation i € [N], let 7; C [T denote the set of time steps when
conversation ¢ issues a request. Assume 7; is disjoint from each other. For each ¢t € T, let ¢; ; and
a; ¢ denote the lengths of the user prompt and model response for that turn, respectively, measured in
blocks; otherwise, set ¢; ; = a;; = 0 for ¢ ¢ T

Caching State. For i € [N]and ¢ € [T, let z; ; denote the number of cached blocks for conversation
i at time ¢, before the request arrival. The caching state {z; ; } must satisfy the following constraints.

First, the total number of cached blocks cannot exceed the cache capacity C' at any time:

Z rip < C, Vt € [T] (capacity constraint))
1€[N)

Second, for each conversation, the number of cached blocks cannot exceed the length of its conversa-
tion history up to time ¢:

t
Tior1 <) (g1 +aiy), Vi€[N,teT, t<T)
i=1

Third, the cache allocation for a conversation can only increase when a request from that conversation
arrives; otherwise, it can only decrease or stay the same:

Titt1 < Tig, Vi€ [N], t ¢ T;, t <T (cache increases only on arrival) 6)

A caching policy must determine the caching state {x; .} subject to these constraints. When a
request arrives, the server can reuse any cached blocks in {z; ; }, while any evicted blocks must be

recomputed
For simplicity, we assume optional caching: a request is not required to be added to the cache after

serving. Extending to forced caching is straightforward (by replacing the inequality in constraint (3)
with equality); we defer this discussion to Appendix

Latency Objective: TEL. We aim to optimize the tail latency metric via the caching policy.
Percentile-based tail latency is notoriously difficult to optimize directly, so we introduce the 7ail
Excess Latency (TEL) metric as a tractable surrogate:

TEL:= > max{TTFT(i,t) — &, 0},
i€[N], teT;

3In practice, evicted blocks may be retrieved from other storage layers (e.g., CPU DRAM or SSD). Here, we
focus on a single-layer cache and do not consider inter-layer transfers.

where TTFT(4,t) denotes the Time to First Token for the request at time ¢ of conversation ¢ and
&, is a pre-defined threshold. TEL is analogous to Conditional Value at Risk (CVaR), but with an
explicit, user-specified threshold [Bauerle and Ott, 2011, |Chow et al., 2015]]; it also resembles SLO
attainment metrics [Zhong et al.| [2024]], with the distinction that TEL penalizes larger violations
proportionally more. Setting £, = 0 recovers the average-latency objective. While our theoretical
analysis centers on TEL, our experiments report conventional metrics (tail latency and SLO violation
rate) for straightforward comparison in future studies.

As discussed in (@), to simplify the analysis and guide policy design, we assume TTFT grows linearly
with the number of uncached blocks—an assumption empirically justified (see Figure [3) by the
dominance of feed-forward linear layers during inference [Kamath et al., [2025] [Zhu et al., 2024} |Ye
et al.,|2025]]. Thus,

t t—1
TEL=a » max{ Y g+ ai;—zis—&0
j=1 j=1

i€[N], teT;

where § = &;/a, and Z;Zl Qij+ Zz;ll a; j — %;¢ is the number of blocks that need to be computed

the request of conversation ¢ at time ¢ (here, Zz;ll G + 22;11 a;,; is the total number of blocks in
the conversation history, and ¢, ; corresponds to the new request prompt at time t).

TTFT Latency vs Token Load

120{ — cached load 0
cached load 200
—— cached load 400
—— cached load 600
—— cached load 800
801 — cached load 1000
cached load 1200
—— cached load 1400
cached load 1600
—— cached load 1800

100

60

Latency (ms)

40

20

0 250 500 750 1000 1250 1500 1750
Token Load

Figure 3: Experimental results demonstrate that TTFT increases approximately linearly with the
number of uncached tokens. The plot shows TTFT latency as a function of the total prompt length

(Token Load) and the size of the cached prefix (Cached Load). We conducted our experiments using
Vicuna-7B with vLLM’s prefix caching enabled on a Colab A100 GPU.

Hindsight Optimal Policy for TEL With both the decision timeline and objective clarified, we next
ask: If the system knew the entire future arrival trace, what caching policy would minimize TEL?
Understanding this hindsight-optimal benchmark unveils what’s important to improve tail latency
and thus guides our policy design. The hindsight optimal policy chooses cache variables {z; .} € N:
the number of cache blocks conversation ¢ can reuse at the beginning of step ¢, and slack variables
;¢ > 0 to minimize TEL:

min Z Z Ui ¢ @)

T ¢,uq,t EN
SOTREET e N teTy

s.t. @, @), ©)

Wiy > qu + Zai’j -zt — &, Vi € [N], t € T; (slack variable)

Here u; ¢ describes the TEL objective as the u; ; equals (Z;Zl Qi; + Zj;i Qi — Tit — f)* in the

optimal solution.

Theorem 1 (Hindsight-Optimal Policy Structure). The hindsight-optimal policy that minimizes TEL

restricts the number of KV-cache blocks allocated to each conversation within the TEL-safe budget,
+

given by (22:1 Gij + 22;11 Qi — 5) . If the total allocation exceeds the cache capacity, the

policy evicts cache blocks from conversations whose next requests are expected to arrive furthest in
the future.

See Appendix [B|for detailed proof. Setting £ = 0 recovers average latency minimization, and in this
case, the theorem implies the furthest-in-future eviction strategy is optimal—we recover the Belady
optimal policy, which was shown to maximize cache hit rate in classical caching problems [Belady,
1966]]. Therefore, the hindsight optimal policy for minimizing TEL can be characterized as a
threshold-capped version of the Belady policy. We call this policy Tail-Optimized Belady.

3 Tail-Optimized LRU

Inspired by the Tail-Optimized Belady policy (Theorem [I), we propose Tail-Optimized LRU, an
online policy that also maps into the future and caches just enough to prevent conversations’ next
turns from affecting TEL. To adapt the hindsight optimal policy to online settings, we make two
modifications: 1) replace the actual next-prompt length () with an estimate Q; 2) use the least-
recently-used eviction strategy rather than the furthest-in-future.

Pseudocode is given in[I] We believe Tail-Optimized LRU is a practical, low-friction upgrade for any
LLM caching system that already relies on LRU: its no-worse-than-LRU guarantee (Theorem ??)
eliminates adoption risk, while the lightweight modifications from standard LRU minimize adoption
costs.

Algorithm 1: Tail-Optimized LRU Policy

Input: Number of conversations N, Timestamp of Last Turn {7; }, Number of cached blocks
{X;}, conversation history lengths {L;}, arriving conversation 6, arriving conversation
length L},

Parameters: Policy parameters: threshold &, next-turn length estimate {Q;}

Output: Updated cache sizes {X;}

Ly < L}, Xg < Lg, 79 < Current Timestamp // Update system state for arriving

conversation
if >, (v Xi > C then
foreach i € [N] do
if X; > L; + Q; — ¢ then

X+ X;—1 // ‘Free Eviction’’ under TEL objective
if >, (v Xi < Cthen

. | return X

while Zie[N] X;>Cdo

Find j = arg min;en).x,>1 i // Evict using LRU

Xj — Xj —1

return X

Lightweight Integration with Existing Caching Systems. Implementing Tail-Optimized LRU in a
cache system based on LRU only requires an extra bookkeeping: mark blocks that can be evicted “for
free” (i.e., blocks identified in the proactive trimming phase) as infinitely old. Then these blocks can
be evicted seamlessly by any existing LRU engine in the usual way. This design is also compatible
with paged KV cache technique which stores keys and values in non-contiguous memory space.

4 Optimality of Tail-Optimized LRU in a Stochastic Conversation Model

In this section, we prove the optimality of a generalized Tail-Optimized LRU policy under stochasti-
cally generated traces, which covers the optimality of T-LRU (Policy [I)) and LRU as special cases.

Stochastic Conversation Model. Classic caching models fail to capture the nature of LLM workload:
unlike traditional cache systems where objects have static sizes and independent access patterns,
LLM workloads consist of multi-turn conversations that dynamically start, evolve, and terminate
over time; see related work in Section [A] To address this gap, we build a novel stochastic model that
characterizes these unique features of LLM workloads.

To characterize multi-turn conversations, our model must address four fundamental questions: (1)
when do new conversations start? (2) when will an active conversation generate its next prompt?
(3) how many tokens appear in prompts and responses? (4) when do conversations terminate? Real

traces from|Zhao et al.|[2024] reveals strong temporal locality in multi-turn conversations: the longer
a user goes without sending their next prompt, the less likely they are to ever return. This observation
has a direct practical implication: least-recently-used conversations are also least-likely-to-return.
Consequently, when cache capacity constraints force eviction decisions, prioritizing recently active
conversations aligns with their probability of future requests. We capture this pattern by modeling the
number of active conversations as a continuous-time birth-death process. Specifically,

¢ New conversations are “born" at rate Acony > 0, and each active conversation “dies” at rate
> 0. We index conversations by their arrival order, 1 = 1,2,

» While active, conversation 7 generates requests according to an independent Poisson process
with rate \; > 0.

* At each turn, a random prompt length () is drawn from a known (possibly conversation-
specific) distribution; the length of model responses A follows an arbitrary distribution that
the decision-maker does not need to know.

This design has an appealing property: conversations with exponential “death clocks" naturally
implement the temporal locality observed empirically. The longer a conversation stays quiet, the
more likely it has terminated, making it a safe candidate for cache eviction. Building on this insight,
we develop T-LRU, a policy that maintains LRU ordering while prioritizing conversations whose next
request would breach a time-to-first-token (TTFT) latency threshold. In this section, we prove that a
generalized version of T-LRU that minimizes expected total eviction loss (TEL) is optimal under our
stochastic conversation model.

For simplification, we assume that KV caches cannot be reused across different conversations. This
assumption is also motivated by security and privacy concerns: e.g., vVLLM implement cache isolation
to prevent timing-based inference attacks

Belief Markov Decision Process. The decision-maker only observes the turns as they arrive, but
departures are never observed. Thus the problem is modeled as a partially observable Markov decision
process (POMDP), where the optimal policy is defined for each possible belief state over the POMDP
states. As the conversations arrive and depart independently, we can decompose the belief state to be
the individual expected turn rates of each conversation.

Let 7;(t) denote the decision-maker’s belief at time ¢ that conversation 1 is still active, then its
expected turn-arrival rate is 7;(t) - A;. The belief is updated using

m;(t) = exp(—p(t — last turn time)),
as each conversation lasts for an exponential amount of time with mean p.

Therefore, the system state at time ¢ of the belief MDP is given by (A(¢), L(t), X (t)), where L;(t)
is the total length (blocks) of conversation ¢ at time ¢ and X (¢) is the number of KV cache blocks
from conversation ¢, all prior to the arrival at time ¢. The decision-maker chooses X', which blocks
to cache after serving each request, to minimize the Tail Excess Latency for M requests for arbitrary
M e N. Appendix [C] details the finite-horizon Bellman equation.

Expected-Tail-Optimized LRU (ET-LRU). ET-LRU chooses the post-arrival cache allocation that
minimizes the expected TEL at the next turn, using current beliefs of turn-arrival rates. Formally,

Definition 1 (Expected Tailed-Optimized LRU). Let 0 denote the index of the conversation arriving
at time t with new prompt length (Q and model response length A, X (t™) denote the cache state
before arrival, and X(tT), L(t) denote the belief turn-arrival rates and conversation history lengths
updated after service (\g(t+) = Np, Lo(t*) = Lo(t™) + Q + A). ET-LRU chooses

XEMY € argmin " \i(¢F) - E[(Li(t7) + Qi — Vi —)] ®)
s.t. Yo < Ly (t+), (optional caching) 9)
Y; < X;(t7),Vi # 0, (cannot conjure caches) (10)

Z Y; < C. (capacity constraint)

k3

*https://docs.vllm.ai/en/stable/design/v1/prefix_caching.html

https://docs.vllm.ai/en/stable/design/v1/prefix_caching.html

where the expectation is taken over Q;, the random user prompt length for conversation i at its next
arrival.

The probability that conversation ¢ generates the next request is proportional to its belief turn-arrival
rates \; (¢ 7), thus \; (¢7)-E[(L; (¢7)+Q; — X[—&) 7] is the expected TEL contributed by conversation
i. Here constraint (9) implies that the decision-maker can cache at most the total conversation history
of conversation 6 just served; constraint (I0) says a conversation’s cache allocation can grow only
whenn it arrives.

Theorem 2 (Optimality of Expected-Tail-Optimized LRU). Expected-Tail-Optimized LRU (Definition
[1) is an optimal online caching policy for minimizing Tail Excess Latency under the stochastic
conversation model above.

The proof is by induction on the number of turns and comparing the value-to-go functions under
our policy and another policy that evicts differently. Here, the least-recently-used time reflects
the expected turn-arrival rate and thus can approximate furthest-in-future. Theorem [2] has three
implications:

* LRU is optimal for average latency. Setting ¢ = 0 and assuming homogeneous turn-
arrival rates across conversations, the objective in optimization problem (8) reduces to
max y_, exp(—pu(t — last turn time))Y;, thus ET-LRU reduces to LRU. Therefore, Theorem
[2) establishes the optimality of LRU for minimizing average latency under our stochas-
tic arrival model. To the best of our knowledge, such a result had not previously been
established.

* Optimality of Tail-Optimized LRU: if the user prompt length is deterministic, Expected-Tail-
Optimized LRU is reduced to a deterministic version as stated in Policy|l{(with estimate Q
replaced by deterministic (). Theorem 2| thus establishes the optimality of Tail-Optimized
LRU in this model.

* When () = 0 after the first turn and responses also have zero length, our model reduces to
classic caching with unit page size. In this case, the optimal policy “evicts the block whose
conversation is least likely to return”, generalizing least-recently-used.

Therefore, Expected-Tail-Optimized LRU serves as a common backbone across three classic caching
regimes, providing theoretical justification for adopting LRU and Tail-Optimized LRU for LLM
inference workload.

5 Experiments

5.1 Datasets and Metrics

We evaluate our caching policies on two conversational datasets: WildChat and ShareGPT (Figure 4]
and Figure EI) For each dataset, we select conversations based on their arrival timestamps and
extract the first 1000—2000 turns across these conversations. Specifically, we sample conversations
in chronological order (by first-turn timestamp), split each conversation into individual turns, and
simulate their arrivals following the observed timestamps in the trace.

We measure latency metrics (median, P90, P95, P99) and service-level objective (SLO) attainment
under different caching policies. Our default experimental configuration uses Vicuna-7B served on a
single A100 GPU via vLLM with tensor parallelism disabled (TP = 1) and without mixed batching.
We present the results for WildChat below. Due to space constraints, Results for ShareGPT, which
exhibit qualitatively similar patterns, are provided in Appendix |G|

5.2 Tail Latency Reduction

We measure the tail latency reduction of our policy against LRU and Threshold LRU—caches only if
the conversation length exceeds a fixed threshold, a configuration for LRU we observed in practice.
We fix the input parameter for T-LRU, next-prompt length Q to be the average prompt length (200
for WildChat, 150 for ShareGPT), and use 1024 as the threshold for Threshold-LRU following the
one used by OpenAIE]

https://platform.openai.com/docs/guides/prompt-caching

https://platform.openai.com/docs/guides/prompt-caching

Distribution of Number of Turns Distribution of Prompt Lengths Distribution of Response Lengths
[1 ' T

H --- Mean: 2.98 T | === Mean: 142.4 2500 -~ Mean: 431.1 il
4000 --- Median: 200 20 M | === Median: 23.0 --- Median: 339.0
1
P95: 10.0 1 P95: 607.0 2000 P95: 1169.0
2000 !
3000 - ! N
g g 1 21500
1] 8 1500 ' 5
£ 2000 g i g
[in [in ! [
1000 ! 1000
1
1
1000 00] 500
IRIHTITEE:
0 0 . 0 4=
10° 10’ 10° 10' 10° 10° 10° 10° 10' 10° 10°
Number of Turns per Conversation (log scale) Prompt Length (tokens, log scale) Response Length (tokens, log scale)

Figure 4: Distributions of turns and tokens of WildChat [Zhao et al., 2024 datasets (sampled 10,000
conversations).

In Tables[TH2} we report the relative latency improvements of T-LRU over both LRU and Threshold-
LRU across various cache capacities C' and tail-latency thresholds fsﬁ We observe that T-LRU
reduces P90 tail TTFT by up to 27.5% and P95 tail TTFT by up to 23.9% compared to LRU, and
achieves comparable improvements over Threshold-LRU.

Sensitivity to latency threshold &;. The benefit of T-LRU peaks when latency threshold &; is
calibrated to match the target tail percentile of interest. For example, with capacity C' = 1000 under
LRU, medium, P90, P95, and P99 tail latencies are roughly 40 ms, 240 ms, 326 ms, and 505 ms.
Setting &5 = 200 ms yields the largest improvement in P90 tail latency; setting £; = 300 ms yields
the largest improvement in P95 tail latency. A high value, e.g. £ = 500 ms, relaxes protection
for mocllﬂerate tails and only provides protection for extreme tails —up to 3% of increase in P99 tail
latency.

Operationally, the latency threshold &5 can be tuned either based on fixed service level objective
(e.g., a target TTFT), or adaptively based on the observed tail latency of served turns. For example,
the decision-maker can periodically update £, to match the desired tail latency TTFT observed over
recent turns. Raising & makes TEL-safe trimming more aggressive, and could potentially increase
average latency as the policy allows more turns to incur latency up to &, reflecting the classic trade-off
between average and tail performance.

Comparing Threshold-LRU and T-LRU. Threshold-LRU is a straightforward patch for LRU’s
blindness to conversation length. In industry systems such as at OpenAl, prompt caching is enabled
only when the running conversation history exceeds a fixed length. While simple to implement,
this policy makes a binary, all-or-nothing decision for each conversation: either cache the entire
conversation history or cache nothing at all. In contrast, T-LRU makes adaptive, fine-grained caching
decisions. Rather than caching entire conversations indiscriminately, T-LRU caches just enough
tokens from each conversation to ensure its next request will not breach the latency threshold.
This fundamental difference persists regardless of prompt length. Even with zero-length prompts,
Threshold-LRU would apply its binary rule based on history length, while T-LRU would adaptively
cache the amount that is just right so not impacting the tail.

Table 1: Relative latency improvement of T-LRU over LRU with various &,

&s =50ms &s = 100ms &5 =150ms &5 =200ms £s =500ms

Capacity p90 p95 po0 p95 p90 p95 po0 p95 po0 p95 p99

1000 4.0% 0.0% 4.5% 1.0% 53% 1.5% 7.3% 2.0% -14% -13% 32%
2000 1.2% 0.6% 3.4% 0.6% 5.1% 3.4% 9.2% 4.4% -49% -2.8% 3.3%
4000 1.7% 0.7% 4.1% 28% 10.5% 42% 133% 10.8% 15% -3.4% 3.4%
6000 5.0% 21% @ 10.6% 40% 16.0% 11.4% 143% 15.4% 87% -4.2% 3.4%
8000 22% 0.7% « 10.5% 85% | 23.0% 158% 88% 195% -1371% -3.5% 1.4%
10000 3.6% 74% 200% 157% @ 2715% 20.1% 69% | 239% @ -133% -35% -0.0%

C' = 10, 000 corresponds to approximately 4.8 GB for Vicuna-7B with Float16, see Appendixlﬂ
"We set £ = &, /c using a simple linear fit between awaited prefill tokens and prefill time, which is easy to
implement in practice.

Table 2: Relative latency improvement of T-LRU over Threshold-LRU with various &,

&s =50ms &s = 100ms &5 =150ms &5 =200ms £s =500ms
Capacity p90 p9s po0 p95 p90 p95 p90 p95 po0 p95 p99

1000 1.5% 0.0% 2.0% 1.0% 2.9% 1.5% 4.8% 2.0% -4.0% -13% 32%
2000 04% 0.6% 2.7% 0.6% 4.4% 3.4% 8.6% 4.4% 5.7% -2.8% 3.3%
4000 03% 0.0% 2.7% 2.1% 9.3% 3.5% 12.0% 10.2% 9.0% -42% 3.4%
6000 4.7% 1.2% 10.4% 3.1% 15.7% 10.6% 14.1% 14.6% 9.1% -52% 3.4%
8000 1.1% 0.7% 9.5% 85% | 222% @ 15.8% 7.8% 195% -149% -3.5% 1.4%
10000 2.4% 6.1% 19.0% 14.6% = 266% 19.0% 57% | 228% | -147% -50% -0.0%

5.3 SLO Violation Reduction

We now measure the count of requests that a service-level objective, another objective similar to
TEL—the amount of latency beyond a threshold. Table[3|reports the improvement on SLO attainment
ratio (relative drop in requests whose TTFT exceeds 200 ms). With the latency threshold £ set to
200 ms SLO, compared to LRU, T-LRU reduces between 8.8% (small cache capacity) and 40.7%
(large cache capacity) of violations.

Sensitivity to latency threshold £;. When £ is much lower than the SLO (5, = 50 or 100 ms), the
improvement is modest because both baselines already satisfy most requests; when & is far higher
(&s = 500 ms), T-LRU focuses on larger tails and can allow for a few extra 200 ms violations.

These results echo the design goal: TEL minimization penalizes how much a request overshoots &,
yet the same trimming logic also cuts the number of SLO violations whenever &, aligns or is slightly
below the target latency budget.

Table 3: Relative improvement of T-LRU: % reduction in requests with latency > 200ms

Capacity &5 =50ms &5 =100ms &s = 150ms &5 =200ms &5 =500ms

LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU

1000 1.2% -1.2% 4.1% 1.8% 6.5% 4.2% 8.8% 6.6% -1.8% -4.2%
2000 2.4% 1.2% 6.1% 4.9% 9.1% 8.0% 13.3% 12.3% -4.8% -6.1%
4000 3.9% 1.3% 7.1% 4.7% 14.3% 12.0% 22.1% 20.0% -12.3% -15.3%
6000 2.0% 0.7% 12.2% 11.0% 20.9% 19.9% 30.4% 29.5% -12.2% -13.7%
8000 4.3% 2.2% 16.4% 14.6% 29.3% 27.7% 33.6% 32.1% -19.3% -21.9%
10000 7.4% 4.6% 25.9% 23.7% 31.9% 29.8% 40.7% 38.9% -19.3% -22.9%

6 Future Directions and Conclusions

We propose Tail-Optimized LRU (T-LRU), a simple yet effective modification to the Least Recently
Used caching policy that significantly improves tail latency in multi-turn conversational LLM serving.
By adaptively caching just enough tokens to keep each conversation’s next request below a latency
threshold—rather than making binary all-or-nothing caching decisions, T-LRU achieves substantial
tail latency reductions (e.g., 20-30% improvement in P95 TTFT) with modest impact on median
performance.

T-LRU makes a deliberate design choice: sacrifice tens of milliseconds at the median to eliminate
hundreds of milliseconds at the tail. This trade-off aligns well with strict SLO requirements in
production systems, though exploring multi-objective policies that balance tail and median latency
differently remains an interesting direction for future work.

Our focus is on a single storage layer, but real systems increasingly adopt hierarchical memory
architectures. Extending T-LRU to multi-tier KV caching systems—where evicted blocks migrate to
slower storage (CPU memory, SSD) rather than being discarded—could unlock further performance
gains. Recent work [Qin et al.| [2025]] has begun exploring such architectures, and understanding opti-
mal promotion/demotion policies across cache tiers represents an important open problem. Another
compelling direction is joint optimization of caching and load balancing. Recent work [Srivatsa et al.|
2024] has initiated exploration of how caching decisions interact with request routing in distributed
LLM serving. Analyzing these problems through a queueing-theoretic lens and considering both
cache locality and load distribution could systematically characterize fundamental trade-offs and
guide practical system design.

10

References

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey
Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM} inference with
{Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24),
pages 117-134, 2024.

Anthropic. Prompt caching, 2024. URL https://docs.anthropic.com/en/docs/build-with-claude/
prompt-caching,.

Nicole Béuerle and Jonathan Ott. Markov decision processes with average-value-at-risk criteria. Mathematical
Methods of Operations Research, 74:361-379, 2011.

Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. /BM Systems journal, 5(2):
78-101, 1966.

Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. {AdaptSize}: Orchestrating the hot object
memory cache in a content delivery network. In /4th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 483-498, 2017.

Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-Balter. {RobinHood}:
Tail latency aware caching—dynamic reallocation from {Cache-Rich} to {Cache-Poor}. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages 195-212, 2018.

BioNumbers Database. Average duration of a single eye blink. BioNumbers Database, 2024. URL https:
//bionumbers.hms.harvard.edu/bionumber.aspx?id=100706. BNID 100706.

Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge university press,
2005.

Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive paging with locality of
reference. Journal of Computer and System Sciences, 50(2):244-258, 1995.

Hao Che, Ye Tung, and Zhijun Wang. Hierarchical web caching systems: Modeling, design and experimental
results. /EEE journal on Selected Areas in Communications, 20(7):1305-1314, 2002.

Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang, Aditya Akella, Sanjay Shakkottai, and
Ramesh K Sitaraman. Darwin: Flexible learning-based cdn caching. In Proceedings of the ACM SIGCOMM
2023 Conference, pages 981-999, 2023.

Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-making: a cvar
optimization approach. Advances in neural information processing systems, 28, 2015.

Marek Chrobak and John Noga. Lru is better than fifo. Algorithmica, 23:180-185, 1999.

Edward Grady Coffman and Peter J Denning. Operating systems theory, volume 973. prentice-Hall Englewood
Cliffs, NJ, 1973.

ShareGPT Contributors. Sharegpt: A dataset of multi-turn chat interactions with large language models.
https://huggingface.co/datasets/RyokoAI/ShareGPT52K, 2025.

Asit Dan and Don Towsley. An approximate analysis of the lru and fifo buffer replacement schemes. In
Proceedings of the 1990 ACM SIGMETRICS conference on Measurement and modeling of computer systems,
pages 143-152, 1990.

Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E Young. Competitive
paging algorithms. Journal of Algorithms, 12(4):685-699, 1991.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt cache:
Modular attention reuse for low-latency inference. Proceedings of Machine Learning and Systems, 6:325-338,
2024.

Maxwell Horton, Qingqing Cao, Chenfan Sun, Yanzi Jin, Sachin Mehta, Mohammad Rastegari, and Moin Nabi.
Kv prediction for improved time to first token. arXiv preprint arXiv:2410.08391, 2024.

Raj Jain. Characteristics of destination address locality in computer networks: A comparison of caching schemes.
Computer networks and ISDN systems, 18(4):243-254, 1990.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin. Ragcache: Efficient
knowledge caching for retrieval-augmented generation. arXiv preprint arXiv:2404.12457, 2024.

11

https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching
https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching
https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100706
https://bionumbers.hms.harvard.edu/bionumber.aspx?id=100706
https://huggingface.co/datasets/RyokoAI/ShareGPT52K

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. s3: Increasing gpu utilization during generative
inference for higher throughput. Advances in Neural Information Processing Systems, 36:18015-18027, 2023.

Aditya K Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter, Ramachandran Ramjee, and Ashish Panwar.
Pod-attention: Unlocking full prefill-decode overlap for faster llm inference. In Proceedings of the 30th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2, pages 897-912, 2025.

WC King. Analysis of paging algorithms. In Proc. IFIP 1971 Congress, Ljubljana, pages 485-490. North-
Holland, 1972.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles, pages 611-626, 2023.

Emilio Leonardi and Giovanni Luca Torrisi. Least recently used caches under the shot noise model. In 2015
IEEE Conference on Computer Communications (INFOCOM), pages 2281-2289. IEEE, 2015.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. Journal of the
ACM (JACM), 68(4):1-25, 2021.

Naram Mhaisen, Abhishek Sinha, Georgios Paschos, and George losifidis. Optimistic no-regret algorithms for
discrete caching. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6(3):1-28,
2022.

Michael Mitzenmacher and Rana Shahout. Queueing, predictions, and large language models: Challenges and
open problems. Stochastic Systems, 15(3):195-219, 2025.

OpenAl Prompt caching guide, 2024. URL https://platform.openai.com/docs/guides/
prompt-caching. Developer documentation.

OpenAl Newsroom. 300m weekly chatgpt users and 1b daily messages, December 2024. URL https:
//x.com/OpenAINewsroom/status/1864373399218475440. Tweet.

Vidyadhar Phalke and Bhaskarpillai Gopinath. An inter-reference gap model for temporal locality in program
behavior. ACM SIGMETRICS Performance Evaluation Review, 23(1):291-300, 1995.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng,
and Xinran Xu. Mooncake: Trading more storage for less computation—a kvcache-centric architecture
for serving llm chatbot. In 23rd USENIX Conference on File and Storage Technologies (FAST 25), pages
155-170. USENIX Association, 2025.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules. Communications of
the ACM, 28(2):202-208, 1985.

Vikranth Srivatsa, Zijian He, Reyna Abhyankar, Dongming Li, and Yiying Zhang. Preble: Efficient distributed
prompt scheduling for llm serving. 2024.

vLLM Team. Automatic prefix caching, 2025. URL https://docs.vllm.ai/en/stable/automatic_
prefix_caching/details.html, Project documentation.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqgi Chen, Baris Kasikci,
Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable attention engine for llm
inference serving. arXiv preprint arXiv:2501.01005, 2025.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m chatgpt
interaction logs in the wild. arXiv preprint arXiv:2405.01470, 2024.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language
model programs. Advances in Neural Information Processing Systems, 37:62557-62583, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for goodput-optimized large language model serving. In
18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 193-210,
2024.

Banghua Zhu, Ying Sheng, Lianmin Zheng, Clark Barrett, Michael I Jordan, and Jiantao Jiao. On optimal
caching and model multiplexing for large model inference. arXiv preprint arXiv:2306.02003, 2023.

12

https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching
https://x.com/OpenAINewsroom/status/1864373399218475440
https://x.com/OpenAINewsroom/status/1864373399218475440
https://docs.vllm.ai/en/stable/automatic_prefix_caching/details.html
https://docs.vllm.ai/en/stable/automatic_prefix_caching/details.html

Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Yufei Gao, Qinyu Xu, Tian Tang,
Zihao Ye, et al. Nanoflow: Towards optimal large language model serving throughput. arXiv preprint
arXiv:2408.12757, 2024.

Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter. Snc-meister: Admitting more tenants with tail latency
slos. In Proceedings of the Seventh ACM Symposium on Cloud Computing, pages 374-387, 2016.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Justification: Our abstract and introduction list three core claims: 1) a new
cache eviction rule, Tail-Optimized LRU; (ii) provable optimality under a stochastic conver-
sation model; and (iii) empirical tail-latency gains on real LLM workloads. Each claim is
backed by a theorem or experiment.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the last section, we discuss future directions that could relax our the
single-tier cache assumption and single-server assumption.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

13

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete proofs are in Appendix with cross-references and we provide
intuition and proof sketch in the main paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We perform experiments on public datasets and provide all codes in the
submission.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

14

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We would submit and release the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of parameters used in the experiment for our policy, such
as cache capacity and latency threshold.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Our experiments are used to simulate performances of proposed and baseline
policies that are deterministic on fixed job request traces, thus we do not have error bars.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We used A100 GPU to estimate the default latency function.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We checked the NeurIPS Code of Ethics; no personal data or disallowed
content is involved

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

16

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the trade-off between tail latency versus average latency, with
the former speaking to fairness.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work is about a caching policy, not a pretrained model or scraped dataset.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly credited data used in the paper.

Guidelines:

17

13.

14.

15.

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new dataset or model checkpoint is introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not perform any human-subject data collection.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

18

paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing and facilitating data analyses and
experimenting.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Appendix

A Related Work

Classic Caching and Paging. The caching problem has been extensively studied from a competitive
analysis perspective, with binary cache hit/miss metrics. Foundational results include the hindsight-
optimal Belady’s algorithm [Belady, |1966], optimal deterministic online policies [Sleator and Tarjan,
1985]], and randomized algorithms [Fiat et al.l [1991]]. Beyond worst-case competitive ratios, many
works model structured request processes to capture temporal locality observed in practice, includ-
ing access graph models [Borodin et al.,[1995] |Chrobak and Noga, [1999], independent reference
models [Coffman and Denning, |1973| |King, |1972| [Dan and Towsleyl 1990} (Che et al., 2002]], Shot
Noise models [Leonardi and Torrisi, [2015]], LRU Stack and Working Set models [Jain, [1990], and
Inter-Reference Gap models [Phalke and Gopinathl [1995]]. For broader overviews, see Borodin and
El-Yaniv| [2005]]; for caching with predictions, see Lykouris and Vassilvitskii| [2021]],[Mhaisen et al.
[2022].

Alternative Metrics. Beyond binary hit/miss metrics, several systems optimize continuous objectives.
Darwin [Chen et al.| 2023]] balances hit rate and disk writes in CDN caching. RobinHood [Berger
et al.,[2018]] and SNC-Meister [[Zhu et al., 2016] target tail latency in web services and multi-tenant
systems, respectively. AdaptSize [Berger et al., 2017]] handles variable-size objects in content
delivery networks. However, these works focus on traditional web caching rather than the unique
characteristics of LLM inference: multi-turn conversations with growing context windows and strict
real-time latency requirements.

Prompt Caching for LLM Inference. Prompt caching reuses precomputed KV states from con-
versation history to reduce prefill computation. Recent systems explore various aspects: prefix
caching [Kwon et al., 2023|, attention reuse [[Gim et al.,|2024], RAG optimization [Jin et al., 2024],
structured generation [Zheng et al.| 2024, load balancing [Srivatsa et al., [2024], hierarchical stor-
age [Qin et al., 2025]], and optimal model multiplexing [Zhu et al.l 2023]]. While these works
demonstrate the value of prompt caching, they primarily optimize throughput or average latency
rather than tail latency.

Recent work on LLM serving has begun addressing tail latency through architectural innovations.
Sarathi-Serve [Agrawal et al. 2024] uses chunked prefill and stall-free scheduling, while Dist-
Serve [Zhong et al., |2024| disaggregates prefill and decoding for goodput optimization. These
systems target tail latency but do not use caching as the primary optimization lever.

Our work. To sum up, existing works have studied continuous metrics other than binary cache
hit/miss and variable-size objects, but we are the first to use prompt caching as the primary lever
to optimise TTFT tail latency, and the first to provide theoretical guarantees for tail-excess latency.
Our work bridges the gap between classical caching theory, modern LLM serving systems, and tail
latency optimization.

B Proof of Theorem [I| Hindsight Optimal Policy for TEL

Proof. The proof has two steps: 1) show that optimizing the original TEL problem (/) is equivalent to
anew problem (TT)) of maximizing the total number of reused cached blocks, subject to an additional
“TEL-safe" capping constraint; 2) show that this new problem is a classic offline caching problem
whose optimal solution is to cap the KV cache size using TEL-safe budget and then evict using
furthest-in-future policy.

Step one: Equivalence of Optimization Problems Fix a feasible « to (7), the optimal w is given

by
+

t t—1
wig= Y g+ Y ai;—wii—&|
i=1 i=1

as otherwise we have u; ; infeasible or can be improved. Thus we can focus on cache decisions x.

20

We claim the optimal solution to the optimization problem (7)) must satisfy the TEL-safe budget
+
T < (22:1 qi; + Zt;i a; ; — f) for every i € [N],t € 7;. Suppose not, i.e., the optimal a’

+
o (7) satisfies «7 , > (Z] 195+ Z] 1G5 — 5) for some ¢ € [N],t € 7;. Then we have
t -1
D i+ Y i —ai,—&<0,up, =0
j=1 j=1

+
In this case, setting ; s = (Z] 1G5+ Zj 1 Qi — 5) will not affect the value of u; ,, while

releasing cache capacity that can be directed to other conversations, which contradicts the optimality
of &'

As the optimal solution must respect the TEL-safe budget, we can simplify the objective:

+
ZZ“”Z ZZ qu—&—Za” T — &
i€[N]teT; i€[N]teT; \Jj=1
t t—1 t t—1
= Z Z]]- Z%’,j"‘zai,j_fzo . Zqi,j—&—Zai,j—xiyt—f
ic[N) teTi | s=1 =1 j=1 j=1
t
+ZZIL q”+Za” £<0p-0
N teT; j=1

t t—1
2.2 1 quzam €200 | D aug+ D any =8| = D) wu

i€[N]teT; j=1 j=1 j=1 i€[N]teT;

where the last equality holds as z; ; = 0 for the requests with Z 1%+ Z 1 a;; —& < 0. Thus
minimizing » ;¢ ny > _4e7; Ui, is equivalent to maximizing ZZG[N > teT: T as the first term of
the right-hand-side of the last equality above is a constant.

Therefore, we can rewrite as follows:

max 33w an

Tit€
ZE[N] teT;

s.t. @, @), ©

+
t t—1
i < D @i+ Y ai;—&| Vi€ [N teT; (12)
- .

Step two. We can interpret each block as a unit-size item that, once arrived, is requested again
at every subsequent turn of the same conversation (prefix reuse). At time ¢ € 7;, the number of
cache hits for that request of conversation ¢ equals exactly x; ; Hence the objective of (TT)) is the total
number of cache hits over the horizon.

Because the cache content may change only at request times and all items have unit size, (TT) is
a paging instance with unit pages and clairvoyant knowledge, except that each request carries a
per-request cap on the number of allowable hits, which we can enforce by immediately discarding
any excess above upon the turn’s completion.

In paging with unit pages, the offline optimal policy that maximizes total hits (equivalently minimizes
misses) is Bélady’s furthest-in-future rule: whenever eviction is needed, evict the item whose next
request is farthest in the future. Here, all blocks of conversation ¢ share the same next request

next arrival is farthest in the future.

21

C Proof of Theorem 2]

Proof. Given system state X, L, X, let # denote the index of the conversation that is the k*" arrival
with user prompt length) and model response length A. The finite-horizon value-to-go function is

Vk(AvaXvonaA): (L9+Q7X97§)+

number of uncached blocks above threshold

: !/ / / /
, min Er o0, a0 Vk+1((I)()\,G,T) , ‘II(L,G,Q—FA) , X,0,Q ,A)
X'eX(X,0,Lo+Q+A) —— ——

belief arrival state transition conversation length transition

with Vjs11(-) = 0, where the feasible caching decision space is

X(X,0,L) ={Y e N™X0 Ny, <C0<Yp < L,0<Y; < X0 # 0}

with dim(X, 0) = dim(X) + 1{6 > dim(X)}, here dim(X) denotes the dimension of vector X,
and the dimension expands when a new conversation arrives; ®(X, 6, 7) update the belief turn rate of
conversation d to \;, then discount belief turn rates of all conversations by exp(—u7); U(L,0,Q+ A)
updates the conversation length vector. Specifically, we increase the dimension of L if necessary (i.e.,
when 0 represents a new conversation), and add @ + A to its oth entry.

Let 6 denote the index of the conversation that is the k*" arrival, with user prompt length @) and

model response length A. Define the belief arrival rate vector as A, the conversation length vector as

L, and the cached token length vector as X, the cost-to-go function is given by:
Ve(\ L, X,0,Q,4) = (Lo +Q — Xo — &)

. ET NelU /V @)\,0, ,\I/ L797 ‘/47)(/79/7 /,A/
X’EX(XI,%}EMQJFA) 0.Q.4r Vi (B 7), ¥(Q+A) Q' AN

with Vary1(-) = 0. Let’s rewrite (X, 0, 7) = ®(T'(A, 6), 7) with

* T'(A, 6) updates the return rate vector upon the arrival of conversation . Specifically, this
operator changes the belief arrival rate of conversation 6 to \;.

» ®(A, 7) discount all return rates by exp(—pu7).

The proof is by using induction and argue that if we choose a different caching state than X T-RY | the
cost will be higher. At last arrival M, Vi (A, L, X,0,Qq, Ag) = (Lg + Qo — X — £)* and any
caching policy is optimal.

Suppose this holds for the k! + 1 arrival. We proceed to show that the result holds for the k** arrival.
To simplify the notation, we define

Tt LX) =By .04, [Ve(®(A, 7), L, X, 0,Qp, Ag)|, A = T'(X,0), L = U(L,0,Qq + Ay),

Then we need to prove o o
Jes1(A, L, XETWRYY < 7 (A L, XY

To see this, by definition of state transition, suppose the inter-arrival time is 7, the discounted arrival
rates are - ~ _
i - exp(—pT) with Ag = Ag.

From these expressions, we can conclude that regardless of value of 7, the return rates at next arrival
maintain the same relative ordering as in A for conversations. Note that due to heterogeneous turn
rates across conversations, conversation ¢ that arrived at the k*” arrival may not have the highest
turn rate. Without loss of generality, let’s assume 7 = 0 and let p; = A /(Aconv +) ; Ai) denote the
probability that conversation j returns at the next arrival, and Pgim(x (1))+1 = Aconv/(Aconv + D ; Ai)
denote the probability that a new conversation starts at the next arrival.

We proceed to show this holds for any number of tokens evicted by treating each token eviction
separately. Among all conversations that have arrived so far and have at least one cached token, list
their indices as i(1),4(2), . . . in ascending order of the ranking criterion score

MNP(L; 4+ Qi — € > Xu),

22

Insert conversation 6 that just arrives into this ordered list according to its own score
MP(Qp — € > 0)

Let X (1) denote the cache state that evicts a token from conversation (1), and X (k) denote the
cache state that evicts a token from conversation i(k) with k > 1.

Jer1 (N, L, X (1))
= Y BEQILi+Qi— Xi(1) -)]

iedim(X (1))+1
+ Di)EQ, 1y, A0y min Tr2(D(N (1)), (L, (1), Qi) + Asr)), X'(1))
X’'(1)eX(X(1),i(1),Li1y+ Qi) +Aic1))
+ Ditk)EQi 1y, Ai iy min Try2(D(Ni(K)), U (L, i(k), Qi) + Airy), X' (1))
X'(1)eX(X(1),i(k),Lik) +Qi(k) tAi(k))
+ Y Eq.a min _ Jes2(D(N0), (L, i, Qi + A;), X'(1))
i) 5() XN(1D)EX(X (1), LitQitA;)
< > BiEQI(Li+ Qi — Xi(k) —)]
iedim(X (1))+1
+ﬁi(1)EQi(l)aAi(l) _mip ']k+2(r(5‘ai(1))a\I/(i’ai(l)in(l) +Az(1))7X/(k))
X' (k)eX (X (k),i(1),Li)+Qi1) +Ai1))
+ﬁi(k)]EQi(k)aAi(k) min Jk+2(r(5‘ai(k)),\ll(ivi(k)in(k) "’Ai(k))aX/(k))
X' (k)eX (X (k),i(k),Lik)+Qik)+Aick))
+ Z EQhAi min _ JkJrg(F(X,i),‘If(i/,i,Qi —&-AZ),X/(]{?))
Z#l(l),l(k) X/(k)EX(X(k),i,Li+Q1+Ai)

= T (N L, X (K)),

where the inequality holds as

* by Definition[I} X (1) is the optimal solution while X (k) is a feasible solution, and p; are
proportional to A;, thus

> bEQULi+Q-Xi(1)-9T < > pilol(Li +Q - Xi(k) - €)7]
iedim(X (1)) iedim(X (1))

and the expected cost incurred when a new conversation arrives (with probability
Pdim(x(1))+1) i Eq[(Q — &)] for both caching state, thus

Z PiEq, [(LitQi—Xi(1)—=¢)T] < Z PiEq [(LitQi—Xi(k)—&)™]

iedim(X (1))+1 iedim(X (1))+1

* by induction hypothesis, the optimal X’(1)* and X'(k)* are given by the optimization
problem (8). Fix a user prompt length @; and a model response length A; and we compare
the cost-to-do under X (1) and X (k).

— if conversation i(1) arrives next, then one need to evict one more token from X (1)
than from X (k). Suppose the extra token evicted from X (1) is from conversation
i(k), then X'(1)* = X'(k)*. If not, then this means the extra token evicted is from
another conversation with better ranking criterion, thus we have

T2 (DA i(1)), U(L,i(1), Q1) + Airy), X' (1))
<Jpr2(T(X, (1)), U(L,i(1), Qi) + Air)), X' (k)*)
by the induction hypothesis.

23

— if conversation (k) arrives next, then one need to evict one more token from X (k)
than from X (1). In the optional caching model, the extra token evicted form X (k)
must be from conversation (1) by the definition of the ranking of conversations, thus
X'(1)* = X'(k)*

Ter2 (DA i(k
=Ji2(T(N, i(k

), U(Lyi(k), Qicky + Airy), X' (k)")

)7 \Ij(Lv Z(k)v Qi(k) + Ai(k))a Xl(k)*)

— if conversation other than (1), (k) arrives next, then X' (k)* and X'(1)* need to evict
the same number of tokens. If X'(k) evicts at least one token from conversation i(k),

then X'(1)* = X' (k)*. If not, then this means X’ (1)* evicts one token from another
conversation with better ranking criterion, thus we have

)
)

Jk+2(F(5‘7 Z))v \Ij(f/v Z7 Al)a X,(l)*) < Jk+2(F(>‘a Z)v ‘IJ(La Zv A7)a X/(k)*)
Therefore, by induction, the result holds for all £ > 1. O

Greedy Implementation. The optimization problem (8) need not be solved explicitly as a
token-by-token greedy procedure suffices. At a high-level, the policy ranks each token by arrival
rates weighted by its counterfactual cost, i.e., the cost increase when we evict this token.

PLi+ Qi —£> X:) =E[(Li + Qi — & — (Xi — 1)) —E[(Li + Qi — £ — X;) 7]

i.e., the difference in expected cost if we further evict one token when we have X; tokens in cache.

Algorithm 2: Expected-Tail-Optimized LRU Policy

Input: Number of conversations N, cache sizes { X}, current lengths {L;}, belief turn rates
{Ai}, distribution of length of user prompt {Q; }, threshold &, arriving conversation 6,
arriving user prompt length Q, arriving model response length A, tokens to evict n

Output: Updated cache sizes {X;}

evicted < 0

Lo+ Lop+Q+ A // Update system state for arriving conversation 6

X <—_Le

Ao)\9

for eachi € E do

| Compute v; < X\; - P(L; + Qs — & > X;) // Ranking criterion

while evicted < n do
Find j = arg min;c[n), x,>1 Vi // Conversation with minimum value
X+ X; -1 // Evict one token
evicted < evicted + 1
vj N -P(L;+Q; — & > Xj) // Update ranking criterion

return {X,}.

In the implementation of the policy, one can use min-heap to process which token to evict using the
ranking criterion. The computational complexity of the policy is given by O(|E| + nlog |E|), where
| E| is number of conversations with non-zero cached tokens and 7 is the number of tokens one needs
to evict.

We show that policy [2] indeed returns a cache state that is an optimal solution to the optimization
problem (8).
Lemma 1. Policy2|returns an optimal solution to the optimization problem (8§).

Proof. We prove by contradiction. Note that it is possible for the policy to return multiple optimal
solutions, and it is also possible for the optimization problem (8] to have multiple optimal solutions.
Suppose not, then the two set of solutions do not intersect. Let X * denote one optimal solution. Then
there must exist two conversations ¢, j such that X]* > 1 and

)\,]P’(Lq-l-Qz—fZXZ*—Fl) >)\jP(Lj +Aj—§2X;),

24

Then we can construct another solution X" such that Xj = X} fork # 4, j,and X] = X/ +1, X} =
X7 — 1. Then the difference between the objective values of X "and X* is given by

OBJ(X') — OBJ(X™) = NE[(Li + Qi — & — (X7 + 1) "]+ NE[(L; + Q; — € — (X —1))"]
— (MNE[(Li + Qi = € = X7)TT+ NE[(L; + Q5 — € — X)) 7))
=NP(L; + A4 62 X;) = AP(Li + Qi —§ 2 X + 1)
<0,

which contradicts the optimality of X*. O

D Discussion on Forced Caching

Implementation of Tail-Optimized LRU. To implement forced caching, especially at GPU level,
the server needs to decide which block to evict as serving the turn. The server may not know the total
number of cache blocks to evict due to the uncertainty in the model response length, nevertheless the
server can repeatedly call our policy to evict more tokens if needed.

Hindsight optimal policy. To model forced caching, we replace optional caching constraint (3)) with

t
Tit4+1 :Z(qi7j+ai7j),Vi€ [N],teﬁandt<T, (13)

j=1

i.e., when a turn arrives, the server is required to cache its whole conversation history including newly
generated response. Theorem [I]continues to hold under forced caching.

Expected-Tail-Optimized LRU. To model forced caching, we replace feasible caching decision
space under optional caching with

Xr(X,0,L) ={Y e NMX0 Ny, <O Yy = L,0<Y; < X0 # 0}
Theorem [2] continues to hold under forced caching, i.e., Expected-Tail-Optimized LRU remains to be
optimal, if

* every future prompt (if it arrives) has a known, fixed length) > 0. Here this fixed length
can be heterogeneous across conversations and across turns. Crucially, the decision-maker
still does not know if any given conversation will return; they only know that should it
return, its next-turn question length will be (). In this case, Expected-Tail-Optimized LRU
is reduced to a deterministic version as stated in policy [I]

* conversations have homogeneous turn rates Aqn.

This fixed-prompt-length assumption holds when prompts are pre-specified. When () = 0 after the
first turn and responses also have zero length, our model reduces to classic paging with unit page size.

E Additional Figures

F KY Cache Size Computation

We calculate the KV cache memory requirements for the Vicuna-7B model. For 10,000 tokens stored
in Float16 precision, the total KV cache size is approximately 4.88 GB. With Float32 precision, this
memory requirement doubles to approximately 9.77 GB.

F.1 Model Configuration
The following parameters are from the Vicuna-7B-v1.5 model conﬁguration

» Hidden Size: 4096

*https://huggingface.co/lmsys/vicuna-7b-v1.5/blob/main/config. json

25

https://huggingface.co/lmsys/vicuna-7b-v1.5/blob/main/config.json

Distribution of Number of Turns Distribution of Prompt Lengths Distribution of Response Lengths
! 1 1 B

2500 i -== Mean: 7.91 I -== Mean: 99.9 === Mean:5632 [hi
8000
-== Median: 3.00 —-== Median: 23.0 8000 --- Median: 369.0
P95: 28.0 i P95: 380.0 P95: 1781.0

2000

6000 1

1
1
1
1
1
1
:
1
: ., 6000
1

|

1500

e
S
3
3

4000

Frequency
Frequency
Frequenc

i, i

10° 10" 10° 10° 10' 10° 10° 10° 10° 10° 10' 10° 10° 10" 10°
Number of Turns per Conversation (log scale) Prompt Length (tokens, log scale) Response Length (tokens, log scale)

1000

500

Figure 5: Distributions of turns and tokens of ShareGPT [Contributors| 2025] datasets (sampled
10,000 conversations).

* Number of Attention Heads: 32

* Number of Hidden Layers: 32

* Number of Key-Value Heads: 32

e Head Size: 128 (Hidden Size — Number of Attention Heads)
» Data Type: Floatl6 (2 bytes per value)

F.2 Calculation

The KV cache size per token is computed as:

KV cache per token (bytes) = 2 x Layers x KV Heads x Head Size x Data Type Size
=2x32x32x128 x2
= 524,288 bytes
where the leading factor of 2 accounts for storing both Key (K) and Value (V) matrices.
For 10,000 tokens, the total memory requirement is:

Total KV cache (bytes) = 10,000 x 524,288
= 5,242,880,000 bytes

Converting to gigabytes:

5,242,880,000
10243
~ 4.8828 GB

KV cache size (GB) =

G Additional Experiment Results

G.1 Offline Baselines and T-LRU Variants with Future Knowledge.

Recent work on queueing systems has shown that machine learning predictions, such as predicted
service times or job characteristics, can significantly improve scheduling and resource allocation
decisions [Mitzenmacher and Shahout, 2025]. In the context of LLM inference systems, various
types of predictions (e.g., conversation continuation, prompt lengths) could also potentially enhance
caching performance. This motivates a natural question: which predictions are most valuable for
caching, and how much improvement can each type unlock? To answer this, we design T-LRU
variants with different levels of future knowledge, creating a predictability spectrum that quantifies
the marginal benefit of each prediction type.

We evaluate three policies with increasing levels of future knowledge:

* T-LRU (baseline): Uses the empirical average prompt length to predict future requests. No
knowledge of conversation termination or actual prompt lengths.

26

¢ End-Aware T-LRU: Knows whether each conversation will continue (return) or terminate,
but does not know future prompt lengths. This variant evicts all blocks from terminating
conversations and follows standard T-LRU for continuing ones.

* Length-Aware T-LRU: Knows both conversation continuations AND the exact length of
the next user prompt. This variant uses exact prompt lengths for TEL-safe trimming and
evicts all caches when conversations end.

Additionally, we include Tail-Optimized Belady, the hindsight-optimal policy for TEL that knows the
entire future arrival sequence. This serves as an upper bound on achievable performance.

Figure |§|reports the latency distributions (median, P90, P95, P99) under different caching policies
across varying cache capacities on the WildChat dataset.

We highlight two observations from Figure [f] First, tail improvement is achieved with a modest
cost to the median latency. T-LRU (blue squares) consistently beats LRU and Threshold-LRU at the
tail (around 300 ms), but its median latency is slightly higher (increased from 10ms to 40ms). The
trade-off is expected and in fact intended. Median latency degradation is minimal and users will likely
not notice: for context, the duration of a blink is on average 100—400 milliseconds according to the
Harvard Database of Useful Biological Numbers [BioNumbers Databasel, [2024]]. T-LRU deliberately
trades off slightly higher median latency (a few milliseconds) to achieve larger tail latency reductions
(tens to hundreds of milliseconds), which is more favorable for user experience.

Second, a single-bit forecast “will this conversation continue?" is a remarkably powerful signal.
End-Aware T-LRU performs much better than T-LRU, while Length-Aware T-LRU gains only a
small additional edge from knowing the exact prompt length. In practice, predicting whether a single
conversation will continue is much easier than forecasting exact prompt sizes, and vastly easier than
predicting the full arrival sequences required by Tail-Optimized Belady. Existing works like [Jin
et al., [2023]] propose models to predict the length of model response with up to 98.61% prediction
accuracy, underscoring the practical viability of deploying End-Aware policies.

Note that Tail-Optimized Belady is the optimal policy for our TEL objective for the £, chosen, thus it
is not necessarily the optimal policy for tail latency at different levels. On the other hand, solving for
the optimal policy for tail latency is computationally hard.

—e— Tail-Optimized Belady Tail-Optimized LRU ~ —#— End-Aware T-LRU ~ —+— Length-Aware T-LRU ~ -¥- LRU Threshold LRU
50th Percentile 90th Percentile 95th Percentile 99th Percentile
24x10 [Fo o % =g 7T ¥
22x107
2x107

18x107

16107

14x107

“x. N, -1
., g 2x10
e 12x107 e
. ~-.
v ~
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Cache Capacity (C) Cache Capacity (C) Cache Capacity (C) Cache Capacity (C)
—e— Tail-Optimized Belady Tail-Optimized LRU ~ —— End-Aware TARU ~ —+— Length-Aware -LRU -7~ LRU Threshold LRU

50th Percentile 90th Percentile 95th Percentile 99th Percentile
e T 5x107{ 7 TTF

4x107 A\
2x10 \
LN
2x10 .—.a ~
‘.. .
~e h)
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Cache Capacity (C) Cache Capacity (C) Cache Capacity (C) Cache Capacity (C)
—e— Tail-Optimized Belady Tail-Optimized LRU ~ —4— End-Aware T-LRU —+— Length-Aware T-LRU -¥- LRU Threshold LRU l

50th Percentile 90th Percentile 95th Percentile 99th Percentile
24x107 - P T F - F--¥

1.9x107 x10-1 ..

2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Cache Capacity (C) Cache Capacity (C) Cache Capacity (C) Cache Capacity (C)

Figure 6: Latency results for various settings (threshold latency &, = 100, 200, 300 ms) from top to
bottom panels.

27

G.2 Results on ShareGPT with Synthetic Timestamps

ShareGPT [Contributors, [2025] does not include timestamps of each request, thus we generate
them with the stochastic model described in Section Specifically, for each conversation, we
draw exponential inter-arrival times with rate A\¢ony = 1, then for each conversation, we generate
inter-arrival times between each turn within a conversation using Exponential distribution with rate
Aturn = 3. The average prompt length in ShareGPT is approximately 100 tokens (we thus set Q =100
in implementation), with an average of 3.5 turns per conversation.

Tables AH5| show that Tail-Optimized LRU still beats both LRU and Threshold-LRU: it trims P90
by up to 10%, and P95 by up to 7%. The smaller improvement compared to the ones observed in
WildChat (Tables[IH2) stem from the already-high base latencies under LRU (with capacity C' = 1000
under LRU, medium, P90, P95, P99 tail latencies are roughly 209 ms, 1415 ms, 2447 ms, 3649 ms),
thus percentage improvements shrink.

Table 4: Relative latency improvement of T-LRU over LRU with various & (ShareGPT)
£s =50ms £s =100ms £s =200ms £s =300ms &s =500ms
Capacity po0 p95 P90 p95 p90 p95 po0 p95 p90 p95

1000 0.0% 0.0% 00% 00% 00% 00% 09% 0.6% 09% 0.9%
2000 0.7% 0.0% 07% 02% 09% 1.5% 1.4% 2.0% 27% 2.3%
4000 0.6% 0.6% 0.7% 18% 20% 25% 25% 3.0% 42% 3.5%
6000 0.7% 13% 21% 29% 49% 3.6% 8.1% 42% 10.0% 4.7%
8000 1.5% 09% 2.6% 18% 35% 25% 4.8% 3.6% 9.6% 5.0%
10000 09% 0.7% 3.6% 1.7% 43% 29% 5.1% 3.6% 9.0% 6.9%

Table 5: Relative latency improvement of T-LRU over Threshold-LRU with various £, (ShareGPT)
€, =50ms £ =100ms €5 =200ms €5 =300ms €5 = 500ms
Capacity po0 po95 p90 p95 po0 p95 po0 p95 po0 p95

1000 0.0% 0.0% 00% 00% 00% 00% 09% 0.6% 09% 0.9%
2000 07% 0.0% 07% 02% 09% 15% 1.4% 2.0% 27% 2.3%
4000 0.6% 06% 07% 18% 2.0% 25% 25% 3.0% 42% 3.5%
6000 07% 08% 21% 24% 49% 3.1% 81% 37% = 10.0% 4.2%
8000 0.8% 03% 2.0% 12% 29% 20% 41% 3.0% 9.0% 4.5%
10000 09% 0.6% 3.6% 1.6% 43% 28% 51% 3.5% 9.0% 6.8%

Using a 200 ms SLO, T-LRU cuts the share of requests above the budget by 2—-8% across capacities
(Table[6). Improvements again peak when &, is near the desired percentile; extremely high &, trades
those mid-tail wins for heavier protection of the extreme tail, echoing the WildChat pattern.

Table 6: Relative improvement of T-LRU: % reduction in requests with latency > 200ms (ShareGPT)

Capacity &s =50ms &5 =100ms &5 =150ms &5 =200ms &5 =500ms

LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU
1000 0.7% 0.0% 1.7% 1.0% 2.3% 1.6% 2.3% 1.6% -3.5% -4.2%
2000 1.1% 1.0% 1.9% 1.8% 2.6% 2.5% 3.1% 3.0% -8.6% -8.7%
4000 1.8% 1.3% 3.9% 3.4% 4.7% 4.2% 4.8% 4.3% -15.6% -16.2%
6000 1.9% 1.1% 4.7% 3.9% 6.0% 5.2% 4.7% 3.9% -26.2% -27.2%
8000 1.2% 0.9% 4.3% 4.0% 4.9% 4.6% 2.9% 2.6% -39.3% -39.7%
10000 2.2% 1.8% 6.5% 6.1% 7.9% 7.6% 3.3% 3.0% -50.7% -51.2%

Lastly, in spite of the extra foresight, End-Aware T-LRU and Length-Aware T-LRU show only
marginal gains over T-LRU, and all three policies perform very closely to Tail-Optimized Belady, the
optimal hindsight policy that minimizes the Tail Excess Latency. This is exactly what our stochastic
model predicts: under Poisson arrivals, LRU’s recency order is already a near-perfect proxy for
“furthest in the future”, the rule the hindsight policy uses for eviction, so extra foresight offers
diminishing returns.

28

—e— Tail-Optimized Belady

#- Tail-Optimized LRU

~4— End-Aware T-LRU

—+— Length-Aware T-LRU

Threshold LRU |

50th Percentile

90th Percentile

95th Percentile

99th Percentile

2x107 14x10° 100 3.65x 100
x o
135x10° 2200
355 % 10°
13x10° o
o) s 1t 23x10 35%10°
x
g o 22x10° 345107
E o 12x10 - 3.4x10°
115 x 100 o
p1x100 3.35 %10
. 11x10° 33x10°
6x 1072 105 x10° 2x10° 325100
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Cache Capacity (C) Cache Capacity (C) Cache Capacity () Cache Capacity (€)
—e— Tail-Optimized Belady = Tail-Optimized LRU ~—— End-Aware T-LRU —#— Length-Aware T-LRU Threshold LRU
50th Percentile 90th Percentile 95th Percentile 99th Percentile
2x1071 14x10°
2.4x10° o
135 %100 3610
- 13x10° 23x10° 35x100
2 125x10°
£ i0m 12x10° 22x10° 34x10°
3 115 x10°
21x10° .
11x10° 3310
6x10-2 v | 1osx100 2x10° 32x10°
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
Cache Capacity (C) Cache Capacity (C) Cache Capacity (C) Cache Capacity (C)
—e— Tail-Optimized Belady = Tail-Optimized LRU ~—— End-Aware LRU ~—— Length-Aware T-LRU Threshold LRU |
50th Percentile 90th Percentile 95th Percentile 99th Percentile
2x107 14x10°
2.4x10° °
1.35x10° * 36x10
= 13x10° 23x10° 35%10°
2 125x10°
g 12x10° 22x10° 3.4x10°
£ 100
3 115 %100
* 21%10° 33x10°
11x10°
61077 1,05 x 100 2x10° 32x10°

2000 4000 6000

Cache Capacity (C)

8000

2000 4000 6000

Cache Capacity (C)

8000

2000 4000 6000

Cache Capacity (C)

2000 4000 6000

Cache Capacity (C)

Figure 7: Latency results for various settings (threshold latency £, = 100, 200, 300 ms) from top to
bottom panels (ShareGPT)

29

	Introduction
	Hindsight Optimal Policy
	Tail-Optimized LRU
	Optimality of Tail-Optimized LRU in a Stochastic Conversation Model
	Experiments
	Datasets and Metrics
	Tail Latency Reduction
	SLO Violation Reduction

	Future Directions and Conclusions
	Related Work
	Proof of Theorem 1 Hindsight Optimal Policy for TEL
	Proof of Theorem 2
	Discussion on Forced Caching
	Additional Figures
	KV Cache Size Computation
	Model Configuration
	Calculation

	Additional Experiment Results
	Offline Baselines and T-LRU Variants with Future Knowledge.
	Results on ShareGPT with Synthetic Timestamps

