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Online Billion-Scale Recommender Systems with Macro Graph
Neural Networks
Anonymous Author(s)∗

ABSTRACT
Predicting Click-Through Rate (CTR) in billion-scale recommender
systems poses a long-standing challenge for Graph Neural Net-
works (GNNs) due to the overwhelming computational complexity
involved in aggregating billions of neighbors. To tackle this, GNN-
based CTR models usually sample hundreds of neighbors out of
the billions to facilitate efficient online recommendations. How-
ever, sampling only a small portion of neighbors results in a severe
sampling bias and the failure to encompass the full spectrum of
user or item behavioral patterns. To address this challenge, we
name the conventional user-item recommendation graph as "mi-
cro recommendation graph" and introduce a more suitable MAcro
Recommendation Graph (MAG) for billion-scale recommenda-
tions. MAG resolves the computational complexity problems in the
infrastructure by reducing the node count from billions to hun-
dreds. Specifically, MAG groups micro nodes (users and items) with
similar behavior patterns to form macro nodes. Subsequently, we
introduce tailoredMacro Graph Neural Networks (MacGNN) to
aggregate information on a macro level and revise the embeddings
of macro nodes. MacGNN has already served one of the biggest
shopping platforms for two months, providing recommendations
for over one billion users. Extensive offline experiments on three
public benchmark datasets and an industrial dataset present that
MacGNN significantly outperforms twelve CTR baselines while re-
maining computationally efficient. Besides, online A/B tests confirm
MacGNN’s superiority in billion-scale recommender systems.

CCS CONCEPTS
• Information systems → Online advertising; Web applica-
tions; • Human-centered computing→ Social recommendation.
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1 INTRODUCTION
Billion-scale recommender systems, with billions of users, items,
and interactions, are prevalent in today’s societies [24, 26, 27, 29],
such as YouTube [4] and Taobao [16]. At the heart of these billion-
scale recommender systems lies Click-Through Rate (CTR) predic-
tion [28]. Its goal is to predict, in real-time, whether a given user
will click on a given item. However, due to efficiency requirements,
while Graph Neural Networks (GNNs) have shown significant per-
formance in collaborative filtering recommendation tasks [13, 23],
they are not well-suited for CTR tasks. This is because perform-
ing graph neural networks over billion-scale neighbors leads to
overwhelming computational complexity. It is crucial to develop ap-
propriate graph neural networks capable of handling recommender
systems with billions of users, items, and interactions.

Existing GNN models typically create the graph by linking users
to their interacted (clicked) items. In this scenario, if a user interacts
with a highly popular item with billions of interactions, then the
subgraph of that user will potentially have billions of 2-hop neigh-
bors. To reduce computational complexity, PinSage [26] randomly
selects a fixed number of 1-hop and 2-hop neighbors for both users
and items. GLSM [20] and GMT [15] introduce importance-based
and similarity-based scoring mechanisms to filter the most suitable
hundreds of 1-hop and 2-hop neighbors. Besides traditional CTR
models introduce filtering strategies to accelerate the inferring pro-
cess. DIN [31] and DIEN [30], typically truncate a user’s recently
150 interacted items. SIM [17] introduced a search-based strategy
to filter the most relevant items from the user’s entire historical
behavior. However, traditional CTR models fail to consider the
filtering for the subgraph of items or the 2-hop neighbors of users.

Though the above strategies can reduce the neighbor size for
GNNs, these approaches still face the following limitations in billion-
scale recommender systems.
1. Severe Sampling Bias: In Figure 1(a), we illustrate the distri-
bution of neighbor numbers in the user-item clicking interaction
graph within a real-world shopping platform. Both users and items
exhibit a substantial number of 1-hop and 2-hop neighbors. Sam-
pling only a few hundred neighbors can only cover about 5% of user
1-hop neighbors and 0.2% of item 1-hop neighbors. Sampling such
small portions cannot accurately represent the entire spectrum of
neighbors and may lead to severe sampling bias.
2. Unfitted Users/Items Sampling:As shown in Figure 1(a), users
exhibit vastly different number distributions compared to items.
For example, users have significantly more 2-hop neighbors and
significantly fewer 1-hop neighbors than items. It is inappropriate
to sample users and items using the same approach.
3. Ambiguous Neighbor Counts: The sampled neighbors do not
accurately represent the true number of interactions prior to the
sampling process for users and items. For instance, a user with
hundreds of historical interactions will yield the same sample size
as another user with millions of historical interactions.
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(a) Neighborhood number distribution of micro graphs.
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Figure 1: Illustration of neighbor number distributions inmi-
cro and macro user-item clicking interaction graphs within
a real-world billion-scale recommender system.

The main problem behind the mentioned issues arises from rely-
ing on sampling strategies to decrease the size of neighbors. Instead,
it’s more promising to boost the expressive capacity of graph nodes
and significantly reduce the neighbor size by grouping nodes into
macro nodes. This grouping approach allows models to overcome
the inherent limitations of sampling strategies by eliminating the
need for the sampling process entirely. However, actualizing a
grouping strategy for recommendation graphs introduces the fol-
lowing challenges.
1. Grouping Strategy: Identifying an optimal grouping strategy for
user and item nodes into macro nodes is non-trivial, as it demands
a careful balance between reducing complexity and maintaining
the integrity of original behavioral patterns.
2. SubgraphDefinition:Constructing edges betweenmacro nodes
is complex due to the necessity of representing aggregated interac-
tions between their constituent user/item nodes accurately. Addi-
tionally, defining the subgraph for a given user/item using macro
nodes demands innovative approaches.
3. Recommending with Macro Nodes: Each macro node repre-
sents a group of user/item nodes, and the edge between two macro
nodes signifies the connections between two groups of nodes. It is
challenging to extract the behavioral pattern of a user/item node
based on its newly constructed macro-node subgraphs.

By addressing the three challenges mentioned above, we pro-
pose a more suitable MAcro Recommendation Graph (MAG)
for billion-scale recommendations. MAG groups user/item nodes
based on similar behaviors to create macro nodes, as illustrated
in Figure 2. This grouping reduces the number of neighbors from
billions to hundreds. As depicted in Figure 1(b), MAG now only
consists of hundreds of 1-hop and 2-hop neighbors. This reduc-
tion allows billion-scale recommender systems to alleviate the ad-
verse consequences of sampling only a small portion of neighbors.

To achieve this, we introduce tailored Macro Graph Neural Net-
works (MacGNN) to aggregate the macro information for the target
user/item with our specially designed MAG, facilitating accurate
and efficient click-through rate prediction for online billion-scale
recommender systems. Our paper’s primary contributions can be
summarized as follows:
• We create a customized macro recommendation graph, which

involves constructing the macro node, macro edge, and macro
subgraph. This helps reduce the neighbor size from billions to
hundreds, making it easier for GNNs to operate in online billion-
scale recommender systems.

• We propose a novel macro-scale recommendation paradigm
known as the Macro Graph Neural Network (MacGNN). This
framework efficiently aggregates macro-graph information and
updates macro-node embeddings to enable online click-through
rate prediction for billion-scale recommender systems.1

• MacGNN has been serving a major shopping platform for two
months, offering recommendations to more than one billion
users. Additionally, we introduce our online implementation to
enable online updates of macro nodes and macro edges.

• Extensive offline experiments conducted on three public bench-
mark datasets and a billion-scale industrial dataset demonstrate
that MacGNN outperforms twelve state-of-the-art CTR baselines
while maintaining competitive efficiency. Furthermore, online
A/B tests have confirmed the superiority of MacGNN in real-
world billion-scale recommender systems.

2 PRELIMINARIES
In this section, we first present the basic notations in CTR prediction.
Then, we present the concept of micro nodes, micro edges, and
micro recommendation graphs for recommender systems. Finally,
we introduce the definition of our macro recommendation graph.

CTR Prediction. Supposed the set of users and items as U =

{𝑢1, ..., 𝑢𝑛}, and I = {𝑖1, ..., 𝑖𝑚}, respectively, where |U| = 𝑛 and
|I | = 𝑚 denotes the number of users and items. In real-world
recommender systems, CTR models correspond to a click or not
problem. When item 𝑖 is exposed to user 𝑢, user 𝑢 will have two
reflections: (i) having a positive behavior toward the item 𝑖 such
as click or purchase, or (ii) having a negative behavior toward the
item 𝑖 such as neglect or dislike. Thus, given the target user-item
pair as (𝑢, 𝑖), the corresponding interaction 𝑦𝑢𝑖 can be present as:

𝑦𝑢𝑖 =

{
1, if 𝑢 exhibits positive behavior towards 𝑖;
0, if 𝑢 exhibits negative behavior towards 𝑖 .

(1)

Given a target user-item pair (𝑢, 𝑖), the CTR prediction task is
to predict the target user 𝑢’s positive behavior probability 𝑦𝑢𝑖 on
target item 𝑖 . In form, the aim of a CTR model is to learn an accurate
prediction function F (·), namely the predicted clicking probability
𝑦𝑢𝑖 = F (𝑢, 𝑖), to minimize the difference from 𝑦𝑢𝑖 to 𝑦𝑢𝑖 .

Micro Node. Starting with several popular works [13, 23, 26],
GNN-based recommendation models usually connect users with
their interacted (e.g. clicked or purchased) items. Under this setting,
users and items are treated as micro nodes. Specifically, each user
𝑢 and item 𝑖 is associated with a trainable embedding 𝑬𝑢 ∈ R𝑑 and
𝑬𝑖 ∈ R𝑑 , where 𝑑 is the embedding dimension size.

1Source code is available at https://anonymous.4open.science/r/MacGNN.
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Micro Edge. As stated in Eq. (1), the user-item behaviors actually
provide the most raw material for edges. Given the micro user-item
interaction matrix R ∈ R |U |× |I | , where |R | is the total number of
interactions. Each element 𝑟𝑢𝑖 ∈ R reflects whether users 𝑢 have a
positive interaction with item 𝑖 , namely 𝑟𝑢𝑖 = 𝑦𝑢𝑖 .

MIcro Recommendation Graph (MIG). After defining the mi-
cro nodes and micro edges, the MIG can be represented as G =

(U,I,R). For user interest models, the user behavior sequences
can be given as the first-order neighbor of the user𝑢 asN (1)

𝑢 , where
N (𝑘 )
𝑢 denotes the 𝑘𝑡ℎ-hop neighbors of user 𝑢.
According to the definition of MIG, when GNNs predict the CTR

of a given user-item pair (𝑢, 𝑖), GNNs first construct the micro
subgraph of the target user/item and then extract the embeddings
according to MIG. When the graph size grows to a billion-scale, the
subgraph may contain billions of micro nodes, which means only
loading the embeddings of the subgraph is difficult to accomplish.

MAcro Recommendation Graph (MAG). Our proposed MAG
can be defined as G̃ = (Ũ, Ĩ, R̃), where Ũ, Ĩ, and R̃ are the macro
user nodes, macro item nodes, and macro edges respectively, and
Ñ (𝑘 )
𝑣 represents the 𝑘𝑡ℎ-hop macro neighbors of node 𝑣 . Specifi-

cally, each macro node 𝑣 is associated with a trainable embedding
𝑬𝑣 ∈ R𝑑 . With MAG, MacGNN only needs to aggregate hundreds
of macro nodes, significantly reducing computational complexity.

3 METHODOLOGY
In this section, we first formally introduce the concept of Macro
Recommendation Graphs and introduce how to design macro nodes
and macro edges. Then we present the macro graph neural net-
work for CTR prediction. Finally, we illustrate the implementation
architecture of our real-world billion-scale recommender system.

3.1 Macro Recommendation Graph (MAG)
3.1.1 Constructing Macro Nodes. As presented in the prelim-
inaries, MIG records the detailed micro node and micro edge for
each user and item. Then, given any user or item, the GNNs have
to access the embeddings of each hop of micro nodes to infer the
behavior pattern of the given user or item, which is computation-
ally inconvenient and raises responsible delays. Motivated by this,
MAG presents the behavior pattern within macro nodes rather
than listing all the micro nodes and utilizes the GNNs to extract
the behavior pattern from detailed micro nodes.

Intuitively, the macro nodes are designed to represent the behav-
ior pattern of a set of micro nodes, while all the micro nodes inside
share similar behavior patterns. Thus, we conduct the behavior pat-
tern grouping to map the micro nodes into specific macro behavior

nodes, with the objection of minimizing the behavioral pattern gap
between macro nodes assigned to the same macro node [10].

Specifically, given the micro user-item interaction matrix R ∈
R |U |× |I | , for a given user/item micro node 𝑣 , we first obtain its
behavior embedding 𝒃𝑣 as follows:

𝒃𝑣 = | | [𝑹]𝑣 | |22 = | |𝒓𝑣 | |22, 𝑹 =

{
R, 𝑣 ∈ U;
R⊤, 𝑣 ∈ I .

(2)

where | | · | |22 is the 𝐿2 norm. Then, to obtain each macro node 𝑪𝑘 ,
we conduct the behavior pattern grouping based on behavior em-
beddings of micro nodes. Specifically, we first randomly initialize
𝐾 macro centroids {𝝁1, ..., 𝝁𝑘 , ..., 𝝁𝐾 }, where 𝝁𝑘 ∈ R𝑑 is the cen-
troids of macro node 𝑪𝑘 , 𝐾 ≪ 𝑛 𝑎𝑛𝑑 𝑚 is the hyperparameter set
as the macro node number, and we denote 𝐾 for macro user node
and macro item node is 𝑛 and𝑚, respectively. Then, we explore
and assign micro nodes to the appropriate macro node based on
their behavior patterns, and update the centroid of macro nodes
iteratively. The process can be expressed as:

𝝁𝑘 =
1

|𝑪𝑘 |
∑︁

𝑥𝑣=𝑘,𝒃𝑣 ∈𝑪𝑘
𝒃𝑣, (3)

where |𝑪𝑘 | is the number of micro nodes within 𝑪𝑘 , and 𝑥𝑣 is the
macro node index that 𝑣 is assigned to. Further, the optimization
objection of the behavior pattern grouping is:

min
𝑥1,...,𝑥𝑚+𝑛
𝝁1,..,𝝁𝐾

𝐽 (𝑥1, ..., 𝑥𝑚+𝑛 ; 𝝁1, .., 𝝁𝐾 )

△
=

𝐾∑︁
𝑘=1

∑︁
𝑥𝑣=𝑘,𝒃𝑣 ∈𝑪𝑘

√︁
(𝒃𝑣 − 𝝁𝑘 ) (𝒃𝑣 − 𝝁𝑘 )⊤ .

(4)

where 𝐽 is the objection function of behavior pattern grouping. As
shown in Figure 2, the micro nodes with similar behavior patterns
will be composed of a macro node. Note that each macro node 𝑣
will also be assigned a trainable embedding 𝑬𝑣 ∈ R𝑑 .

3.1.2 Organizing Macro Edges. Macro edges depict relation-
ships between two macro nodes within a specific user/item sub-
graph, signifying the behavioral patterns within that subgraph. It’s
important to note that macro edges have a distinct design compared
to micro edges. The micro edges present connections between fixed
micro user nodes and micro item nodes. Since micro nodes remain
constant, the micro edges are also fixed. In contrast, macro edges
capture the connection strength between two macro nodes in a
subgraph, which is tailored to each user and item subgraph.

In Figure 2, the user 𝑣 is depicted as having two 1-hop macro
nodes, each with macro edge weights of 4 and 3, respectively. Mov-
ing to the second hop, the user extends to three macro nodes,
and these macro edges represent the connections between the 1-
hop macro nodes and the 2-hop macro node. Formally, we use
C̃ = {𝑪1, 𝑪2, . . . , 𝑪𝑛+𝑚} to represent the entire set of macro nodes
in the MAG. We employ R̃ (𝑘 )

𝑣;𝑝,𝑞 to denote the macro edge for any

user/item node 𝑣 with its 𝑘𝑡ℎ-hop neighbors, where 𝑪 (𝑘−1)
𝑣;𝑝 repre-

sents the macro node in (𝑘 − 1)𝑡ℎ-hop macro neighbors Ñ (𝑘−1)
𝑣 ,

and 𝑪 (𝑘 )
𝑣:𝑞 represents the macro node in 𝑘𝑡ℎ-hop macro neighbors

3
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Ñ (𝑘 )
𝑣 . Thus the weight of macro edges can be computed as:

R̃ (𝑘 )
𝑣;𝑝,𝑞 =

∑︁
𝑎∈𝑪 (𝑘−1)

𝑣;𝑝 ,𝑏∈𝑪 (𝑘 )
𝑣:𝑞

𝑟𝑎𝑏 , (5)

where 𝑪 (𝑘−1)
𝑣;𝑝 = 𝑪𝑣;𝑝 ∩N (𝑘−1)

𝑣 represents the macro nodes related

to node 𝑣 within its (𝑘−1)𝑡ℎ-hop neighbors and 𝑪 (𝑘 )
𝑣;𝑞 = 𝑪𝑣;𝑞∩N (𝑘 )

𝑣

represents the macro nodes related to node 𝑣 within its 𝑘𝑡ℎ-hop
neighbors. In § 3.3, we will introduce how to get online updating
macro edges on billion-scale recommender systems. Finally, after
transforming micro recommendation graphs into macro recommen-
dation graphs, MAGs have significantly fewer nodes and edges by
extracting behavior patterns explicitly into macro nodes.

3.2 Macro Graph Neural Network
3.2.1 Macro Weight Modeling. The overall framework of our
proposed MacGNN is shown in Figure 3. To better identify the
target user/item preferences over a certain macro node, we design
the macro weight modeling for macro neighbors according to the
weights of connected macro edges.

In order to avoid the excessive gap between the macro edge
weights of hot nodes and cold nodes and conduct modeling flexibly,
we equip the macro weight modeling with logarithmic smooth-
ing and temperature-based softmax activation. Formally, take the
target user/item 𝑣 as an example, given a macro node 𝑞 in its 𝑘𝑡ℎ-
hop neighborhood, the macro weight𝑤 (𝑘 )

𝑣;𝑞 of 𝑞 toward the target
user/item 𝑣 is calculated as:

𝑠
(𝑘 )
𝑣;𝑞 = log

©­­«
∑︁

𝑝∈Ñ (𝑘−1)
𝑣

R̃ (𝑘 )
𝑣;𝑝,𝑞 + 1

ª®®¬ , 𝑤
(𝑘 )
𝑣;𝑞 =

𝑒𝑥𝑝

(
𝑠
(𝑘 )
𝑣;𝑞 /𝜏

)
∑
𝑗∈Ñ (𝑘 )

𝑣
𝑒𝑥𝑝

(
𝑠
(𝑘 )
𝑣;𝑗 /𝜏

) ,
(6)

where 𝜏 is a temperature coefficient hyper-parameter [1]. These
modeled weights represent the importance of these macro neigh-
boring nodes in the target user/item’s historical interactions.

3.2.2 Marco Neighbor Aggregation & Layer Readout. To
mine the macro relationships effectively and efficiently, we first
design a macro neighbor aggregation architecture rather than a
time-consuming recursive graph convolution. Then, we propose

the macro layer readout to aggregate the macro information of the
target user and item.

Macro Neighbor Aggregation. Due to the different semantics
of users and items, we utilized two separate macro neighbor ag-
gregation modules without parameter sharing for user-type macro
nodes and item-type macro nodes, respectively.

For user-type target nodes and their 𝑘𝑡ℎ-hop user-type macro
neighbors, the aggregation function𝑀𝑁𝐴𝑢 can be defined as:

𝑀𝑁𝐴𝑢 (𝑢, 𝑝 ∈ Ñ (𝑘 )
𝑢 , 𝑬𝑢 , 𝑬𝑝 , Ñ (𝑘 )

𝑢 ;𝑸𝑢 ,𝑲𝑢 , 𝑽𝑢 )
△
=

∑︁
𝑝∈Ñ (𝑘 )

𝑢

𝜎

(
⟨𝑸𝑢 · 𝑬𝑝 ,𝑲𝑢 · 𝑬𝑢⟩

)
· 𝑽𝑢 · 𝑬𝑝 , (7)

where 𝑸𝑢 ,𝑲𝑢 , 𝑽𝑢 ∈ R𝑑×𝑑 ′ are trainable self-attention matrics for
user-type nodes, ⟨·⟩ is the inner product function, and 𝜎 (·) is the
softmax activation function. Specifically, given the given target user
𝑢 and a user-type macro node 𝑝 in its 𝑘𝑡ℎ-hop neighborhood (such
as the node in target user 𝑢’s 2-hop macro neighborhood and target
item 𝑖’s 1-hop macro neighborhood), the process is expressed as:

𝛼𝑢,𝑝 =

𝑒𝑥𝑝

(
(𝑸𝑢 · 𝑬𝑝 ) (𝑲𝑢 · 𝑬𝑢 )⊤/

√
𝑑

)
∑
𝑗∈Ñ (𝑘 )

𝑢
𝑒𝑥𝑝

(
(𝑸𝑢 · 𝑬 𝑗 ) (𝑲𝑢 · 𝑬𝑢 )⊤/

√
𝑑

) , (8)

𝒁𝑢,𝑝 = 𝛼𝑢,𝑝 · (𝑽𝑢 · 𝑬𝑝 ), (9)

where 𝒁𝑢,𝑝 is the aggregated macro embedding. Similarly, for the
item-type target node 𝑖 and its macro item-type neighbor 𝑝 in the
𝑘𝑡ℎ-hop neighborhood, the aggregation function𝑀𝑁𝐴𝑖 to obtain
the aggregated macro embedding 𝒁𝑖,𝑞 can be derived in similar
ways using separating parameters as:

𝑀𝑁𝐴𝑖 (𝑖, 𝑞 ∈ Ñ (𝑘 )
𝑖

, 𝑬𝑖 , 𝑬𝑞, Ñ (𝑘 )
𝑖

;𝑸𝑖 ,𝑲𝑖 , 𝑽𝑖 )
△
=

∑︁
𝑞∈Ñ (𝑘 )

𝑖

𝜎

(
⟨𝑸𝑖 · 𝑬𝑞,𝑲𝑖 · 𝑬𝑖 ⟩

)
· 𝑽𝑖 · 𝑬𝑞, (10)

where 𝑸𝑖 ,𝑲𝑖 , 𝑽𝑖 ∈ R𝑑×𝑑 ′ are trainable self-attention matrics for
item-type nodes.

Macro Layer Readout. With the co-consideration of macro
weight modeling and macro neighbor aggregation, we can measure
the importance of the specific neighboring macro node from differ-
ent perspectives. Thus, the representation of a specific-hop macro
neighborhood of the target user/item node can be obtained by the
following layer readout:

𝑬 (𝑙𝑢 )
𝑢 =

∑︁
𝑗∈Ñ (𝑙𝑢 )

𝑢

𝑤𝑢,𝑗 · 𝒁𝑢,𝑗 , 𝑬 (𝑙𝑖 )
𝑖

=
∑︁

𝑗∈Ñ (𝑙𝑖 )
𝑖

𝑤𝑖, 𝑗 · 𝒁𝑖, 𝑗 , (11)

where 𝑬 (𝑙𝑢 )
𝑢 and 𝑬 (𝑙𝑖 )

𝑖
denote the 𝑙𝑢 -hop/𝑙𝑖 -hop readout representa-

tion of target user/item, respectively.

3.2.3 Recent Behavior Modeling. The above macro modeling
takes into account the general and stable behavioral characteristics
of the target node. Leveraging the learned knowledge at such a
macro level, we further consider the information of recent behav-
ior to better extract users’ changing short-term interests and the
evolving interaction patterns of items [5, 20].

Formally, for the target user 𝑢 and target item 𝑖 , the few most
recently interacted neighbor sequence 𝑹𝑺𝑢 and 𝑹𝑺𝑖 are utilized and
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Figure 4: The system architecture for online deployment.

their embeddings are co-trained with the macro nodes in the above
aggregation functions, respectively.

𝒁𝑢,𝑟𝑠𝑝 = 𝑀𝑁𝐴𝑖 (𝑖, 𝑟𝑠𝑝 ∈ 𝑹𝑺𝑢 , 𝑬𝑖 , 𝑬𝑟𝑠𝑝 , 𝑹𝑺𝑢 ;𝑸𝑖 ,𝑲𝑖 , 𝑽𝑖 ),
𝒁𝑖,𝑟𝑠𝑞 = 𝑀𝑁𝐴𝑢 (𝑢, 𝑟𝑠𝑞 ∈ 𝑹𝑺𝑖 , 𝑬𝑢 , 𝑬𝑟𝑠𝑞 , 𝑹𝑺𝑖 ;𝑸𝑢 ,𝑲𝑢 , 𝑽𝑢 ),

(12)

𝑬𝑟𝑠𝑖 =
∑︁

𝑟𝑠𝑞 ∈𝑹𝑺𝑖
𝒁𝑖,𝑟𝑠𝑞 , 𝑬𝑟𝑠𝑢 =

∑︁
𝑟𝑠𝑝 ∈𝑹𝑺𝑢

𝒁𝑢,𝑟𝑠𝑝 , (13)

where 𝑬𝑟𝑠𝑢 and 𝑬𝑟𝑠
𝑖

are the representation of the few macro node
sequence 𝑹𝑺𝑢 and 𝑹𝑺𝑖 . The sequence length of the few recent be-
haviors for auxiliary training is set to 20. Note that the number of
recent nodes for modeling is much smaller than the hundreds of
sequence lengths in the advanced interest models [30, 31].

3.2.4 CTR Prediction Layer. With the obtained informative rep-
resentations, we utilize them for the final CTR prediction for the
target user 𝑢 and target item 𝑖 as the following calculation:

𝑦𝑢,𝑖 = 𝑀𝐿𝑃

(
(∥𝐾
𝑙𝑢
𝑬 (𝑙𝑢 )
𝑢 ) ∥ (∥𝐾

𝑙𝑖
𝑬 (𝑙𝑖 )
𝑖

) ∥ 𝑬𝑟𝑠𝑢 ∥ 𝑬𝑟𝑠𝑖 ∥ 𝑬𝑢 ∥ 𝑬𝑖
)
, (14)

where the architecture and parameter settings of the MLP are the
same as previous works [30, 31].

To train and optimize the model parameters, we apply the binary
cross-entropy loss as the model objective function. Formally, for
each user-item pair (𝑢, 𝑖) in training set TS, the adopted objective
function can be expressed as:

L𝑏𝑐𝑒 = − 1
|TS|

∑︁
(𝑢,𝑖 ) ∈TS

𝑦𝑢,𝑖 log(𝑦𝑢,𝑖 )+(1−𝑦𝑢,𝑖 ) log(1−𝑦𝑢,𝑖 ), (15)

where 𝑦𝑢,𝑖 is the predicted CTR and 𝑦𝑢,𝑖 is the ground-truth label.
Then, the overall objective function of MacGNN is as follows:

L = L𝑏𝑐𝑒 + 𝜆 · ∥𝜽 ∥22 , (16)

where 𝜆 · ∥𝜽 ∥22 denotes the 𝐿2 regularization to avoid over-fitting.

3.3 Online Implementation
In this section, we present the online deployment of MacGNN on a
leading e-commerce platform’s homepage. MacGNN has provided
stable and precise recommendations to over 1 billion users and
2 billion items, analyzing more than 12 trillion interactions since
August 2023.

The core architecture to implement the proposedMacGNNmodel
is presented in Fig. 4, including the workflow of both offline com-
puting and online serving. Offline computing can compute the
necessary embeddings and graph structures without affecting the
online service. Specifically, offline computing is based on a dis-
tributed machine learning platform, which loads log data to train
the model parameters and embeddings. Then the learned user/item
embedding and the macro node embedding are uploaded to the
graph feature center for online serving.

Another job of offline computing is the graph structure updates.
For example, during shopping events like Black Friday or Singles’
Day, certain popular items can receive billions of clicks within sec-
onds. In such scenarios, we employ two modules to facilitate graph
structure updates. The stock micro edges are computed offline on a
daily basis (or even hourly if necessary). Meanwhile, the incremen-
tal micro edges store the micro edges generated in real-time. Since
the macro edge weights (Eq. (5)) are defined through summation,
the complete micro edge weights can be computed by adding the
stock macro edge weights and the incremental macro edge weights.

With the help of offline computing, during the online inferring
process, MacGNN can directly get the macro edges through the
graph structure center and get the macro node embeddings through
the graph feature center. Since MacGNN only considers the macro
node, we can give the upper bound of the related node number as
O((𝑛 +𝑚)). On the contrary, the expected related node number
of traditional micro GNNs can be given as O( | R |2

𝑚×𝑛 ). Specifically,
we construct 200 macro nodes for users and 300 macro nodes for
items. Then the micro GNNs will consider about 6 million times
more nodes of the MacGNN if micro GNNs consider all the micro
nodes in the billion-scale recommender system.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments on both
offline datasets and real-world online recommendation systems,
aiming to answer the following research questions. RQ1:How does
MacGNN perform compared to state-of-the-art models? RQ2: How
efficient is the proposed MacGNN?RQ3:What is the effect of differ-
ent components in MacGNN? RQ4: How do key hyper-parameters
impact the performance of MacGNN? RQ5: How does MacGNN
perform on billion-scale real-world recommendation platforms?

4.1 Experimental Setup
4.1.1 Datasets. We conduct comprehensive experiments on three
widely used benchmark datasetsMovieLens [11], Electronics [14],
and Kuaishou [7], and one large-scale industrial dataset from one
of the biggest shopping platforms to verify the effectiveness of
MacGNN. The statistics of these datasets are shown in Table 1. The
detailed description of these datasets is illustrated in Appendix A.

Table 1: Statistics of the experimental datasets.

Dataset # Users # Items # Interactions # Categories

MovieLens 71,567 10,681 10,000,054 21
Electronics 192,403 63,001 1,689,188 801
Kuaishou 7,176 10,728 12,530,806 31

Industrial 170,000,000 310,000,000 118,000,000,000 27,452
5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: CTR prediction comparison results over five trial runs (↑: the higher, the better; ↓: the lower, the better). The best
baseline(s) are highlighted with underlining.

Model
MovieLens Electronics Kuaishou

AUC (↑) GAUC (↑) Logloss (↓) AUC (↑) GAUC (↑) Logloss (↓) AUC (↑) GAUC (↑) Logloss (↓)
Wide&Deep 0.7237±0.0008 0.6922±0.0009 0.6072±0.0020 0.8242±0.0009 0.8247±0.0008 0.5132±0.0033 0.8202±0.0023 0.7761±0.0006 0.4922±0.0025
DeepFM 0.7215±0.0015 0.6910±0.0011 0.6080±0.0026 0.8064±0.0028 0.8066±0.0028 0.5352±0.0081 0.8207±0.0014 0.7753±0.0007 0.4922±0.0023
AFM 0.7199±0.0008 0.6884±0.0007 0.6091±0.0013 0.7995±0.0008 0.7999±0.0009 0.5330±0.0008 0.8184±0.0034 0.7731±0.0049 0.4969±0.0041
NFM 0.7156±0.0039 0.6850±0.0042 0.6171±0.0078 0.8044±0.0009 0.8049±0.0009 0.5372±0.0033 0.8186±0.0045 0.7717±0.0022 0.4951±0.0040

DIN 0.7248±0.0010 0.6974±0.0005 0.6143±0.0043 0.8295±0.0026 0.8307±0.0030 0.5186±0.0028 0.8208±0.0019 0.7792±0.0005 0.4978±0.0031
DIEN 0.7262±0.0010 0.6958±0.0009 0.6112±0.0020 0.8313±0.0031 0.8323±0.0027 0.5167±0.0056 0.8273±0.0016 0.7783±0.0009 0.4943±0.0054

UBR4CTR 0.7245±0.0002 0.6943±0.0010 0.6233±0.0076 0.8300±0.0005 0.8299±0.0006 0.5056±0.0007 0.8266±0.0005 0.7799±0.0006 0.4907±0.0020
SIM 0.7255±0.0014 0.6950±0.0012 0.6254±0.0094 0.8296±0.0033 0.8305±0.0031 0.5186±0.0062 0.8273±0.0005 0.7800±0.0005 0.4906±0.0021

PinSage 0.7298±0.0017 0.7069±0.0017 0.6121±0.0039 0.8136±0.0027 0.8133±0.0027 0.5269±0.0078 0.8163±0.0019 0.7810±0.0006 0.5037±0.0041
LightGCN 0.7305±0.0009 0.7077±0.0012 0.6122±0.0061 0.8329±0.0011 0.8333±0.0010 0.5101±0.0049 0.8139±0.0019 0.7803±0.0014 0.5068±0.0041
GLSM 0.7320±0.0003 0.7096±0.0007 0.6088±0.0035 0.8318±0.0026 0.8324±0.0026 0.5112±0.0066 0.8170±0.0012 0.7811±0.0004 0.5031±0.0059
GMT 0.7353±0.0014 0.7097±0.0010 0.6003±0.0023 0.8313±0.0020 0.8322±0.0024 0.5110±0.0083 0.8215±0.0018 0.7803±0.0017 0.4981±0.0020

MacGNN 0.7458±0.0006 0.7198±0.0007 0.5886±0.0027 0.8444±0.0009 0.8458±0.0008 0.4892±0.0040 0.8306±0.0013 0.7813±0.0010 0.4872±0.0026

4.1.2 Competitors. To evaluate the effectiveness of MacGNN, we
compare it with twelve representative state-of-the-art CTR predic-
tion models into three main groups. (i) Feature Interaction-based
Methods: Wide&Deep [2], DeepFM [9], AFM [25], and NFM [12].
(ii)User Interest-basedMethods:DIN [31],DIEN [30],UBR4CTR [18],
and SIM [17]. (iii) Graph-based Methods: PinSage [26], Light-
GCN [13], GLSM [20], and GMT [15]. We leave the details of
these baseline models in Appendix B.

4.1.3 Hyperparameter Setting. For all models, the embedding size
is fixed to 10 and the embedding parameters are initialized with the
Xavier method [8]. Shapes of the final MLP for all models are set to
[200, 80, 2] as previous works [30, 31]. The learning rate of MacGNN
is searched from {1 × 10−2, 5 × 10−3, 1 × 10−3}, the regularization
term is searched from {1× 10−4, 5× 10−5, 1× 10−5}. The batch size
is set to 1024 for all models and the Adam optimizer is used.

4.1.4 EvaluationMetrics. Weevaluate themodels with threewidely-
adopted CTR prediction metrics including AUC [6], GAUC [31],
and Logloss [32]. The higher AUC and GAUC value indicates higher
CTR prediction performance, and the lower Logloss value indicates
higher CTR prediction performance. Note that we run all the ex-
periments five times with different random seeds and report the
average results with standard deviation to prevent extreme cases.

4.2 Offline Evaluation (RQ1)
In this subsection, we compare our proposed MacGNN with twelve
state-of-the-art baseline models on the four experimental datasets.
The comparison results on the AUC and GAUCmetrics are reported
in Table 2 and Table 3, with the following observations:

MacGNN can achieve significant improvements over state-
of-the-art methods on all experimental datasets. From the
tables, we observe that the proposed MacGNN achieves the high-
est AUC and GAUC performance and the lowest Logloss results.
Specifically, for the Logloss metric, MacGNN outperforms the best
baseline by 1.95%, 4.10%, 0.71%, and 0.93% on MovieLens, Electron-
ics, Kuaishou, and the industrial dataset, respectively. For all the
AUC, GAUC, and Logloss metrics, MacGNN brings effective gains

of 1.00%, 0.93%, and 1.70% on average respectively. These compari-
son results verify that taking into account the graph information
in a macro perspective of MacGNN contributes to achieving better
interest modeling and CTR prediction performance.

The graph-based methods perform relatively well than
other types of baseline models. Comparing the three main cat-
egories of baseline models, we can find the graph-based models
(i.e. PinSage, LightGCN, GLSM, and GMT) obtain relatively better
results than user interest modeling and feature interaction methods,
which indicates that apart from the directly interacted neighbor-
hood, incorporating high-order graph information can reflect the
useful implicit preferences of the target user-item pair, and is sig-
nificant for the overall CTR prediction performance.

Increasing the modeling range through node sampling
does not necessarily bring effective gains in all scenarios.
These results show that applying node sampling-based methods
(e.g. UBR4CTR, SIM, and GLSM) to consider behaviors does not
consistently bring improvements to the performance. This sug-
gests that modeling node interests by only searching and sampling
similar nodes based on certain rules may not be accurate enough.
Additionally, retrieving neighbors beyond the 1-hop using GLSM re-
sulted in relatively better performance compared to UBR4CTR and
SIM, also indicating that the higher-order interaction information
is meaningful. The designed macro graph paradigm of MacGNN
avoids this issue, which is an important factor contributing to its
optimal performance.

4.3 Efficiency Study (RQ2)
Since CTR prediction has to infer the user’s intent in real-time
and thus the computational efficiency of models is also an im-
portant evaluation factor [22]. Hence, to verify the efficiency of
MacGNN, we compare the average response time per user-item
pair between MacGNN and the well-performed and representa-
tive baselines: feature interaction-based modelWide&Deep, user
interest-based model DIN and the node searching scheme SIM,
graph-based recursively convolution method LightGCN and graph
transformer-based method GMT. Note that we present the online
inference time on real-world recommender systems.
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Table 3: Comparison results on the industrial dataset.

Industrial AUC (↑) GAUC (↑) Logloss (↓)
Wide&deep 0.8123±0.0021 0.6908±0.0024 0.5223±0.0009
DeepFM 0.8169±0.0012 0.6982±0.0036 0.5202±0.0018
AFM 0.8103±0.0008 0.6866±0.0021 0.5301±0.0020
NFM 0.8112±0.0031 0.6823±0.0043 0.5286±0.0032

DIN 0.8225±0.0017 0.6963±0.0013 0.5022±0.0012
DIEN 0.8231±0.0042 0.7008±0.0018 0.5009±0.0021

UBR4CTR 0.8263±0.0037 0.7019±0.0032 0.4931±0.0019
SIM 0.8313±0.0025 0.7103±0.0010 0.4902±0.0008

PinSage 0.8289±0.0036 0.7086±0.0031 0.4917±0.0017
LightGCN 0.8309±0.0006 0.7093±0.0018 0.4909±0.0012
GLSM 0.8326±0.0053 0.7149±0.0039 0.4887±0.0029
GMT 0.8343±0.0022 0.7178±0.0033 0.4862±0.0021

MacGNN 0.8408±0.0019 0.7233±0.0014 0.4817±0.0013

Table 4: Ablation study results between MacGNN with its
four variants on MovieLens and Electronics.

Variant AUC (↑) GAUC (↑) Logloss (↓)

M
ov
ie
Le
ns

MacGNN 0.7458±0.0006 0.7198±0.0007 0.5886±0.0027

w/o weighting 0.7396±0.0013 0.7132±0.0009 0.5923±0.0037
w/o recent 0.7212±0.0005 0.6936±0.0009 0.6176±0.0052

w/o highorder 0.7401±0.0004 0.7126±0.0009 0.5929±0.0030
w/o itemgraph 0.7239±0.0002 0.6871±0.0007 0.6073±0.0032

El
ec
tr
on

ic
s MacGNN 0.8444±0.0009 0.8458±0.0008 0.4892±0.0040

w/o weighting 0.8418±0.0006 0.8417±0.0006 0.4938±0.0032
w/o recent 0.8316±0.0010 0.8333±0.0008 0.5127±0.0037

w/o highorder 0.8302±0.0003 0.8319±0.0005 0.5083±0.0033
w/o itemgraph 0.8189±0.0005 0.8199±0.0007 0.5259±0.0043

The comparison result is shown in Figure 5. From the figure,
we have the following observations: (i) The proposed model is al-
most as efficient as the simplest Wide&Deep model. Apart from
Wide&Deep, our model achieves the best performance and effi-
ciency among all user interest-based models and sampling-based
graph models. (ii) While graph models employ sampling strategies
to expedite the inference process, LightGCN and GMT are the two
slowest models. Particularly on online platforms, LightGCN and
GMT require nearly three times and two times the inference time
of MacGNN, leading to a significant online burden for billion-scale
recommender systems.

4.4 Ablation Study (RQ3)
To verify the effectiveness of the key designed components and
modeled information in MacGNN, we conduct the ablation study
by comparing MacGNN with its four variants: (1) w/o weighting
removes the macro weight modeling module in MacGNN, which
ignores the macro edge weights. (2) w/o recent removes the recent
behavior modeling scheme in MacGNN, of which the short-term
pattern modeling. (3) w/o highorder excludes the high-order graph
information of the target user and item for MacGNN training and
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Figure 5: Efficiency study of the model inference time.

the final prediction. (4) w/o itemgraph excludes the target item’s
graph information for MacGNN training and prediction, which is
largely ignored by previous works due to the efficiency trade-off.
From Table 4., we have the following observations:

Effectiveness of key designed components. (i) The lack of
consideration of the macro edge weight results in the inferior per-
formance of w/o weighting, as the macro edge intensity can reflect
the behavior pattern of users and items. (ii) The removal of recent
behavior may impact the recommendation performance of w/o re-
cent in comparison to MacGNN. This underscores the importance
of taking recent behaviors into account from a macro perspective.

Effectiveness of key modeled information. (i) The decline
in the performance of w/o highorder relative to MacGNN due to
the neglect of high-order neighbors indicates the significance of
graph information, and considering it from a macroscopic perspec-
tive is effective. (ii) The substantial performance gap between w/o
itemgraph and MacGNN highlights the significance of consider-
ing item-side graphs. Nonetheless, traditional CTR models tend to
discard them due to computational constraints.

4.5 Parameter Analysis (RQ4)
4.5.1 Effect of Temperature Parameter. We investigate the
effect of the temperature parameter 𝜏 in macro node weighting
with the range of 0.1 to 1.9 with a step size of 0.2 as illustrated in
Figure 6. We can observe from the results that a too-small weighting
value of 𝜏 will cause poor performance. Furthermore, the suitable
value of 𝜏 for MovieLens is larger than 1 while for Electronics
is smaller than 1, one possible reason is that the temperature of
MacGNN should be set smaller on more sparse datasets.

4.5.2 Effect of Macro Node Number. We also evaluate the im-
pact of different macro user numbers 𝑛 under the behavior pattern
grouping and fixed utilize of category as item grouping to avoid the
impact of multiple variables. From the second row of Figure 6, we
can find that the too-small cluster number will lead to too coarsen
user segmentation and result in poor results. In addition, choosing
a relatively appropriate number of clusters, such as 20, can bring
good enough performance of MacGNN on the public datasets and
this macro node number is much smaller than the micro interaction
scale, and also much smaller than the sequence length of previous
user interest modeling works [30, 31].
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Figure 6: Parameter study of temperature parameter 𝜏 and
macro node number 𝑛 on MovieLens and Electronics.

4.6 Online Evaluation (RQ5)
We have deployed MacGNN and conducted the online A/B test in
one of the biggest shopping platforms for over two months. The
online performance is compared against the best performed user
interest-based model SIM and the sampling-based graph model
GMT. The performance in Table 5 is averaged over four consecutive
weeks. We have the following observations.

Compared to SIM, firstly, MacGNN demonstrates a performance
improvement of 3.13% for PCTR, 1.32% for UCTR, and 5.13% for
GMV, suggesting that our model enhances users’ willingness to
engage with items and convert to purchases. Secondly, the Stay
Time increases by 1.01%, indicating that MacGNN can effectively
engage users, encouraging them to spend more time on the plat-
form by catering to their comprehensive macro behavior interests.
Thirdly, MacGNN achieves a Response Time that is 20.97% faster
than SIM, showing that MacGNN achieves significantly improved
performance and enhanced efficiency.

Compared to GMT, MacGNN still demonstrates a performance im-
provement of 2.35% for PCTR, 1.09% for UCTR, and 3.53% for GMV.
This suggests that taking into account the complete macro behavior
patterns of users and items can yield significantly better perfor-
mance than considering only a small portion of sampled neighbors.
Furthermore, the Stay Time increases by 0.69%, indicating that
MacGNN encourages users to stay by considering more compre-
hensive behavior patterns. Lastly, MacGNN’s Response Time is
38.13% faster than SIM, confirming the efficiency of MAG.

Both A/B testing results validate that MAG and MacGNN are
more suitable than previous micro recommendation models.

Table 5: Results of online A/B tests in the industrial platform.

A/B Test PCTR UCTR GMV StayTime ResTime

v.s. SIM +3.13% +1.32% +5.13% +1.01% -20.97%
v.s. GMT +2.35% +1.09% +3.53% +0.69% -38.13%

5 RELATEDWORK
5.1 Click-Through Rate Prediction
Click-through rate (CTR) prediction is now central in online rec-
ommender systems [28]. Tradition models utilize feature interac-
tion for CTR prediction. FM [19] first introduces the latent vec-
tors for 2-order feature interaction to address the feature sparsity.
Wide&Deep [2] conducts feature interaction by a wide linear regres-
sion model and a deep feed-forward network with joint training.
DeepFM [9] further replaces the linear regression in Wide&Deep
with FM to avoid feature engineering. Recently, user interest-based
models have achieved better CTR performance. DIN [31] first de-
signs a deep interest networkwith an attentionmechanism between
the user’s behavior sequence and the target item. DIEN [30] then
further enhances DIN with GRU [3] for user’s evolution patterns
mining. Similarly, SIM [17] designs a two-stage paradigm, searching
relevant items and computing their attention score with the target,
to reduce the scale of the user’s complete behaviors.

Although successful, these models ignore the modeling of graph
information due to the efficiency trade-off. It will lose some valu-
able information for precise interest modeling, which is also the
motivation of the designed MAG and MacGNN.

5.2 Graph Learning for Recommendation
Recently, massive works have attempted to improve recommenda-
tion performance through graph learning methods [21, 24].

Typically, NGCF [23] enhances traditional collaborative filtering
with high-order graph information. LightGCN [13] then removes
the non-linear operation in NGCF, which is drawn from the ob-
servation of extensive experimental analysis. These methods have
been widely used for appropriate item recalling in industrial recom-
mender systems. However, due to the strict requirements for time
efficiency, they cannot be applied directly as CTR prediction models.
Then, some advances try to consider the graph information in the
CTR scenario but they still maintain the node sampling paradigm.
GLSM [20] conducts relevant node retrieval of the central user from
the interaction graph for long-term interest modeling. GMT [15]
constructs a heterogeneous information network (HIN) with sam-
pled various types of user interactions and designs a graph-masked
transformer for user modeling.

6 CONCLUSION
The introduction of the Macro Recommendation Graph and Macro
Graph Neural Networks (MacGNN) has significantly advanced
the field of billion-scale recommender systems, offering a viable
solution to the prevalent issues of computational complexity and
sampling bias in conventional GNN models. By ingeniously group-
ing micro nodes into macro nodes, MAG allows for efficient compu-
tation, while MacGNN facilitates effective information aggregation
and embedding refinement at a macro level. Demonstrating supe-
rior performance in both offline experiments and online A/B tests,
and practically serving over a billion users in a major shopping plat-
form, this approach not only elevates the capability of predictive
models in expansive digital environments but also paves the way
for future research and optimizations in the realm of large-scale
recommendation systems.
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A DATASET DETAILS
We adopt both three publicly available datasets on a billion-scale
industrial dataset for offline evaluation. The detailed description
and preprocessing manner of the datasets are as follows:

MovieLens Dataset2 [11] contains 71,567 users, 10,681 movies,
and 10,000,054 interactions of users’ ratings to the movies. To make
the rating interactions suitable for the CTR prediction task, we
follow the previous works [31] to transform the rating interactions
into clicked and non-clicked relationships, which label the samples
with rating values that greater than or equal to 4 to be positive and
the rest to be negative.

Electronics Dataset3 [14] is a subset of Amazon Dataset, which
contains product reviews and metadata from Amazon. It contains
192,403 users, 63,001 items, and 1,689,188 interactions. We treat all
the user reviews as user click behaviors, which is widely used in
the related works [30, 31].

Kuaishou Dataset4 [7] is a real-world dataset collected from
the recommendation logs of the video-sharing mobile app Kuaishou.
It contains 7,176 users, 10,728 videos, and 12,530,806 interactions.
We regard the samples with video play time account for more than
50% of the total time to be truly clicked videos.

Industrial Dataset is a large-scale dataset collected from one
of the largest e-commerce recommendation applications, involving
billions scale of users and items. The industrial dataset contains
both positive and negative interactions (e.g., impression without
user clicks) such that negative sampling is not needed. There are
over 118 billion instances and each user has around 938 recent
behaviors on average, which is much longer than the sequences
from the public dataset. Following SIM [17], we use the instances
of the past two weeks as the training set and the instances of the
next day as the test set. The number of macro user clusters is 200,
while the number of macro item clusters is 300.

B BASELINE DETAILS
We compare our proposed MacGNN with twelve representative
state-of-the-art CTR prediction models as follows.

Feature Interaction-based Methods: (i) Wide&Deep [2] is
widely used in real industrial applications. It consists of a wide
module and a deep module to discover and extract the correlation
and nonlinear relations between features. (ii) DeepFM [9] is a vari-
ant model of Wide&Deep, which imposes a factorization machine
(FM) [19] as a wide part avoiding manufactured feature engineer-
ing. (iii) AFM [25] improves feature interactions by discriminating
the different importance via an attention network. (iv) NFM [12]
introduces the bi-interaction pooling to deepen FM for learning
higher-order and non-linear feature interactions.

User Interest Modeling-based Methods: (i) DIN [31] is the first
model that uses an attention mechanism to extract user interest
representation from truncated historical user behaviors in CTR
prediction. (ii) DIEN [30] is an improved version of DIN, which
uses a two-layer RNNs module enhanced with the attention mech-
anism to capture the evolving user interests. (iii) UBR4CTR [18]
proposes a search engine-based method to retrieve more relevant

2https://grouplens.org/datasets/movielens/10m
3https://jmcauley.ucsd.edu/data/amazon
4https://kuairec.com
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Figure 7: Case study of user groups with different interaction
scales on MovieLens dataset.

and appropriate behavioral data in long user sequential behaviors
for model training. (iv) SIM [17] uses two cascaded search units
to extract user interests, which has a better ability to model long
sequential behavior data in both scalability and performance in the
CTR prediction.

Graph-based Methods: (i) PinSage [26] is a representative
graph-based web-scale recommendation model, which conducts
inductive graph aggregation on the sampled user/item nodes. We
concatenate and feed the trained embeddings by PinSage into the
widely employed prediction layer to fit the CTR prediction scenario.
(ii) LightGCN [13] is a simplified collaborative filtering model
design by including only the most essential components in GCN
for recommendation. Since it is a collaborative filtering model,
the trained embeddings are also fed into the prediction layer as
PinSage for the CTR prediction. (iii)GLSM [20] is a sampling-based
model to introduce graph information, which consists of a multi-
interest graph structure for capturing the long-term patterns and
a sequence model for modeling the short-term information. (iv)
GMT [15] is also a sampling-based state-of-the-art graph model for
CTR prediction with a graph-masked transformer to learn different
kinds of interactions on the heterogeneous information network
among the constructed neighborhood nodes.

C CASE STUDY
We further conduct the case study to verify the performance of
MacGNN on users with different interaction frequencies. Specifi-
cally, we divided users into 6 groups according to their interaction
frequency on the MovieLens dataset. The case study results are
illustrated in Figure 7.

We can find that our MacGNN performs better in most cases,
which shows that the introduction of MAG can benefit users with
different interaction frequencies. This observation can be explained
in the following two main aspects: (i) For low-active users, the mod-
eling view from a macro perspective will bring additional general
key features, and the high-order graph information from MAG also
provides helpful information for user modeling. (ii) For high-active
users, in addition to ensuring computational efficiency, macro mod-
eling on MAG can also avoid noise and overly complex information
contained in excessively long interaction sequences. Thus, besides
improving computational efficiency for considering both complete
and high-order patterns, the organization of MAG is also beneficial
for modeling interests in various interaction frequencies.
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