
Under review as a conference paper at ICLR 2021

ADVERSARIAL ENVIRONMENT GENERATION FOR
LEARNING TO NAVIGATE THE WEB

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to autonomously navigate the web is a difficult sequential decision-
making task. The state and action spaces are large and combinatorial in na-
ture, and successful navigation may require traversing several partially-observed
pages. One of the bottlenecks of training web navigation agents is providing a
learnable curriculum of training environments that can cover the large variety
of real-world websites. Therefore, we propose using Adversarial Environment
Generation (AEG) to generate challenging web environments in which to train
reinforcement learning (RL) agents. We introduce a new benchmarking environ-
ment, gMiniWoB, which enables an RL adversary to use compositional primi-
tives to learn to generate complex websites. To train the adversary, we present a
new decoder-like architecture that can directly control the difficulty of the envi-
ronment, and a new training technique Flexible b-PAIRED. Flexible b-PAIRED
jointly trains the adversary and a population of navigator agents and incentivizes
the adversary to generate ”just-the-right-challenge” environments by simultane-
ously learning two policies encoded in the adversary’s architecture. First, for its
environment complexity choice (difficulty budget), the adversary is rewarded with
the performance of the best-performing agent in the population. Second, for se-
lecting the design elements the adversary learns to maximize the regret using the
difference in capabilities of navigator agents in population (flexible regret). The
results show that the navigator agent trained with Flexible b-PAIRED generalizes
to new environments, significantly outperforms competitive automatic curriculum
generation baselines—including a state-of-the-art RL web navigation approach
and prior methods for minimax regret AEG—on a set of challenging unseen test
environments that are order of magnitude more complex than the previous bench-
marks. The navigator agent achieves more than 75% success rate on all tasks,
yielding 4x higher success rate that the strongest baseline.

1 INTRODUCTION

Autonomous web navigation agents that complete tedious, digital tasks, such a booking a flight or
filling out forms, have a potential to significantly improve user experience and systems’ accessibility.
The agents could enable a user to issue requests such as, “Buy me a plane ticket to Los Angeles
leaving on Friday”, and have the agent automatically handle the details of completing these tasks.
However, the complexity and diversity of real-world websites make this a formidable challenge.

General web navigation form-filling tasks such as these require an agent to navigate through a set of
web pages, matching user’s information to the appropriate elements on a web page. This is a highly
challenging decision-making problem for several reasons. First, the observation space is large, and
partially-observable, consisting of a single web page in the flow of several web pages (e.g. the
payment information page is only one part of a shopping task). Web pages are represented using the
Document Object Model (DOM), a tree of web elements with hundreds of nodes. Second, actions
are all possible combination of the web elements (fill-in boxes, drop-downs, click on the buttons)
and their possible values. For example, the drop-down selection actions are only appropriate if there
there is a drop-down menu present. Even if the agent is able to navigate the site to arrive at the correct
page, and eventually select the correct element (e.g. the ‘departure’ field for booking a flight), there
are many possible values it can insert (e.g. all user input). Therefore, the action space is discrete
and prohibitively large, with only a valid set of actions changing with the context. Finally, the same
task, such as booking a flight, results in a very different experience and workflow depending on the

1

Under review as a conference paper at ICLR 2021

(a) Iteration=100 (b) Iteration=12000 (c) Iteration=24000 (d) Test

Figure 1: Samples of generated web pages from selected websites taken from different snapshots of the
training (a-c) and unseen test “Login” website (d). Over time, the number of pages in a website decreases but
the density of elements in a page increases with more task-oriented elements. See Appendix A.11 for more
samples.

website. The agent must be able to adapt and operate in the new environment to complete the task.
Therefore, the reinforcement learning (RL) agents should be capable of zero-shot generalization to
new environments.

Prior work made significant strides toward learning web navigation on a single website, yet the
existing methods do not scale. Behavior cloning from expert demonstrations (Shi et al., 2017; Liu
et al., 2018) shows promising results, however, it requires a number of demonstrations for every
single website. RL agent trained using synthetic demonstrations created with a generative model
Gur et al. (2019) improves the performance. Yet, the method still requires training a separate policy
for every single website requiring tens of thousands of interactions with every website. Lastly, the
existing benchmarks (Shi et al., 2017; Liu et al., 2018) have limited complexity. Their DOM trees
are fixed and considerably smaller than real websites.

We aim to train RL agents to solve web navigation form-filling tasks; by correctly entering relevant
information into unknown websites. Successful generalization to new websites requires training an
agent on a large distribution of possible tasks and environments. The question is how to create a
distribution that will not only cover most realistic tasks, but can be presented in a curriculum that
is learnable by the agent. Manually designing a pre-defined curriculum of hand-built websites is
tedious, and intractable. Another option would be to apply domain randomization (DR) (as in e.g.
Jakobi (1997); Sadeghi & Levine (2016); Tobin et al. (2017)) to randomize parameters of websites,
or automatically increase some parameter controlling the difficulty over time (as in Gur et al. (2019)).
However, all these approaches are likely to fail to cover important test cases, and cannot tailor the
difficulty of the parameter configuration to the current ability of the agent.

Adversarial Environment Generation (AEG) trains a learning adversary to automatically generate a
curriculum of training environments, enabling both increased complexity of training environments,
and generalization to new, unforeseen test environments. However, if we naively train a minimax
adversary—i.e. an adversary that seeks to minimize the performance of the learning agent—the
adversary is motivated to create the hardest possible website, preventing learning. Instead, PAIRED
(Protagonist Antagonist Induced Regret Environment Design) (Dennis et al., 2020), trains the adver-
sary to maximize the regret, estimated as a difference between two navigation agents (protagonist
and antagonist). While PAIRED shows exciting results, without an explicit feedback on how skillful
antagonist is and mechanism to control the difficulty of the environment, the method is susceptible
to local minima, and has hard time learning in the complex environments when the regret is zero.

We present Flexible b-PAIRED, which builds on PAIRED framework, and jointly trains the adversar-
ial RL agent (adversary) and a population of navigator agents. Flexible b-PAIRED adversary learns
to present ”just-the-right-challenge” to the navigation agents. We enable Flexible b-PAIRED adver-
sary to tailor the environment difficulty to the ability of the best performing agent by introducing an
explicit difficulty budgeting mechanism, and a novel multi-objective loss function. The budgeting
mechanism gives the adversary the direct control of the difficulty of the generated environment. The

2

Under review as a conference paper at ICLR 2021

adversary training simultaneously optimizes for an objective that ties in adversary difficulty budget
with the navigator agent’s performance (observed expected return), and the population-based regret
similar to PAIRED. Lastly, to enable AEG web-design, we present a new benchmarking environ-
ment, gMiniWoB, and a web-design adversary architecture. gMiniWoB enables an adversary to
construct websites of increasing complexity out of common design primitives such as navigation
bars, product carousels, item decks, web forms, and item carts. The evaluation environments in
gMiniWob are order of magnitude more complex than miniWob (Shi et al., 2017). The adversary
architecture is a LSTM-based decoder, seeded with a random seed. It first selects number of web
pages. Then, at each step of an open loop, the adversary either emits a design element and its place-
ment, or opts to skip an element and save design budget. The adversary’s used difficulty budget is a
log-likelihood of joint probability of not adding design elements.

This paper makes the following contributions: i) A new benchmarking environment, gMiniWoB,
which empowers the use of AEG for web navigation, by enabling the construction of websites out
of compositional design primitives; ii) The Flexible b-PAIRED algorithm, which computes a more
stable estimate of regret and directly incentivizes the adversary to tailor the complexity of the gen-
erated environment to the performance of the best-performing agent; iii) web navigation adversary
decoder architecture, and iv) empirical results demonstrating that Flexible b-PAIRED generates a
curriculum of increasingly challenging websites, and produces agents that can successfully gener-
alize to navigating complex, unseen sites at test time. Flexible b-PAIRED approach significantly
outperforms prior work on minimax regret AEG (Dennis et al., 2020), as well as a state-of-the-art
approach for using RL to train web navigation agents (Gur et al., 2019), resulting in agents that com-
plete the most difficult tasks with more than 75% success rate, 4x improvement over the strongest
baseline. We are releasing gMiniWoB in open-source in the hopes of enabling further progress on
this problem. We hope that this work will provide a meaningful way to make progress on the excep-
tionally challenging problem of learning to navigate the web, and will be of interest to the wider RL
research community for auto-curriculum design in complex and compositional environments.

2 RELATED WORK

Web navigation benchmarks and tasks: Prior work on training agents to navigate the web intro-
duced the MiniWoB (Shi et al., 2017) and MiniWoB++ (Liu et al., 2018) environments, a fixed set
of manually curated toy websites, but relied on obtaining expert demonstrations for each website,
which cannot scale effectively to cover the large variety of real-world websites, and cannot adapt
to changing websites. Further, these methods failed to solve complex web navigation tasks such as
flight booking or social media interaction (Gur et al., 2019). Gur et al. (2019) take a step farther
by training an RL agent to solve complex web navigation tasks using a scheduled curriculum. The
curriculum linearly increases a parameter p, in which 1 − p controls the number of web elements
that are solved by querying an oracle policy, which is obtained via expert data. This work differs
in several ways. First, we introduce a new framework, gMiniWoB, that allows generating complex
websites on-the-fly with tunable difficulty levels. Additionally, we do not rely on any expert demon-
strations to augment sparse rewards. We use AEG to automatically learn to generate a curriculum
of web navigation tasks that are tailored to the current skill level of the agent. Next, we make no
assumption on the availability of any website while they assume websites are given a priori. Lastly,
our web navigation agents generalize to unseen environments.

Goal Generation: Florensa et al. (2018) trains a Generative Adversarial Network (GAN) for gen-
erating a curriculum of goals with fixed environment dynamics. A generator is trained to output
new goals and the discriminator is trained to predict if the goal is achievable. The generator is boot-
strapped from sample goals that the initial agent is able to reach in the environment. It is tested on
simple navigation tasks with the same environments. In contrast, we train an adversary that gen-
erates a curriculum of environments, including goals, starting with an empty environment in which
bootstrapping a generator network from sample episodes is not possible. We test on unseen environ-
ments with more complicated and high dimensional state and action spaces.

Adversarial Environment Generation: Multi-agent training can be an effective method for au-
tomatically generating a curriculum of RL tasks (e.g. Leibo et al. (2019); Matiisen et al. (2019);
Graves et al. (2017); Portelas et al. (2020)). For example, Asymmetric Self Play (ASP) (Sukhbaatar
et al., 2017) trains two agents, in which the second agent must learn to repeat the actions taken by
the first, demonstrator agent. Both agents play in the same, fixed environment. In contrast, we use a
third agent to learn to generate challenging new environments. POET (Wang et al., 2019; 2020) is

3

Under review as a conference paper at ICLR 2021

DIV

#text VAR*

INPUT text=VAR*

LABEL*

DIV

INPUT text=”Username”

DIV

#text “First Name”

INPUT

LABEL

(a) An underspecified
DOM tree template.
The text box is always
included, its text and label
element are variables.

DIV

#text VAR*

INPUT text=VAR*

LABEL*

DIV

INPUT text=”Username”

DIV

#text “First Name”

INPUT

LABEL

(b) A fully specified
DOM primitive where a
label is created and its text
is assigned.

DIV

#text VAR*

INPUT text=VAR*

LABEL*

DIV

INPUT text=”Username”

DIV

#text “First Name”

INPUT

LABEL

(c) A fully specified DOM
primitive where only the
inner text within the text
box is assigned.

Figure 2: An example underspecified DOM tree template (a) and its instantiations (b,c) with different
values. (*) indicates a variable; either an element or one of its attributes. (c) is used in Page 1 and
(b) is used in Page 2 in Figure 3.

an AEG technique which uses a population of adversaries to generate the terrain a 2D walker agent
must learn to navigate. To create a curriculum, POET requires generating many new environments,
testing all agents within each one, and discarding environments based on a manually chosen a reward
threshold, which wastes a significant amount of computation. Campero et al. (2020) use a teacher to
propose navigation tasks; the teacher’s reward is based on whether the agent takes more steps than a
threshold, a hyperparameter that is linearly increased over the course of training.

Most closely related to our work is PAIRED (Dennis et al., 2020), which is an AEG method for
training agents with minimal regret that works by constraining the environment-generating adversary
using the performance of a second agent. However, PAIRED only demonstrated results on simple
gridworld environments, and did not expand to the type of complex, high-dimensional state-action
space required for web navigation. We improve on PAIRED using a more flexible estimate of the
regret, as well as a budget mechanism, and show that this significantly improves performance.

RL with Autoregressive Models: Keneshloo et al. (2020) outlines training sequence-to-sequence
(seq2seq) models with RL algorithms. Previous models first pretrained a seq2seq model with
ground-truth inputs and outputs and then finetuned with RL using different reward functions such as
BLEU score. In this work, we propose a decoder-like autoregressive adversary model that is trained
without any ground-truth data. The model is fed its own predictions from previous time steps and
updated using a novel adversarial objective.

3 BACKGROUND ON WEB NAVIGATION PROBLEM

Following previous work (Shi et al., 2017; Gur et al., 2019; Liu et al., 2018), we formulate web
navigation as a sequential decision making problem where we train an agent, parameterized by
a network π(at|st; Θi), that maps an input state st to output action distribution to maximize the
cumulative discounted reward, .i.e., O =

∑T
t=0 γ

trt where rt is the reward at time step t, γ is a
discount factor, and T is the length of an episode. We use the web page and user instruction as the
input state. The web page is dynamically updated at each time step, while the instruction is fixed at
the beginning of an episode. We represent web pages using Document Object Model (DOM), a tree
of elements in a page, where each element is denoted by a set of (attribute, value) pairs and an array
of features (such as spatial coordinates). Instructions are given as a set of fields where each field is
a (key, value) pair. Keys are fixed for each task and values dynamically change based on user input.

Each action is represented as a tuple (element, field) that denotes acting on the element using the field
as an input; i.e. typing the value of the field into the element. Agents receive a task success reward
(1.0 or -1.0) at the end of each episode, a potential-based reward when the value of an element in the
page is updated, and a small penalty each timestep to encourage efficient navigation. As an exam-
ple, consider a flight booking task where the agent is given an instruction {"Departure Date":
"Friday", Destination Airport: "Los Angeles (LAX)"}. The agent first picks
a field (e.g. destination airport) and finds the corresponding text box in the page; then the corre-
sponding value (“Los Angeles (LAX)”) typed in to the text box. If this value is correct, the agent
receives a positive reward of 1/2 where 2 is the number of fields in the instruction.

4 METHODS FOR LEARNING TO DESIGN WEB ENVIRONMENTS

This Section presents the generative MiniWob environment (Section 4.1), the adversary neural net-
work architecture (Section 4.2) and the adversary training procedure in Section 4.3.

4

Under review as a conference paper at ICLR 2021

W
eb
si
te

Page 2Page 1

Obs

2 1 USERNAME 2 FIRSTNAME1 LOGIN

A
dv
er
sa
ry

Rendering

fL fP fL fP fL fPfK

f0
f I f I

LSTM LSTM LSTM

Figure 3: A sample rollout of the adversary for compositional environment generation for web navigation
problem. An initial observation (Obs) is given at the beginning of the rollout. f0, fK , fL, fP , and fI denote
networks for encoding initial observation, generating number of pages, page indices,1primitives, and encoding
LSTM inputs, respectively.

4.1 GENERATIVE MINIWOB (GMINIWOB) ENVIRONMENT

Generative MiniWoB (gMiniWoB) creates website environments for form-filling tasks, which con-
sist of a linked-list of webpages, Ew = [W1, · · · ,WK]. Each webpage, Wi, is a DOM tree that
contains a number of elements, such as fill-in boxes, drop downs, and buttons. To create a new
environment Ew, gMiniWoB starts with an empty website that is gradually populated by new pages,
Wi. A subset of elements are also augmented with events that enable page transitions. For example,
an ”on-click” event on a Submit button on a pageWi, will link to a pageWi+1.

We formulate the website design as combining a set of primitive DOM sub-trees that are general
enough to create complex websites but also facilitate controllable generation. The order in which
the primitives are combined also defines how the web page will be rendered as well. Let’s assume
that we are given a list of DOM tree primitives T and an empty web pageW = (S, C) where S is a
single root node of the DOM tree and C is an ordered list of subtrees rooted at S which is initially
empty. By repetitively sampling new primitives from T and appending them to C, we create a new
page,W, which follows the order of primitives in C when rendered (see Figure 3).

We first create a set of underspecified DOM tree templates, a sub-tree with certain elements and
attributes are replaced with variables. Assigning values to variables in a template fully specifies
a DOM tree primitive that is placed in a subtree C to create a new web page, W (Algorithm 2).
For example, an input template (Figure 2a) as a variable label and text box with a common parent.
There two ways to assign values, either by picking the label element and assigning a value to its
text attribute (Figure 2b), assigning a value to the inner text of the text box and ignoring the label
element (Figure 2c).

Website Design Primitives: gMiniWoB implements 40 different design primitives from 11 dif-
ferent underspecified DOM templates. The primitives are widely used across the web and include
‘navigation bars’, ‘product carousels’, ‘item decks’, ‘web forms’, ‘item carts’, ‘dropdowns’, etc.
Every primitive includes at least one actionable element that changes the DOM structure when the
agent interacts with it. Each primitive belongs to one of the two categories based on their use in the
reward computation: (i) Active primitives (used), and (ii) Passive primitives (not used). 26 of the
40 primitives are active, while the rest are passive. When an active primitive is added to a web page,
the instruction automatically grows as well. For example, adding ‘First Name’ text box in Figure 2c
also adds a new “firstname” field into user instruction. Expanding the instruction set makes active
primitives more complicated to learn, while the passive primitives mostly serve as noise. However,
real websites contain many distracting elements (passive primitives), so it is important for agents to
learn to ignore them. Appendix A.9 details all the design primitives used, and Appendix A.10 shows
the websites in the test set.

1For simplicity of illustration, we show an example generation process where primitives are generated in an
increasing order of the page indices; however, in our formulation (see Section 4.2 for details), the page indices
corresponding to consecutive LSTM timesteps do not necessarily increase monotonically.

5

Under review as a conference paper at ICLR 2021

4.2 ADVERSERIAL ENVIRONMENT DECODER ARCHITECTURE

We present an adversary decoder policy for the compositional environment generation problem
where the goal is to place a set of design primitives to a set of locations. Adversary generates a
(website) environment, Ew = [W1, · · · ,WK]. We assume fixed maximum number of pages K,
although to control complexity, we allow pages and subtress to be empty.

We parametrize the adversary with a policy πE(aA|oA) such that

πE(aA|oA) = πEw(k|K)

N∏
i=0

π(ai, bi|a0···i−1, b0···i−1, k) (1)

where N is an upper limit on the number of outputs (total number of primitives in the environment
Ew), K is an upper limit on the number of web pages, ai is a design primitive. We augment the
primitive design actions described in Section 4.1 with a special SKIP action that does nothing when
executed by the renderer. This allows the adversary to control the number of primitives added. bi
is a web page index of where the primitive ai should be placed in on the page. Observation oA is
an initial observation. The adversary first samples the number of locations k from a parametrized
Categorical distribution Cat(0,K). Conditioned on oA, it executes an autoregressive model to
generate a set of primitives and their corresponding locations within [0, · · · , k]. aA is the resulting
environment totalling at most N primitives placed over k pages.

The initial observation oA is sampled from the standard normal distribution, to allow the adversary
to diversify its design distribution. This observation is encoded with a feed forward network h0 =
f0(oA) and h0 is passed to another network fK that outputs a distribution over number of empty
pages. The same hidden state h0 is passed to an LSTM network as the initial input vector and output
of the LSTM is used by two independent networks fP and fL to (i) learn a distribution over design
primitives and (ii) learn a distribution over locations, respectively. We sample an action (a joint
primitive and location pair) from these distributions and they are encoded by another network fI
into a hidden state which is used as the input to the LSTM at the next step. After N steps, sampled
design actions are sent to a renderer module which generates the environment (Figure 3).

Note that the adversary is domain independent, and creates a generic compositional task environment
with K linked sub-environments, each containing sub tasks sampled from the design primitives.
Since the renderer interprets the design decisions and builds the environments for the navigator
agents to use, the adversary architecture can be used in other domains without modification.

4.3 ADVERSARY TRAINING

We train both the adversary and navigation agents with reinforcement learning. At every step t of
the training, the adversary generates an environment Ew(t). The web navigation training initializes
population of navigation agents A = {Ai, i = 1, · · · , na}. The agents Ai ∈ A collect M tra-
jectories τi,j with returns Ri,j . Ri,j is a discounted cumulative reward that agent Ai observers by
navigating the environment, Ew, and resulting in trajectory τi,j ∼ πAi . The navigation agents use
the standard task related reward described in Section 3 for training and out-of-box A2C with entropy
(Mnih et al., 2016). To train the adversary, we present a new loss function which augments A2C
with entropy with a custom loss function that encourages the adversary to control the complexity of
the environment, by presenting ”just-the-right” challenge for the agents in A (see Algorithm 1).

4.3.1 LOSS FUNCTIONS

Let Ri,j(t) be observed returns (cumulative discounted reward) of an agent Ai(t) ∈ A while sam-
pling jth trajectory during training iteration t. Let RA and RP be maximum and average expected
returns at the iteration t,

RA = max
i

E(Ri), R
P = E[E[Ri]], E[Ri] =

1

M

∑
j

Ri,j , i = 1, · · · ,M (2)

Then, the adversary loss function consists of two terms,

J (θ|A, Ew) = Jrl(θ |REGRET(A|Ew)) + α ∗ Jbudget(θ | A, Ew) (3)

6

Under review as a conference paper at ICLR 2021

Algorithm 1 b-Flexible PAIRED training. Joint training of the adversary and navigation agents.
1: Input:A: Initialize the agents independently
2: for all training iterations do
3: Ew ←− Run the adversary πE to generate a new website
4: for i = 1, · · · , na do
5: Ri ←− 0
6: for j = 1, · · · ,M do
7: Ri,j ←− Run agent Ai ∈ A in the environment Ew and collect rewards.
8: Ri ←− Ri +

Ri,j

M . Expected return for agent Ai.
9: end for

10: end for
11: RA ←− maxiRi, RP ←− E[Ri] . Maximum and mean expected return from the agents.
12: REGRET(A|Ew)←− RA −RP . Compute regret as in Equation 4.
13: Update adversary using Equation 3 and REGRET(A|Ew) as the reward. . Train adversary.
14: Update parameters of ∀Ai ∈ A using Ri returns in A2C. . Train navigation agents.
15: end for

where α is a balancing factor between the two losses. Jrl is standard A2C loss with cross-entropy
regularizer added to encourage adversary’s exploration. The reward function for the Jrl is regret,
estimated as the difference between expected performance of the best and average agents:

REGRET(A|Ew) = RA −RP . (4)

The second loss term is budget loss,

Jbudget(θ | A, Ew) = RA ∗
N∑
i=1

log πθ(ai = SKIP|a0···i−1, b0,··· ,i−1). (5)

We use an environment difficulty objective to bind the adversary’s design budget to the performance
of the best agent. We approximate the effective budget of the adversary as the expected number
of non-SKIP actions over N time steps and update this budget according to whether the agents are
learning. This objective encourages the adversary to use less budget (more SKIP actions) when the
agents are not yet learning (i.e., RA is negative or low); it encourages the adversary to use more
budget (less SKIP actions) when the navigator agents are performing well and collecting positive
rewards in the environment. On the flip side, when the agents are collecting negative reward, the
adversary is encouraged to decrease the budget and sample less design elements (and more SKIP
actions).

4.3.2 LOSS FUNCTIONS DISCUSSION

Budget loss provides training signal for the adversary when the regret reward is sparse, which hap-
pens when all agents are performing very similarly, and it acts to encourage the adversary to decrease
the difficulty of the environment. Consider the scenario where agents are placed on the home page
of a shopping website where there are many possible elements, but only a single button that takes
them to their account page. During exploration, agents mostly collect negative rewards for taking
incorrect actions, bounded to a very narrow interval (as there is only a single optimal action). In
this case, the regret is very small and sparse, which hinders the adversary’s ability to design environ-
ments at an appropriate difficulty for agents to learn. We approximate the environment difficulty and
the effective budget of the adversary as the expected number of non-SKIP actions over N created
elements, and update this budget according to whether the agents are learning.

The regret presented in Equation 4 contributes two subtle, but important changes over the prior
work. First, the presented regret does not make a distinction between antagonist and protagonist
agents, and instead annotates the best performing agent as the antagonist. As long as any agent has
a higher performance than the other agent, the objective will continue to improve the weakest agent.
During that time, the other agents continue learning, and therefore provide a stronger maximum
performance against which we measure the regret. This is why we call it flexible. Second, the
estimates for the protagonist returns are smoothed and computed as a best mean return, instead of

7

Under review as a conference paper at ICLR 2021

maximum of a pre-selected agent. While this might be further underestimating the regret, it provides
a more stable estimate.

Note that when the adversary creates non-trivial environments, REGRET is close to zero and the
budget loss in Equation 5 dominates the RL loss. However, when the adversary creates trivial
websites, the RL loss and regret encourage the adversary to explore towards environments that
promote variation in performance. Those are less trivial, hence it pushes the adversary towards
increasing the difficulty.

5 EVALUATIONS

5.1 EVALUATION SETUP

We evaluate our models on a variety of web environments implemented in gMiniWoB as well as
MiniWoB frameworks (Shi et al., 2017; Liu et al., 2018). We implemented several challenging
websites with varying difficulty levels using the same set of design primitives in gMiniWoB. These
environments include ‘Login’, ‘Enter Address’, ‘Flight Booking’, ‘Enter Payment’, and ‘Shopping’
websites, where the agents need to enter text or select information in the website while navigating
between pages. Each environment comes with 4 different difficulty levels by gradually adding more
primitives to websites. These environments are never explicitly presented to agents during training,
so performance in them measures how well agents can generalize to unseen websites at test time.

Agent architecture: Following Gur et al. (2019), we utilize an LSTM based DOM tree encoder
and a feed forward network to encode profile fields. The navigator agent policy outputs a joint
distribution over elements and fields by measuring pairwise similarities between element encodings
and profile fields. We compute the state-value by using the marginal distribution of elements as
attention weights over element encodings and passing the context vector through a FF network. Web
navigation agents are trained with an actor-critic algorithm (Liu et al., 2018). We train the LSTM-
based adversary network using Flexible PAIRED and Flexible b-PAIRED with policy gradient (See
Appendix A.12 for more details on adversary policy network).

Baselines: We benchmark PAIRED, Flexible PAIRED, and Flexible b-PAIRED against two addi-
tional baselines. First, a Domain Randomization (DR) agent, which we implement using a similar
approach as Dennis et al. (2020). We first sample the number of empty pages k from a uniform dis-
tribution U [0,K]. Next, we randomly sample a primitive (including SKIP), and a page from U [0, k]
for N steps. Second, a Curriculum Learning (CL) approach, which adapts the scheduled curriculum
idea of Gur et al. (2019) to zero-shot environment generation where we are not given a specific web-
site but a set of design primitives. We randomly sample each primitive w.r.t. a probability p where p
is initialized with a small number and scheduled to reach 1.0 during training.

5.2 RESULTS

We first compare the original PAIRED algorithm (which used separate antagonist and protagonist
agents) to the proposed Flexible PAIRED algorithm that annotates the best performing agent as the
antagonist. Flexible PAIRED considerably improves upon PAIRED, which fails to learn in this en-
vironment (Figure 4). One reason is that when agents are separate and have very similar rewards,
especially early during training, the regret becomes very small. This uninformative signal makes
it difficult for the adversary to learn. On the other hand, Flexible PAIRED computes a consis-
tently positive regret signal, which more clearly indicates to the adversary which environments are
challenging, but still feasible. The further ablation studies show that adding budget improves per-
formance for both flexible, and original PAIRED method (see Appendix A.7 for MiniWoB studies
and Appendix A.8 for budget weight ablation).

Comparison on test environments: We evaluate the performance of the proposed models and base-
lines on task success rate computed across test environments with different difficulty levels. Flexi-
ble b-PAIRED outperforms Flexible PAIRED indicating the budget objective significantly improves
performance (Figure 5). Further, both techniques significantly outperform the baseline models on all
tasks, with Flexible b-PAIRED effectively reaching more than 75% task success across all difficulty
levels. Even as the complexity of the environments continues to increase (see Section 5.2), Flexible
b-PAIRED agents still perform consistently well without degrading performance. While CL out-
performs Flexible PAIRED early in the training, its performance drops significantly due to ignoring

8

Under review as a conference paper at ICLR 2021

(a) Login (b) Address (c) Payment

(d) Shopping (e) Flight booking (f) Primitives

Figure 4: Comparison of PAIRED (Dennis et al., 2020) and Flexible PAIRED with and without budget en-
forcing; averaged over 4 difficulty levels. (f): Percentage of active primitives over training steps (see Appendix
A.4 for more details).

(a) Difficulty level 1 (b) Difficulty level 2 (c) Difficulty level 3 (d) Difficulty level 4

Figure 5: Aggregated task success rate comparison of Flexible b-PAIRED and baseline models on test envi-
ronments with increasing difficulty levels. See Appendix A.6 for detailed results.
agents’ skill level, and making environments that are too challenging for agents to complete. We
also observe that Flexible b-PAIRED learns faster than Flexible PAIRED on all environments as
Flexible b-PAIRED reacts to agents’ performance faster than Flexible PAIRED (see Appendix A.6).

Environments complexity: While agent performance improves over time, we would like to know
if they are presented with more challenging environments over training. We estimate the number of
active and passive primitives generated as a measure of environment complexity. Learning a web
page with more passive primitives is a relatively easier task than a page with more active primitives,
because passive primitives either add noise and should ignored by the agents, or are used by agents
only to navigate to another page. On the other hand, if there are more active primitives, not only
will the size of the DOM tree increase but the number of profile fields will increase, making the
matching between elements and profile more challenging. Flexible b-PAIRED starts around 60%
random selection of primitives, and gradually generates more active primitives early on (Figure
4f). Although presented with more active primitives by Flexible b-PAIRED, agents are still able to
improve thanks to Flexible b-PAIRED’s ability to accurately tune the difficulty of the environments
according to agents’ skill. During training, more and more passive primitives are also introduced
where number of active primitives also keeps increasing (see Appendix A.4). We also observe that
the distribution of the primitives shifts later in the training to more complex and relevant primitives
(see Appendix A.3).

6 CONCLUSION

This work presents a novel technique for Adversarial Environment Generation (AEG), which we
show improves significantly over prior work. In addition, we apply AEG to the problem of web
navigation, and provide an open-source environment that enables learning to design complex web-
sites out of a set of compositional primitives. Our Flexible b-PAIRED method is able to generate a
curriculum of increasingly complicated websites, and successfully trains agents which can navigate
challenging, high-dimensional websites.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Neural Information Processing Systems, 2020.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. Proceedings of Machine Learning Research, 2018. URL http:
//proceedings.mlr.press/v80/florensa18a.html.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. arXiv preprint arXiv:1704.03003, 2017.

Izzeddin Gur, Uli Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. In ICLR, 2019.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior,
6(2):325–368, 1997.

Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy. Deep reinforcement learning for
sequence-to-sequence models. IEEE Transactions on Neural Networks and Learning Systems,
31(7):2469–2489, 2020. doi: 10.1109/TNNLS.2019.2929141.

Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research. arXiv
preprint arXiv:1903.00742, 2019.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. IEEE transactions on neural networks and learning systems, 2019.

Eric Mazumdar, Lillian J Ratliff, Michael I Jordan, and S Shankar Sastry. Policy-gradient algorithms
have no guarantees of convergence in continuous action and state multi-agent settings. arXiv
preprint arXiv:1907.03712, 2019a.

Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local nash equilibria (and
only local nash equilibria) in zero-sum games. arXiv preprint arXiv:1901.00838, 2019b.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. Proceedings of Machine Learning Research. PMLR, 2016. URL http:
//proceedings.mlr.press/v48/mniha16.html.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image.
arXiv preprint arXiv:1611.04201, 2016.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144, 2017.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

10

http://proceedings.mlr.press/v80/florensa18a.html
http://proceedings.mlr.press/v80/florensa18a.html
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html

Under review as a conference paper at ICLR 2021

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, and Kenneth O Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. arXiv preprint arXiv:2003.08536, 2020.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 PROTAGONIST ANTAGONIST INDUCED REGRET ENVIRONMENT DESIGN (PAIRED)

Adversarial Environment Generation (AEG) trains an adversary policy πE to design environments
to minimize the performance of an agent’s policy, πP . Let RPi =

∑T
t=1 γ

trPt be the total reward
received by the agent for trajectory i. In minimax AEG, the objective for the adversary is simply:
−RP . Thus, minimax adversaries are incentivized to create excessively difficult or impossible envi-
ronments, which may not enable the agent to learn. Instead, PAIRED (Dennis et al., 2020) trains the
adversary to maximize the agent’s regret, which is defined as the difference between the agent’s re-
turn and the return of the optimal policy, R∗−RP . When the reward function includes an incentive
to complete the task more efficiently (which is true in our case), the regret will be highest for easy
tasks which could be completed in a few steps by the optimal policy, but which the current policy
fails to complete. Therefore, an adversary that maximizes the regret will continue to propose easier
tasks until the agent begins to solve them, making regret a desirable objective for AEG.

To estimate the regret, PAIRED introduces a third agent, the antagonist (with policy πA), and con-
strains the adversary to only generate feasible environments which the antagonist can complete.
When the adversary generates an environment E, both the protagonist and antagonist collect M
trajectories with returns RP1 , ..., R

P
M , R

A
1 , ..., R

A
M in E. The regret is then estimated as:

REGRET = max
i
RAi −

1

M

M∑
m=1

RPm (6)

As Dennis et al. (2020) show, if the adversary and antagonist coordinate and reach a Nash equilib-
rium with the protagonist, then the protagonist will have learned to minimize the regret. However, in
practice gradient-based multi-agent RL has no convergence guarantees, is highly non-stationary, and
will often fail to converge (Mazumdar et al., 2019a;b). If the antagonist and adversary in PAIRED
fail to coordinate, then PAIRED minimizes regret with respect to the antagonist’s policy. In that
case, the objective in Equation 6 only forces the protagonist to learn to be as good as the antagonist.
If the antagonist fails to improve, or reaches a local optimum, then the adversary cannot continue
to train the protagonist. In Section 4.3.1 we propose an improved objective which addresses this
problem.

A.2 TRAINING FLOW

In Figure 6, we illustrate the high level workflow of the AEG with budget mechanism.

A.3 DISTRIBUTION OF PRIMITIVES DURING TRAINING

During training, the distribution of primitives become more skewed towards active primitives early
on (as shown in Figure 4f), but as the environments get more challenging, more passive primitives
are introduced as well (Figure 7). What we observe from the histograms in Figure 7 is that new
primitives are slowly introduced while the ranking of the primitives is also slightly changed.

A.4 ACTIVE AND PASSIVE PRIMITIVE FREQUENCIES

In Figure 8, we present frequencies of active and passive primitives during training. With Flexible-
bPAIRED, number of both active and passive primitives increase resulting in more complex web-
sites.

A.5 CREATING FULLY-SPECIFIED PRIMITIVES FROM UNDERSPECIFIED TEMPLATES

In Algorithm 2, we outline the process for generating a new fully-specified primitive from a given
underspecified DOM template.

12

Under review as a conference paper at ICLR 2021

Algorithm 2 Generating a new fully-specified primitive from an underspecified primitive.
1: Input:D = (Dn, De): An underspecified DOM template, a sub-tree with elements Dn and

edges De

2: Input:V ⊂ Dn: A list of elements that correspond to variables in Dn

3: Input:Av,i: A list of variable attributes Av,i for an element v ∈ Dn

4: for v ∈ V do . Iterate over variable elements.
5: Flip a coin. If it is heads, Dn ←− Dn \ {v}. . Add/remove a variable element.
6: end for
7: for v ∈ Dn do . Iterate over non-variable elements.
8: for a ∈ Av,i do . Iterate over variable attributes for element v.
9: Flip a coin. If it is heads, sample and assign a value for a. . Add/remove an attribute.

10: end for
11: If there is at least one variable attribute remaining for element v, Dn ←− Dn \ {v}.
12: end for

A.6 DETAILED RESULTS ON TEST ENVIRONMENTS

We detail the aggregated results in Figure 5 and present performance of agents across tasks and
difficulty levels (Figure 1). On the easiest level of tasks, CL achieves slightly lower performance
than Flexible b-PAIRED early in the training while as the task difficulty increases, the gap becomes
more apparent. We observe that the primitive distribution in Figure 7c and task success rate results
are consistent in which late in the training, the adversary focuses more on the ’Flight Booking’
related primitives and its performance still strongly increases.

A.7 RESULTS ON MINIWOB ENVIRONMENTS

In Table 2, we present results on MiniWoB form-filling tasks and compare them to gMiniWoB test
tasks. MiniWoB tasks are independent of gMiniWoB and they have completely unobserved DOM
structures and labels. We load only the trained embedding layers from the final checkpoint as there
is no element dependency on these DOMs. We show that we navigation agents trained with Flexible
b-PAIRED are able to solve all MiniWoB tasks.

Compared to gMiniWoB tasks, they are much simpler where DOM and instruction sizes are up to
10 times smaller. They also have only a few input elements that the agent can interact with while
in gMiniWoB there are 10s of input elements making the gMiniWoB a formidable benchmark. As
an example, in the Shopping task, size of the state and action spaces reach 5550 (number of tokens
for all attributes in all elements in a DOM) and 240 (total number of element and instruction pairs),
respectively.

A.8 COMPARISON OF α IN BUDGET WEIGHTING

In Figure 9, we plot results where Flexible b-PAIRED is trained with different α weights. For
α = 0.25, the performance drops substantially as the model gives more weight to the RL loss
overall. In this work, we used α = 1.25 for our main results.

13

Under review as a conference paper at ICLR 2021

difficulty level = 1 difficulty level = 2 difficulty level = 3 difficulty level = 4
L

og
in

E
nt

er
A

dd
re

ss
E

nt
er

Pa
ym

en
t

Sh
op

pi
ng

Fl
ig

ht
B

oo
ki

ng

Table 1: Task success rate comparison of PAIRED and baseline models on test environments with
increasing difficulty levels. From left to right, columns correspond to increasing difficulty. From top
to bottom, rows correspond to different test environments.

Task Name Task DOM Size DOM Size DOM Depth Instruction
Success (Inputs) Size

enter-password 1.0 3 11 5 1
enter-text 1.0 2 6 4 1

enter-text-dynamic 1.0 2 6 4 1
login (gMiniWoB) 0.92 10 34 21 5

address (gMiniWoB) 0.74 10 38 22 7
payment (gMiniWoB) 0.78 13 49 28 5

flight (gMiniWoB) 0.79 16 60 33 7
shopping (gMiniWoB) 0.77 20 (40) 111 (183) 68 (111) 12

Table 2: MiniWoB form-filling environment results compared to gMiniWoB test environments. In-
puts correspond to elements that are interactable by agents. For shopping, we report maximum and
total (in parentheses) across 3 pages for DOM related statistics.

14

Under review as a conference paper at ICLR 2021

A.9 WEB ENVIRONMENT DESIGN PRIMITIVES

Design Primitives and Their Descriptions
Design Primitive Design Template Active/Passive Description

addressline1 input active Main address information
addressline2 input active Secondary address information

cabin multi-selection active Multiple cabin options
captcha input active Captcha information

carousel carousel passive Items with images in a carousel
with previous and next buttons

cart cart passive Items in a product cart with promo
code information

cc multi-selection active Multiple credit card type options
cccvv input active Credit card CVV information

ccexpdate input active Credit card expiration date informa-
tion

ccnumber input active Credit card number information
city input active City address information

dealmedia media passive Product media with image, label,
and link

deck deck passive Multiple product decks with image,
label, and link

departureairport input active Departure airport information
departuredate input active Departure date information

destinationairport input active Destination airport information
destinationdate input active Destination date information

firstname input active First name information
flighttype multi-selection active Multiple flight type options

footer1 footer passive Footer with links and information
forgotpassword link passive Link with forgot password context
forgotusername link passive Link with forgot username context

fullname input active First and last name information
header label passive Generic header

header login label passive Header for login form
header select items label passive Header for item selection

inpgroup1 input passive Generic input with default search
context

lastname input active Last name information
navbar navigation bar passive A navigation bar with a menu

next checkout button passive Next button with checkout context
next login button passive Next button with login context

next login page button passive Next button with login context
numberofpeople multi-selection active Multiple number of people options

password input active Password information
rememberme selection active Checkbox with remember me con-

text
state input active State information

stayloggedin selection active Checkbox with stay logged in con-
text

submit button passive Submit button
username input active Username information

zipcode input active Zipcode information

In Table A.9, we present the list of design primitives, corresponding templates, types, and descrip-
tions.

15

Under review as a conference paper at ICLR 2021

A.10 LIST OF TEST ENVIRONMENTS

In Figure 11, we present screenshots of the testing environments with the hardest difficulty levels.
While “Login”, “Enter Address”, “Enter Payment”, and “Flight Booking” are single page environ-
ments, “Shopping” is a multi-page environment where an agent needs to first navigate the home
page and then solve “Login” and “Enter Address” tasks.

A.11 EXAMPLE WEB PAGE DESIGNS

In Figure 12, we present more screenshots of generated pages by the adversary from including multi-
page websites. They cover a very broad spectrum of complexities and DOM tree structures. As an
example, two web pages on the top right both have ”City”, ”CVV”, and ”Address” elements but with
different orders. This allows the web navigation agents to observe a website in multiple different
ways for better generalization.

A.12 IMPLEMENTATION DETAILS ON WEB NAVIGATION AND ADVERSARY NETWORKS

Following Gur et al. (2019), we design web navigation agent networks as DOM and profile encoders
with pairwise similarity scoring. Each web navigation agent policy network has 104501 parameters.

In Figure 13, we detail the adversary network architecture for a single design action with the param-
eters used in this work. We use 100 dimensions for hidden vectors for all dense layers as well as the
LSTM network. Every dense layer is stacked twice and tanh activation function is applied on the
output of all non-final dense layers. Total number of parameters for the adversary policy network is
152461.

16

Under review as a conference paper at ICLR 2021

Figure 6: Training workflow. The adversary unrolls an environment, adding one element at the
time of each page. That environment is passed on a population of navigation agents under training.
The navigators collect several episodes in the environment, and collect their estimates returns. The
weight of the navigator agents are updated w.r.t. their scores. And the adversary weights are updated
w.r.t. regret estimate and performance score of the best performing agent.

17

Under review as a conference paper at ICLR 2021

(a) Early

(b) Middle

(c) Late

Figure 7: Histograms of primitives from early, middle, and late snapshots of the training.

18

Under review as a conference paper at ICLR 2021

(a) Active Primitives (b) Passive Primitives

Figure 8: Frequencies of active and passive primitives during training.

(a) Difficulty level 1 (b) Difficulty level 2

(c) Difficulty level 3 (d) Difficulty level 4

Figure 9: Aggregated task success rate comparison of Flexible b-PAIRED trained with different α weights.

19

Under review as a conference paper at ICLR 2021

(a) Login (b) Enter Address (c) Enter Payment (d) Flight Booking

Figure 10: Screenshots of single page test environments.

20

Under review as a conference paper at ICLR 2021

(a) Home Page (b) Login Page (c) Address Page

Figure 11: Screenshots of multi-page “Shopping” environment. The “Shopping” environment is
composed of a complex home page and additional “Login” and “Enter Address” pages.

21

Under review as a conference paper at ICLR 2021

Figure 12: Screenshots of sample pages generated by the adversary.

22

Under review as a conference paper at ICLR 2021

Observation
 [1 x 100]

LSTM
[2 x 100 x 400]

f0
Initial

observation
encoder

[100 x 100]

fK

[100 x 100]

[100 x 10]Number of
pages

prediction
network

p(number of pages)

fL

[100 x 100]

[100 x 10]
fP

[100 x 100]

[100 x 41]

p(page location) p(primitive)

Page
location

prediction
network

[100 x 100]

Primitive
prediction
network

f I

[10 x 100]

[100 x 50]

Next state input for
LSTM

[41 x 100]

[100 x 50]

concat

Output
encoder
network

Figure 13: Each box corresponds to a dense layer with the shape of the corresponding linear trans-
formation matrix. Each dense layer also includes a bias vector with the same size as the columns of
the corresponding matrices.

23

	Introduction
	Related work
	Background on Web Navigation Problem
	Methods for Learning to Design Web Environments
	Generative MiniWoB (gMiniWoB) Environment
	Adverserial Environment Decoder Architecture
	Adversary Training
	Loss functions
	Loss functions discussion

	Evaluations
	Evaluation setup
	Results

	Conclusion
	Appendix
	Protagonist Antagonist Induced Regret Environment Design (PAIRED)
	Training flow
	Distribution of Primitives During Training
	Active and Passive Primitive Frequencies
	Creating fully-specified primitives from underspecified templates
	Detailed Results on Test Environments
	Results on MiniWoB Environments
	Comparison of in budget weighting
	Web Environment Design Primitives
	List of Test Environments
	Example web page designs
	Implementation Details on Web navigation and adversary networks

