
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UCD: UNCONDITIONAL DISCRIMINATOR PROMOTES
NASH EQUILIBRIUM IN GANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training turns out to be the key to one-step generation, especially
for Generative Adversarial Network (GAN) and diffusion model distillation.
Yet in practice, GAN training hardly converges properly and struggles in mode
collapse. In this work, we quantitatively analyze the extent of Nash equilibrium
in GAN training, and conclude that redundant shortcuts by inputting condition
in D disables meaningful knowledge extraction. We thereby propose to employ
an unconditional discriminator (UCD), in which D is enforced to extract more
comprehensive and robust features with no condition injection. In this way,
D is able to leverage better knowledge to supervise G, which promotes Nash
equilibrium in GAN literature. Theoretical guarantee on compatibility with
vanilla GAN theory indicates that UCD can be implemented in a plug-in manner.
Extensive experiments confirm the significant performance improvements with
high efficiency. For instance, we achieved 1.47 FID on the ImageNet-64 dataset,
surpassing StyleGAN-XL and several state-of-the-art one-step diffusion models.
The code will be made publicly available.

1 INTRODUCTION

Over the past decade, generative modeling has achieved remarkable improvements in various
domains, such as data generation (Karras et al., 2020b; Ho et al., 2020; Song et al., 2021b; Tian
et al., 2024) and image editing (Shen et al., 2020; Zhu et al., 2022; 2023). It is well recognized that,
recent generative models including SD3 (Esser et al., 2024) and GigaGAN (Kang et al., 2023), have
demonstrated unprecedented ability of high-quality image generation. Despite the comprehensive
categories of generative models, one-step generation is currently the most core task in the literature.
Many attempts have been made to explore the potential methodology of one-step generation on
large-scale datasets (Sauer et al., 2022; Kang et al., 2023; Song et al., 2023; Song & Dhariwal,
2024; Kim et al., 2024a; Sauer et al., 2024; Lin et al., 2024; Zhu et al., 2025).

Among the aforementioned methods, adversarial training tends to serve as the key to high-quality
one-step generation, which originally comes from Generative Adversarial Network (GAN) (Good-
fellow et al., 2014). By drawing lessons from Nash equilibrium, GAN employs a generator G
and a discriminator D, achieving data recovery via a min-max game. Concretely, G endeavors to
reproduce samples in data distribution, while D competes with G by distinguishing the synthesized
samples. In principle, Nash equilibrium is reached when the training converges. That is to say, G
manages to fully recover the data distribution, and D fails to distinguish any further.

In practice, however, Nash equilibrium turns out to be hardly reached in GAN training, in spite of
the convincing performance. This leads to poor training stability and the well-known mode collapse
issue (Arjovsky & Bottou, 2017; Karras et al., 2020a). Several works have focused on improving
GAN training and proposed empirical solutions, yet with only little efficacy or expensive additional
computational cost (Yang et al., 2021; Wang et al., 2022; Kang & Park, 2020; Jeong & Shin, 2021;
Yang et al., 2022). Therefore, promoting Nash equilibrium is attached great importance to GAN,
which not only improves GAN performance but also facilitates other one-step generation methods.

In this work, we first dig into the mathematical foundations of GAN training and propose a novel
method to quantitatively evaluate the extent of Nash equilibrium, which is both model-agnostic and
loss-agnostic, thus of great robustness. Benefiting from this metric, we argue that condition injection

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in D brings redundant shortcuts in backbone thus hinders meaningful knowledge extraction. To
be more detailed, with supernumerary condition signal, D backbone may overemphasize some
condition-related features while neglecting others which are more meaningful to adversarial training.
In this case, D might be overfitted and sub-optimal. Consequently, when synthesized samples
by G are with low conditional likelihood, D frequently fails to extract condition-related features.
However, with few features leveraged D cannot supervise G properly, thus mode collapse occurs
and Nash equilibrium is hardly realized.

Based on the analyses above, we are devoted to designing an effective methodology to alleviate
mode collapse and promote Nash equilibrium. We propose a general solution, namely UCD, by
leveraging an unconditional discriminator. Our motivation is intuitive – canceling condition signal
injection enforces D to extract more comprehensive and robust features. By doing so, D could
leverage better knowledge to provide supervision for G. We further argue in Theorem 1 that such
a methodology is compatible with vanilla theory, and that UCD can be implemented efficiently in
a plug-in manner. Hence, our work offers a new perspective on improving Nash equilibrium and
synthesis performance in GAN literature.

2 RELATED WORK

Generative Adversarial Networks (GANs). GANs (Goodfellow et al., 2014) are one of the
representative paradigms of generative modeling. Formulated as adversarial training between the
generator G and the discriminator D, GANs manage to recover the data distribution in an implicit
modeling manner. Thanks to the rapid improvement on synthesis performance, GANs are introduced
to various downstream tasks, including image generation (Karras et al., 2019; 2020b; 2021), image
translation (Isola et al., 2017; Zhu et al., 2017; Park et al., 2019; Jiang et al., 2020; Park et al.,
2020), and editing (Shen et al., 2020; Shen & Zhou, 2021; Zhu et al., 2022; 2023). Conditional
GANs (Mirza & Osindero, 2014) further integrate condition signals, such as class labels (Sauer
et al., 2023; 2022), texts (Kang et al., 2023; Zhu et al., 2025), and reference images (Casanova et al.,
2021). Such attempts enables expeditious generation and impressive quality of GANs. Despite the
aforementioned achievements, GANs usually struggle in large-scale and diverse distributions (e.g.,
text-to-image and text-to-video generation). To this end, some studies endeavor to improve GANs
from different perspectives (Wang et al., 2023; Xia et al., 2024; Zhang et al., 2024; Huang et al.,
2024; Xiao et al., 2025). However, currently GANs still seem to be falling from grace on image
generation tasks compared with diffusion models (Ho et al., 2020; Song et al., 2021b).

Improving discriminators of GANs. Among the literature of facilitating GAN training, many
attempts have been made focusing on improving discriminators. Some works explore the
functionalities of data augmentation to alleviate overfitting issue, which significantly work under
low-data regime (Zhao et al., 2020; Karras et al., 2020a; Jiang et al., 2021). Others take efforts on
introduce various extra tasks for the discriminator (Kang & Park, 2020; Jeong & Shin, 2021; Yang
et al., 2021; Wang et al., 2022). Although the discriminator could be enhanced to some extent, the
huge extra computational cost is not negligible. Yang et al. (2022) proposes to leverage a dynamic
discriminator, adjusting the model capacity on-the-fly to align with time-varying classification task.
Despite the performance improvements, however, such dynamic training paradigm relies highly on
the model structure and might be difficult to apply on complex GANs. Unlike prior works, we focus
on rectifying the unilaterally unfair adversarial training and improving GAN equilibrium. It can be
implemented in a plug-in manner with almost no additional computational cost.

3 METHOD

3.1 PRELIMINARY

In the sequel, we only focus on conditional generation with one-hot labels through GANs. Denote
by x the random variable with unknown data distribution q(x|c) conditioned on c. GANs integrate
a generator G and a discriminator D with a min-max game, to map random noise z to sample and
discriminate real or synthesized samples, respectively (Goodfellow et al., 2014). Formally, GANs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Top-3 Classification (b) Top-10 Classification

Figure 1: Visualization of Nash equilibrium across different models. We integrate D every
several iterations into a classification task without further fine-tuning according to Eq. (7). A
higher classification accuracy suggests better Nash equilibrium. We use Config A (see Sec. 4.1) as
the baseline (i.e., the curve in red). As a comparison, our UCD is capable of consistently improving
Nash equilibrium (i.e., the curve in blue and the curve in green, respectively). To make a further
step, UCD under Config C (Sec. 3.4) achieves more robust D, thus better Nash equilibrium. We
report both the smoothed values (darker-color curve) and the original values (lighter-color curve)
for clearer demonstration, and the horizontal axis suggests the training progress.

attempt to achieve Nash equilibrium via the following losses:

LG = −Ez,c[logD(G(z, c), c)], (1)
LD = −Ex,c[logD(x, c)]− Ez,c[log(1−D(G(z, c), c))]. (2)

Denote by pg(x|c) the underlying distribution from G, when the Nash equilibrium is reached, the
following equalities hold for any x and any potential condition c:

D∗(x, c) =
q(x|c)

q(x|c) + pg(x|c)
, (3)

pg(x|c) = q(x|c), (4)

in which D∗ is the optimal discriminator.

3.2 EVALUATING EXTENT OF NASH EQUILIBRIUM

Theoretically, GANs are supposed to achieve Nash equilibrium between G and D, so that G can fully
recover the data distribution q(x|c). However, it is hardly achieved in practice and mode collapse
frequently occurs. Therefore, evaluating the extent of Nash equilibrium is of great importance to
delving into the training dynamics of GAN. Wang et al. (2022) made an empirical and intuitive
attempt, which directly visualizes the difference of D logits between real data and synthesized
samples. Then larger difference suggests poor Nash equilibrium. However, the difference is
significantly affected by the output range and choice of loss functions of D, thus fails to clearly
and robustly describe disequilibrium.

To this end, we first propose a novel method to better quantitatively describe the extent of the
disequilibrium in a model-agnostic and loss-agnostic manner. Assume that for each x with
q(x|c) > 0 and any unrelated condition c′, we have q(x|c′) = 0. Such an assumption is reasonable
for class-conditioned generation, since for unrelated c′ the classification probability q(c′|x) must be
zero. Then by Bayes’ law, we can deduce that q(x|c′) = q(c′|x) q(x)q(c) = 0. Recall that in GAN
theory, one first trains D to the current optimality, and then optimizes G accordingly. Therefore
when Nash equilibrium is nearly reached, i.e., Eq. (3) holds yet Eq. (4) fails and pg(x|c) ̸= q(x|c),
for a sample x with its corresponding condition c and unrelated condition c′, we have:

D∗(x, c) =
q(x|c)

q(x|c) + pg(x|c)
> 0, (5)

D∗(x, c′) =
q(x|c′)

q(x|c′) + pg(x|c′)
=

0

0 + pg(x|c′)
= 0. (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In other words, D∗ is capable of serving as a classifier when Nash equilibrium is almost reached,
i.e., for the set C consisting of all potential conditions, we have:

c = argmax
c′∈C

D∗(x, c′). (7)

On the other hand, poor equilibrium makes q(x|c) and pg(x|c) hardly overlap, leading to
D∗(x, c′) > 0 thus poor classification accuracy. Pseudo-code is addressed in Algorithm S1.

It is noteworthy that our evaluation concerns only with the classification accuracy, and is independent
with intermediate outputs of D, thus is both model-agnostic and loss-agnostic. A visualization of
training on ImageNet 64 (Deng et al., 2009) is demonstrated in Fig. 1. It clearly demonstrates
that vanilla GAN struggles in poor Nash equilibrium, i.e., top-3 and top-10 classifications with the
state-of-the-art GAN framework achieve only 10% and 20% accuracy, respectively.

3.3 IMPROVING NASH EQUILIBRIUM WITH AN UNCONDITIONAL D (CONFIG B)

Previous works have made attempts to improve GAN equilibrium, yet being too empirical and
intuitive (Wang et al., 2022; Yang et al., 2022). In this work, we conclude that redundant shortcuts
in D backbone by condition injection disables meaningful knowledge extraction. Concretely,
supernumerary condition signal encourages D highly concentrate on condition-related features
while neglecting others which are potentially more meaningful to adversarial training. That is to
say, D becomes overfitted and sub-optimal. With such a bias, when synthesized samples by G are
with low conditional likelihood, D cannot extract sufficiently many effective features to supervise
G properly. Therefore, mode collapse will occur and Nash equilibrium is hardly achieved.

In this section, we introduce a novel perspective on improving Nash equilibrium in a neat way,
namely UCD. The key motivation is to enforce D to extract more comprehensive and robust
features by canceling condition injection. Recall that in vanilla theory of conditional GAN (Mirza
& Osindero, 2014), the corresponding condition c is inputted to D simultaneously, which brings
shortcuts in D backbone and weankens the robustness of feature extraction. To this end, we propose
to train GAN with an unconditional D, which utilizes only the data samples with no conditions. In
this way, D could extract more versatile feature representations, and then leverages such knowledge
to more properly supervise G. Formally, denote by d(x) ∈ Rcard(C) the classification logits of x,
where card(C) is the cardinality of C. Note that in label-conditioned generation, card(C) is finite,
e.g., 1,000 classes in ImageNet (Deng et al., 2009). Then the overall losses can be written as below:

Lclass = Ex,c[L(d(x), c)] + Ez,c[L(d(G(z, c)), c)], (8)
LG = −Ez,c[log d(G(z, c))c], (9)
LD = −Ex,c[log d(x)c]− Ez,c[log(1− d(G(z, c))c)] + λ1Lclass, (10)

in which L(·, ·) could be any classification loss, e.g., cross entropy loss or multi-class hinge loss,
d(·)c is the c-th component, and λ1 is the loss weight. We first prove that Nash equilibrium can be
achieved when the training converges, which is summarized as Theorem 1. Proof is in Appendix A.1.

Theorem 1. Let c be the corresponding condition of x, then the c-th component of the optimal d
training with Eqs. (8) to (10) equals to D∗(x, c) in Eq. (3). Therefore when training converges we
have pg(x|c) = q(x|c), i.e., Nash equilibrium is achieved.

Theorem 1 claims that our UCD Config B is compatible with vanilla GAN, i.e., the supernumerary
classification loss has no influence on the convergence and Nash equilibrium of GAN training.
Furthermore, unlike the vanilla GAN pipeline that D is fed with condition signal, the supernumerary
classification loss of our UCD enables D to achieve a better backbone for comprehensive feature
extraction. This is because the absence of corresponding condition requires more versatile features
from D backbone for subsequent classification and adversarial training.

On the other hand, according to Theorem 1, the evaluation method in Sec. 3.2 is still applicable to
our UCD. When training with UCD converges and Nash equilibrium is achieved, for each x and its
corresponding c, we have d(x)c = D∗(x, c) > 0. Besides, benefiting from the classification loss,
for any unrelated condition c′, we can deduce that d(x)c′ < d(x)c. Conversely, poor equilibrium
suggests poor convergence of classification loss. Therefore, classification accuracy still indicates the
extent of Nash equilibrium. Detailed analyses and comparisons are addressed in Sec. 4.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Note that although several previous works have come up with similar strategies (Kang & Park, 2020;
Jeong & Shin, 2021; Yang et al., 2021; Wang et al., 2022), the consequent huge extra computational
cost makes them inapplicable in practice. As a comparison, applying UCD Config B only needs
to change the output shape of the final linear head of D from R to Rcard(C), which is extremely
simple and can be implemented in a plug-in manner. Further quantitative evidence of efficacy of
UCD Config B is addressed in Sec. 4.3.

3.4 BETTER NASH EQUILIBRIUM BY IMPROVING ROBUSTNESS OF D (CONFIG C)

It is well known that GAN struggles in training instability and mode collapse issue (Arjovsky &
Bottou, 2017; Xia et al., 2024; Xiao et al., 2025), since D is technically a regression-based classifier
thus with poor robustness. In other words, D usually appears sub-optimal and G could easily find
fake samples that D fails to distinguish. Many attempts focus on improving the robustness of D,
especially through data augmentation (Zhao et al., 2020; Karras et al., 2020a; Jiang et al., 2021). In
this section, we propose to achieve better Nash equilibrium by improving robustness of D.

Inspired by the training pipeline of DINO (Caron et al., 2021), the self-supervised learning technique
enables robust knowledge distillation through only centering and sharpening of the momentum
teacher outputs. To this end, we further integrate a DINO-alike loss on D upon Config B, aiming
at more robust feature extraction and more significant supervision for G. Therefore, this further
facilitates Nash equilibrium. Besides, feeding different views of both real and synthesized samples
to D and enforcing consistent feature extraction not only alleviates D from overfitting problem,
but also helps to improve the ability of D on the time-varying classification task with continuously
changing synthesized samples. Quantitative confirmation is addressed in Sec. 4.3.

Recall that DINO employs a teacher and a student model with an exponential moving average
(EMA) technique, yet vanilla GAN leverages only one single D. Therefore, for better compatibility
we propose to employ D to serve as both teacher and student model with widely used stop-gradient
operator. Concretely, two views of one sample are inputted into D, in which one is processed
with stop-gradient through the same centering and sharpening as DINO while the other is directly
used to compute the logit. Detailed implementations are provided in Algorithms S5 and S6. The
supernumerary loss LDINO is added with loss weight λ2. Total D loss can be written as below:

LD = −Ex,c[log d(x)c]− Ez,c[log(1− d(G(z, c))c)] + λ1Lclass + λ2LDINO. (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and baselines. We apply our UCD on previous seminal GANs on ImageNet 64
dataset (Deng et al., 2009), including R3GAN (Huang et al., 2024) and our self-enhanced R3GAN.

Evaluation metrics. We emplot Fréchet Inception Distance (FID) (Heusel et al., 2017) to evaluate
the fidelity of the synthesized images, use Improved Precision and Recall (Kynkäänniemi et al.,
2019) to measure sample fidelity (Prec.) and diversity (Rec.), respectively. We draw 50,000 samples
for each metric evaluation.

Implementation details. We use the officially implemented R3GAN1 (Huang et al., 2024). We
implement our self-enhanced R3GAN under Hammer2 (Shen et al., 2022) as our primary baseline
Config A. Concretely, we tune hyper-parameters (e.g., learning rate), change the structure of
conditional embedding, add auxiliary classifier head following AC-GAN (Odena et al., 2017), and
replace loss function with the LSGAN loss (Mao et al., 2017).

4.2 QUALITATIVE AND QUANTITATIVE RESULTS

We showcase some qualitative results in Fig. 2, demonstrating the efficacy of our UCD. It is
noteworthy that by improving the Nash equilibrium with more robust D, GAN is capable of
synthesizing more diverse samples with better fidelity.

1https://github.com/brownvc/r3gan
2https://github.com/bytedance/Hammer

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Diverse results generated by UCD on ImageNet 64 dataset (Deng et al., 2009). We
randomly sample eight global latent codes z for each label condition c, demonstrated in each row.

Besides the exhibited qualitative results, we also report the quantitative results across various state-
of-the-art GANs, conveying an overall picture of the capability of our UCD. As is reported in
Tab. 1, UCD is able to consistently promote GAN performance by improving the Nash equilibrium.
Upon our baseline self-enhanced GAN model (Config A), both Config B and Config C of our
UCD significantly improve the FID metric, among which, our Config C achieves 1.47 FID metric
and surpasses StyleGAN-XL (Sauer et al., 2022). Note that StyleGAN-XL employs a pre-trained
ImageNet classifier to all losses thus potentially leaking ImageNet features into the model, while our
UCD utilizes no prior and can be implemented in a plug-in fashion. As for diffusion model methods,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Sample quality on ImageNet 64x64 (Deng et al., 2009). †Methods that utilize distillation
techniques. ‡Methods that utilize auxiliary pre-trained ImageNet classifier to facilitate performance.
For clearer demonstration, one-step approaches including GANs and DPMs are highlighted in gray.

Method NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
ImageNet 64

PD† (Salimans & Ho, 2022) 2 8.95 0.63 0.65
CD† (Song et al., 2023) 2 4.70 0.69 0.64
PD† (Salimans & Ho, 2022) 1 15.39 0.59 0.62
CD† (Song et al., 2023) 1 6.20 0.68 0.63
DMD† (Yin et al., 2024b) 1 2.62 – –
CTM† (Kim et al., 2024a) 1 1.92 – –
SiD† (Zhou et al., 2024) 1 1.52 0.74 0.63
DMD2† (Yin et al., 2024a) 1 1.51 – –
PaGoDa† (Kim et al., 2024b) 1 1.21 – 0.63
ADM (Dhariwal & Nichol, 2021) 250 2.07 0.74 0.63
EDM (Karras et al., 2022) 79 2.44 0.71 0.67
EDM2-S (Karras et al., 2024) 63 1.58 0.76 0.60
EDM2-M (Karras et al., 2024) 63 1.43 0.75 0.62
EDM2-L (Karras et al., 2024) 63 1.33 0.75 0.62
DDIM (Song et al., 2021a) 50 13.70 0.65 0.56
DEIS (Zhang & Chen, 2023) 10 6.65 – –
CT (Song et al., 2023) 2 11.10 0.69 0.56
iCT-deep (Song & Dhariwal, 2024) 2 2.77 0.74 0.62
CT (Song et al., 2023) 1 13.00 0.71 0.47
iCT-deep (Song & Dhariwal, 2024) 1 3.25 0.72 0.63
StyleGAN2 (Karras et al., 2020b) 1 21.32 0.42 0.36
StyleGAN2 + SMaRt (Xia et al., 2024) 1 18.31 0.45 0.39
Aurora (Zhu et al., 2025) 1 8.87 0.41 0.48
Aurora + SMaRt (Xia et al., 2024) 1 7.11 0.42 0.49
R3GAN (Huang et al., 2024) 1 2.09 0.76 0.55
R3GAN + SMaRt (Xia et al., 2024) 1 2.03 0.76 0.55
R3GAN + MCGAN (Xiao et al., 2025) 1 2.06 0.76 0.56
R3GAN + UCD 1 1.80 0.79 0.56
StyleGAN-XL‡ (Sauer et al., 2022) 1 1.51 – –
Config A (Ours) 1 1.86 0.77 0.56
Config B (Ours) 1 1.68 0.77 0.58
Config C (Ours) 1 1.47 0.78 0.58

we manage to outperform all one-step training methods and loads of the state-of-the-art one-step
distillation methods (e.g., SiD (Zhou et al., 2024) and DMD2 (Yin et al., 2024a)).

4.3 FURTHER ANALYSES

Nash equilibrium improvements. Recall that our UCD is motivated by improving Nash equilibrium
by improving robustness of D backbone. In this part, we confirm the efficacy of our method
quantitatively via the evaluation method in Sec. 3.2. As demonstrated in Fig. 1, vanilla GAN
struggles in poor Nash equilibrium, and achieves only 10% top-3 classification accuracy. As a
comparison, Config B enables D to extract more comprehensive and robust features by employing
an unconditional D, which leads to better equilibrium. To make a further step, Config C additionally
integrate DINO-alike loss for better robustness, therefore managing to reach even 40% top-3
classification accuracy and 55% top-10 classification accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Top-3 Classification (b) Top-10 Classification

Figure 3: Comparison of D backbone between Config B and Config C during training. We freeze
D backbone and train a linear classification head upon it every several iterations. A higher
classification accuracy suggests better and more robust D backbone. Compared to Config B (i.e.
with blue curve, DINO-alike loss in Config C with green curve enables more robust D backbone.
We report both the smoothed values (darker-color curve) and the original values (lighter-color curve)
for clearer demonstration, and the horizontal axis suggests the training progress.

Table 2: Effect comparison of UCD on ImageNet 64 (Deng et al., 2009). We report the FID metric,
the number of parameters, and number of GPUs, respectively.

Configuration FID (↓) D Mparams # GPUs
A R3GAN (enhanced) baseline 1.98 109.9 64
B + Unconditional D 1.83 114.4 64
C + DINO-alike loss on D 1.58 114.4 64
A R3GAN (enhanced) baseline 1.86 109.9 128
B + Unconditional D 1.68 114.4 128
C + DINO-alike loss on D 1.47 114.4 128

Table 3: Ablation study of hyper-parameters λ1 of Lclass and λ2 of LDINO in UCD on ImageNet
64 (Deng et al., 2009), respectively.

Configuration FID (↓) λ1 λ2 # GPUs
A R3GAN (enhanced) baseline 2.55 N/A N/A 32
B + Unconditional D 2.37 0.005 N/A 32

2.33 0.01 N/A 32
2.00 0.02 N/A 32
3.10 0.05 N/A 32

C + DINO-alike loss on D 1.92 0.01 0.05 32
1.88 0.01 0.1 32
1.89 0.01 0.2 32
1.92 0.01 0.5 32

More robust D backbone. We further train a classification head upon the frozen D backbone
for Config B and Config C, to more clearly demonstrate the robustness improvement of D. From
Fig. 3 it is clear that integrating DINO-alike loss of Config C enables better classification accuracy,
especially at the very beginning of GAN training. This indicates that D backbone appears more
robust benefiting from the additional loss, thus capable of leveraging better knowledge. It is also
noteworthy that the two accuracies gradually becomes on-par, however, a better D at the early stage
could serve as a more meaningful supervision, which is attached great importance to training from
scratch. This explains the better Nash equilibrium of Config C from another perspective.

Effect comparison. We also report more detailed comparison about the effectiveness of our UCD
on ImageNet 64 (Deng et al., 2009), as is demonstrated in Tab. 2. We can first conclude that both
Config B and Config C employs the same number of D parameters, appearing close to the Config
A baseline. Besides, it is also noteworthy that both Config B and Config C is able to consistently

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of computational cost on R3GAN (Huang et al., 2024) on ImageNet 64 (Deng
et al., 2009). We report the FID metric, maximal GPU memory, average training time for one
iteration, and number of GPUs, respectively.

Method FID (↓) Max GPU Mem. Ave. Iter. Time # GPUs
R3GAN (Huang et al., 2024) 2.09 51.40 GB 2.54 s 64
R3GAN + SMaRt (Xia et al., 2024) 2.03 52.54 GB 2.73 s 64
R3GAN + MCGAN (Xiao et al., 2025) 2.06 51.43 GB 5.12 s 64
R3GAN + UCD 1.80 51.50 GB 2.98 s 64

improve the FID evaluation significantly, in which the two improvements are quite close. That is to
say, the effect comparison confirms our motivation of facilitating more robust and comprehensive
feature extraction by canceling condition injection in D promotes Nash equilibrium.

Ablation studies. We conduct an extensive ablation studies to convey a clear picture of the efficacy
of UCD under different hyper-parameters, as reported in Tab. 3. Although we prove in Theorem 1
that the optimality of UCD Config B is consistent with vanilla GAN, too large λ1 might weaken
the functionality of adversarial training. In other words, D tends to be stuck on classification and
fails to distinguish real or fake samples, providing G with less meaningful supervision. It is also
noteworthy that the introduction of DINO-alike loss suggest consistent performance improvements,
which coincides with the analyses in Sec. 3.4.

Computational cost comparison. We report in Tab. 4 the FID performance, maximal GPU
memory, average iteration time, and number of used GPUs, respectively. Note that we only change
the output shape of the final linear head of D from R to Rcard(C) with a supernumerary DINO-alike
loss, the GPU memory consumption and time cost barely increase. Despite the lazy strategy and
omitting the UNet Jacobian of SMaRt (Xia et al., 2024) for better efficiency, we can tell that our
UCD slightly increases the training cost but significantly improve the performance.

4.4 DISCUSSIONS

It is the shortcuts in D backbone by condition signal injection that hinders Nash equilibrium
and restricts the downstream applications, especially leaving GANs lacking further research on
conditional generation. Therefore, we hold strong belief that our UCD is attached great importance.
Despite the achieved great success on improving Nash equilibrium, our proposed method has several
potential limitations. As a supernumerary loss, although we prove in Theorem 1 that it enjoys the
same optimality as vanilla GAN, its efficacy depends highly on the choice of the hyper-parameter
λ1 according to the analyses in Sec. 4.3. Besides, the additional classification loss introduced by our
method is designed for label-conditioned generation, and currently incompatible to the mainstream
text-to-image or text-to-video generation task. Therefore, how to further conquer this problem
(e.g., employing CLIP (Radford et al., 2021) to compute classification loss for text-conditioned
generation) will be an interesting avenue for future research, and can improve diffusion model
distillation methods. To this end, we hope that UCD could encourage the community to further
study the adversarial training and Nash equilibrium in the future.

5 CONCLUSION

In this work, we first propose a quantitative method to analyze and evaluate the extent of Nash
equilibrium in label-conditioned GAN field. We then theoretically point out a novel perspective
to promote Nash equilibrium. By canceling condition injection with an unconditional D and
introducing DINO-alike loss to enhance robustness, we propose UCD, a plug-in method which
facilitates GAN training and improves synthesis performance. We further provide a proof that
the supernumerary loss enjoys the same optimality as vanilla GAN. We conduct comprehensive
experiments to demonstrate the significant improvements of synthesis quality on a variety of baseline
models, and manage to surpass loads of state-of-the-art diffusion model methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martı́n Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In ICLR, 2017.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Arantxa Casanova, Marlène Careil, Jakob Verbeek, Michal Drozdzal, and Adriana Romero-Soriano.
Instance-conditioned GAN. In NIPS, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
NIPS, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
ICML, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NIPS,
2020.

Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The GAN is dead; long
live the GAN! a modern GAN baseline. In NIPS, 2024.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, 2017.

Jongheon Jeong and Jinwoo Shin. Training gans with stronger augmentations via contrastive
discriminator. In ICLR, 2021.

Liming Jiang, Changxu Zhang, Mingyang Huang, Chunxiao Liu, Jianping Shi, and Chen Change
Loy. TSIT: A simple and versatile framework for image-to-image translation. In ECCV, 2020.

Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Deceive D: adaptive pseudo augmentation
for GAN training with limited data. In NIPS, 2021.

Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional image generation.
In NIPS, 2020.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In CVPR, 2023.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In NIPS, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In CVPR, 2020b.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In NIPS, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NIPS, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine.
Analyzing and improving the training dynamics of diffusion models. In CVPR, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ODE trajectory of diffusion. In ICLR, 2024a.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka,
Yuki Mitsufuji, and Stefano Ermon. Pagoda: Progressive growing of a one-step generator from a
low-resolution diffusion teacher. In NIPS, 2024b.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In NIPS, 2019.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In ICCV, 2017.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. In ICML, 2017.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In CVPR, 2019.

Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
image-to-image translation. In ECCV, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In SIGGRAPH, 2022.

Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the
power of gans for fast large-scale text-to-image synthesis. In ICML, 2023.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. In ECCV, 2024.

Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In CVPR, 2021.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In CVPR, 2020.

Yujun Shen, Zhiyi Zhang, Dingdong Yang, Yinghao Xu, Ceyuan Yang, and Jiapeng Zhu. Hammer:
An efficient toolkit for training deep models. https://github.com/bytedance/
Hammer, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In ICLR,
2024.

11

https://github.com/bytedance/Hammer
https://github.com/bytedance/Hammer

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. In NIPS, 2024.

Jianyuan Wang, Ceyuan Yang, Yinghao Xu, Yujun Shen, Hongdong Li, and Bolei Zhou. Improving
GAN equilibrium by raising spatial awareness. In CVPR, 2022.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
gan: Training gans with diffusion. In ICLR, 2023.

Mengfei Xia, Yujun Shen, Ceyuan Yang, Ran Yi, Wenping Wang, and Yong-Jin Liu. SMaRt:
Improving GANs with score matching regularity. In ICML, 2024.

Baoren Xiao, Hao Ni, and Weixin Yang. MCGAN: enhancing GAN training with regression-based
generator loss. In AAAI, 2025.

Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient instance generation from
instance discrimination. In NIPS, 2021.

Ceyuan Yang, Yujun Shen, Yinghao Xu, Deli Zhao, Bo Dai, and Bolei Zhou. Improving gans with
A dynamic discriminator. In NIPS, 2022.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. In
NIPS, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T. Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024b.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In ICLR, 2023.

Yifei Zhang, Mengfei Xia, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Lianghua
Huang, Yu Liu, and Fan Cheng. Exploring guided sampling of conditional gans. In ECCV, 2024.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient GAN training. In NIPS, 2020.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In ICML, 2024.

Jiapeng Zhu, Yujun Shen, Yinghao Xu, Deli Zhao, and Qifeng Chen. Region-based semantic
factorization in gans. In ICML, 2022.

Jiapeng Zhu, Ceyuan Yang, Yujun Shen, Zifan Shi, Bo Dai, Deli Zhao, and Qifeng Chen. Linkgan:
Linking GAN latents to pixels for controllable image synthesis. In ICCV, 2023.

Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Yinghao Xu, Zifan Shi, and Yujun Shen. Exploring
sparse moe in gans for text-conditioned image synthesis. In CVPR, 2025.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS AND DERIVATIVES

In this section, we will prove the theorems stated in the main manuscript.

A.1 PROOF OF THEOREM 1

Proof. Without loss of generality, we use the well-known cross entropy loss for the classification
loss L(·, ·), i.e., we have:

L(d(x), c) = − log
exp d(x)c∑
i

exp d(x)i
. (S1)

Then Eq. (10) can be formulated as below:

LD = −
∫
x

q(x|c) log d(x)c + pg(x|c) log(1− d(x)c)dx (S2)

− λ

∫
x

q(x|c) log exp d(x)c∑
i

exp d(x)i
+ pg(x|c) log

exp d(x)c∑
i

exp d(x)i
dx. (S3)

We first compute the i-th component of the optimal d(x) for all i ̸= c. Note that the first integral is
independent with each d(x)i, and the second integral can be written as below:

−λ

∫
x

(q(x|c) + pg(x|c)) log
exp d(x)c∑
i

exp d(x)i
dx. (S4)

And for any x ∈ supp q(x|c)∪supp pg(x|c), we can see that − log exp d(x)c∑
i
exp d(x)i

reaches its minimum

0 if and only if exp d(x)i = 0 for i ̸= c. More generally, for any x with its corresponding condition
c, and any classification loss L(·, ·), L(d(x), c) can reach its minimum by adjusting d(x)i to a value
independent with d(x)c for all i ̸= c, e.g., exp d(x)i = 0 for cross entropy loss and d(x)i = 0 for
multi-class hinge loss. At this time, Eq. (10) is equivalent to the vanilla discriminator loss:

argmin
d(x)c

LD = argmin
d(x)c

(
−
∫
x

q(x|c) log d(x)c + pg(x|c) log(1− d(x)c)dx

)
. (S5)

Then by vanilla GAN theory, we have:

d∗(x)c =
q(x|c)

q(x|c) + pg(x|c)
. (S6)

Consequently, Eq. (9) also coincides with the vanilla generator loss. According to the native GAN
theory, Nash equilibrium is achieved and we have:

pg(x|c) = q(x|c). (S7)

B PSEUDO-CODES

In this section, we will provide the pseudo-codes of the algorithms proposed in the main manuscript.

B.1 PSEUDO-CODE TO EVALUATING EXTENT OF NASH EQUILIBRIUM

We below propose the pseudo-codes to evaluate the extent of Nash equilibrium for native GAN and
our UCD in Algorithm S1 and Algorithm S2, respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm S1 Pseudo-code to evaluate Nash equilibrium of native GAN in a PyTorch-like style.

1 def run_classification(D, x, c):
2 """Defines the function to evaluate Nash equilibrium by classification.
3
4 Args:
5 D: Discriminator model.
6 x: Data sample.
7 c: Label.
8
9 Returns:

10 acc: Classification accuracy.
11 """
12 with torch.no_grad():
13 all_c = torch.arange(c.shape[1]).repeat(x.shape[0], 1)
14 all_x = x.unsqueeze(0).repeat(c.shape[1], *[1] * x.ndim).transpose(0,1).reshape(-1, *x

.shape)
15 all_logits = D(all_x, all_c).view(-1, c.shape[1])
16
17 pred = all_logits.argmax(dim=1)
18 gt = c.argmax(dim=1)
19 acc = (pred == gt).sum() / c.shape[0]

Algorithm S2 Pseudo-code to evaluate Nash equilibrium of UCD in a PyTorch-like style.

1 def run_classification(D, x, c):
2 """Defines the function to evaluate Nash equilibrium by classification.
3
4 Args:
5 D: Discriminator model.
6 x: Data sample.
7 c: Label.
8
9 Returns:

10 acc: Classification accuracy.
11 """
12 with torch.no_grad():
13 logits = D(x, torch.zeros_like(c))
14 pred = logits.argmax(dim=1)
15 gt = c.argmax(dim=1)
16 acc = (pred == gt).sum() / c.shape[0]
17
18 return acc

B.2 PSEUDO-CODE OF UCD

We below propose the pseudo-codes to implement Config B and Config C of our proposed UCD in
Algorithms S3 to S6.

C MORE RESULTS

In this part we showcase more qualitative results, as is demonstrated in Figs. S1 and S2. All samples
are synthesized with UCD on ImageNet 64 dataset (Deng et al., 2009). It is noteworthy that our
proposed UCD manages to improve both the fidelity and the diversity of GAN synthesis, confirming
the efficacy of out method.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm S3 Pseudo-code to implement Config B of UCD in a PyTorch-like style.

1 def train_step_config_B(G, D):
2 """Defines the function to train one step under Config B.
3
4 Args:
5 G: Generator model.
6 D: Discriminator model.
7
8 Returns:
9 loss: Total GAN loss.

10 """
11 # First the G loss.
12 G.requires_grad_(True)
13 D.requires_grad_(False)
14 fake_image = G(z, c)
15 fake_cls = D(fake_image, torch.zeros_like(c))
16 fake_logit = (fake_cls * c).sum(dim=1, keepdim=True)
17 g_loss = g_loss_fn(fake_logit)
18
19 # Second the classification loss.
20 D.requires_grad_(True)
21 G.requires_grad_(False)
22 real_cls = D(x, torch.zeros_like(c))
23 class_loss = (class_loss_fn(fake_cls, c) + class_loss_fn(real_cls, c)) / 2
24
25 # Finally the D loss.
26 real_logit = (real_cls * c).sum(dim=1, keepdim=True)
27 d_loss = d_loss_fn(fake_logit) + class_weight * class_loss
28
29 return g_loss + d_loss

Algorithm S4 Pseudo-code to implement Config C of UCD in a PyTorch-like style.

1 def train_step_config_C(G, D):
2 """Defines the function to train one step under Config C.
3
4 Args:
5 G: Generator model.
6 D: Discriminator model.
7
8 Returns:
9 loss: Total GAN loss.

10 """
11 # First the G loss.
12 G.requires_grad_(True)
13 D.requires_grad_(False)
14 fake_image = G(z, c)
15 fake_cls = D(fake_image, torch.zeros_like(c))
16 fake_logit = (fake_cls * c).sum(dim=1, keepdim=True)
17 g_loss = g_loss_fn(fake_logit)
18
19 # Second the classification loss.
20 D.requires_grad_(True)
21 G.requires_grad_(False)
22 real_cls = D(x, torch.zeros_like(c))
23 class_loss = (class_loss_fn(fake_cls, c) + class_loss_fn(real_cls, c)) / 2
24
25 # Third the DINO-alike loss.
26 x1, x2 = augment(x), augment(x)
27 real_dino_teacher = run_teacher(D, x1)
28 real_dino_student = run_student(D, x2)
29 real_dino_loss = dino_loss_fn(real_dino_teacher, real_dino_student)
30 x1, x2 = augment(fake_image), augment(fake_image)
31 fake_dino_teacher = run_teacher(D, x1)
32 fake_dino_student = run_student(D, x2)
33 fake_dino_loss = dino_loss_fn(fake_dino_teacher, fake_dino_student)
34 dino_loss = (real_dino_loss + fake_dino_loss) / 2
35
36
37 # Finally the D loss.
38 real_logit = (real_cls * c).sum(dim=1, keepdim=True)
39 d_loss = d_loss_fn(fake_logit) + class_weight * class_loss + dino_weight * dino_loss
40
41 return g_loss + d_loss

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm S5 Pseudo-code to compute teacher outputs in Config C of UCD in a PyTorch-like style.

1 def run_teacher(D, x, c):
2 """Defines the function to forward teacher branch.
3
4 Args:
5 D: Discriminator model.
6 x: Data sample.
7 c: Label.
8
9 Returns:

10 dino_teacher: Teacher outputs.
11 """
12 with torch.no_grad():
13 teacher_cls = D(x, torch.zeros_like(c))
14 dino_teacher = F.softmax((teacher_cls - center) / temperature, dim=1)
15
16 # Update the center.
17 batch_center = dino_teacher.mean(dim=0, keepdim=True)
18 center = center * center_momentum + batch_center * (1 - center_momentum)
19
20 # Stop-gradient.
21 dino_teacher = dino_teacher.detach()
22 return dino_teacher

Algorithm S6 Pseudo-code to compute student outputs in Config C of UCD in a PyTorch-like style.

1 def run_student(D, x, c):
2 """Defines the function to forward student branch.
3
4 Args:
5 D: Discriminator model.
6 x: Data sample.
7 c: Label.
8
9 Returns:

10 dino_student: Student outputs.
11 """
12 student_cls = D(x, torch.zeros_like(c))
13 dino_student = F.softmax(student_cls, dim=1)
14
15 return dino_student

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure S1: Diverse results generated by UCD on ImageNet 64 dataset (Deng et al., 2009). We
randomly sample six global latent codes z for each label condition c, demonstrated in each row.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure S2: Diverse results generated by UCD on ImageNet 64 dataset (Deng et al., 2009). We
randomly sample six global latent codes z for each label condition c, demonstrated in each row.

18

