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Abstract

Despite achieving impressive performance, current methods
for detecting gaze targets, which depend on visual saliency
and spatial scene geometry, continue to face challenges when
it comes to detecting gaze targets within intricate image back-
grounds. One of the primary reasons for this lies in the over-
sight of the intricate connection between human attention and
activity cues. In this study, we introduce an innovative ap-
proach that amalgamates the visual saliency detection with
the body-part & object interaction both guided by the soft
gaze attention. This fusion enables precise and dependable
detection of gaze targets amidst intricate image backgrounds.
Our approach attains state-of-the-art performance on both the
Gazefollow benchmark and the GazeVideoAttn benchmark.
In comparison to recent methods that rely on intricate 3D
reconstruction of a single input image, our approach, which
solely leverages 2D image information, still exhibits a sub-
stantial lead across all evaluation metrics, positioning it closer
to human-level performance. These outcomes underscore the
potent effectiveness of our proposed method in the gaze target
detection task.

Introduction
Eye gaze assumes a pivotal role in elucidating human activ-
ities. Although traditional studies (Lu et al. 2014a,b; Cheng
et al. 2020; Zhang et al. 2015, 2017) have predominantly
centered around estimating the gaze direction, discerning
the precise location that a person fixates upon—termed as
the gaze target—offers a more intuitive avenue for delving
into profound human attention. Consequently, the detection
of human gaze targets in real-world contexts has emerged as
a formidable endeavor within the realm of computer vision.
Furthermore, this approach has discovered extensive appli-
cations across diverse domains such as human-computer in-
teraction (Fathi, Li, and Rehg 2012; Schauerte and Stiefel-
hagen 2014), analysis of social awareness (Marin-Jimenez
et al. 2019, 2014; Fan et al. 2018), and medical research.

Traditionally, the task of gaze target detection has pre-
dominantly revolved around visual saliency detection along
the gaze direction (Recasens et al. 2015; Lian, Yu, and Gao
2018; Chong et al. 2020). Furthermore, recent advance-
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Figure 1: Comparison between existing methods and ours.

ments (Fang et al. 2021; Bao, Liu, and Yu 2022) have in-
tegrated monocular depth estimation as an auxiliary infor-
mation source to enhance the computation of the scene’s
three-dimensional geometry. Despite achieving noteworthy
performance gains, prevailing methods continue to grapple
with the precise and dependable detection of gaze targets
amidst intricate image backgrounds. This challenge can be
attributed to the lack of consideration given to the intricate
connection between human attention and activity cues.

The gaze target detection task serves as a means to elu-
cidate the connection between human attention and activity
cues. Specifically, by observing an individual’s gaze atten-
tion, we can glean insights into their activities. Moreover,
comprehending an individual’s activity cues helps us to an-
ticipate their gaze target. Based on above analysis, as Illus-
trated in Fig. 1, we consider merging human attention and
activity cues in the gaze target detection task. In this study,
we introduce an innovative approach that amalgamates the
visual saliency detection with the body-part & object inter-
action both guided by the soft gaze attention. This fusion
enables precise and dependable detection of gaze targets
amidst intricate image backgrounds.

Based on our observations, when individuals are en-
grossed in specific activities, their gaze attention tends to be
fixated on objects they are actively interacting with (see Fig.
2 (a, b, c)). However, scenarios exist where the gaze target
might involve non-interactive objects (see Fig. 2 (d)) or be
directed towards the conduct of another individual. Thus, it
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Figure 2: Visualizing the intricate connection between hu-
man attention and activity cues. The gaze target of an indi-
vidual can either be directed at an object that interacts with
specific body parts (see images (a, b, c)), or it might involve
a non-interactive object (see image (d)). Moreover, objects
that interact with the entire body might not necessarily align
with their gaze attention (see image (e)).

becomes imperative to establish a mechanism that unearths
the intricate connection between human gaze attention and
activity cues. Recognizing that a significant portion of inter-
active objects might not align with the individual’s gaze at-
tention (e.g., Fig. 2 (e)), we introduce a pioneering body-part
& object interaction attention mechanism specially designed
for gaze target detection. Our approach centers on identify-
ing interactions between five specific body parts—namely,
the head, hands and feet—and each object within the scene.
This process is guided by the individual’s gaze attention and
aims to effectively discern the potential gaze target among
all interactive objects.

Moreover, a significant portion of samples present chal-
lenges of low facial visibility in the wild due to factors like
blurriness, orientation, or obstructions, among others. Gaze
estimation methods (Cheng et al. 2020; Zhang et al. 2015)
that solely rely on facial characteristics are susceptible to
failure under such circumstances. To address this limita-
tion, we introduce a resilient soft gaze attention mechanism.
This technique extracts gaze-consistent features from both
the human face and five specific head keypoints—namely,
the nose, eyes, and ears. The resultant gaze attention is har-
nessed to assess the probability of a salient region or an in-
teraction hotspot housing potential gaze targets.

We stand as pioneers in merging human attention and ac-
tivity cues into the gaze target detection task. In this study,
we introduce an innovative approach that amalgamates the
visual saliency detection with the body-part & object inter-
action both guided by the soft gaze attention. This fusion
enables precise and dependable detection of gaze targets
amidst intricate image backgrounds. Notably, our approach
attains state-of-the-art performance on both the Gazefollow
benchmark (Recasens et al. 2015) and the GazeVideoAttn
benchmark (Chong et al. 2020). In comparison to recent
methods that rely on intricate 3D reconstruction of a single
input image, our approach, which solely leverages 2D image

information, still exhibits a substantial lead across all eval-
uation metrics, positioning it closer to human-level perfor-
mance. These outcomes underscore the potent effectiveness
of our proposed method in gaze target detection.

This paper makes the following primary contributions:

• We propose a novel approach which utilizes gaze and ac-
tivity cues to solve the gaze target detection task. Our
strategy to integrate gaze direction and human-object in-
teraction reflects the natural idea of combining human
attention and activity.

• We design a robust gaze attention mechanism which ex-
tracts the gaze features from both the human face and
specific head keypoints.

• We introduce a specialized body-part & object interac-
tion module which is able to uncover the connection be-
tween human attention and activity cues.

Related Work
Gaze Target Detection The gaze target detection task of-
fers a more intuitive approach to delve into profound hu-
man attention. Recasens (Recasens et al. 2015) pioneered
the exploration of this general problem and presented the ex-
pansive GazeFollow image dataset, featuring annotations of
head positions and corresponding gaze targets. Lian (Lian,
Yu, and Gao 2018) harnessed multi-scale FOV attention to
enhance view supervision. Chong (Chong et al. 2020) ex-
tended the task to out-of-frame scenarios through a video
dataset. Fang (Fang et al. 2021) introduced monocular depth
estimation as additional prior information. Bao (Bao, Liu,
and Yu 2022) utilized intricate analytical calculations for
3D geometry. Despite these achievements in performance,
prevailing methods still encounter challenges in accurately
detecting gaze targets amid complex image backgrounds.

Gaze Estimation The problem of appearance-based gaze
estimation has long been a focal point in computer vision
(Lu et al. 2014a,b; Cheng et al. 2020; Fischer, Chang, and
Demiris 2018; Zhang et al. 2015, 2017). Nevertheless, the
majority of available gaze estimation datasets (Kellnhofer
et al. 2019; Sugano, Matsushita, and Sato 2014; Zhang et al.
2020) are obtained within controlled laboratory environ-
ments, encompassing meticulous configurations of multi-
view cameras, 3D positions of human subjects, and des-
ignated gaze targets. Consequently, these datasets consist
solely of single face images from a limited range of scenes.

Human-Object Interaction The task of recognizing
human-object interactions (Yao and Fei-Fei 2010, 2012;
Gupta and Malik 2015; Gkioxari et al. 2018; Gao, Zou, and
Huang 2018; Chao et al. 2018; Qi et al. 2018) can be repre-
sented as detecting hhuman, verb, objecti triplets. Gupta and
Malik (Gupta and Malik 2015) first tackle the HOI detec-
tion problem — detecting people doing actions and the ob-
ject instances they are interacting with. Gkioxari (Gkioxari
et al. 2018) introduces an action-specific density map over
target object locations based on the appearance of a detected
person. In addition to using object instance appearances,
Chao (Chao et al. 2018) also encode the relative spatial rela-
tionship between a person and the object with a CNN.
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Figure 3: Overview. Our gaze target detection approach consists of three main modules: Soft Gaze Attention, Body-part &
Object Interaction Attention, and Target Detection Backbone. The target detection backbone comprises two branches: the
saliency branch and the interaction branch. Finally, we combine the target heatmaps generated by these two branches, utilize
a CNN network to predict the ultimate gaze target heatmap, and employ an MLP to determine if the gaze target falls out of
the frame. SGA-Module is the architecture of our soft gaze attention module. This module is designed to generate a soft gaze
attention map by leveraging information from both the human face and specific head keypoints.

Approach
Illustrated in Figure 3, our gaze target detection approach
consists of three main modules: Soft Gaze Attention, Body-
part & Object Interaction Attention, and Target Detection
Backbone. The target detection backbone encompasses two
distinctive branches: the saliency branch and the interaction
branch. Our soft gaze attention module is designed to pre-
dict gaze attention by leveraging information from both the
human face and five specific head keypoints (the nose, eyes
and ears). The resulting gaze attention map Ag plays a piv-
otal role in guiding the body-part & object interaction mod-
ule and the target detection backbone.

Our body-part & object interaction attention module initi-
ates by employing a pre-trained body pose estimator to cal-
culate the body keypoints of the individual, denoted as vbk,
and a pre-trained object detector to derive object propos-
als within the scene. Guided by the soft gaze attention Ag ,
this module discerns interactions between five distinct body
parts (i.e., the head, hands and feet) and all objects present
within the scene. Subsequently, the body-part & object in-
teraction attention Ahoi is generated and employed to guide
the interaction branch within our target detection backbone.

Our target detection backbone initiates by extracting
scene features from the entire scene input. Guided by soft
gaze attention Ag , our saliency branch determines whether
the extracted saliency regions encompass potential gaze tar-
gets. In parallel, guided by body-part & object interaction
attention Ahoi, our interaction branch gauges the likeli-
hood that the detected interaction hotspots constitute poten-
tial gaze targets. Finally, we combine the target heatmaps
generated by these two branches, utilize a CNN network

to predict the ultimate gaze target heatmap, and employ an
MLP to determine if the gaze target falls out of the frame.

Soft Gaze Attention
The architecture of our soft gaze attention module is illus-
trated in Figure 3. We employ the lightweight MobileNet
(Howard et al. 2019) to extract features from the provided
face image Iface, which has been pre-resized to 64 × 64
pixels. Then, the extracted feature maps undergo an average
pooling operation, resulting in a 1024-dimensional feature
vector vf . Simultaneously, as depicted in Figure 3, we de-
rive five specific head keypoints (i.e., the nose, eyes and ears)
from the computed body keypoints of the individual, which
is accomplished by a pre-trained body pose estimator. Sub-
sequently, these five head keypoints are encoded and trans-
formed into a 512-dimensional feature vector vhk through a
fully connected (FC) layer. The vectors vf and vhk are then
concatenated and further projected into a 1024-dimensional
feature vector vg via an additional FC layer.

Following this, the head location map Mh is resized
to dimensions of 28 × 28 pixels and encoded into a 768-
dimensional vector vh. These vectors, vg and vh, are con-
catenated and projected into a 49-dimensional vector vatn

through a subsequent FC layer. Finally, the vector vatn is
resized to yield the 7× 7 pixel gaze attention map Ag .

In situations where faces have limited visibility, our soft
gaze attention module showcases heightened resilience. This
enhanced resilience stems from the module’s ability to lever-
age the spatial correlation between head keypoints and facial
orientation, setting it apart from traditional gaze estimation
methods (Cheng et al. 2020) that exclusively emphasize the
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Figure 4: Comparison between the Baseline and our method. First row: showcases a selection of samples extracted from the
Gazefollow test set along with their corresponding true annotations. Second row: presents the gaze target heatmap forecasted
by the Baseline. Third row: displays the prediction generated by our method. Our method distinctly outperforms the Baseline
when the actual gaze target is a diminutive interactive object concealed within intricate image backgrounds.

extraction of gaze-consistent features from the human face.

Body-part & Object Interaction Attention
As depicted in Fig. 3, our approach initially utilizes a pre-
trained body pose estimator to calculate the body keypoints
of the individual. Subsequently, we determine the location
map Mbp for five specific body parts (i.e., the head, hands
and feet) using the keypoint coordinates. Simultaneously,
employing a pre-trained object detector, we acquire object
proposals from the scene and generate an object location
map Mo for all detected objects. Subsequently, we concate-
nate the object location map Mo with the body-part location
map Mbp in channel dimension, resulting in the formation
of the body-part & object location pair.

Through Eq. 1, these paired location maps, along with the
gaze attention map Ag , are concatenated and passed through
a location encoder denoted as Floc(·), leading to the gener-
ation of the interaction attention map Ahoi that pertains to
the body-parts of the individual and the detected objects.

Ahoi = Floc((Mbp ⊕Mo)⊕Ag). (1)

Our body-part & object interaction attention mechanism
enhances the precision of identifying potential gaze targets
among a range of interactive objects.

Target Detection Backbone
Illustrated in Fig.3, we commence by concatenating the head
location map Mh of the given individual with the com-
plete scene image Irgb. Subsequently, we utilize the feature
extractor Fscn(·) to extract the convolutional scene feature
maps denoted as mscn,

mscn = Fscn(Irgb ⊕Mh). (2)

The saliency branch Fsal(·) is composed of two 1 × 1
CNN layers and three transposed CNN layers. Guided by
the soft gaze attention Ag , this branch encodes and decodes
a target heatmap Hsal through Eq. 3, to ascertain if the ex-
tracted saliency regions contain potential gaze targets.

Hsal = Fsal(mscn ⊗Ag). (3)

The interaction branch Fhoi(·) shares the same architec-
ture as the saliency branch. Guided by the body-part & ob-
ject interaction attention Ahoi, this branch encodes and de-
codes another target heatmap Hhoi through Eq. 4, to deter-
mine the probability that the identified interaction hotspots
represent potential gaze targets.

Hhoi = Fhoi(mscn ⊗Ahoi). (4)

Finally, through Eq. 5, we combine these two predicted
heatmaps and input them into a fusion network Ffus(·)
comprising two 1 × 1 CNNs, to generate the ultimate pre-
diction Hfus for the gaze target.

Hfus = Ffus(Hsal ⊕Hhoi). (5)

Meanwhile, we also input Hsal⊕Hhoi into a MLP clas-
sifier to determine if the gaze target falls out of the frame.

Overall Loss Function
To provide supervision for the saliency branch, we employ a
regression loss function Lsal that computes the mean square
error between the gaze-guided scene saliency map Hsal and
the ground truth gaze target heatmap H∗,

Lsal = MSE(Hsal,H
∗). (6)

Since there are no annotations pertaining to human ac-
tivities in gaze target detection datasets, we do not provide
distinct supervision for our interaction branch. We achieve
supervision over the fusion of the interaction branch and the
saliency branch through the inclusion of an additional loss
function, denoted as Lfus, in our fusion prediction. The loss
function Lfus computes the mean square error between the
fusion target heatmap Hfus and the ground truth H∗,

Lfus = MSE(Hfus,H
∗). (7)

We define the classification loss function of the gaze target
as Lcls. The overall loss function is formulated as follows,

L = λ1Lcls + λ2Lsal + λ3Lfus, (8)

where λ1, λ2 and λ3 are hyper-parameters. We empirically
set λ1 = λ2 = λ3 = 1.0.
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Methods Supervision GazeFollow VideoAttentionTarget
Activity Depth 3D Eye Min. Dist. ↓ Avg. Dist. ↓ Dist. ↓ AP ↑

Random 0.391 0.484 0.458 0.621
Fixed bias 0.219 0.306 0.326 0.624
Baseline 0.077 0.137 0.147 0.848
Chen

√
0.074 0.136 - -

Fang
√ √

0.067 0.124 0.108 0.896
Tu 0.069 0.133 0.126 0.854
Bao

√ √
- 0.122 0.120 0.869

Miao
√

0.065 0.123 0.109 0.908
Ours* 0.068 0.126 0.106 (20.9% ↓) 0.910 (7.3% ↑)
Ours

√
0.061 (20.8% ↓) 0.118 (13.9% ↓) - -

Table 1: Evaluation on the GazeFollow dataset and the VideoAttentionTarget dataset. Ours*: our method without the body-part
& object interaction attention and the interaction branch. Ours: our complete method. The data in parentheses represents the
proportion of improvement in the performance of our method compared to the Baseline. Activity: the individual’s activity cues.
Depth: depth prior information of the scene. 3D: 3D reconstruction of the scene. Eye: additional eye annotations.

Experimental Results
Preparation
Datasets This paper employs two well-established
datasets for gaze target detection, namely GazeFollow (Re-
casens et al. 2015) and VideoAttentionTarget (Chong et al.
2020). GazeFollow constitutes a large-scale gaze-tracking
dataset that comprises 130,339 individuals within 122,143
images. These images are sourced from a diverse range
of existing datasets, e.g., ImageNet (Deng et al. 2009),
COCO (Lin et al. 2014), PASCAL (Everingham et al.
2010), SUN (Xiao et al. 2010), etc.. After partitioning,
4,782 annotated individuals are designated for testing,
with the remainder allocated for training. Furthermore, ten
human annotations are solicited per individual in the test
images to facilitate an evaluation of human performance.
VideoAttentionTarget extends the task to out-of-frame
scenarios. This dataset encompasses 1,331 video clips
procured from various sources on YouTube, accompanied
by 164,541 frame-level head bounding box annotations.

Evaluation Metrics The evaluation of our proposed
model’s performance is conducted using the following met-
rics. Dist.: This metric quantifies the performance by eval-
uating the L2 distance between the predicted gaze target
point and the corresponding ground truth annotation. Out
of frame AP: The accuracy of identifying out-of-frame in-
stances is assessed through the utilization of average preci-
sion (AP). These metrics provide a comprehensive assess-
ment of our model’s performance across various aspects.

Implementation Details Our implementation is carried
out using the PyTorch framework. We utilize ResNet-50 (He
et al. 2016) as our scene feature extractor. All input scene
images are resized to dimensions of 224 × 224, while our
input face image is resized to 64 × 64. During training, we
employ a mini-batch size of 32 on a single NVIDIA Titan Xp
GPU, initializing with a learning rate of 0.0001. Our training
regimen spans 90 epochs on the GazeFollow dataset, with
learning rate adjustments at the 80th and 90th epochs, in-
volving a multiplication by 0.1. Our entire training process
takes approximately 18 hours. As our optimizer, we rely on
the Adam algorithm (Kingma and Ba 2014), with an Adam

weight decay set at 0.0001 and an Adam momentum of 0.9.
During inference, our complete model achieved an image
processing time of less than 75ms on a single NVIDIA GPU.

Comparison Methods
Baseline We adopt the method introduced in Video
(Chong et al. 2020) as our Baseline. The Baseline approach
generates gaze attention solely from the human face and
predicts the gaze target exclusively by extracting the gaze-
guided salience feature of the scene. It is evident that the
disparity in performance between our comprehensive model
and the Baseline stems from the integration of the interaction
branch guided by our proposed body-part & object interac-
tion attention, along with the incorporation of five specific
head keypoints into our soft gaze attention module.

Gaze Target Detection Methods Furthermore, we con-
duct comparisons with five recent methods: Chen (Chen
et al. 2021), Fang (Fang et al. 2021), Tu (Tu et al. 2022), Bao
(Bao, Liu, and Yu 2022), and Miao (Miao, Hoai, and Sama-
ras 2023). These methods have all demonstrated notable per-
formance within the confines of within-dataset evaluations.

Performance Comparison with SOTA Methods
Evaluation on GazeFollow Dataset As demonstrated in
Table 1, our method exhibits a substantial lead over the
second-best competitor across all evaluation metrics, posi-
tioning it closer to human-level performance. Compared to
the Baseline approach in Video (Chong et al. 2020), our
method achieves a relative enhancement of 20.8% for the
minimum L2 distance and 13.9% for the average L2 dis-
tance. Even compared with the state-of-the-art method Bao
(Bao, Liu, and Yu 2022), which relies on intricate 3D recon-
struction of a single input image, our approach,which solely
leverages 2D image information, still attains a relative ad-
vancement of 3.3% for the average L2 distance.

Evaluation on VideoAttentionTarget Dataset The
VideoAttentionTarget dataset (Chong et al. 2020) exhibits
a deficiency in terms of diverse human activities, thereby
placing limitations on the efficacy of our proposed body-
part & object interaction module. As depicted in Table 1,
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Ground truth OursBaselineGaze estimation

Figure 5: Visualizing the comparison between our soft gaze
attention method (fourth column), the conventional gaze es-
timation approach (second column) and the Baseline (third
column), in scenarios where faces have limited visibility.

Methods Min. Dist. ↓ Avg. Dist. ↓
Baseline 0.077 0.137
Ours 0.068 0.126

Table 2: Ablation study of soft gaze attention module on
the GazeFollow dataset. Baseline: soft gaze attention in the
Baseline method. Ours: our proposed soft gaze attention.

the performance of our model without the body-part &
object interaction module is represented by ”Ours*”. In
comparison to the Baseline approach in Video (Chong et al.
2020), ”Ours*” still attains a relative enhancement of 20.9%
for the L2 distance and 7.3% for the average precision
concerning out-of-frame identification.

Qualitative Experimental Results A qualitative compar-
ison between the Baseline and our method is presented in
Figure 4. The initial row showcases a selection of samples
extracted from the Gazefollow test set, along with their cor-
responding true annotations. The second and third rows re-
spectively depict the gaze target heatmaps forecasted by the
Baseline and our model. Our method notably outperforms
the Baseline when the actual gaze target is a diminutive in-
teractive object enshrouded in intricate image backgrounds.
This substantial improvement is attributed to the fusion of
human attention and activity cues within our approach.

Ablation Study
Soft Gaze Attention As shown in Fig.5, to evaluate the
precision and resilience of our novel soft gaze attention ap-
proach (fourth column), which synergizes facial features and
head keypoints, we conduct a comparative analysis with the
conventional gaze estimation method (Zhang et al. 2020)
(second column), as well as the soft gaze attention module
within the Baseline method (third column). Both of these
alternatives focus solely on extracting gaze-consistent fea-
tures from the human face. In scenarios involving faces with
reduced visibility, our proposed method demonstrates en-
hanced resilience attributed to its utilization of the spatial
correlation between head keypoints and facial orientation.
Besides, the quantitative comparison is shown in Tab.2. To
ensure fairness, we exclude the body-part & object interac-
tion attention and the interaction branch from our approach.
This adjustment aligns our resulting model’s framework
with that of the Baseline method, namely scene saliency de-

OursGround truth Full-body interactionW/O  HOI

Figure 6: Visualizing the comparison between the interac-
tion branch guided by our proposed body-part & object in-
teraction attention (fourth column), the variant employing
full-body object interaction (third column) and another vari-
ant without the entire interaction module (second column).

Methods Min. Dist. ↓ Avg. Dist. ↓
W/O HOI 0.068 0.126
Full-body HOI* 0.066 0.124
Full-body HOI 0.063 0.121
Ours* 0.064 0.122
Ours 0.061 0.118

Table 3: Ablation study of our interaction branch on the
GazeFollow dataset. Ours: our complete model with the in-
teraction branch guided by our proposed body-part & object
interaction attention. Full-body HOI: the variant of our in-
teraction branch employing the full-body object interaction
attention. *: the variant of our interaction attention lacking
the guidance of gaze attention. W/O HOI: the variant of our
method without the entire interaction module.

tection guided by soft gaze attention. These outcomes un-
derscore the exceptional accuracy and robustness of our soft
gaze attention method, even when confronting challenging
instances of limited facial visibility in real-world conditions.

Interaction Branch As depicted in Fig. 6, in order to
validate the effectiveness of the interaction branch which
is guided by the body-part & object interaction attention,
we juxtapose our approach (fourth column) with two vari-
ants: one lacking the entire interaction module (second col-
umn), and the other utilizing the full-body object interac-
tion attention (third column). The focal point of our body-
part & object interaction attention lies in the discernment
of interactions between five specific body components (the
head, hands and feet) and all detected objects. This atten-
tion mechanism enables a heightened precision in identify-
ing potential gaze targets within all interactive objects. Fur-
thermore, we scrutinize the performance of our proposed
body-part & object interaction module in comparison to a
variant operating without the guidance of gaze attention. The
quantitative results are shown in Tab.3. This analysis under-
scores the effectiveness of infusing gaze attention into the
body-part & object interaction module.

Module Visualization
The visualization of various stages within our network is
presented in Figure 7, encompassing elements e.g., the soft
gaze attention map, gaze target heatmaps derived from both
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Figure 7: Visualization of our soft gaze attention, saliency branch prediction, interaction branch prediction, fusion heatmap, and
the predicted gaze target. The third row presents a scenario wherein the gaze target is a non-interacting object.

the saliency branch and the interaction branch, the fusion
heatmap, and the predicted gaze target. The initial two
rows offer a demonstration of the adeptness of our pro-
posed interaction branch in accurately discerning gaze tar-
gets amidst intricate image backgrounds. Conversely, the
third row presents a scenario wherein the gaze target is a
non-interacting object. Recognizing that instances where the
true gaze target lacks interaction with the given individual
are not uncommon in natural settings, the fusion of pre-
dictions from both the saliency branch and the interaction
branch emerges as a strategy to yield enhanced robustness.

Computational Complexity
In order to analyse the computation complexity, we exam-
ine the inference speed of each module seperately. For our
method, we use the pre-trained lightweight body pose es-
timator RTMPose (Jiang et al. 2023) and object detector
YOLOv3 (Redmon et al. 2016). On the other hand, com-
peting methods introduced some other modules, e.g., face
detection and depth estimation from the scene (Fang et al.
2021), body pose estimation and 3D reconstruction from the
scene (Bao, Liu, and Yu 2022), ViT backbone (Tu et al.
2022). In order to measure their computation complexity,
we also select recent high-speed implementations for them,
and compared their inference speed on a single NVIDIA Ti-
tan XP GPU. The results are shown in Table 4, where our
method shows its advantage in terms of inference speed.

Discussion
Incorporating human gaze target annotations into tasks
that encompass human activities (e.g., human-object inter-
action, action recognition/prediction, scene understanding,
etc.) proves more advantageous for investigating the connec-
tion between human attention and activity cues, compared
to datasets containing solely gaze target annotations. This
augmentation is anticipated to evolve into a promising and
innovative research domain within the realms of computer
vision and human-computer interaction.

Method Input Size Time/image
Tu 224× 224 ViT(63ms)
Fang 224× 224 F(∼10ms) + D(∼13ms) + G(∼8ms)
Bao 224× 224 P(∼10ms) + 3D(∼30ms) + G(∼8ms)
Ours 224× 224 P(∼10ms) + O(∼11ms) + G(∼8ms)

Table 4: Evaluation of inference speed w.r.t different mod-
ules. ViT: ViT backbone (Tu et al. 2022). F: face detection
module (Deng et al. 2020). D: depth estimation module (Go-
dard et al. 2019). G: gaze target detection backbone (our
implementation). 3D: 3D reconstruction module (Sun et al.
2021). P: human pose estimation module (Jiang et al. 2023).
O: object detection module (Redmon et al. 2016).

Conclusion
In this study, we propose a novel approach which utilizes
gaze and activity cues to solve the gaze target detection task.
Our strategy to integrate gaze direction and human-object
interaction reflects the natural idea of combining human at-
tention and activity. Our method achieves state-of-the-art
performance on both the GazeFollow benchmark and the
GazeVideoAttn benchmark. In comparison to recent meth-
ods which rely on intricate 3D reconstruction of a single
input image, our approach which only leverages 2D im-
age information still exhibits a substantial lead across all
evaluation metrics, positioning it closer to human-level per-
formance. These outcomes prove the effectiveness of our
method in the gaze target detection task.
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