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Abstract

Building generalizable and robust multivariate time series models can be challenging for
real-world settings that involve significant shifts between training and testing. Existing
unsupervised domain adaptation methods often struggle with real world distribution shifts
which are often much more severe in some channels than others. To overcome these
obstacles, we introduce a novel method called Signal Selection and Screening via Sinkhorn
alignment for Time Series domain Adaptation (SSSS-TSA). SSSS-TSA addresses channel-
level variations by aligning both individual channel representations and selectively weighted
combined channel representations. This dual alignment strategy based on channel selection
not only ensures effective adaptation to new domains but also maintains robustness in
scenarios with training and testing set shifts or when certain channels are absent or corrupted.
We evaluate our method on several time-series classification benchmarks and find that
it consistently improves performance over existing methods. These results demonstrate
the importance of adaptively selecting and screening different channels to enable more
effective alignment across domains. Python implementation of our method can be found at
https://github.com/nerdslab/SSSS_TSA.

1 Introduction

Time series analysis is increasingly pivotal in diverse fields such as astronomy, climate science, neuroscience,
healthcare, finance, and industrial monitoring (Baker et al., 2015; Bock et al., 2021; Amjad & Shah, 2017;
Coelho et al., 2022). However, due to a variety of factors including drift, sensor differences, and measurement
limitations, there can often be significant shifts in the data between the training and testing times (He
et al., 2023). Traditional methods often struggle with the variability inherent in time-series data, leading to
suboptimal performance and limited generalization. This challenge underscores the need for more robust and
adaptable models that can effectively manage these complexities and leverage the full potential of time-series
data.

Recent work has shown the promise of domain adaptation approaches for time series (Ragab et al., 2023; He
et al., 2023; Liu & Xue, 2021) to help address some of these challenges. In this setting, we combine labels on
the training set with unlabeled test data to build a unified encoder even in light of significant shift across the
two sets. While these methods perform well when tested in some types of domain shift, in the context of
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multivariate (multi-channel) time series, these models fail when presented with missing channels or when
there are significant shifts in individual channels.

Channel-level shifts are surprisingly commonplace and yet haven’t been accounted for in the existing domain
adaptation literature. Take for instance an example from a human activity recognition datasets in Figure 1,
where class 1 (sitting – blue) and class 2 (standing – red) need to be adapted from the source domain shown
in purple to target domain in yellow. In Fig. 1(A), a large domain shift in the blue channel can cause the
representations of the source and target classes to be misaligned which can result in disastrous performance
on the target domain. If this blue channel is simply ignored as in Fig. 1B, the target representations are much
likely to align with their respective classes in the source domain, resulting in greatly improved performance in
the target domain. This example emphasizes the need to develop domain adaptation methods that account for
shifts in each channel differently while also having the ability to screen channels involving larger domain shifts.

Src class 1 Trg class 1 Src class 2 Trg class 2 

Existing Methods Our Method

Original Latents After Channel Selection

Src - Class 1

Trg - Class 1

Src - Class 1

Trg - Class 1

Src - Class 2

Trg - Class 2

Src - Class 2

Trg - Class 2

Figure 1: Examples of channel-level shifts.

To address these challenges, we introduce a
novel approach for time series domain adapta-
tion. Our approach centers on constructing a
separable alignment plan between the labeled
(source) and unlabeled (target) data, where the
goal is to first align each channel and then align
the joint embeddings formed after pooling across
channels. To achieve a sparse and selective at-
tention of channels when pooling, we employ a
simpler variant of self-attention to select and
combine channels, enabling the fusion of the
channel latent representations into a compre-
hensive global representation. This method not
only enhances adaptability across domains but
also allows for discernment in channel selection
and screening, ensuring that only the most rel-
evant and informative channels are utilized for
alignment and inference.

We evaluate the performance of the model
on a number of time series benchmarks and
achieve state-of-the-art performance. In bench-
mark tests on a widely used human activity
recognition dataset called WISDM, our method
achieved a nearly 6% improvement over the ex-
isting state-of-the-art models. Our results and ablations not only demonstrate the effectiveness of our approach
in dealing with complex, multi-channel time-series data but also highlights its potential in identifying the
most informative channels across two datasets for diagnostic and interpretation purposes.

Our contributions include:

• Novel method for time series domain adaptation. We develop a new method that builds a
separable alignment plan that aligns each channel independently before pooling across channels and
aligning the fused representations.

• Channel selection and screening via a self-attention layer. Our method employs a self-
attention layer for sparse and selective attention of channels. This allows for the efficient selection
and combination of only the most relevant channels, leading to the formation of a robust global
representation that is representative of the essential features in the data even in the context of
significant shifts in some channels (see Fig. 1).

• State-of-the-art performance in time-series classification benchmarks. Our approach
achieves state-of-the-art performance on a number of datasets, and achieves a 6% improvement in
accuracy over existing state-of-the-art methods on the WISDM human activity dataset. This result
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underscores the effectiveness of our method in handling shifts in complex, multi-channel time-series
data.

• Interpretability. Our approach not only excels in performance but also provides insights into
the most informative channels across datasets. This feature is particularly beneficial for diagnostic
purposes, allowing practitioners to understand which channels provide the most joint information
across the source and target.

2 Background and Related Work

2.1 Domain adaptation

Many real-world scenarios require adapting a model which is trained on a source labeled dataset to a related
unlabeled target dataset. This related dataset can have a shift in either the unlabeled data (feature shift), or
the (unavailable) labels in the target domain.

Domain adaptation methods try to improve prediction performance on unlabelled target domain data by
leveraging source domain labeled data. Most methods addressing feature shift, which is the domain shift
we address in our paper, make the assumption that the shifted class conditioned data in the target domain
is closer to the corresponding class conditioned source data in the representation space. This means that
the source domain representations for a class should be closer to the target domain representations of the
same class than the target representations of other classes (Ben-David et al., 2010; van Tulder & de Bruijne,
2023; Zhao et al., 2019). When this assumption is met, making the source and target domain representations
invariant while simultaneously minimizing the source classification loss can help models adapt to target
domains.

These source and target representations can be made invariant through adversarial learning (Ganin et al.,
2016; Long et al., 2018), or minimizing distances such as the maximum mean discrepancy or Wasserstein
distance (Wang et al., 2023a; Shen et al., 2018; Sun & Saenko, 2016; Damodaran et al., 2018). Other methods
take an alternate approach where source domain labels are used to generate pseudo labels in the target
domain, which are then used to train a model to classify unlabeled target domain data (Wang & Breckon,
2020). Related methods have incorporated augmentations with contrastive learning on both source and
domain representations to better adapt models to the target domain (Singh, 2021).

2.2 Domain adaptation techniques in time series

Time series domain adaptation methods have mostly adopted methods from vision while utilizing encoders
more suited to time-series data such as RNNs and 1D temporal CNNs. Many methods utilize adversarial
learning (Wilson et al., 2020), or use kernels more suited to time-series data to align source and target
representations (Liu & Xue, 2021; Cai et al., 2021). Other methods such as SASA make the assumption that
inter channel relationship is invariant across domains (Cai et al., 2021). Recent benchmarking results suggest
that this assumption isn’t true in time series domain adaptation settings where larger shifts often occur in
a few channels across domains(Ragab et al., 2023). Recent methods have also additionally incorporated
pseudo-labeling and self-supervised contrastive learning through augmentations (Ragab et al., 2022; Ozyurt
et al., 2023). As frequency domain information can be in some cases useful for time series classification tasks,
newer methods have also incorporated source and target domain frequency representations while learning
domain invariant representations (He et al., 2023).

All of these methods pass all time series channels collectively into a common neural network encoder. There
has been very little, to the best of our knowledge, that develops different representations and domain
adaptation schemes for each channel in multivariate time series. There is only work that we know of utilizes
individual channel alignment (Wang et al., 2023b). The motivation for this method is to develop improved
domain adaptation for sensor networks which require localized channel/sensor level adaptation . Our method
on the other hand utilizes a signal selection layer to downweigh channels with significant shifts between
the source and the target domain which requires first aligning individual channel representations as we will
discuss in section 3.2.
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2.3 Optimal Transport and Sinkhorn divergences

To build aligned representations, we use the Sinkhorn divergence, a robust measure of distributional simi-
larity. The Sinkhorn divergence is an entropic regularized variant of Wasserstein distances. The entropic
regularization, with regularization parameter γ, allows a computationally efficient transport plan solution
to be obtained through Sinkhorn iterations (Cuturi, 2013). This divergence can then be used to measure
how similar two different samples sets are, and thus can be used as a loss function to make two sample sets
similar (Genevay et al., 2018). We provide more details for Sinkhorn divergence in Appendix A.

3 Method

3.1 Motivation

Many real-world time series classification problems often heavily depend on a limited number of channels,
and the quality of different channels may vary between training and testing times. This variability can lead to
a significant drop in model performance when the channels’ characteristics change, highlighting the necessity
for models that can dynamically adapt to such changes (He et al., 2023). Building robust models that can
achieve channel-level alignment is thus critical for improving generalization in time series data.

Motivated by these challenges, we propose a novel approach for time-series domain adaptation that addresses
the issue of selective channel-level alignment. Our method decouples the alignment processes across channels,
focusing specifically on aligning channels at a granular level as well as the alignment of the mixture of channels.
This approach ensures that the most informative and stable channels are prioritized, while less informative or
unstable channels are effectively de-emphasized during alignment.

Figure 2 illustrates the overall architecture of our proposed method. Initially, the time series data is split into
different channels, with each channel being fed into a specific encoder and classifier. The individual channel
representations are then processed to obtain channel weighting scores. These scores are used to reweight the
channel representations, effectively selecting certain channels to highlight and others to mask. This selection
and screening process ensures that only the most relevant channels contribute significantly to the final model.

Our model leverages a channel-level encoder and a signal selection mechanism to reweight different channel
representations before aligning the source and target domains. This reweighting is crucial for dynamically
adjusting the importance of each channel based on its relevance and stability, thereby enhancing the model’s
robustness and adaptability. Overall, our approach addresses the core issues of channel variability and
misalignment, providing a more resilient solution for time series classification in real-world scenarios. By
focusing on channel-level alignment and reweighting, our method significantly improves the generalization
and adaptability of the model across different domains.

3.2 Method description

Let Xt ∈ RC×T denote the target data, a multivariate time-series dataset with length T , and C channels.
Similarly, we will consider the source timeseries Xs ∈ RC×T which could be of different number of timepoints
or channels than the target dataset.

Building channel-level representations. In line with recent work in timeseries classification and
forecasting which show state-of-the-art performance when separating timeseries into univariate single-channel
information before mixing across channels (Liu et al., 2022; Nie et al., 2022; Tao et al., 2020), we first split the
dataset into C different, univariate time series xc ∈ RT , where the superscript c represents the cth channel.
Each of these univariate time series is then fed into a channel specific encoder f c

θ , to obtain channel specific
representations zc = f c

θ (xc) ∈ Rd. These encoders are used to encode both source domain time series Xs and
target domain time series Xt into zc

s and zc
t for all channels c ∈ C. The source domain representations for the

channels, zc
s, are then linearly transformed by Wc ∈ Rd×M for all c ∈ C, where M is the number of classes.

A softmax function is then applied on this linear transformation to produce the class prediction vector ŷc
s.
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Figure 2: Overview of our proposed approach. For both the source and the target domain time series, each of the input
channels is fed into channel specific encoders before minimizing source classification and alignment loss. All of the domain
adapted channel representations are then provided to a channel selection layer, which reweights source and target channel
representations before passing all of the channels through to minimize the subsequent alignment and classification losses.

Channel screening and selection. To help deal with large amounts of shift between source and target
domains, we develop a screening procedure which computes a weighting vector w to be applied to the
channel-level information. The channel-level weights can be obtained by:

w = softmax
(

1
τ

[
1√
d

(
(q1)⊺k1, . . . , (qC)⊺kC

)])
(1)

where kc = Kzc and qc = Qzc K and Q ∈ Rd×d, and τ is the softmax scaling factor. This scaling is used to
reweight our channel-independent representation as za ∈ RdC :

za = vec (w ⊙ Z) = vec
(
[w1z1, w2z2, ..., wCzC ]

)
.

Figure A1 in the appendix provides a visual description of this channel screening and selection method.

Overall loss. Our overall alignment and classification loss is a function of all channel encoders (f c
θ ) and

channel classifiers (W c):

L = Sγ(za
s , za

t ) + LCE(ŷa
s , y)︸ ︷︷ ︸

Dom. adapt. for combined reps

+
C∑

c=1
Sγ(zc

s, zc
t ) + LCE(ŷc

s, ys)︸ ︷︷ ︸
Dom. adapt. for each channel

, (2)

where we use the Sinkhorn distance Sγ with entropy parameter γ as defined in Eq. 3 to measure the deviation
between two distributions due to its robustness and ease of use. See the Appendix A for a full discussion of
the Sinkhorn algorithm.

3.3 Intuition behind our method

Different time series channels can carry more diverse information than channels within other modalities such
as images. As a result, many real-world time series classification problems can often heavily depend on a
limited number of channels. Learning separate classifiers for each channel, which is required as part of our
method, leads to individual channel representations that try to maximize the mutual information between
each channel input and source label data. When the supervised loss on the source domain is combined with
a loss that minimizes the Sinkhorn distance between source and target data for each channel, the signal
selection and screening layer now produces weights that not only down weigh channels that are uninformative
for classification in the source domain, but also de-emphasize channels that do not align well between the
source and target domains. As we will see, this can ultimately significantly improve domain adaptation
performance.
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Table 1: Mean accuracy and macro F1 scores on timeseries domain adaptation benchmarks over 5 runs (↑ is
better). Standard deviation of these scores is provided in Appendix table A15.

Method Mean Shift UCIHAR HHAR PXECG WISDM WISDM-Bal
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Sup 43.12 0.423 77.04 0.750 59.40 0.543 63.51 0.366 64.90 0.504 65.84 0.521
DANN 71.32 0.701 82.91 0.857 71.27 0.678 62.87 0.347 67.94 0.567 73.86 0.683

AdvSKM 74.31 0.712 85.12 0.813 63.25 0.616 62.98 0.372 69.92 0.581 71.19 0.611
CoDATS 54.31 0.531 86.34 0.856 68.79 0.686 66.30 0.366 68.35 0.548 75.15 0.665
CDAN 79.54 0.813 84.59 0.836 70.06 0.704 64.29 0.375 70.12 0.517 70.29 0.661
SASA 63.72 0.587 80.75 0.791 65.85 0.641 66.47 0.401 67.60 0.564 82.81 0.781

DeepCoral 82.34 0.841 86.53 0.851 66.16 0.690 62.60 0.346 72.72 0.605 74.31 0.649
CLUDA 78.21 0.802 82.45 0.854 67.03 0.641 64.92 0.324 65.57 0.504 73.77 0.699
SinkDiv 73.11 0.713 85.13 0.876 69.64 0.720 64.97 0.376 67.16 0.578 70.98 0.648
Raincoat 73.11 0.713 89.13 0.873 62.11 0.603 66.22 0.357 62.11 0.523 69.09 0.727

SSSS-TSA 99.01 0.985 90.12 0.901 72.19 0.737 66.38 0.419 75.19 0.635 83.57 0.816

4 Experiments and Results

In this section, we provide results on multiple realworld timeseries datasets used in prior work, as well as
a number of synthetic and corrupted data experiments which test the robustness of our model to different
types of domain shift. Finally, we show the benefits of the model in explainability.

4.1 Datasets and tasks

Simulated mean shift data. We first consider simulated data consisting of 4 dimensional sequences of
length 128. Source domain data consists of Gaussian i.i.d. data with variance 1, and the means of these
channels shifts between 4 classes. The target domain data is generated by randomly selecting and shifting
one channel mean for each class.

UCI Human Activity Recognition (UCIHAR) . Data was collected from a group of 30 volunteers
performing six different activities (walking, walking upstairs, walking downstairs, sitting, standing, and laying).
Each participant was equipped a smartphone with embedded accelerometer and gyroscope that provides 9
channel data (3 axis body acceleration, 3 axis angular velocity, and 3 axis total acceleration)(Anguita et al.,
2013).

Heterogeneity Human Activity Recognition (HHAR). Data consists of different users carrying
various types of smartphones and smartwatches while performing common activities like walking, sitting,
standing, etc. This dataset poses a significant challenge in domain adaptation due to the variability in sensor
outputs across different devices. This data consists of 3 axis accelerometer data (Stisen et al., 2015).

PXECG. This is a 12 channel ECG dataset with 5 diagnostic classes. The data is collected from 5 different
sites, each of which constitutes a different domain (Wagner et al., 2020).

Wireless Sensor Data Mining (WISDM). Involves time-series data collected from wireless sensors
embedded in smartphones. The data typically includes activities like jogging, walking, ascending and
descending stairs, sitting, and standing. WISDM can be a highly imbalanced dataset across subjects, which
makes it particularly challenging for domain adaptation (Kwapisz et al., 2011).

WISDM-Bal. We also take the WISDM dataset and balance classes across source and target domains to
better analyze the performance of our proposed method. We do this to ignore issues in domain adaptation
that arise because of imbalanced datasets, an issue that we do not aim to address in this paper.

As the possible number of domain adaptation scenarios on WISDM, HHAR, and UCIHAR can be as large as(30
2

)
, we select 10 domain adaptation scenarios for our experiments. More details on the datasets, the chosen

domain adaptation scenarios, and their corresponding results can be found in Appendix D.
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4.2 Evaluation setup

Baselines. The models compared in these experiments include: supervised learning on the source domain
(no domain adaptation), Domain-Adversarial Neural Networks (DANN) (Ganin et al., 2016), Adversarial
Spectral Kernel Matching (AdvSKM) (Liu & Xue, 2021), CoDATS (Wilson et al., 2020), Domain Adaptation
via Sparse Associative Structure Alignment (SASA) (Cai et al., 2021), Conditional Domain Adversarial
Networks (CDAN) (Long et al., 2018), DeepCoral (Sun & Saenko, 2016), CLUDA (Ozyurt et al., 2023),
Sinkhorn Divergence (SinkDiv) , and Raincoat (He et al., 2023), alongside our proposed method, SSSS-TSA.
The Sinkhorn divergence baseline is the Raincoat baseline without the frequency domain information. It aligns
the Sinkhorn distance between source and target representations while minimizing the source classification
loss. We select these baselines as these are the methods considered in more recent domain adaptation papers
(He et al., 2023; Ozyurt et al., 2023). The Adatime benchmarking suite is adapted and used to run these
baselines (Ragab et al., 2023).
Experiments and evaluation details. We use a 1D CNN neural network as an encoder for all of our
baselines. Most of these datasets provide standardized splits to train models and test splits to report numbers.
As unlabelled target domain data is not available in real world domain adaptation settings, there is some
uncertainty in the community regarding the best way to evaluate domain adaptation methods. We run
all methods for a fixed number of epochs and report numbers at the end of these. While less common,
this scheme has been used by other papers (e.g., (He et al., 2023)) and most accurately depicts real-world
domain adaptation settings. We also report test-set numbers when models attain their best performance
on a validation holdout from the training data in the appendix (as that is a popular evaluation criteria in
literature). We report both macro F1 and accuracy scores for better evaluation across datasets with varying
class imbalances. Each model is run five times on each dataset to ensure statistical reliability, and the results
are averaged to produce the mean accuracy and macro F1 scores.

4.3 Results on time-series classification benchmarks

The results, as shown in Table 1, demonstrate the superior performance of SSSS-TSA across a range of
realworld datasets. We first note that it is interesting to see how poor the performance of most baselines is
on the simulated dataset. Our method’s performance of 0.98 F1 score underscores how alignment of channels
can lead to significant improvements over approaches that only align fused or global representations. Our
method achieves the highest accuracy and macro F1 score on every dataset considered, except PXECG where
the accuracy of our method is lower than the best method by only 0.01%. It often significantly outperforms
the second best algorithm, and there is no alternative algorithm that is consistently close to the performance
of our approach.

These results underscore the effectiveness of our approach in domain adaptation for time-series data. Our
method consistently outperform other state-of-the-art models in various complex and real-world scenarios.
The significant improvement in mean macro F1 scores across these datasets highlights the robustness and
adaptability of our approach, particularly in handling the challenges posed by multi-channel and noisy
time-series data. The Appendix contains additional results when the target labels in validation sets are used
to determine the stopping time. While this is not a realistic metric in a true domain adaptation scenario (as
it allows labels in the target domain to influence the training process), we find that using this evaluation
criteria our method continues to be either competitive or superior to baselines.

4.4 Testing across different types of domain shift

To further test the capability of our method to handle different types of shifts, we create additional domain
shifts with in the 9-channel UCIHAR dataset. In these experiments, the source is data from one individual
(S-2) and the target domain is a new individual (S-11). For the domain adaptation setting, we study three
types of additional shifts in the target domain to evaluate the robustness of our approach: (i) Additive
Gaussian noise: This shift simulates the presence of sensor noise and other measurement artifacts that can
degrade the quality of the recorded data. In our experiments, we add Gaussian noise (zero mean, var=2) to
randomly selected channels in the target domain that are unobserved in the source domain; (ii) Saturating
channels: This shift simulates the effect of sensor saturation, where the recorded signal reaches a maximum
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(A) (B) (C)

Figure 3: Domain adaption performance when target domain in UCIHAR dataset is further shifted through
corrupted channels. From left to right, we compare our method to baselines in an (a) additive Gaussian noise setting, (b)
saturated channels setting, and (c) when channels are dropped. Our method SSSS-TSA (in red) performs much better.

value and can no longer capture variations in the signal. To simulate channel saturation, we set randomly
selected channels to a large value (we set these channels to 2, which is a larger value for these prepossessed
normalized datasets). This happens in many microscopy datasets, and sensor networks, when photobleaching
occurs or a sensor become faulty; Dropping channels: This shift examines the impact of having an unequal
number of channels between the source and target domains. To simulate this type of corruption, we drop
channels by setting randomly selected channels to 0. By selectively dropping channels in the target domain,
we can study the model’s ability to adapt when the available information in the target domain is incomplete
or differs from the source domain.

For all these cases, we can vary the number of channels (2, 4, 6) affected by these shifts to evaluate the
robustness of domain adaptation methods under different levels of channel corruption. This systematic
evaluation allows us to understand the resilience and adaptability of our approach in the presence of various
types of channel distortions, providing insights into its practical applicability in real-world scenarios.

Results. We repeat our experiment five times, each time using a different random set of selected channels.
The average macro F1 scores are shown in Fig. 3. We can see that SSSS-TSA consistently outperforms
baselines such as DANN and SinkDiv. We selected these baselines as most other baselines are variants of
these. We observe that our baselines exhibit significant performance degradation when only 2 channels are
saturated in Fig. 3 (B). Our method achieves a macro F1 score of 0.922 while the best next baseline, SinkDiv
Alignment, falls to 0.46. Even when 6 out of the 9 channels are saturated, SSSS-TSA still attains an F1 score
of 0.60. Fig. 3 (C) shows the results of the setting where randomly selected channels are dropped. Though
our method performs better than other baselines, the margin is smaller for SSSS-TSA when six channels are
dropped. As this dataset was preprocessed and normalized, many channels in the source domain would have
values closer to 0, which would make it likely for some of these channels to be aligned with dropped channels.
Our method performs much better in the additive Gaussian setting as the corrupted channels are less similar
to the source channels. Overall, these results show the our method often has the ability to screen and select
important unaffected channels to improve time series domain adaptation performance.

4.5 Ablations

We conduct multiple ablation studies which investigate how different components of our proposed method
affect performance. These ablation results are provided in Table 2.
How important is it to align channels independently? In our first ablation study ( denoted as W/O
Ind Align), we evaluate the importance of aligning independent channels in our method. This ablation
corresponds to removing the third and fourth terms in equation 2. We can consistently observe across datasets
that performance significantly decreases when individual alignment is removed, with performance dropping
by 42 % on the UCIHAR dataset. This drop in performance supports our hypothesis on the importance of
obtaining informative channel-level representations.
How important is the classifier for each channel? For our second ablation study (W/O Ind Clfr),
we investigate how important it is to include channel specific classifiers while aligning representations for
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Table 2: Mean F1 score over 5 runs for different sets of ablations

W/O Ind Align W/O Ind Clfr W/O Attn W/O Sink SSSS TSA
UCIHAR 0.527 ± 0.091 0.571 ± 0.090 0.887 ± 0.065 0.867 ± 0.069 0.901 ± 0.051
HHAR 0.399 ± 0.056 0.503 ± 0.051 0.717 ± 0.041 0.604 ± 0.051 0.737 ± 0.047
WISDM 0.449 ± 0.094 0.506 ± 0.054 0.597 ± 0.046 0.625 ± 0.049 0.635 ± 0.053
WISDM-Bal 0.639 ± 0.083 0.645 ± 0.097 0.694 ± 0.087 0.781 ± 0.041 0.816 ± 0.031
PKECG 0.234 ± 0.026 0.312 ± 0.031 0.381 ± 0.040 0.385 ± 0.046 0.419 ± 0.031

individual channels. This corresponds to removing the fourth term in equation 2 which results in a setting
where Sinkhorn divergence aligns representations for each channel without source class information. This
ablation results in a method which is similar to the method proposed by (Chen et al., 2022) in which the
authors try to obtain indiscriminate features for different data sensors while not utilizing sensor specific
classifiers. We can observe that removing channel specific classifier consistently leads to significantly worse
performance, with scores decreasing on UCIHAR dataset by 37 %. This suggests that source class information
is critical while aligning individual representations which further supports our intuition provided in 3.3.
How important is the selection and screening module? Our third ablation focuses on the impact of
the selection and screening module, specifically our implementation of the attention mechanism. When the
attention mechanism was removed (W/O Attn), the score decreases across all datasets. The most significant
of these decreases was observed on the WISDM-Bal dataset which saw a score reduction of 15%. The attention
mechanism enables the model to focus on the most relevant and informative channels, thereby improving the
both the quality of the merged representation for classification in the source domain as well as the relevance of
this representation in the target domain, and consequently, improving the overall performance of the model.
What if you change the discrepancy measure? We also tested our model in an ablation (W/O Sink)
were we replace Sinkhorn divergence with the Maximum Mean Discrepancy (MMD) as the discrepancy
measure in equation 2. We found that the Sinkhorn outperforms the MMD on all of the datasets we tested,
with larger some gaps on some datasets and more modest performance boost on the WISDM dataset. The
MMD is sensitive to the choice of bandwidth used in the radial basis kernel. This can potentially cause
improved performance in some settings as compared to others. Additionally, the type of shift encountered
between source and target domains can vary across datasets, and this can lead to a varying degree of
performance gains when utilizing one discrepancy measure over another.
What is the effect of ablations as more target channels are corrupted? Of all the ablations that
we present in Table 2, the W/O Sink and W/O Attn ablations have the smallest impact on performance. To
further investigate this observation, we test W/O Sink and W/O Attn ablations on target channel corruptions
that were introduced in section 4.4. We can see in Figure 4 how the performance worsens for the W/O
ablation as we increase the number of affected channels. This further supports how our proposed method’s
channel selection and screening module performs more robustly in the presence of channel level shifts. The
W/O Sink ablation, which replaces Sinkhorn divergence with MMD, further supports this observation. The
channel selection and screening layer allows W/O Sink ablation to perform better than W/O Attn ablation
as more channels are either saturated or dropped.

Interestingly, when channels are affected by noise, the W/O Sink ablation performs worse than the W/O Attn
ablation. This observation holds true even as the number of affected channels are increased. These results
suggest that for certain distribution shifts, MMD might not be effective at capturing the correct alignment
across source and target domains. The Sinkhorn divergence’s ability to better capture geometrical properties
leads to improved performance across all of these target channel corruption scenarios (Feydy et al., 2019).

We also provide additional ablations in Appendix C.1 where we investigate how performance changes when
the same encoder is used for aligning channel level representations. Ablations in Appendix C.2 further explore
how employing a vanilla self-attention for the channel selection and screening layer affects performance.

4.6 Visualizing the learned weights

To provide further insights into how our channel-selection mechanism works, we visualized the channel weights
learned by our model for both source and target domain data (HHAR) in Figure 5. Note that the overall
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(A) (B) (C)

Figure 4: Ablation study results for the setting where target domain in UCIHAR dataset is further shifted
through corrupted channels. From left to right, we compare our method to baselines in an (a) additive Gaussian noise
setting, (b) saturated channels setting, and (c) when channels are dropped.
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Figure 5: Visualization of channel selection process. The top row shows channel weights learned by our model on
the HHAR dataset for the corresponding input data below. The overall weight distribution across the two domains is mostly
similar. The colored boxes in the matrices highlight how weights learned for different classes help mask channels with larger
shifts between the domains, contributing to improved domain adaptation performance.

distribution of the weight matrices across the classes is mostly similar between the source and the target
domains. We use source and domain data from three classes to illustrate how these learned weights help
improve domain adaptation.

The source and target weights for class 1, bounded in red boxes, select channel 3 as an important channel
for the domain adaptation task. We can see in the input data for class 1 that these chosen weights indeed
help ignore the blue and the orange channels which encounter major shifts between the source and the
target domains. The selected green channel is most similar between the two domains. We observe similar
phenomena for classes 2 and 5. While not depicted in the figure, it is also noteworthy that the weights learned
for class 4 are quite different in the source and target domains. Upon detailed inspection, each channel is
quite informative, and in this case the precise selection of channels is not particularly important for ensuring
correct classification.

4.7 Visualizing the latent representations

Finally, we also examine the latent representations learned by our models and compare them to a standard
Sinkhorn alignment across all channels in Fig. 6. In this example, we can see that the representations formed
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by our method provide good overall alignment across all the classes globally and also gives a good local
alignment of each class. In contrast, for the Sinkhorn baseline we see that some classes are often fractured
and can be mapped to different parts of the latent space.

5 Conclusion and Future Directions
TargetSource SSSS-TSA

TargetSource SinkDiv

Figure 6: Visualization of latents for our
method and baseline. Umap embeddings for do-
main adaptation across two subjects on the HHAR
dataset for (Top) our approach and the (Bottom)
Sinkhorn Divergence baseline.

A key component of our method is its contrast with traditional
encoders that indiscriminately process all channels jointly. Such
encoders often fail to exploit the inherent structure and im-
portance of different channels in time-series data, potentially
leading to suboptimal performance, especially in the presence of
irrelevant or noisy channels. Our approach avoids this pitfall by
focusing on the most relevant channels, ensuring that the model
is not only more efficient but also more effective in capturing the
nuanced relationships within the data. We show how channel
invariance can be a powerful tool for alignment, especially in
noisy channel settings and across different subsets of channels
in the training and testing sets.

Of course our approach is not without limitations. One such
limitation is the potential for overfitting in scenarios with ex-
tremely noisy or sparse datasets, where channel selection might
become biased towards non-representative features. Addition-
ally, our current model uses different encoders for each channel
which restricts the application to new or unknown channels.
Nevertheless, our method has shown the advantages of selec-
tively screening and aligning channels representations. This can
likely be used in conjunction with other recent methods that
explore augmentations (Ozyurt et al., 2023) and label correction (He et al., 2023) for further improvements
in the future.

There is further scope to extend our method to multi-modal domain adaptation settings. In such settings,
some modalities provide more information in aligning the correct source and target representations. Our
method can be adapted for such scenarios where selective alignment of individual modalities could lead to
improved domain adaptation performance. Examples of such multi-modal settings could potentially involve
temporal and frequency modal information for time series, as well as more generalized multi-model settings
involving audio and video modalities.
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Appendix

A Details for Sinkhorn divergence

As mentioned earlier in the main paper, Sinkhorn divergences are variants of Wasserstein distances that
compute an entropic regularized optimal transport plan between two sets of distributions.

To transport between two sets of points, can express these distributions as α =
∑n

i=1 aiδxi and β =∑m
j=1 bjδyj

, where δx is the Dirac function at position x ∈ Rd, so that the xi and yj denote the mass
locations for the distributions and ai, bi ∈ R+ are the weights at these mass locations for α and β respectively.
The Sinkhorn distance between two distributions α and β is defined as

Sγ(α, β) = min
P

⟨C, P ⟩ − γH(P ), s.t P ∈ Rn×m
+ , P T

1n = b, P1m = a, (3)

where P is called the transport plan, the ground cost metric C ∈ Rn×m represents the transportation cost
between each pair of distribution mass locations, H(P ) is the entropy of the transport plan matrix P and is
given by H(P ) =

∑n
i=1

∑m
j=1 Pi.j(log Pi,j − 1), while γ is a regularization parameter. This regularization

term makes the minimization problem strongly convex and makes it less sensitive to changes in input, and
can be solved with O(n2) computations using the Sinkhorn algorithm Cuturi (2013).

B Hyperparameters and other training details

For all of our runs, we used a Sinkhorn regularization parameter, γ = 1e − 3.
We used the ADAM Optimizer with a learning rate set to 1e − 3 for all experiments. Our loss function
doesn’t take a constant sum of the supervised classification loss and Sinkhorn alignment values. The ratio
of these two terms in the loss function wasn’t tuned for any experiment. We were mindful of how our
experiments settings should reflect real world scenarios where true labels from the target domain aren’t
available. All datasets were trained for 300 epochs before reporting numbers in table 1 For the HHAR and
WISDM datasets, the temperature parameter τ for the softmax non linearity was set to 3. For UCIHAR this
was set to 9 (as a larger number of channels were involved). For the remaining baselines, we used the already
set hyperparameters for these different datasets in the Adatime benchmarking suite. We used Raincoat’s
adaptation of this benchmarking suite https://github.com/mims-harvard/Raincoat to run both raincoat
and other baselines. All experiments were performed on a Single NVIDIA Quadro RTX 5000. More results
on hyperparamaters and their sensitivity can be found in C.6.

B.1 Training, validation and testing splits.

The publicly available datasets we report numbers on already contain train and test splits for each domain
adaptation scenario(which are also used by the Adatime benchmarking suite). We use the same splits as
Adatime. For results, such as those in Table A3, that require a held out validation set, we split the dedicated
training set in these benchmarking datasets into a random %70/%30 split. The larger split was used for
training and the smaller split was used for validation. Results were reported on the pre-designated test splits
provided by these benchmarks.

C Additional Results

C.1 Using a single encoder for aligning representations across all channels

Table A1: Ablations when a single encoder
is used for aligning all channels

Dataset Shared Ours
UCI-HAR 0.65 0.90
HHAR 0.58 0.74
WISDM 0.52 0.64
WISDM-Bal 0.67 0.82

A key ingredient behind our approach is the use of channel level repre-
sentations. We tested whether having different weights for each channel
improves performance. We provide these results in Table A1).Our
results demonstrate that having different weights for our CNN encoder
across channels provides large gains, with a shared encoder yielding
a performance of 0.67 and our method with different channel encoder
weights gives a score of 0.82.
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Figure A1: Signal Selection Layer in Figure 2 for source domain.

C.2 Adding
in a more complex selection procedure with self-attention

In domain adaptation alignment settings, the weight for a channel
should depend only on the information contained within the channel; information from other channels could
potentially corrupt this weight computation. To confirm this hypothesis, we ran experiments where we
replaced our channel selection mechanism with a vanilla self-attention layer for computing weights w in 1. A
vanilla self-attention layer would compute a channel weight matrix that depends on the interaction between
different channels. Ablation results in Table A2 confirm our hypothesis as we can see that the performance
degrades when vanilla self-attention is used. Our channel selection operation can also be expressed as a
restricted self attention layer that doesn’t attend to cross channel attention weights:

w = Softmax
(

diag
(

QK⊺

√
d

))
I,

where the values matrix used in vanilla self attention is replaced by the identity matrix I, and only the
diagonal terms of the self-attention matrix are retained.

C.3 Learned weights for corrupted channels

Table A2: Ablations comparing vanilla
self-attention with our proposed attention
method.

Dataset Self-Attn Ours
UCI-HAR 0.85 0.90
HHAR 0.66 0.74
WISDM 0.60 0.64
WISDM-Bal 0.75 0.82

We also obtained results in figure A2 that show the distribution of
the learned weights by the corrupted channel in experiments of 3.

We computed these statistics by obtaining the fraction of total num-
ber of channels that were either dropped, saturated or added with
noise, and obtained their corresponding weights. These diagrams are
histograms with points plotted at the midway point of the histogram
bins. Multiple could occlude each other, so we show line plots with
markers at the mid-point of the histogram bins.
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Figure A2: Learned weights for corrupted channels. For the experiments in figure 3, we show the fraction of corrupted
channel and their corresponding learned weights.

C.4 Different testing schemes

Table A3 shows macro F1 scores when target domain labels in the
validation hold out set were used to report evaluation numbers. The model parameters corresponding to the
best macro F1 performance on the target domain holdout validation set were saved. The performance of
these saved models on test sets was then reported. We believe this method doesn’t accurately reflect real
world performance, but report numbers here as this is a common evaluation scheme used in literature.

Table A3: Mean macro F1 scores over 5 runs for different domain adaptation methods
Model Simulations UCIHAR HHAR WISDM WISDM-Bal PXECG
Supervised Src 0.262 0.836 0.66 0.504 0.521 0.366
DANN 0.7 0.891 0.701 0.681 0.626 0.361
AdvSKM 0.712 0.88 0.671 0.616 0.665 0.389
CoDATS 0.531 0.907 0.744 0.685 0.816 0.366
CDAN 0.812 0.647 0.731 0.632 0.742 0.363
SASA 0.654 0.803 0.681 0.559 0.801 0.396
DeepCoral 0.843 0.892 0.697 0.621 0.701 0.346
CLUDA 0.802 0.857 0.661 0.491 0.760 0.325
SinkDiv 0.713 0.876 0.720 0.602 0.648 0.376
Raincoat 0.713 0.889 0.714 0.519 0.746 0.354
SSSS-TSA 0.98 0.915 0.787 0.677 0.857 0.422

It can be seen that there is a big difference in methods that employ adversarial learning (such as DANN,
CoDATS etc.) between numbers in Table A3 and 1. Methods employing Sinkhorn Distance have a smaller
margin difference between these two approaches. Adversarial methods can be very unstable, and the best
target domain validation scores often do not correspond to higher source domain classification scores. Source
domain F1 scores on validation holdout sets are another way to stop model training and report domain
adaptation methods on target domain test sets, but source classification scores reach their best values very
early on in the training regime, way before target domain performance improves to their best values.

For HHAR and UCIHAR datasets, we use the same domain adaptation scenarios used in He et al. (2023). For
WISDM we use a different set of domain adaptation scenarios as the raincoat paper addresses the universal
domain shift problem, where some source domain calsses are not present in the target domain. As that is not
the focus of our paper, we use a different set of domain adaptation scenarios for the WISDM dataset.

C.5 Computational complexity

As our method employs separate encoder and classifier for each channel, its important to analyze the
computational and memory demands to better understand scaling ability. We observe that time series
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encoders such as 1D CNN are much smaller in size than vision or language encoders and this results in
manageable memory demands. For all our experiments, we used an encoder that consisted of 3 layers of 1D
CNN. The size of each of these channel-specific encoders was 0.38014 MB. Each channel-specific classifier was
of size 0.065MB. Such a small memory footprint would allow our model to adequately handle memory usage
for high-dimensional input time series datasets. These results imply that SSSS-TSA would take less than 50
MBs of memory when used on a 100 channel dataset.

These channel-specific encoders also have manageable computational complexity. For the 9 channel UCI
HAR dataset, the time taken for a batch of 64 samples in the forward pass is 0.04700 seconds (which involves
passing the source and target data through channel-specific encoders, then channel-specific classifiers, then
obtaining channel-specific alignment, pooling representations through the attention layer, and then finally
align and classifying globally pooled representations). The backward pass takes 0.0363 seconds and updating
the weights of the model takes 0.02573 seconds. This totals to 0.109 seconds.

For comparison, a scheme where no channel-specific encoders and classifiers are used (SinkDiv alignment),
the total time for forward, backward passes and weight updates for one batch is 0.015244 seconds.

This shows that when separate encoders, classifiers, and alignment plans are used for each channel, the time
complexity scales by slightly less than the number of channels in input. Thus for a 100 channel time series
dataset, the total update in a training iteration would take less than 1.5 seconds.

Our implementation was done on a single NVIDIA Quadro RTX 5000 GPU and consisted of iterating over all
channels encoders, classifiers, and transport plans sequentially. For higher dimensional time series, multiple
GPUs and multi-threading for different encoders can be used to further speed up computations and improve
time complexity.

C.6 Hyperparameter sensitivity and tuning

We provide results below which analyze the sensitivity of our method to different hyperparamaters. All
results below are reported on trained models that achieve best performance on a holdout validation target set.

C.6.1 Entropic regularization weight

Table A4: Sensitivity to entropic regular-
ization parameter γ.

γ WISDM-Bal UCIHAR
1e-4 0.8801 0.914
1e-3 0.857 0.915
1e-2 0.864 0.889
1e-1 0.915 0.883
1 0.708 0.781
10 0.691 0.701

The entropic regularization weight of the optimal transport plan, γ, is
the main hyperparameter involved in computing Sinkhorn divergences.
As γ increases, the optimal transport plan smooths/equalizes. This
implies that all points in the source domain are transported to all
points in the target domain. To further investigate the effect of γ,
we analyze how results change when γ is varied on the 3 channel
WISDM-Bal and 9 channel UCIHAR datasets. We can see in Table
A4 that F1 scores are within a range of ±0.05 when the γ parameter
is between 1e-1 and 1e-4. For a gamma value greater than and equal
to 1, there is a sharp drop across both datasets. This is expected for
larger values of γ as the resulting transport plan can cause Sinkhorn
divergence to lose its geometric discerning properties which can affect performance. As target labels are not
available for domain adaptation problems, we do not tune the gamma parameter. We set it to 1e-3 for all
experiments. Other works in literature such as (He et al., 2023), also set γ to 1e-3 . Another reason for
setting γ = 1e − 3 is that it is shown to provide a balance between performance and computational efficiency
which we further discuss below.
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C.6.2 Number of iterations for Sinkhorn divergence

Table A5: Number of Sinkhorn iterations
required at iteration tolerance values ϵ for
different values values of γ.

γ ϵ = 0.001 ϵ = 0.1
1e-4 734 5
1e-3 494 5
1e-2 274 5
1e-1 59 4
1 8 3
10 5 3

The number of Sinkhorn iterations required for computing Sinkhorn
divergence depends on the set iteration tolerance ϵ for Sinkhorn poten-
tials. Table A5 shows the number of iterations required for different
values of γ at different values of ϵ. For ϵ = 1e-3, we can see that the
number of iterations is very large when γ values are small. One com-
monly used approach to speed up Sinkhorn divergence with minimal
loss in performance, is to relax the ϵ tolerance. This has been explored
in literature where the authors show on simulated data how only 5
iterations at smaller values of γ can provide a good balance between
performance and computation speed (Bigot et al., 2022) . An ϵ value
of 1e-1 was also used by other domain adaptation papers (He et al.,
2023) . For these reasons, we used an epsilon value of 1e-1 for all our
experiments in our paper (including Table 1 results). A value of 1e-1
results in a lower number of required iterations. This provides us the right balance between computation
efficiency and performance.

Fp the WISDM-Bal dataset which consists of a batch of size 64, where each channel encoded embeddings had a
size of 64, the time needed to compute Sinkhorn divergence between source and target channel representations
was 0.00135 seconds at epsilon value of 1e-1 and γ value of 1e-3.

A more theoretical convergence analysis is perhaps beyond the scope of this paper, but there are many useful
works in the literature that provides such analysis (Ghosal & Nutz, 2022).

C.6.3 Temperature parameter for Channel selection and screening layer

We also analyze the sensitivity of the channel selection and screening layer temperature parameter τ . We
analyze the effect of varying τ through experiments on the 3 channel WISDM-Bal dataset and the 9 channel
UCIHAR dataset. For both of these datasets, we selected domain adaptation settings that saw SSSS-TSA make
large gains over non channel selection baselines such as SinkDiv. This helped us identify cases where the channel
selection screening layer is critical for performance improvement, thus helping us better identify how changes
in τ affect the behavior of the channel selection layer. For the WISDM-Bal dataset, we analyzed the source
20 to target 30 domain adaptation scenario. This scenario had a 0.6638 F1 score on the SinkDiv Alignment
baseleine. For the UCIHAR dataset, we analyzed the source 12 to target 16 domain adaptation scenario.

Table A6: Sensitivity to selection and
screening layer temperature parameter τ .

τ WISDM-Bal UCIHAR
(20 → 30) (12 → 16)

0.1 0.884 0.807
1 0.896 0.858
3 0.891 0.851
5 0.898 0.855
10 0.898 0.862
20 0.897 0.871
50 0.878 0.852

This scenario had a 0.6662 F1 score on the SinkDiv Alignment baseline.
We can see that the results are mostly similar across different values of
τ , except for τ = 0.1 on the 9 channel UCIHAR dataset. For smaller
values of τ , the channel selection weights provided by the softmax
distribution are encouraged to have a low entropy. This results in
much larger weights to be assigned to a few channels, while most
other channels are ignored. As with other hyper-parameters, target
labels are often not available in real-world domain adaptation settings.
For this reason we set a rule for selecting the parameter. equal to
the number of channels, so that entropy of the channel selection
scheme scales with the number of input channels. Though the correct
temperature value would depend on the channel informativeness/ and
use case practitioners are interested. If practitioners think that almost
all channels should be ignored and very few cahnnels should be selected (and many channels are noisy), then
a small value of would be suitable. If practitioners think only few channels should be dropped then a larger
value of τ would be preferable. Classification performance on source domain validation held-out labels could
be a good indicator for determining which of this is more desirable.
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D Results for different domain adaptation scenarios

D.1 WISM domain adaptation scenarios

Table A7: WISDM scenario test scores at end of training. Mean macro F1 scores for each domain adaptation
scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.5545 0.5668 0.6142 0.6144 0.4954 0.4862 0.7039 0.2414 0.6116

12 to 19 0.3668 0.2901 0.3380 0.2427 0.2758 0.2715 0.3153 0.2636 0.4451

30 to 20 0.6525 0.6540 0.6630 0.7912 0.7156 0.3591 0.4941 0.4506 0.7961

2 to 32 0.5897 0.4067 0.6914 0.5667 0.5004 0.3940 0.5003 0.3392 0.6345

7 to 30 0.7673 0.7471 0.8101 0.6666 0.7329 0.5073 0.6329 0.5073 0.8932

12 to 7 0.5132 0.5467 0.5200 0.5674 0.4905 0.3755 0.6804 0.4070 0.4785

18 to 20 0.5604 0.5212 0.5855 0.6886 0.5812 0.4400 0.6477 0.3912 0.6258

19 to 30 0.5627 0.3386 0.5657 0.3860 0.4865 0.6343 0.3454 0.4131 0.5105

4 to 19 0.1971 0.3404 0.3725 0.2932 0.3196 0.4181 0.6344 0.3119 0.6313

26 to 2 0.6626 0.6625 0.6492 0.6672 0.5730 0.3222 0.6162 0.2797 0.7321

Table A8: WISDM scenario test scores when validation target domain labels to stop early. Mean macro F1
scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.6088 0.6303 0.6227 0.6980 0.6112 0.4862 0.6701 0.5716 0.7303

12 to 19 0.3661 0.3884 0.3306 0.3687 0.3247 0.2715 0.3800 0.2904 0.4479

30 to 20 0.7447 0.8452 0.7678 0.7959 0.8117 0.3591 0.5757 0.5818 0.8220

2 to 32 0.6810 0.7153 0.7160 0.7392 0.6914 0.3940 0.5660 0.6019 0.6295

7 to 30 0.7801 0.8041 0.8326 0.8528 0.7985 0.5073 0.6907 0.7195 0.9406

12 to 7 0.5335 0.7322 0.5245 0.7215 0.6271 0.3755 0.6925 0.5385 0.5154

18 to 20 0.6014 0.7349 0.6403 0.7316 0.6879 0.4400 0.7145 0.5469 0.6621

19 to 30 0.6847 0.6636 0.5898 0.5889 0.6716 0.6343 0.5201 0.5136 0.5792

4 to 19 0.3741 0.5121 0.4780 0.4719 0.4212 0.4181 0.5868 0.4243 0.6326

26 to 2 0.6716 0.7616 0.6627 0.8833 0.6743 0.3222 0.6311 0.4040 0.8181

D.2 WISDM-Balanced

Table A9: WISDM-balance scenario test scores at end of training. Mean macro F1 scores for each domain
adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.5667 0.6495 0.6239 0.6067 0.5970 0.6230 0.6638 0.3382 0.8855

12 to 19 0.3898 0.6230 0.4848 0.8289 0.6673 0.5816 0.6306 0.5004 0.8333

30 to 20 0.5412 0.7388 0.6059 0.7048 0.7660 0.7410 0.6126 0.4495 0.7644

2 to 32 0.6133 0.7250 0.7004 0.6928 0.6007 0.6538 0.5506 0.4664 0.7205

7 to 30 0.7890 0.7526 0.7600 0.6975 0.7524 0.9223 0.6591 0.3515 0.9667

12 to 7 0.6028 0.7442 0.5418 0.5971 0.6109 0.7500 0.7541 0.5294 0.8966

18 to 20 0.5671 0.4784 0.6178 0.5805 0.4810 0.6663 0.7239 0.6197 0.5801

19 to 30 0.5572 0.6440 0.6824 0.5357 0.7061 0.6586 0.6913 0.3526 0.7218

4 to 19 0.1911 0.7800 0.4673 0.7174 0.6834 0.8079 0.7589 0.5225 0.9284

26 to 2 0.6456 0.6997 0.6281 0.6936 0.7472 0.5836 0.5529 0.3287 0.8598
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Table A10: WISDM-balance scenario test scores when validation target domain labels used to stop early.
Mean macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

20 to 30 0.6094 0.6610 0.6204 0.7028 0.6752 0.6783 0.6586 0.7077 0.8904

12 to 19 0.3969 0.7043 0.4847 0.9336 0.8137 0.6398 0.6889 0.6532 0.8765

30 to 20 0.6752 0.8003 0.7157 0.8089 0.8301 0.7684 0.6623 0.7803 0.7048

2 to 32 0.6761 0.8401 0.7600 0.8243 0.7414 0.7519 0.6099 0.7106 0.7316

7 to 30 0.7767 0.7578 0.7628 0.7576 0.7346 0.8588 0.7167 0.7903 0.9830

12 to 7 0.6375 0.7893 0.6232 0.8190 0.6694 0.8709 0.7723 0.8969 0.9695

18 to 20 0.6402 0.6508 0.6591 0.7890 0.6001 0.7542 0.7116 0.7820 0.7508

19 to 30 0.7005 0.7950 0.7336 0.8048 0.7834 0.7585 0.7170 0.8508 0.8642

4 to 19 0.5702 0.8186 0.6876 0.8425 0.7823 0.8247 0.7878 0.5886 0.9529

26 to 2 0.6621 0.7455 0.6111 0.8788 0.7979 0.6944 0.5934 0.6992 0.8528

D.3 HHAR domain adaptation scenarions

Table A11: HHAR scenario test scores at end of training. Mean macro F1 scores for each domain adaptation
scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

0 to 2 0.6103 0.6879 0.6611 0.6550 0.7097 0.6975 0.6654 0.7291 0.8423

1 to 6 0.8185 0.9482 0.8703 0.9296 0.9402 0.8505 0.9193 0.9010 0.9157

2 to 4 0.3948 0.6147 0.4327 0.5501 0.6009 0.6029 0.6763 0.3900 0.6581

4 to 0 0.2688 0.2749 0.2585 0.3431 0.3104 0.3241 0.3487 0.2324 0.4575

4 to 5 0.8245 0.9564 0.9283 0.9633 0.9558 0.8973 0.8914 0.9069 0.9406

5 to 1 0.9011 0.9789 0.9000 0.9695 0.9557 0.9335 0.9457 0.8873 0.9794

5 to 2 0.2905 0.3671 0.3435 0.3112 0.4011 0.4939 0.4076 0.2422 0.5563

7 to 2 0.3604 0.4264 0.3817 0.2890 0.4376 0.4490 0.4351 0.3776 0.5978

7 to 5 0.6025 0.8752 0.6194 0.8606 0.6830 0.6075 0.7413 0.7186 0.7142

8 to 4 0.7085 0.9727 0.7661 0.9679 0.9714 0.5585 0.7858 0.6518 0.6459

Table A12: HHAR scenario test scores when validation target domain labels used to stop early. Mean macro
F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

0 to 2 0.6971 0.7520 0.7107 0.7207 0.7774 0.7118 0.7285 0.7436 0.8923

1 to 6 0.9022 0.9541 0.8986 0.9414 0.9475 0.8739 0.9372 0.9198 0.9344

2 to 4 0.4846 0.6613 0.4835 0.6119 0.6264 0.6288 0.8093 0.5962 0.7558

4 to 0 0.3090 0.4000 0.3181 0.4166 0.3723 0.3991 0.3683 0.4408 0.5506

4 to 5 0.8819 0.9709 0.9445 0.9747 0.9551 0.9064 0.9254 0.9182 0.9382

5 to 1 0.9248 0.9776 0.9224 0.9766 0.9599 0.9176 0.9470 0.9472 0.9771

5 to 2 0.3699 0.5157 0.3874 0.4631 0.4503 0.5153 0.4521 0.4527 0.6217

7 to 2 0.4074 0.5232 0.4078 0.4525 0.4668 0.4744 0.4378 0.5047 0.6245

7 to 5 0.7230 0.9008 0.7561 0.9077 0.7767 0.6334 0.7688 0.9253 0.8084

8 to 4 0.8425 0.9739 0.8777 0.9757 0.9783 0.5552 0.8279 0.6933 0.7706
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D.4 UCIHAR domain adaptation scenarions

Table A13: UCIHAR scenario test scores at end of training. Mean macro F1 scores for each domain
adaptation scenario over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

2 to 11 0.5842 0.9653 0.9967 0.9509 0.8339 0.9401 0.9732 0.9741 0.9768

6 to 23 0.7358 0.9076 0.8739 0.9722 0.9465 0.8969 0.8984 0.8812 0.9212

7 to 13 0.7897 0.8758 0.8469 0.8678 0.9025 0.8497 0.9264 0.9123 0.9407

9 to 18 0.3897 0.5603 0.5786 0.6434 0.5345 0.5156 0.5837 0.5921 0.6938

12 to 16 0.4853 0.4907 0.6208 0.5418 0.5660 0.6082 0.6662 0.6733 0.8155

13 to 19 0.9155 0.7635 0.9297 0.8883 0.9426 0.9336 0.9685 0.9540 0.9283

18 to 21 0.9947 0.9531 0.9967 0.9939 1.0000 0.9175 0.9966 0.9990 1.0000

20 to 6 0.9694 0.9446 1.0000 0.9552 0.8159 0.8321 1.0000 0.9578 0.9463

23 to 13 0.7981 0.7455 0.7867 0.7464 0.8379 0.7543 0.8003 0.8732 0.8228

24 to 12 0.8380 0.9810 0.8535 0.9967 0.9810 0.9944 0.9555 0.9532 0.9669

Table A14: UCIHAR scenario test scores when validation target domain labels used to stop early. Mean
macro F1 scores over 5 runs

Case Supervised DANN AdvSKM CoDATS CDAN CLUDA SinkDiv Raincoat SSSS-TSA

2 to 11 0.7290 0.9967 0.9967 0.9935 0.9935 0.9843 1.0000 1.0000 1.0000

6 to 23 0.7326 0.9772 0.8800 0.9793 0.9948 0.9252 0.9219 0.9224 0.9742

7 to 13 0.8753 0.9232 0.8524 0.8748 0.9556 0.8377 0.8994 0.8610 0.9209

9 to 18 0.7231 0.6750 0.6695 0.7402 0.7152 0.5045 0.5634 0.6544 0.6521

12 to 16 0.6534 0.5922 0.6351 0.6743 0.6624 0.6131 0.6560 0.6754 0.8571

13 to 19 0.9468 0.9758 0.9514 0.9921 0.9654 0.9212 0.9740 0.9547 0.9681

18 to 21 0.9978 1.0000 0.9967 0.9973 1.0000 0.9434 1.0000 0.9957 1.0000

20 to 6 0.9755 0.9911 1.0000 0.9782 0.9016 0.9956 1.0000 0.9578 0.9622

23 to 13 0.7642 0.7928 0.8283 0.7698 0.8945 0.8534 0.8491 0.8867 0.8531

24 to 12 0.9396 0.9941 0.9706 0.9967 0.9810 0.9943 0.9785 0.9645 0.9844
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E Datasets

HHAR: Stisen et al. (2015)
License: CC BY 4.0
https://archive.ics.uci.edu/dataset/344/heterogeneity+activity+recognition

WISDM: Kwapisz et al. (2011)
License: CC BY 4.0
https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+
biometrics+dataset

UCIHAR: Anguita et al. (2013)
License: CC BY 4.0
https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones

PXECG: Wagner et al. (2020)
License: CC BY 4.0
https://physionet.org/content/ptb-xl/1.0.3/

F Statistical Significance of results

We repeated our experiment over 5 random seeds and reported the mean number in the main paper. The
standard deviations for our method can be found below:

Table A15: Mean accuracy and macro F1 scores on timeseries domain adaptation benchmarks over 5 runs .

Method Mean Shift UCIHAR HHAR PXECG WISDM WISDM-Bal
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Supervised 43.12 ±2.03 0.423 ±0.019 77.04 ±4.09 0.750±0.061 59.40±4.14 0.543±0.045 63.51±5.29 0.366 ±0.141 64.90±4.51 0.504±0.066 65.84 ± 4.75 0.521± 0.073
DANN 71.32 ±4.55 0.701 ±0.054 82.91 ±5.98 0.857±0.078 71.27±6.37 0.678±0.061 62.87±5.08 0.347 ±0.112 67.94±5.60 0.567±0.081 73.86 ± 6.81 0.683 ± 0.105

AdvSKM 74.31 ±4.71 0.712 ±0.061 85.12 ±6.10 0.813±0.079 63.25±4.91 0.616±0.040 62.98±5.11 0.372 ±0.127 69.92±5.94 0.581±0.083 71.19 ± 6.24 0.611 ± 0.086
CoDATS 54.31 ±4.18 0.531 ±0.0404 86.34 ±6.39 0.856±0.084 68.79±5.71 0.686±0.048 66.30±5.82 0.366 ±0.104 68.35±6.11 0.548±0.062 75.15 ± 8.91 0.665 ± 0.107
CDAN 79.54 ±7.61 0.813 ±0.081 84.59 ±6.01 0.836±0.079 70.06±4.19 0.704±0.051 64.29±5.13 0.375 ±0.117 70.12±6.11 0.517±0.054 70.29 ± 8.13 0.661 ± 0.092
SASA 63.72 ±6.03 0.587 ±0.071 80.75 ±5.93 0.791±0.071 65.85±3.67 0.641±0.039 66.47±6.22 0.401 ±0.123 67.60±5.94 0.564±0.057 82.81 ± 7.23 0.781 ± 0.103

DeepCoral 82.34 ±5.92 0.841 ±0.147 86.53 ±7.11 0.851±0.083 66.16±3.91 0.690±0.047 62.60±5.15 0.346 ±0.143 72.72±6.11 0.605±0.063 74.31 ± 6.74 0.649 ± 0.063
CLUDA 78.21 ±7.39 0.802 ±0.132 82.45 ±6.25 0.854±0.086 67.03±3.78 0.641±0.032 64.92±6.11 0.324 ±0.165 65.57±7.17 0.504±0.068 73.77 ± 6.29 0.699 ± 0.067
SinkDiv 73.11 ±7.16 0.713 ±0.631 85.13 ±4.46 0.876±0.048 69.64±4.12 0.720±0.083 64.97±5.62 0.376 ±0.074 67.16±8.37 0.578±0.096 70.98 ± 6.83 0.648 ± 0.112

RAINCOAT 73.11 ±7.16 0.713 ±0.631 89.13 ±6.23 0.873±0.081 62.11±6.27 0.603±0.071 66.22±5.52 0.357 ±0.032 62.11±8.12 0.523±0.112 69.09 ± 9.29 0.727 ± 0.102
SSSS-TSA 99.01 ±5.04 0.985 ±0.041 90.12 ±4.01 0.901±0.051 72.19±4.12 0.737±0.047 66.38±4.37 0.419 ±0.031 75.19±8.54 0.635±0.091 83.57 ± 7.14 0.816 ± 0.091
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