
Under review as a conference paper at ICLR 2023

REDUCING OVERSMOOTHING IN GRAPH NEURAL NET-
WORKS BY CHANGING THE ACTIVATION FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of Graph Neural Networks (GNNs) deteriorates as the depth
of the network increases. That performance drop is mainly attributed to over-
smoothing, which leads to similar node representations through repeated graph
convolutions. We show that in deep GNNs the activation function plays a crucial
role in oversmoothing. We explain theoretically why this is the case and propose
a simple modification to the slope of ReLU to reduce oversmoothing. The pro-
posed approach enables deep architectures without the need to change the network
architecture or to add residual connections. We verify the theoretical results ex-
perimentally and further show that deep networks, which do not suffer from over-
smoothing, are beneficial in the presence of the “cold start” problem, i.e. when
there is no feature information about unlabeled nodes.

1 INTRODUCTION

Graph Neural Networks (GNNs) utilize message passing or neighborhood aggregation schemes to
extract representations for nodes and their neighborhoods. GNNs have achieved good results on
a variety of graph analytics tasks, such as node classification (Zhang et al., 2018; Hamilton et al.,
2017), link prediction (Liben-Nowell & Kleinberg, 2003; Zhang & Chen, 2018) and graph classifi-
cation (Klicpera et al., 2020). As a result, they play a key role in graph representation learning. One
of the most prominent GNN models is the Graph Convolutional Network (GCN) (Kipf & Welling,
2017), which creates node representations, by averaging the representations (embeddings) of its im-
mediate neighbors. Several studies have shown that, the performance of GCNs deteriorates, when
their architecture becomes deeper (Li et al., 2018).
The success of deep CNNs on many tasks, like image classification, naturally led to several attempts
towards building deep GNNs for node classification (Kipf & Welling, 2017; Li et al., 2018; Xu et al.,
2018). Increasing the model’s depth (and the number of parameters it has), would allow more ac-
curate representational learning to occur. Most of the existing approaches have failed to develop a
sufficiently deep architecture that achieves good performance. Therefore, there is a need to design
new models which can efficiently scale to a large number of layers. The aim of this paper is to
investigate the contributing factors, that compromise the performance of deep GNNs and develop a
method to address them.
The performance drop of deep GNNs, is associated with several factors, including vanishing gra-
dients, overfitting, as well as the phenomenon called oversmoothing (Li et al., 2018; Xu et al.,
2018; Klicpera et al., 2018; Wu et al., 2019). Oversmoothing has been shown to be associated with
graph convolution, a type of Laplacian operator. Li et al. (2018) proved that applying that opera-
tor repeatedly, makes node representations converge to a stationary point. At that point, all of the
initial information (i.e. node features’ information) is lost through the Laplacian smoothing. Con-
sequently, oversmoothing hurts the performance by making node features indistinguishable across
different classes.
In this work, we address the oversmoothing problem in deep GNNs. We provide what is to the best
of our knowledge the first study regarding the role of the activation function and the learning rate
per layer of the model to oversmoothing and propose a new method to address the problem. We
confirm our hypotheses both experimentally and theoretically. The new method is shown to prevent
node embeddings from converging to the same point, thus leading to better node representations.
We summarize our main contributions as follows.
•Role of Activation Function in Oversmoothing: We prove theoretically the connection between

1

Under review as a conference paper at ICLR 2023

the activation function and oversmoothing. In fact, we show the relation between the slope of ReLU
and the singular values of weight matrices, which are known to be associated with oversmoothing
(Oono & Suzuki, 2020; Cai & Wang, 2020). We have also verified our theoretical results experi-
mentally.
•Role of Learning Rate in Oversmoothing: Our analysis on the effect of the slope of ReLU to
oversmoothing has a direct extension to the learning rates used per layer of the network. We con-
ducted further experiments to study the effect of tuning the learning rates, showing that this approach
could also reduce oversmoothing, but it is less practical.
•The power of Deep GNNs: We have performed extensive experiments using up to 64-layer net-
works, tackling oversmoothing with the proposed method. We further show the benefits that such
deep GNNs can provide in the presence of reduced information, such as in a “cold start” situation,
where node features are available only for the labeled nodes in a node classification setting.

2 NOTATIONS AND PRELIMINARIES

2.1 NOTATIONS

In order to illustrate the problem of oversmoothing, we consider the task of semi-supervised node
classification on a graph. The graph to be analysed is G(V,E,X), with |V| = N nodes ui ∈ V, edges
(ui, uj) ∈ E and X = [x1, ..., xN]T ∈ RN×C denotes the initial node features. The edges form an
adjacency matrix A ∈ RN×N where edge (ui, uj) is associated with element Ai,j . Ai,j can take
arbitrary real values indicating the weight (strength) of edge (ui, uj). Node degrees are represented
through a diagonal matrix D ∈ RN×N , where each element di represents the sum of edge weights
connected to node i. During training, only the labels of a subset Vl ∈ V are available. The task is
to learn a node classifier, that predicts the label of each node using the graph topology and the given
feature vectors.
GCN, originally proposed by Kipf & Welling (2017), utilizes a feed forward propagation as:

H(l+1) = σ(ÂH(l)W (l)) (1)

where H(l) = [h
(l)
1 , ..., h

(l)
N] are node representations (or hidden vectors or embeddings) at the l-th

layer, with hl
i standing for the hidden representation of node i; Â = D̂−1/2(A+I)D̂−1/2 denotes the

augmented adjacency matrix after self-loop addition, where D̂ corresponds to the degree matrix; σ(·)
is a nonlinear element-wise function, i.e. the activation function, ReLU; and W (l) is the trainable
weight matrix of the l-th layer. A generic ReLU function with slope α is defined as ReLU(x) =
max(α · x, 0).

2.2 UNDERSTANDING OVERSMOOTHING

GNNs achieve state-of-the-art performance in a variety of graph-based tasks. Despite their success,
models like GCN (Kipf & Welling, 2017) and GAT (Velickovic et al., 2018) experience a perfor-
mance drop, when stacking multiple layers. To a large extent, this is attributed to oversmoothing due
to repeated graph convolutions. In their analysis Li et al. (2018), showed that graph convolution is a
special form of Laplacian smoothing. In fact, they proved that the new representation of each node
is formed by a weighted average of its own representation and that of its neighbors. This mechanism
allows the node representations within each (graph) cluster, i.e. highly connected group of nodes,
to become more similar and improves the performance on semi-supervised tasks on graphs. When
stacking multiple layers, the smoothing operation is repeated multiple times leading to oversmooth-
ing of node representations, i.e., the hidden representations of all nodes become similar, resulting in
information loss.

2.3 DEEP GNN LIMITATIONS

Therefore, oversmoothing leads node representations to converge to a fixed point as the network’s
depth increases (Li et al., 2018). At that point, node representations contain information relevant
to the graph topology and disregard the input features. Oono & Suzuki (2020) have generalized
the idea in Li et al. (2018) by taking into consideration, that the ReLU activation function maps
to a positive cone. They explain oversmoothing as the convergence to a subspace, instead of the

2

Under review as a conference paper at ICLR 2023

convergence to a fixed point. A similar approach is presented in (Cai & Wang, 2020), offering a
different perspective to the oversmoothing problem using Dirichlet energy.
We now look closer to the proposal of Oono & Suzuki (2020), which we will use as a basis for
our analysis. The main result in (Oono & Suzuki, 2020) is the definition of the convergence speed
towards a subspace M, where the distance between node representations tends to zero. We denote
as dM (X) the distance between the feature vector X and the subspace, where the oversmoothing is
prevalent. When that distance approaches to zero it indicates that node representations have been
over-smoothed. For this distance, Oono & Suzuki (2020) prove an interesting property.

Theorem 1 (Oono & Suzuki (2020)) Let the largest singular value of the weight matrix Wlh be

slh and sl =
Hl∏
h=1

slh, where Wlh is the weight matrix of layer h and Hl be the network’s depth,

following the notation of the paper. Then it holds that dM (fl(X)) ≤ sldM (X) for any X ∈ RN×C ,
where f(·) is the forward pass of a GNN layer (i.e. σ(AXWlh)).

The above theorem indicates, that the deeper the network the smaller the distance of node represen-
tations from the subspace M. If the maximum singular values are small then node representations
asymptotically approach M, for any initial values of node features. Extending the above theorem,
the authors conclude to the following estimate about the speed of convergence to the oversmoothing
subspace.

Corollary 1 (Oono & Suzuki (2020)) Let s = supl∈N+sl· then dM (X(l)) = O((sλ)l), where l is
the layer number and if sλ < 1 the distance from oversmoothing subspace exponentially approaches
zero. Where λ is the smallest non-zero eigenvalue of I - Â.

According to the authors, sufficiently deep GCN will certainly suffer from oversmoothing under
some conditions (details can be found in Oono & Suzuki (2020)). We build upon this result, aiming
to develop a consistent approach that reduces oversmoothing and enables deep architectures.

2.4 NORMALIZATION IN DEEP NEURAL NETWORKS

Of relevance to oversmoothing are also methods that perform normalization for deep neural net-
works (Ioffe & Szegedy, 2015; Ba et al., 2016). In such methods, the output of each neuron is
normalized, in order to keep a portion of the initial feature variance. Other recent work proposed
Self Normalized Networks (SNN), that use a different activation function (SeLU) (Klambauer et al.,
2017). These models perform self normalization inside each neuron, in order to keep the variance
between consecutive layers stable. They have managed to enable deep Fully Connected models and
achieve good performance.
A recent work regarding normalization in GNNs is the Pairnorm method (Zhao & Akoglu, 2020),
which aims to keep constant the total pairwise distance between node representations. Compared to
SNNs, Pairnorm performs normalization needing a constant value as hyper-parameter determined
per dataset, while SNNs manage to normalize the output utilizing their activation function, which
can be used in a family of neural networks. The activation function proposed in (Klambauer et al.,
2017) (i.e. SeLU) has a saturating region to reduce the variance of data and a slope slightly greater
than 1 in order to increase the data variance, when needed.

3 UNDERSTANDING AND DEALING WITH OVERSMOOTHING

Using the mathematical definition of oversmoothing in Oono & Suzuki (2020), in this section we
establish a connection with the training process of GNNs. In particular, we analyse the role of the
activation function and the learning rate and we propose modified versions of GNNs to address the
issue.

3.1 THEORETICAL ANALYSIS

We start by establishing the connection between oversmoothing and variance reduction of node rep-
resentations. Consider oversmoothing as the convergence to a subspace, where node representations

3

Under review as a conference paper at ICLR 2023

are almost the same. In that particular subspace, the initial variance of feature vectors has been mas-
sively reduced. This unwanted oversmoothing effect is ‘harsh’, due to the fact that ReLU performs
a zero mapping, when the input is negative. We use the term ‘harsh’ to indicate the smoothing case,
where representations are mapped to a single point (i.e. zero), instead of converging to a subspace.
We use the notion of ‘converging to a subspace’ following the oversmoothing analysis presented in
Oono & Suzuki (2020), where the subspace M (where oversmoothing is prevalent) is defined.
We will now show how the slope of the ReLU activation function affects oversmoothing, starting
with some important assumptions: (a) the non-exploding gradients assumption, and (b) ReLU’s
probability not to output zero. We use these assumptions to extract bounds on the weights of the net-
work and then use these bounds to determine the relationship between the largest singular value and
the elements of each weight matrix. Given that relationship, we connect our analysis with existing
literature regarding oversmoothing through Theorem 1.

Assumption 1 For each layer l there exists a number Gl which is the upper bound to the gradients
of the output of the subsequent layer (l+1) with respect to the weight elements of W (l), i.e.

dO(l+1)

dw
(l)
oldi,j

≤ Gl, ∀w(l)
oldi,j

(2)

where O(l+1) is the output of (l+1)-th layer.

This assumption needs to hold in all cases, in order to avoid the exploding gradient case, that would
not allow the learning process to converge.

Assumption 2 The probability, that the output of the ReLU function not equals zero at layer l is
independent of the outputs of the previous layers, in a feed-forward ReLU neural network, i.e.

P (ReLU(h(l)) ̸= 0⃗|∀h(j), j < l) ≤ p, p ∈ [0, 1) (3)

where h(l) is the node representation at layer l, ReLU is applied piece-wise on that representation
and 0⃗ is the all zero vector.

Following the results of Lu et al. (2019) we get that P (ReLU(h(l)) ̸= 0⃗|∀h(j), j < l) = 1/2
for feed-forward networks (FFs), on the condition that the output of the previous layers is positive.
That condition does not necessary hold in GNNs, due to the role of the adjacency matrix in the
aggregation scheme. In FFs, when the output of a layer is zero, so are the outputs of all subsequent
layers. In GNNs there might be cases, where the output of layer l (a node representation) is zero but
the aggregation using the adjacency matrix produces a non-zero representation in layer (l+1). Apart
from this difference, GNNs can be considered a special case of FFs, with the proper wiring due to
the adjacency matrix aggregation. Therefore, the above assumption holds also for GNNs.

Lemma 1 For a network of depth dep the total gradient reaching to the l-th layer
(

i.e., dJ

dw
(l)
oldi,j

)
in order to update W (l) is bounded by:

dJ

dw
(l)
oldi,j

≤ α(dep−l) ·Gl (4)

Where J is the model’s loss function (i.e. Cross Entropy), α stands for the ReLU slope and Gl is
the upper bound of gradients of the output of the subsequent layer (l+1) with respect to the weight
elements of W (l).

The proof of Lemma 1 is shown in Appendix A and is based on the chain rule for backpropagation.
Given the derivative of the ReLU function and the upper bound Gl of Assumption 1, we can derive
the bound of Equation 4. To compute the gradient with respect to weight element w(l)

i,j of layer l ,
we repeatedly differentiate nested ReLU functions, leading to a product of their slopes (or zero). In
the final differentiation step, we get the gradient of the output of (l+1)-th layer with respect to w

(l)
i,j ,

which is bounded by Gl.

4

Under review as a conference paper at ICLR 2023

Lemma 2 While model’s loss, through gradients, flows backwards some weight elements do not
receive updates, because we have dying ReLUs (i.e. ReLUs outputting zero) (Lu et al., 2019). The
total number of weight elements getting updated at layer l is bounded by:

#{w(l)
i,j} ≤ p(dep−l) · d2 (5)

where d is the largest of the two dimensions of W (l), i.e. there are at most d2 elements in W (l), if it
is a square matrix.

The proof of Lemma 2 appears in Appendix B. Given Lemma 1, the gradient flowing backwards,
with respect to a weight element w(l)

i,j contains a product of ReLU derivatives. In order for w(l)
i,j to

get an update, all ReLU derivatives need to be non-zero, otherwise the gradient will be zeroed and
no update will be applied to w

(l)
i,j . Additionally, due to Assumption 2 weight elements located in

the lower weight matrices tend to receive fewer updates. This is due to the fact, that the further the
gradient flows backwards the more ReLU derivative factors appear in it. Based on Assumption 2,
the probability of all of them to be non-zero decreases.
Regarding the singular values (denoted by sl(·)) of a weight matrix W (l) at the l-th layer, the largest

of them is given by: max(sl(W
(l))) = ||W (l)||2 ≤ ||W (l)||F =

√∑
|w(l)

i,j |2, where || · ||F
is the Frobenius norm and || · ||2 is the spectral norm. Using the general weight updating rule(

i.e., w(l)
newi,j = w

(l)
oldi,j

+ η · dJ

dw
(l)
oldi,j

)
, where J is the model’s loss and η is the learning rate, we

arrive at the main theorem of this work.

Theorem 2 The upper bound of the largest singular value of the weight matrix W (l) at layer l for a
GNN model, utilizing a ReLU activation function, depends on the slope of the function. That bound
is given per layer and shows the effect of each iteration of updates on the weight matrix. We denote
with Wold and Wnew the weight matrices before and after the update during an iteration of the
training process respectively.

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +
√
3 · p(

dep−l
2) · d · α(dep−l) ·Bl (6)

where Bl = η ·Gl, dep is the network’s depth, d is the largest dimension of the W (l) matrix, p is the
upper bound of the probability of ReLU not to output zero and α is ReLU’s slope.

The proof of Theorem 2 appears in Appendix C and uses the upper bound of the largest singular
value by the Frobenius norm, expanded according to the weight update rule. Separating weight
elements into two sets (updated and not updated) we identify the gradient values responsible for
the weight updates. These values are bounded (Lemma 1), as is the number of updated elements
(Lemma 2), leading to Equation 6. The resulting upper bound shows the connection of the slope of
ReLU and the upper bound of the probability of ReLU not to output zero with the largest singular
value of the weight matrix. That largest singular value is connected with the oversmoothing problem
and as we mentioned above could act as a resource to reduce it.

3.2 ALLEVIATING OVERSMOOTHING

We transfer the idea of SeLU to GNNs, focusing on the part that increases the variance, because
the repetition of the Laplacian operator acts as a variance reducer. In order to avoid oversmoothing
in deep GNNs using this approach, we need to identify a ‘sweet’ spot, where variance reduction
from graph convolution counteracted as needed by the slope of the activation function. Typically
in GNNs, ReLU is used with a slope value α = 1. As a result, the second exponential factor in
Equation 6 can be ignored (it is always equal to 1). This pushes the bound for the largest singular
value of weight matrices towards a fixed low value, when the architecture of the network gets deeper
(dep increases), and especially at the lower layers (small l) of the network. This is due to the first
exponential factor of (6) converging to zero for large values of dep.
The restriction of the largest singular values to low values, increases the speed of convergence to
the oversmoothng subspace, as stated in Corollary 1 from Oono & Suzuki (2020). According to the
corollary, the speed depends on λ and s. The former parameter (λ) is a property of the data (largest
eigenvalue of the adjacency matrix), while the latter (s) is the product of the largest singular values

5

Under review as a conference paper at ICLR 2023

of the weight matrices.
Realizing the importance of the slope of ReLU in the training process, we move on to propose a
modification of the activation function that reduces oversmoothing. Following (Lu et al., 2019), we
proceed our analysis with p = 1/2 (see Assumption 2), which simplifies calculations. In particular,
we observe that a slope of 2 makes the second exponential factor prevail over the first one, leading
to a new combined factor of 2(

dep−l
2). This in turn increases the upper bound for the largest singular

value, restricting the influence of the layer index (l) and depth (dep) in Equation 6. It is worth
noting, that the upper bound should not be constant across all layers (which could be achieved by
setting a corresponding value for the slope), because different layers of the network have different
roles and the goal of a GNN is to bring intra-class representations close, while keeping inter-class
representations apart.
Using the results of (Oono & Suzuki, 2020) we can further connect the choice of slope for the
activation function to the speed of convergence to the oversmoothing subspace. Hence, the proposed
method increases the bound for each largest singular value, which in turn decreases the speed of
convergence to the oversmoothing subspace, according to Corollary 1.

3.3 MODIFYING THE SLOPE OF RELU: LIMITATIONS

Oono & Suzuki (2020) have proved that any GNN deep enough will eventually reach the over-
smoothing subspace. In theory, this also holds for our method, when the GNN gets very deep.
Could this be avoided by increasing the slope of ReLU further? Unfortunately not, as we cannot
make the slope too large. It is known, that by increasing the slope of ReLU too much, one may face
the problem of exploding gradients (Bengio et al., 1994), that impedes the learning procedure. In
fact, if we increase the slope of ReLU too much, the upper bound in Equation 6 becomes too loose
and the performance degrades. Our proof suggests, that a slope equal to 2 avoids oversmoothing and
our experiments have shown that it also avoids the exploding gradients problem.

3.4 MODIFYING THE LEARNING RATE, INSTEAD OF THE SLOPE OF RELU

Instead of changing the slope of ReLU, we could opt to modify the Learning Rate (LR) per layer in
order to increase the upper bound in Equation 6. In particular, a different learning rate (η) per layer
leads to a different Bl (= η · Gl) per layer, counteracting the problematic first exponential factor of
Equation 6.
However, determining the right LR per layer is a non-trivial task. Intuitively, LR should be larger in
the lower layers and smaller in the upper ones. Keeping the slope equal to 1, the first problematic
exponential term is smaller (note p < 1) in the lower layers reducing the value of the upper bound.
To avoid this, one needs to tune LR carefully. Additionally, LR affects heavily the learning process
and large LR values might lead to oscillations and poor learning performance. Modifying the slope
and the learning rate combined led to negligible improvements. Preliminary results with modified
LR values are shown in Appendix D.

3.5 WHY DO WE NEED DEEP GNNS?

Oversmoothing is only a problem for deep GNNs, leading to the question of whether and when deep
GNNs are really needed. Most of the existing benchmark datasets for various graph analytics tasks
do not seem to justify the need for deep networks. Due to their homophilic nature, useful informa-
tion for each node resides in its close neighbors (usually 2 or 3 hops away). A task where deeper
architectures could be needed is the “cold start” problem; namely the situation where many node
features are missing. The problem of missing features is called “cold start”, because it resembles
the situation of a new product/user arriving to a recommender system. The system has no prior
knowledge about the new arrival, yet has to make some recommendations. In this scenario, the hope
is that deeper GNNs could recover features from more distant nodes, in order to create informative
representations.

6

Under review as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: Aligned to most of the literature, we use four well-known benchmark datasets: Cora,
CiteSeer, Pubmed and the less homophilic dataset Texas. The statistics of the datasets are reported
in the Appendix. For Cora, CiteSeer and Pubmed we use the same data splits as in Kipf & Welling
(2017), where all nodes except the ones used for training and validation are used for testing. For
Texas we use the same splits as in (Pei et al., 2020).
Models: We utilize two different GNN models as our base models for the proposed methodology;
namely GCN (Kipf & Welling, 2017) and GAT (Velickovic et al., 2018). We compare the results of
these models with and without the modification of the slope of ReLU for varying number of layers.
We do not compare against methods utilizing residual connections, because the aim of this work is
to show that oversmoothing could be avoided without “short-circuiting” initial information to latter
layers. We use residual GNNs as a baseline in the Extended Experiments section, Appendix F.
Hyperparameters: We set the number of hidden units (of each layer) of GCN and GAT to 128 for
both models across all datasets. The L2 regularization is set with penalty 5 · 10−4 for both models
and learning rate set to 10−3. We vary the depth between 2 and 64 layers. The number of attention
heads for GAT is set to 1.
Configuration: Each experiment is run 10 times and we report the average performance over these
runs. We train all models for 200 epochs using Cross Entropy as a loss function. For our experiments
we used an RTX 3080ti GPU.

4.2 EXPERIMENTAL RESULTS

Reducing oversmoothing:
Table 1 presents the classification performance of the two base models (GCN and GAT) on all four
datasets, with and without the modified slope of ReLU (called Slope2GNN) for varying number of
layers. Additionally, it presents results using SeLU, instead of ReLU, since it also modifies the slope
of the function, while additionally normalizing node representations, as explained in section 2.4. To
the best of our knowledge, this is the first time SeLU is used with GNNs.
Table 1 shows that methods with a modified activation function reduce oversmoothing significantly.
As expected, baselines maintain a high performance for shallow architectures in homophilic datasets,
where oversmoothing is not a problem. The modified activation functions (Slope2GNN and SeLU)
consistently improve the testing accuracy as the number of layers (#L) increases. Note that even
the proposed method suffers performance degradation for very deep GNNs, due to the unavoidable
nature of the oversmoothing (Oono & Suzuki, 2020). GCN and GAT average over information in
the close neighborhood of the node, assuming homophily, which is not the case in the Texas dataset.
Interestingly, low homophily in this dataset makes oversmoothing appear at a larger depth compared
to other datasets. This is because connected nodes do not have similar representations and the model
needs more Laplacian operations to oversmooth them.

The effect of deeper networks on different activation functions:
Focusing on the use of SeLU, although it seems to make the models resistant to oversmoothing,
the effect seems to be lost for GCNs with 64 layers. This may be due to the sensitivity of the
function on the choice of slope value, which is lower than 2. Moreover, the saturating region (part
of SeLU used to reduce variance of data, if needed) of SeLU might further reduce the variance of
node representations, acting in favor of oversmoothing. Finally, SNNs aim to keep the variance of
the model stable, ignoring the effect of the Laplacian smoothing in GNNs.
To further examine the behavior of each method, as the number of layers increases, in Figure 1, we
present a more detailed progression of the accuracy of GCNs, as the networks get deeper on the
Cora dataset. The effect of oversmoothing and its reduction by the two methods that modify ReLU
is very apparent here. Furthermore, the simpler Slope2GNN approach seems to be more resistant to
the increase in the depth of the network.

The need for deep networks:
Having shown the benefit of using the modified activation functions in deep GNNs, we move to a
set of experiments that aims to highlight also the value of using such deep architectures. In par-
ticular, we report our experimental results in the “cold start” scenario, as described in section 3.5.
The cold-start datasets that we use in these experiments are generated by removing feature vectors

7

Under review as a conference paper at ICLR 2023

Accuracy (%)

Layers Method Cora CiteSeer Pubmed Texas
GCN GAT GCN GAT GCN GAT GCN GAT

2
Original 81.38 77.79 70.52 69.04 77.65 77.33 59.01 59.54

Slope2GNN 81.84 77.81 70.55 68.24 78.34 77.02 57.93 56.67
SeLU 81.74 76.59 69.91 66.81 77.80 76.83 59.01 57.21

4
Original 78.09 78.06 65.21 63.98 76.75 76.34 59.55 58.28

Slope2GNN 80.39 79.54 67.57 67.27 76.46 75.59 57.66 57.39
SeLU 79.85 79.33 67.53 67.24 74.09 72.62 58.02 58.65

8
Original 23.56 33.11 32.54 31.33 49.08 55.86 57.48 57.65

Slope2GNN 76.54 78.33 65.80 65.55 75.00 74.20 57.18 56.85
SeLU 79.41 78.19 67.27 67.58 73.43 71.93 56.85 57.47

16
Original 14.92 15.53 17.73 17.80 28.95 29.88 39.91 41.71

Slope2GNN 76.81 75.00 57.10 56.13 76.35 73.81 57.21 57.53
SeLU 76.38 74.92 61.99 62.23 76.11 74.27 52.88 57.44

32
Original 14.02 14.67 16.69 18.67 38.49 29.34 25.50 18.64

Slope2GNN 73.21 69.62 47.20 49.16 75.78 74.63 55.79 54.14
SeLU 68.77 69.36 47.90 52.97 71.80 73.60 55.77 57.75

64
Original 12.48 15.18 17.65 13.35 31.73 28.62 27.39 06.76

Slope2GNN 61.59 24.17 46.46 26.24 71.68 38.01 46.31 41.44
SeLU 26.85 30.55 27.10 20.42 40.90 41.00 58.38 56.30

Table 1: Performance comparison of vanilla GCN and GAT against SeLU and Slope2GNN enhanced
versions of the same models, in Cora, CiteSeer, Pubmed, Texas. Average test node classification
accuracy (%) for networks of different depth. With bold is the best performing model for each
depth and each dataset.

Figure 1: Comparison between three different activation functions for a GCN on Cora dataset. Y-
axis shows model accuracy on test nodes, while varying the model’s depth (shown in x-axis).

from unlabeled nodes and replacing them with all-zero vectors. For each combination of GNN and
activation function, we present in Table 2 the best performance achieved and the depth at which the
model attains that performance. The main observation in these results is the improvement in terms
of accuracy with the use of deeper GNNs. This improvement is only attainable with the modified
activation functions that reduce the effect of oversmoothing. The vanilla versions of GCN and GAT
cannot go further than the performance of their shallow versions. Worth-mentioning is also the fact
that the simple Slope2GNN approach manages to benefit from the deeper architectures even in the
hard Texas dataset. This is not the case for SeLU, which may require tuning of the slope of the
activation function, as discussed above.

5 RELATED WORK

Li et al. (2018) were the first to introduce the problem of oversmoothing in GNNs. An initial ap-
proach of activation function alternatives to avoid reduction of the rank of the feature space is the

8

Under review as a conference paper at ICLR 2023

Model GCN GAT
Dataset Method Accuracy (%) #L Accuracy (%) #L

Cora
Original 64.85 4 59.74 3

Slope2GNN 73.47 19 72.78 20
SeLU 73.00 22 72.65 23

CiteSeer
Original 41.94 4 38.50 4

Slope2GNN 49.88 21 49.63 26
SeLU 49.30 19 49.38 20

Pubmed
Original 60.16 4 50.45 4

Slope2GNN 72.61 32 71.14 32
SeLU 72.50 23 71.41 26

Texas
Original 32.40 4 30.10 2

Slope2GNN 33.33 6 31.00 4
SeLU 31.62 3 30.81 2

Table 2: Comparison of different models and activation functions on the “cold start” problem. We
show accuracy percentage (%) for the test set using GCN and GAT as backbone GNN models. Only
the features of the nodes in the training set are available to the model. We also show at what depth
(i.e. # Layers) each model achieves its best accuracy.

one provided by Luan et al. (2019), where tanh is used instead of ReLU. Subsequent work, (Oono
& Suzuki, 2020; Cai & Wang, 2020) further analyzed and theoretically proved the existence of the
problem and showed that it is unavoidable as the depth increases. Xu et al. (2018) proposed Jumping
Knowledge Networks (JK-Networks) as the first attempt to address the problem, by injecting skip
connections to the GNNs. The model kept information from lower layers and combined them di-
rectly with the final layer, before labeling the node. Following a similar approach, Chen et al. (2020)
proposed the use of residual connections between layers to enable deep architectures and alleviate
the problem. Both of these approaches explicitly inject part of the initial information into higher
layers of the network, implicitly downgrading the importance of intermediate layers. On the other
hand, our method enables deep architectures without the need to inject initial information and allows
the model to learn how to compress the initial information and what amount of it to maintain. We
do not compare against these methods, because the aim of this work is to show that oversmoothing
could be avoided without “short-circuiting” initial information to latter layers.
DropEdge (Rong et al., 2020) and DropNode (Do et al., 2021) are two alternative methods that
address oversmoothing by altering the graph topology. In particular, they remove either edges or
nodes at random, in order to slow down the message passing speed. In contrast to such approaches,
our method does not change the graph topology, which may have unpredictable effects, but rather
relies on a small adjustment of the slope of the activation function. An additional advantage of the
approach proposed in this paper is that it does not have any hyper-parameters to be tuned, in contrast
to all of the alternatives mentioned above. Hyperparameter tuning is also required by the Pairnorm
method, which was mentioned in section 2.4.

6 CONCLUSION

In this paper we have shown the important role that the slope of the ReLU activation function plays in
the oversmoothing problem in GNNs. We have further proposed a simple modification that reduces
drastically the problem. We have illustrated the benefits of the approach in a set of experiments
with different datasets and GNNs of different depth. Additionally, we showed the improvement in
accuracy one can achieve through deep architectures that do not suffer from oversmoothing. This
was evident in a set of experiments that simulated the “cold start” problem of missing node features
in GNNs.
The simple link between the activation function and oversmoothing unveiled in this paper, opens
up a range of interesting hypotheses to be investigated in the future. In particular, we would like
to study the effect of changing the activation function in various GNN architectures and learning
methods. Additionally, we would like to study alternative activation functions that could provide
further benefits. Finally, we aim to study in more detail the approach of varying LR per layer.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166, 1994. doi: 10.1109/
72.279181. URL https://doi.org/10.1109/72.279181.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. CoRR,
abs/2006.13318, 2020. URL https://arxiv.org/abs/2006.13318.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 2020. URL http://proceedings.mlr.press/v119/
chen20v.html.

Tien Huu Do, Duc Minh Nguyen, Giannis Bekoulis, Adrian Munteanu, and Nikos Deligiannis.
Graph convolutional neural networks with node transition probability-based message passing
and dropnode regularization. Expert Syst. Appl., 174:114711, 2021. doi: 10.1016/j.eswa.2021.
114711. URL https://doi.org/10.1016/j.eswa.2021.114711.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. CoRR, abs/1706.02515, 2017. URL http://arxiv.org/abs/1706.
02515.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Personalized embed-
ding propagation: Combining neural networks on graphs with personalized pagerank. CoRR,
abs/1810.05997, 2018. URL http://arxiv.org/abs/1810.05997.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
ular graphs. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=B1eWbxStPH.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 3538–3545. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16098.

10

http://arxiv.org/abs/1607.06450
https://doi.org/10.1109/72.279181
https://arxiv.org/abs/2006.13318
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html
https://doi.org/10.1016/j.eswa.2021.114711
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
http://proceedings.mlr.press/v37/ioffe15.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1810.05997
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098

Under review as a conference paper at ICLR 2023

David Liben-Nowell and Jon M. Kleinberg. The link prediction problem for social networks. In
Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge
Management, New Orleans, Louisiana, USA, November 2-8, 2003, pp. 556–559. ACM, 2003.
doi: 10.1145/956863.956972. URL https://doi.org/10.1145/956863.956972.

Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and initialization: Theory
and numerical examples. CoRR, abs/1903.06733, 2019. URL http://arxiv.org/abs/
1903.06733.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger
multi-scale deep graph convolutional networks. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 10943–10953, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/ccdf3864e2fa9089f9eca4fc7a48ea0a-Abstract.html.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1ldO2EFPr.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=S1e2agrFvS.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=Hkx1qkrKPr.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Ma-
chine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/
vandermaaten08a.html.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 6861–6871. PMLR, 2019. URL http://proceedings.mlr.press/v97/
wu19e.html.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Ste-
fanie Jegelka. Representation learning on graphs with jumping knowledge networks. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 5449–5458. PMLR, 2018. URL
http://proceedings.mlr.press/v80/xu18c.html.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
5171–5181, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
53f0d7c537d99b3824f0f99d62ea2428-Abstract.html.

11

https://doi.org/10.1145/956863.956972
http://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1903.06733
https://proceedings.neurips.cc/paper/2019/hash/ccdf3864e2fa9089f9eca4fc7a48ea0a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ccdf3864e2fa9089f9eca4fc7a48ea0a-Abstract.html
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=Hkx1qkrKPr
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v97/wu19e.html
http://proceedings.mlr.press/v97/wu19e.html
http://proceedings.mlr.press/v80/xu18c.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html

Under review as a conference paper at ICLR 2023

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018, pp. 4438–4445. AAAI Press, 2018. URL https://www.aaai.org/ocs/
index.php/AAAI/AAAI18/paper/view/17146.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=rkecl1rtwB.

APPENDIX

A: LEMMA 1 PROOF

Lemma 1 For a network of depth dep the total gradient reaching to the l-th layer
(

i.e., dJ

dw
(l)
oldi,j

)
in

order to update W (l) is bounded by:

dJ

dw
(l)
oldi,j

≤ α(dep−l) ·Gl

Where J is the model’s loss function (i.e. Cross Entropy), α stands for the ReLU slope and Gl is
the upper bound of gradients of the output of the subsequent layer (l+1) with respect to the weight
elements of W (l).

Proof: Firstly, let us define the gradient of the output of a ReLU function with respect to the input
as follows:

d(ReLU(x))

dx
=

{
α, x > 0
0, x ≤ 0

Let us consider now a function of nested ReLUs, like the neural networks under investigation, i.e.
f(x) = g(σ(g(σ(..g(σ(g(x)))..)))), where σ(·) is the ReLU function applied repeatedly n times,
and g(·) is a function that multiplies its input with a value. Then the gradient of f(·) with respect to
x (x is a vector) is given as:

d(f(x))

dx
=

{
αn · d(g(x))

dx , g(x) > 0, g(σ(·)) > 0
0, otherwise

(7)

This formula indicates the relation between slope, layer index, depth and largest singular value (we
only care about the largest). Let as use the notion of J for the loss function of the network (i.e. Cross
Entropy). The relation comes from the following formulas (for each weight element in the weight
matrix):

w(l)
newi,j

= w
(l)
oldi,j

+ η · dJ

dw
(l)
oldi,j

dJ

dw
(l)
oldi,j

= α(depth−l) · dO
(l+1)

w
(l)
oldi,j

or 0

Where the 0 value comes from Equation 7. GNNs’ forward pass is similar to f(·), hence performing
the backpropagation leads to gradient calculation of the form of Equation 7. So the update rule
adds (or subtracts) to each weight a big number (contains exponential factor). We prove, that

dJ
dwoldi,j

tends to be closer to zero as the layer index gets smaller, because when the gradient travels
backwards the more distant it travels the more probable it is to die. There exist many components
(gradients of ReLU functions) in the total gradient so it is probable one of them to be zero and the

12

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://openreview.net/forum?id=rkecl1rtwB

Under review as a conference paper at ICLR 2023

total gradient to be zero.
Given Assumption 1, we get an upper bound regarding the gradient of the output of the subsequent

layer with respect to each weight element of W (l)

(
i.e., dO(l+1)

w
(l)
oldi,j

≤ Gl

)
.

So we will have that:

η · dJ

dwoldi,j

≤ η · α(depth−l) ·Gl ≤ α(depth−l) ·Bl (8)

where Bl is an upper bound on the product of the learning rate η with Gl, i.e. Bl = η ·Gl.

B: LEMMA 2 PROOF

Lemma 2 While model’s loss, through gradients, flows backwards some weight elements do not
receive updates, because we have dying ReLUs (i.e. ReLUs outputting zero) (Lu et al., 2019). The
total number of weight elements getting updated at layer l is bounded by:

#{w(l)
i,j} ≤ p(dep−l) · d2

where d is the largest of the two dimensions of W (l), i.e. there are at most d2 elements in W (l), if it
is a square matrix.

Proof: Let us assume that the number of weights that get updated is reduced as the gradient flows
backward. This is due to the fact that, the further the gradient ‘travels’ the more gradients of ReLUs
will exist within it. Hence the greater is the probability at least one of them to be zero. In fact, we
define the probability of a weight element to get updated and the number of weight elements to be
updated in layer l as:

P{w(l)
i,j = updated} = p(depth−l)

#{w(l)
i,j} = p(depth−l) · (i · j) ≤ p(depth−l) · d2 (9)

Where i , j are the dimensions of the weight matrix and d is the largest of them.
The probability for a weight element to get updated has the aforementioned form, because we have
used the Assumption 2 regarding the probability of a ReLU unit not to output zero, which is at most
p. Thus, the probability of getting updated is the probability of the gradient flowing backwards to
reach the weight element, which in turn means not to have any ReLU component equal to zero.
The total number of elements that get updated is upper bounded (using union bound) on the sum of
the probabilities of all elements of the weight matrix. In fact, every weight matrix has i · j elements
where i, j are the matrix dimensions and d = max(i, j).

C: THEOREM 2 PROOF

Theorem 2 The upper bound of the largest singular value of the weight matrix W (l) at layer l for a
GNN model, utilizing a ReLU activation function, depends on the slope of the function. That bound
is given per layer and shows the effect of each iteration of updates on the weight matrix. We denote
with Wold and Wnew the weight matrices before and after the update during an iteration of the
training process respectively.

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +
√
3 · p(

dep−l
2) · d · α(dep−l) ·Bl

where Bl = η ·Gl, dep is network’s depth, d is the largest dimension of W (l) matrix, p is the upper
bound of the probability of ReLU not to output zero and α is ReLU’s slope.

Proof: Regarding the singular values of a matrix (denoted by sl), it is known that:

max(sl(W
(l))) = ||W (l)||2 ≤ ||W (l)||F =

√∑
|w(l)

i,j |2

13

Under review as a conference paper at ICLR 2023

the matrix here being W (l), the weight matrix at layer l . Based on Lemma 1, a new weight, during
the weight update process will be given by: wnew ∼ α(depth−l) · Bl. Since only #{w(l)

i,j} weight
elements are getting updated per layer (Lemma 2), in each iteration the Frobenius norm increases by
a value, that depends on layer index, depth and slope. Specifically, if we define α(depth−l) ·Bl = Kl,
in order to simplify the formulas, we have:

max(sl(W
(l)
new)) ≤ ||W (l)

new||F =
√∑

|w(l)
newi,j |2 −→

max(sl(W
(l)
new)) ≤

√ ∑
updated

|w(l)
newi,j |2 +

∑
not updated

|w(l)
newi,j |2

8−→

max(sl(W
(l)
new)) ≤

√ ∑
updated

|w(l)
oldi,j

+Kl|2 +
∑

not updated

|w(l)
oldi,j

|2 −→

max(sl(W
(l)
new)) ≤

√ ∑
updated

(
|w(l)

oldi,j
|2 + |Kl|2 + 2w

(l)
oldi,j

Kl

)
+

∑
not updated

|w(l)
oldi,j

|2

Using the fact that w
(l)
oldi,j

<= Kl, because Kl contains an exponential term and weights are
initialized to values close to zero we get:

max(sl(W
(l)
new)) ≤

√ ∑
updated

(
|w(l)

oldi,j
|2 + 3|Kl|2

)
+

∑
not updated

|w(l)
oldi,j

|2
√
A+B≤

√
A+

√
B−−−−−−−−−−−→

max(sl(W
(l)
new)) ≤

√ ∑
updated

|w(l)
oldi,j

|2 +
∑

not updated

|w(l)
oldi,j

|2 +
√ ∑

updated

3|Kl|2
Lemma2(9)−−−−−−−→

In the second square root we sum over the updated weight elements and Kl is independent of them.
Hence, we get:

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +

√
3|Kl|2 ·#{w(l)

i,j}

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +
√
3 · |Kl| · p(

depth−l
2) · d

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +
√
3 · p(

depth−l
2) · d · α(depth−l) ·Bl

So the slope of the function determines the upper bound of the Frobenius norm while train-
ing. In turn this norm is directly connected as an upper bound to the largest singular value of
the matrix. In the aforementioned proof we have used previously defined Lemmas and Assumptions.

D: MODIFYING LEARNING RATE: LR2GNN

As discussed in section 3.4, an alternative to changing the slope of ReLU is to modify the learning
rate. In order to test this hypothesis and compare the results to the modified activation function,
we performed some preliminary experiments with GCN. In these experiments, we determined a
different learning rate per layer, using the validation part of each dataset and the chosen values

14

Under review as a conference paper at ICLR 2023

are shown in Table 3. We did this only for the first 8 layers, as the process of tuning the rate
proved very cumbersome and time-consuming. The main observation seems to be the improved
performance over the vanilla GCN for the three simpler datasets, coupled with a low accuracy for
the Texas dataset. The comparison against the modified activation function seems inconclusive, but
the latter approach wins due to its simplicity. If one opted for the modified learning rate, a method
to automatically adapt the rate in different layers would be needed. Deeper architectures extend
the complexity and the pool, from which we would have to find the proper values of learning rates.
Worth to mention, combining different values of LR per layer with Slope2GNN results in negligible
improvements.

Layer index 0 1 2 3 4 5 6 7
Learning Rate 3 · 10−3 10−4 10−5 5 · 10−5 10−5 10−4 10−4 10−4

Cora Accuracy: 76.43 CiteSeer Accuracy: 64.96 Pubmed Accuracy: 78.82
Texas Accuracy: 16.32

Table 3: Preliminary results of modifying the learning rate of GCN on Cora, CiteSeer, Pubmed
and Texas datasets. The graph displays test accuracy of an 8-layer GCN, using the aforementioned
learning rates.

E: DATASETS STATISTICS

Datasets # Nodes # Edges # Classes # Features
Cora 2708 5429 7 1433

CiteSeer 3327 4732 6 3703
Pubmed 19717 44338 3 500
Texas 183 309 5 1703

Table 4: The statistics of all datasets used in this work.

15

Under review as a conference paper at ICLR 2023

F: EXTENDED EXPERIMENTS

Extended experimentation, regular datasets:
Table 5 is an expanded version of Table 1, showing average test node classification accuracy along
with the respective standard deviations. We have also included GCNII (Chen et al., 2020), which
is one of the best performing GNNs utilizing residual connections. GCNII reduces oversmoothing
through ‘short circuiting’ initial information to subsequent layers of the model. The aim of the
comparison against GCNII is to show that by changing the slope of ReLU simple models are capable
of producing comparable (up to a limit) results to more sophisticated architectures, that use residual
connections.

Accuracy (%) and standard deviation

Dataset Method # Layers
2 4 8 16 32 64

Cora

GCN 81.38±0.5 78.09±1.8 23.56±9.2 14.92±6.4 14.02±3.5 12.48±2.9

GCN(Slope2GNN) 81.84±0.3 80.39±0.9 76.54±1.5 76.81±2.2 73.21±1.7 61.59±4.7

GCN(SELU) 81.74±0.4 79.85±0.7 79.41±0.5 76.38±1.1 68.77±5.7 26.85±4.0

GAT 77.79±1.5 78.06±1.6 33.11±9.2 15.53±9.0 14.67±4.5 15.18±5.5

GAT(Slope2GNN) 77.81±2.2 79.54±1.2 78.33±2.5 75.00±1.9 69.62±2.4 24.17±9.5

GAT(SELU) 76.59±2.2 79.33±1.1 78.19±1.1 74.92±1.6 69.36±4.3 30.55±4.9

GCNII 82.32±0.6 82.89±0.6 83.99±0.5 84.77±0.7 84.96±0.7 85.39±0.6

CiteSeer

GCN 70.52±0.6 65.21±1.0 32.54±9.3 17.73±4.9 16.69±4.8 17.65±4.2

GCN(Slope2GNN) 70.55±0.4 67.57±0.7 65.80±1.2 57.10±4.3 47.20±3.8 46.46±4.2

GCN(SELU) 69.91±0.4 67.53±0.6 67.27±0.9 61.99±1.9 47.90±9.2 27.10±7.6

GAT 69.04±1.4 63.98±2.8 31.33±7.0 17.80±1.9 18.67±2.8 13.35±4.3

GAT(Slope2GNN) 68.24±1.2 67.27±1.0 65.55±2.0 56.13±2.5 49.16±4.5 26.24±3.5

GAT(SELU) 66.81±1.5 67.24±1.1 67.58±1.1 62.23±3.8 52.97±6.4 20.42±2.8

GCNII 68.05±0.7 67.75±1.3 70.90±0.5 72.69±0.4 72.68±0.4 72.77±0.9

Pubmed

GCN 77.65±0.3 76.75±0.7 49.08±9.7 28.95±9.9 38.49±9.8 31.73±9.9

GCN(Slope2GNN) 78.34±0.1 76.46±1.0 75.00±1.4 76.35±1.7 75.78±2.1 71.68±1.7

GCN(SELU) 77.80±0.2 74.09±1.3 73.43±1.1 76.11±2.1 71.80±4.3 40.90±0.9

GAT 77.33±0.7 76.34±1.3 55.86±7.5 29.88±9.9 29.34±9.9 28.62±9.9

GAT(Slope2GNN) 77.02±0.7 75.59±1.1 74.20±1.7 73.81±2.4 74.63±1.1 38.01±5.7

GAT(SELU) 76.83±1.0 72.62±1.2 71.93±1.8 74.27±2.7 73.60±2.2 41.00±0.3

GCNII 78.57±0.6 79.09±0.4 79.85±0.5 79.70±0.3 79.77±0.2 79.65±0.3

Texas

GCN 59.01±2.7 59.55±7.7 57.48±6.5 39.91±0.7 25.50±0.6 27.39±0.9

GCN(Slope2GNN) 57.93±4.2 57.66±5.0 57.18±6.2 57.21±6.4 55.79±6.5 46.31±4.1

GCN(SELU) 59.01±2.7 58.02±5.0 56.85±6.2 52.88±6.6 55.77±6.2 58.38±6.8

GAT 59.54±4.2 58.28±6.5 57.65±6.7 41.71±4.0 18.64±2.9 06.76±1.9

GAT(Slope2GNN) 56.67±4.3 57.39±5.2 56.85±6.0 57.53±6.1 54.14±6.5 41.44±2.3

GAT(SELU) 57.21±5.0 58.65±5.8 57.47±4.5 57.44±6.9 57.75±6.4 56.30±5.1

GCNII 69.37±2.9 70.72±4.3 72.07±2.5 70.00±2.2 71.26±1.6 71.35±1.1

Table 5: Performance comparison of vanilla GCN and GAT against SeLU and Slope2GNN enhanced
versions of the same models, in Cora, CiteSeer, Pubmed, Texas. We include GCNII (Chen et al.,
2020) in the comparison. Average test node classification accuracy (%) and standard deviation for
networks of different depth. With bold the best performing method for each model (i.e., GCN, GAT
and GCNII), depth and dataset.

16

Under review as a conference paper at ICLR 2023

Extended “Cold start”:
Table 6 is an expanded version of Table 2 including GCNII’s performance and the standard devi-
ations for all models. The “cold start” problem requires deeper models, because nodes containing
informative feature vectors are located further from each test node. Thus, architectures that utilize
deep GNNs could effectively address the problem, if they avoid oversmoothing. Once again our
method effectively enables deep architectures using simple models (i.e., GCN, GAT).

Dataset Method Accuracy (%) & std #L

Cora

GCN 64.85±1.2 4
GCN(Slope2GNN) 73.47±0.9 19
GCN(SeLU) 73.00±1.5 22
GAT 59.74±1.2 3
GAT(Slope2GNN) 72.78±1.4 20
GAT(SeLU) 72.65±1.6 23
GCNII 73.40±1.0 5

CiteSeer

GCN 41.94±0.3 4
GCN(Slope2GNN) 49.88±1.1 21
GCN(SeLU) 49.30±1.2 19
GAT 38.50±4.7 4
GAT(Slope2GNN) 49.63±0.9 26
GAT(SeLU) 49.38±1.3 20
GCNII 59.84±3.0 31

Pubmed

GCN 60.16±5.4 4
GCN(Slope2GNN) 72.61±0.8 32
GCN(SeLU) 72.50±0.8 23
GAT 50.45±8.9 4
GAT(Slope2GNN) 71.14±1.5 32
GAT(SeLU) 71.41±1.7 26
GCNII 78.25±0.6 7

Texas

GCN 32.40±6.8 4
GCN(Slope2GNN) 33.33±6.9 6
GCN(SeLU) 31.62±5.9 3
GAT 30.10±8.5 2
GAT(Slope2GNN) 31.00±5.9 4
GAT(SeLU) 30.81±5.8 2
GCNII 57.66±0.0 1

Table 6: Comparison of different models and activation functions on the “cold start” problem. We
show accuracy percentage (%) and standard deviation on the test set using GCN and GAT as back-
bone GNN models and GCNII as a representative of residual GNNs. Only the features of the nodes
in the training set are available to the model. We also show at what depth (i.e. # Layers) each model
achieves its best accuracy.

Slope sensitivity results:
The choice of slope (i.e., α = 2) that we proposed is based on Equation 6. We have verified
experimentally that this slope value helps to reduce the effect of oversmoothing. However, this is
not the only slope value that could be used. Therefore, we experimented with other slope values and
present the results in Figure 2. Based on the Figure, it is evident that any value between 1.8 and 2.2
reduces oversmoothing, making the exact choice of value less important.

17

Under review as a conference paper at ICLR 2023

Figure 2: Comparison of test performance accuracy (%) of GCN and GAT with varying slope values
in Cora, CiteSeer and Pubmed. We show the accuracy of the models in y-axis, while increasing
their depth.

18

Under review as a conference paper at ICLR 2023

Visualising the effect of oversmoothing:
In order to understand the effect of oversmoothing in GNNs and show how our method alleviates it,
we visualise node representations using t-SNE (van der Maaten & Hinton, 2008) for varying depth
models. Figures 3, 4 and 5 visualise the representations for different depth levels and different ReLU
slope values. Ideally, we would like nodes of the same color (same class) to be close together and
well-separated from other classes. In all three datasets, we observe how oversmoothing (at slope =
1) leads to a mixing of the classes. We also see how the situation changes for slope = 2. In those
graphs, node representations do not rapidly mix as the depth of the network increases.

19

Under review as a conference paper at ICLR 2023

Figure 3: t-SNE of node representations of GCN and GAT on Cora, while increasing model’s depth.
Upper (lower) 4 figures show the results without (with) our method.

20

Under review as a conference paper at ICLR 2023

Figure 4: t-SNE of node representations of GCN and GAT on CiteSeer, while increasing model’s
depth. Upper (lower) 4 figures show the results without (with) our method.

21

Under review as a conference paper at ICLR 2023

Figure 5: t-SNE of node representations of GCN and GAT on Pubmed, while increasing model’s
depth. Upper (lower) 4 figures show the results without (with) our method.

22

	Introduction
	Notations and Preliminaries
	Notations
	Understanding Oversmoothing
	Deep GNN limitations
	Normalization in deep neural networks

	Understanding and dealing with oversmoothing
	Theoretical Analysis
	Alleviating Oversmoothing
	Modifying the slope of ReLU: Limitations
	Modifying the learning rate, instead of the slope of ReLU
	Why do we need deep GNNs?

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

