
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STABILIZED NEURAL PREDICTION OF
POTENTIAL OUTCOMES IN CONTINUOUS TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Patient trajectories from electronic health records are widely used to estimate con-
ditional average potential outcomes (CAPOs) of treatments over time, which then
allows to personalize care. Yet, existing neural methods for this purpose have a
key limitation: while some adjust for time-varying confounding, these methods
assume that the time series are recorded in discrete time. In other words, they are
constrained to settings where measurements and treatments are conducted at fixed
time steps, even though this is unrealistic in medical practice. In this work, we
aim to estimate CAPOs in continuous time. The latter is of direct practical rele-
vance because it allows for modeling patient trajectories where measurements and
treatments take place at arbitrary, irregular timestamps. We thus propose a new
method called stabilized continuous time inverse propensity network (SCIP-Net).
For this, we further derive stabilized inverse propensity weights for robust esti-
mation of the CAPOs. To the best of our knowledge, our SCIP-Net is the first
neural method that performs proper adjustments for time-varying confounding in
continuous time.

1 INTRODUCTION

Estimating conditional average potential outcomes (CAPOs) of treatments is crucial to personalize
treatment decisions in medicine (Feuerriegel et al., 2024). Such CAPOs are increasingly predicted
based on patient data from electronic health records (Bica et al., 2021). This thus requires methods
that can model the time dimension in patient trajectories and, therefore, estimate CAPOs over time.

Existing neural methods for estimating CAPOs over time primarily model the patient trajectory in
discrete time (e.g., Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk et al., 2022). As
such, these methods make unrealistic assumptions that both health measurements and treatments oc-
cur on a fixed, regular schedule (such as, e.g., daily or hourly). However, both health measurements
and treatments take place at arbitrary, irregular timestamps based on patient needs. For example,
patients in a critical state may be subject to closer monitoring, so that measurements are recorded
more frequently (Allam et al., 2021).

To account for arbitrary, irregular timestamps of both health measurements and treatments, methods
are needed that correctly model the patient trajectory in continuous time (Lok, 2008; Røysland,
2011; Rytgaard et al., 2022). However, neural methods that operate in continuous time are scarce
(see Sec. 2). Crucially, existing neural methods have a key limitation in that they fail to properly
account for time-varying confounding (e.g., Seedat et al., 2022). This means that, for a sequence
of future treatments, the corresponding confounders lie also in the future, are thus unobserved,
and therefore need to be adjusted for. Yet, existing neural methods rely only on heuristics such as
balancing, which targets an improper estimand and thus leads to estimates that are biased. To the
best of our knowledge, there is no neural model that estimates CAPOs in continuous time while
properly adjusting for time-varying confounding.

In this paper, we aim to estimate CAPOs for sequences of treatments in continuous time while prop-
erly adjusting for time-varying confounding. However, this is a non-trivial challenge, as this requires
a method that can perform adjustments at arbitrary timestamps. While there are methods to adjust
for time-varying confounding in discrete time, similar methods for continuous time are still lacking.
Therefore, we first derive a tractable expression for inverse propensity weighting (IPW) in continu-
ous time. However, a direct application of IPW may suffer from severe overlap violations and thus

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Correct Adjustment for Existing works
timestamps? time-varying confounding?

1 Neural methods in discrete time
✗ ✗ CRN (Bica et al., 2020), CT (Melnychuk et al., 2022)
✗ ✓ RMSNs (Lim et al., 2018), G-Net (Li et al., 2021)

2 Neural methods in continuous time ✓ ✗ TE-CDE (Seedat et al., 2022)

SCIP-Net (ours) ✓ ✓ —

Table 1: Comparison of key neural methods for estimating CAPOs over time. Our SCIP-Net is the
first method to perform proper adjustments for time-varying confounding in continuous time.

lead to extreme weights. As a remedy, we further derive stabilized IPW in continuous time. We
then use our stabilized IPW to propose a novel method, which we call stabilized continuous time
inverse propensity network (SCIP-Net). Unlike existing methods, ours is the first neural method
to estimate CAPOs in continuous time while properly adjusting for time-varying confounding.

We make the following contributions:1 (1) We introduce SCIP-Net, a novel neural method for esti-
mating conditional average potential outcomes in continuous time. (2) We derive a tractable version
of IPW in continuous time, which provides the theoretical foundation of our paper for proper adjust-
ments for time-varying confounding. Further, we propose stabilized IPW in continuous time, which
we then use in our SCIP-Net. (3) We demonstrate through extensive experiments that our SCIP-Net
outperforms existing neural methods.

2 RELATED WORK

Table 1 presents an overview of key neural methods for estimating CAPOs over time. An extended
related work is in Supp. A.

Average vs. individualized estimation: Estimating average potential outcomes over time is a well-
studied problem in classical statistics (e.g., Bang & Robins, 2005; Lok, 2008; Robins, 1986; 1999;
Robins & Hernán, 2009; Røysland, 2011; Rytgaard et al., 2022; 2023; van der Laan & Gruber,
2012). However, these methods are population-level approaches and thus do not make individu-
alized estimates at the patient level. Put simply, the observed history of an individual patient is
ignored. Therefore, they are not suitable for personalized medicine. In contrast, our work (and the
following overview) focuses on potential outcome estimation conditional on the observed patient
history, which thus allows us to make individual-level estimates for personalized medicine.

1 Neural methods in discrete time: Some neural methods for estimating CAPOs over time impose
a discrete time model on the data (e.g., Bica et al., 2020; Li et al., 2021; Lim et al., 2018; Melnychuk
et al., 2022). As such, these methods operate under the assumption of both fixed observation and
treatment schedules, yet which is unrealistic in clinical settings. Instead, patient health is typically
monitored at arbitrary, irregular timestamps, and the timing of treatments also takes place at arbi-
trary, irregular timestamps, which may directly depend on the health condition of a patient. Hence,
methods in discrete time rely on a data model that is not flexible enough to account for arbitrary,
irregular monitoring and treatment times, because of which their suitability in medical practice is
limited.

2 Neural methods in continuous time: Only few neural methods have been developed for es-
timating CAPOs in continuous time. Yet, existing methods have key limitations. One stream of
methods (Hess et al., 2024b; Vanderschueren et al., 2023) ignores time-varying confounding and is
thus not applicable to our setting.

To the best of our knowledge, there is only one neural method that works in continuous time and that
is applicable to our setting: TE-CDE (Seedat et al., 2022). This method tries to handle time-varying
confounding through balancing. However, balancing is a heuristic approach to adjust for time-
varying confounding; in fact, balancing was originally proposed for variance reduction (Johansson
et al., 2016) and may even increase bias (Melnychuk et al., 2024) (see Supp. I). Therefore, TE-
CDE suffers from an infinite data bias that comes from the fact that is does not properly adjust for
time-varying confounding.

1Code is available at https://anonymous.4open.science/r/SCIP-Net-2B1C.

2

https://anonymous.4open.science/r/SCIP-Net-2B1C

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Research gap: To the best of our knowledge, none of the above neural methods performs proper
adjustments for time-varying confounding in continuous time. As a remedy, we propose SCIP-Net,
which is the first neural method that estimates CAPOs in continuous time while properly adjusting
for time-varying confounding.

3 PROBLEM FORMULATION

Treatments

Covariates
Potential outcome

Hard intervention

Confounding &
treatment effects

Figure 1: Setup. Shown are
treatment and covariate trajecto-
ries in continuous time. Ob-
servational treatment assignments
are confounded by covariates and,
hence, estimating CAPOs requires
adjustments (see Supp. H.2).

Notation: Let [0, τ] be the time window. In the following, we
assume every stochastic process Vt = V (t) defined on [0, τ] to
be càdlàg, and we let Vt− = lims→t Vs denote the left time
limit. Further, we write V̄t = {Vs}s≤t and V t = {Vs}s≥t.

Setup (see Fig. 1): We consider outcomes Yt ∈ Rdy , discrete
treatments At ∈ {0, 1}da , and covariates Xt ∈ Rdx , where
we assume that Xt contains Ys for all s < t. Without loss
of generality, we assume that static covariates are included in
Xt. At time t, we let π0,t(At) and µ0,t(Xt) denote the ob-
servational treatment propensity and the covariate distribution,
respectively. Both measurement times and treatment times are
typically dynamic and do not follow fixed schedules. Rather,
both are recorded at arbitrary, irregular timestamps.

To formalize the above in continuous time, we need to be able to model arbitrary timestamps, which
increases the complexity compared to the discrete time setting considerably. Following Rytgaard
et al. (2022; 2023), we let the counting processes Nx

t and Na
t govern the times at which covariates

are measured and at which treatments may be administered, respectively. For both z ∈ {a, x}, we let
T z
τ = {T z

1 , . . . , T
z
Nz

τ
} denote the set of jumping times of the process Nz

t with T z
Nz

τ
≤ τ . Further, we

let Λz
0 denote the cumulative intensity of Nz

t , and we let λz
0(t) denote the corresponding intensity

function. Further, we use the short-hand notation dt = [t, t + dt) as in (Gill & Johansen, 1990;
Rytgaard et al., 2022). Then, we have that

λz
0(t) dt = dΛz

0(t) = EP0
[Nz(dt)] = P0(N

z(dt) = 1). (1)

Observational likelihood: We write the full observed history up to time t as

H̄t = {ATa
j
, XTx

j
, N̄a

t , N̄
x
t : T a

j ∈ T a
t , T x

j ∈ T x
t }. (2)

Then, following (Rytgaard et al., 2022), we can write the observational likelihood of the data H̄τ

via

dP0(H̄τ) =µ0,0(X0) T
s∈(0,τ]

((
dΛx

0(s | H̄s−)µ0,s(Xs | H̄s−)
)Nx(ds) (

1− dΛx
0(s | H̄s−)

)1−Nx(ds)

×
(
dΛa

0(s | H̄s−)π0,s(As | H̄s−)
)Na(ds) (

1− dΛa
0(s | H̄s−)

)1−Na(ds)
)
, (3)

where P is the geometric product integral. Intuitively, the geometric product integral P can be
thought of as the infinitesimal limit of the discrete product operator Π. Importantly, the geometric
product integral in Equation 3 is the natural way to describe joint likelihoods in continuous time.
For more details, we provide a brief overview of product integration in Supp. B.

Objective: We are interested in estimating the response of the outcome variable Yτ when intervening
on the treatment sequence starting at time t, given an observed history H̄t− = h̄t−. For this, we
adopt the potential outcomes framework (Neyman, 1923; Rubin, 1978). That is, we seek to estimate
the CAPO

E
[
Yτ [a∗,t, n

a
∗,t] | H̄t− = h̄t−

]
, (4)

under interventions on both the treatment propensity At = a∗,t and the treatment frequency
Na

t = na
∗,t, given the history H̄t− = h̄t−. Here, the interventions are hard interventions, which

is standard in the literature (e.g., Bica et al., 2020; Lim et al., 2018; Melnychuk et al., 2022; Seedat
et al., 2022). That is, for s ≥ t, we are interested in deterministic interventions of the form

As ∼ π∗,s(As | H̄t− = h̄t−) = 1{As=a∗,s}, Na
s ∼ dΛa

∗(s | H̄t− = h̄t−) = 1{ta∗,j}J
j=1

(s) ds, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where a∗,s : R+ → A is a step-wise constant function with jumping points {ta∗,j}Jj=1.

Estimating the CAPO for a treatment sequence is notoriously challenging due to the fundamental
problem of causal inference (Imbens & Rubin, 2015). This means, only factual outcomes Yτ in are
observed in the data, but not the potential outcomes when intervening on the treatment. In the fol-
lowing, we first define the interventional distribution for our objective and then ensure identifiability.

Interventional distribution: We now define the interventional distribution for our objective. For
this, we rewrite Equation 4 by reweighting Yτ under the observational distribution dP0. For this, we
follow Rytgaard et al. (2023) and first split the likelihood into two separate parts as

dP0(H̄τ) = dPQ0,G0(H̄τ) = µ0,0(X0) T
s∈(0,τ]

dG0,s(H̄s) dQ0,s(H̄s), (6)

where

dG0,s(H̄s) =
(
dΛa

0(s | H̄s−)π0,s(As | H̄s−)
)Na(ds) (

1− dΛa
0(s | H̄s−)

)1−Na(ds)
(7)

is the treatment part the we intervene on and where

dQ0,s(H̄s) =
(
dΛx

0(s | H̄s−)µ0,s(Xs | H̄s−)
)Nx(ds) (

1− dΛx
0(s | H̄s−)

)1−Nx(ds)
(8)

remains unchanged. Then, we can write the interventional distribution as

dP∗(H̄τ) = dPQ0,G∗(H̄τ) = µ0,0(X0) T
s∈(0,τ]

dG∗,s(H̄s) dQ0,s(H̄s), (9)

where

dG∗,s(H̄s) =
(
dΛa

∗(s | H̄s−)π∗,s(As | H̄s−)
)Na(ds) (

1− dΛa
∗(s | H̄s−)

)1−Na(ds)
. (10)

Identifiability: To ensure identifiability, we need to make the following assumptions (Lok, 2008;
Robins & Hernán, 2009; Rytgaard et al., 2022) that are standard in the literature for estimat-
ing CAPOs over time (e.g., Seedat et al., 2022). (i) Consistency: Given an intervention on
the treatment propensity and the frequency [a∗,t, n

a
∗,t], the observed outcome Yτ coincides with

the potential outcome Yτ [a∗,t, n
a
∗,t] under this intervention. (ii) Positivity: Given any history

H̄t−, the Radon-Nikodỳm derivative dG∗,t/dG0,t exists. (iii) Unconfoundedness: Given any his-
tory H̄t−, the potential outcome is independent of the treatment assignment probability, that is,
Yτ [a∗,t, n

a
∗,t] ⊥ (At, N

a
t) | H̄t−.

Proposition 1. Under assumptions (i)–(iii), we can estimate the CAPO from observational data
(i.e., from data sampled under dP0) via inverse propensity weighting, that is,

E
[
Yτ [a∗,t, n

a
∗,t]
∣∣∣ H̄t− = h̄t−

]
= E

[
Yτ T

s≥t

Ws

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,), H̄t− = h̄t−

]
, (11)

where the inverse propensity weights for s ≥ t are defined as

Ws ≡ ws(H̄s) =
dG∗,s(H̄s)

dG0,s(H̄s)
. (12)

Proof. See Supp. D.

Proposition 1 is important for the rest of our paper: it tells us that we can estimate CAPOs in
continuous time from data sampled under dP0. For this, we need to quantify the change in measure
from the observational distribution dP0 to the interventional distribution dP∗, which is given by
Equation 12.

Why is the above task non-trivial? Leveraging the above formulation for estimating CAPOs is
highly challenging due to two reasons: (1) The above formulation is based on a product integral P,
which is not computationally tractable. ⇒ We later derive a novel, tractable formulation where we
rewrite Equation 11 using the product operator

∏
(Sec. 4.1). (2) Inverse propensity weights Ws may

lead to extreme weights and, hence, unstable performance. This is a known issue because settings
over time are prone to low overlap (Frauen et al., 2024; Lim et al., 2018). ⇒ We later derive novel
stabilized weights that are tailored to our continuous time setting (Sec. 4.2).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 SCIP-NET

In this section, we introduce our SCIP-Net. It is designed to perform proper adjustments for time-
varying confounding in continuous time.

Objective: Our objective is to find the optimal parameters2 ϕ̂ of a neural network mϕ via

ϕ̂ =argmin
ϕ

EP∗

[(
Yτ [a∗,t, n

a
∗,t]−mϕ(At, N

a
t , H̄t−)

)2
∣∣∣∣ H̄t− = h̄t−

]
(13)

=argmin
ϕ

EP0

[(
Yτ −mϕ(At, N

a
t , H̄t−)

)2

T
s≥t

Ws

∣∣∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
. (14)

Note that the above objective makes use of inverse propensity weights Ws. However, these weights
suffer from two drawbacks: they are (1) intractable as they rely on product integrals P, and (2) they
may lead to unstable performance. As a remedy, we (1) derive a tractable expression for this product
integral (Sec. 4.1), and we further (2) introduce stabilized weights (Sec. 4.2). Finally, we present our
neural architecture (Sec. 4.3) and how to perform inference (Sec. 4.4).

4.1 REWRITING THE OBJECTIVE FOR COMPUTATIONAL TRACTABILITY

We now derive a tractable expression to compute our unstabilized weights Ws in Equation 12.
Proposition 2. Let ta∗,0 = t for notational convenience. The unstabilized weights in Equation 12
satisfy

T
s≥t

Ws

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
=

J∏
j=1

Wta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
,

(15)

where

Wta∗,j
=

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | H̄s−) ds

λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄ta∗,j−)
. (16)

Proof. See Supp. D.

Proposition 2 has important implications for tractability: Given a history H̄t− = h̄t− and the future
sequence of treatments (At, N

a
t) = (a∗,t, n

a
∗,t), the product integral P of the unstabilized inverse

propensity weights Ws reduces to a finite product
∏

. This product includes both treatment propen-
sities and treatment intensities. In Sec. 4.3, we show how to learn these quantities from data.

Importantly, the unstabilized weights in Equation 16 are already sufficient to adjust for time-varying
confounding. However, as they may lead to extreme weights, we now propose stabilized weights.

4.2 STABILIZED WEIGHTS

In the following, we first define our stabilized weights (Def. 1). Then, we show that the optimal
parameters ϕ̂ in Equation 14 are the same, regardless of whether the original, unstabilized inverse
propensity weights from above are used or our stabilized weights (Proposition 3). Finally, we present
a tractable expression to compute the stabilized weights (Proposition 4).
Definition 1. For s ≥ t, let the scaling factor Ξs be given by the ratio of the marginal transition
probabilities of treatment, that is,

Ξs ≡ ξs(Ās, N̄
a
s) =

dG0,s(Ās, N̄
a
s)

dG∗,s(Ās, N̄a
s)

. (17)

We define the stabilized weights W̃s as

W̃s = ΞsWs. (18)
2Throughout, we refer to the weights of neural nets as parameters to make the distinction to inverse propen-

sity weights clear.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The idea of stabilized weights (e.g., Lim et al., 2018) is that the marginal transition probabilities Ξs,
on average over the population, downscale the inverse propensity weights. Importantly, the scaling
factors are not conditioned on the individual history and, therefore, do not change the objective.

To formalize this, we make use of the fact that the optimal parameters in Equation 14 are invariant
to multiplicative scaling of the optimization problem with respect to constant scaling factors. We
summarize this in the following proposition.

Proposition 3. The optimal parameters ϕ̂ in Equation 14 can equivalently be obtained by

ϕ̂ = argmin
ϕ

EP0

[(
Yτ −mϕ(At, N

a
t , H̄t−)

)2

T
s≥t

W̃s

∣∣∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
. (19)

Proof. See Supp. D.

Proposition 3 guarantees that we can substitute the original, unstabilized weights Ws with the stabi-
lized version W̃s. As the scaling factors Ξs downscale Ws, we reduce the risk of receiving extreme
inverse propensity weights, and, thus, obtain a more stable objective.

The results from Proposition 3 still rely on product integrals P. However, as in Proposition 2, we
now derive an equivalent, tractable expression that relies on the product operator Π instead.

Proposition 4. Let ta∗,0 = t for notational convenience. The scaling factor Ξs from Equation 17
then satisfies

T
s≥t

Ξs

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(20)

=

J∏
j=1

Ξta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)
, (21)

where

Ξta∗,j
=

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−

)π0,ta∗,j
(ata∗,j | Āta∗,j−, N̄

a
ta∗,j−

)

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | Ās−, N̄a

s−) ds
. (22)

Proof. See Supp. D.

Together, Propositions 2, 3 and 4 yield a (1) tractable objective function that relies on (2) stabilized
inverse propensity weights. As we show in the following Sec. 4.3, we can estimate the stabilized
weights from data. Thereby, we present our SCIP-Net, which adjusts for time-varying confounding
in continuous time.

4.3 NEURAL ARCHITECTURE

Overview: We now introduce the neural architecture of our SCIP-Net, which consists of four com-
ponents (see Fig. 2): The S stabilization network learns an estimator of the scaling factors ξs(·)
from Equation 17. The W weight network learns an estimator of the unstabilized inverse propensity
weights ws(·) from Equation 12. Combining both, we have an estimator for the stabilized weights
w̃s(·) from Equation 18. The E encoder learns a representation of the observed history, which is
then passed to the decoder. Finally, the D decoder takes the learned representations and the stabi-

lized inverse propensity weights as input to estimate the CAPOs E
[
Yτ [a∗,t, n

a
∗,t] | H̄t− = h̄t−

]
.

Backbones: All components S , W , E , and D use neural controlled differential equations (CDEs)
(Kidger et al., 2020; Morrill et al., 2021) as backbones. Neural CDEs have several benefits for our
SCIP-Net. First, neural CDEs process data in continuous time. Second, neural CDEs update their
hidden states as data becomes available over time. We provide a brief introduction in Supp. C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

W Weight
network

CE

BCE

Stability
network

CE

BCE

Encoder

MSE

Decoder
Neural
CDE

WMSE

S

E

D

CE

BCE

MSE
WMSE

Cross entropy

Binary CE

Mean squared error
Weighted MSE

Legend

Neural
CDE

Neural
CDE

Neural
CDE

Figure 2: Neural architecture of our SCIP-Net.

In the following, we denote the training samples by {h̄i,τ}ni=1 and the test samples by
{(h̄k,t−, a∗,t, n

a
∗,t)}mk=1. Reassuringly, we emphasize that h̄i,t−, h̄k,t− are realizations from the

observational distribution dP0, whereas (a∗,t, n
a
∗,t) is the interventional treatment sequence.

S Stability network: The stability network learns an estimator ξ̂s(·) for the scaling factors Ξta∗,j

from Proposition 4. It consists of a linear input layer νSϕ , a neural vector field fS
ϕ , and two linear

output layers µS,I
ϕ and µS,P

ϕ , which estimate the treatment intensity and propensity, respectively.

Training: The stability network receives treatment decisions and treatment times (Āτ , N̄
a
τ) =

(āi,τ , n̄
a
i,τ). We distinguish two cases. For 0 ≤ t < τ , the latent representation zSi,t evolves as

zSi,t = zSi,0 +

∫ t

0

fS
ϕ (zi,s, s) d[ai,s−, n

a
i,s−], (23)

where d[ai,s−, n
a
i,s−] denotes Riemann-Stieltjes integration with respect to the control path and

zSi,0 = νSϕ (ai,0, n
a
i,0). Case (1): The latent representation is then passed to the intensity layer µS,I

ϕ

in order to estimate the probability whether a treatment decision is made at time t. For this, our
SCIP-Net optimizes the binary cross entropy (BCE) loss

LS,I
t (ϕ) = BCE

(
µS,I
ϕ (zSi,t),dn

a
i,t

)
. (24)

Thereby, the intensity layer µS,I
ϕ learns an estimator of the treatment intensity function via

λ̂a
0(t | Āt−, N̄

a
t−) = µS,I

ϕ (ZS
t). (25)

Case (2): If a treatment decision is made at time T a
j = tai,j , the latent representation is additionally

passed through the propensity output layer µS,P
ϕ to estimate which treatment is administered. For

this, our SCIP-Net minimizes the cross entropy (CE) loss

LS,P
j (ϕ) = CE

(
µS,P
ϕ (zSi,tai,j), ai,t

a
i,j

)
, (26)

Hence, the propensity layer learns an estimator of the propensity score via

π̂a
0 (at | Āt−, N̄

a
t−) = µS,P

ϕ (ZS
t). (27)

Scaling factor: After training, the stability network again receives the training samples
(Āτ , N̄

a
τ) = (āi,τ , n̄

a
i,τ). Following Proposition 4, it then computes

T
s≥t

ξ̂s(āi,s, n̄
a
i,s) (28)

=

J∏
j=1

λ̂a
0(t

a
i,j | Ātai,j− = āi,tai,j−, N̄

a
tai,j−

= n̄a
i,tai,j−

) π̂0,tai,j
(atai,j

| Ātai,j− = āi,tai,j−, N̄
a
tai,j−

= n̄a
i,tai,j−

)

exp
∫
s∈[tai,j−1,t

a
i,j)

λ̂a
0(s | Ās− = āi,s−, N̄a

s = n̄a
i,s−) ds

,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where we can use an arbitrary quadrature scheme to compute the integral in the denominator.

W Weight network: The weight network learns an estimator ŵs(·) for the unstabilized weights
Wta∗,j

from Proposition 2. It also consists of a linear input layer νWϕ , a neural vector field fW
ϕ , and

two linear output layers µW,I
ϕ and µW,P

ϕ , which are trained to estimate the treatment intensity and
propensity, respectively.

Training: The weight network receives samples H̄τ = h̄i,τ . After hi,0 is transformed into zWi,0 via
νWϕ , the latent state zWi,t of the weight network evolves as

dzWi,t = zWi,0 +

∫ t

0

fW
ϕ (zWi,s, s) d[hi,s−], (29)

where d[hi,s−] denotes Riemann-Stieltjes integration w.r.t. the control path. Case (1): As for the
stability network, the weight network estimates the probability of a treatment decision at time t

through the intensity layer µW,I
ϕ via

LW,I
t = BCE

(
µW,I
ϕ (zWi,t),dn

a
i,t

)
, (30)

and, hence, learns an estimator of the treatment intensity function via

λ̂a
0(t | H̄t−) = µT,I

ϕ (ZW
t). (31)

Case (2): If a treatment decision is made at time T a
j = tai,j , the latent state is also passed through

the propensity layer µW,P
ϕ and jointly trained via

LW,P
j = CE

(
µW,P
ϕ (zWi,tai,j), ai,t

a
i,j

)
, (32)

such that our SCIP-Net learns an estimator of the propensity score as

π̂a
0 (at | H̄t−) = µW,P

ϕ (ZW
t). (33)

Inverse propensity weight: After training, the weight network again receives the training samples
H̄τ = h̄i,τ and estimates the unstabilized inverse propensity weights according to Proposition 2 via

T
s≥t

ŵs(h̄i,s−) =

J∏
j=1

exp
∫
s∈[tai,j−1,t

a
i,j)

λ̂a
0(s | H̄s− = h̄i,s−) ds

λ̂a
0(t

a
i,j | H̄tai,j− = h̄tai,j−) π̂0,tai,j

(ai,tai,j | H̄ta∗,j− = h̄tai,j−)
. (34)

E Encoder: The encoder computes a latent representation of the history, which is then passed to
the decoder. It consists of a linear input layer νEϕ , a neural vector field fE

ϕ , and an output layer µE
ϕ .

Training: The encoder receives samples H̄τ = h̄i,τ . First, it transforms h̄i,0 into zEi,0 via νEϕ . The
latent state zEi,t then evolves according to

zEi,t = zEi,0 +

∫ t

0

fE
ϕ (zEi,s, s) d[hi,s−], (35)

where d[hi,s−] denotes Riemann-Stieltjes integration w.r.t. the control path. At jumping times nx
i,t,

we pass the latent state zi,t to the encoder output layer µE
ϕ and minimize the mean squared error

(MSE) loss for outcomes at the jumping times via

LE
t = MSE

(
µE
ϕ (z

E
i,t, ai,t), yi,t

)
. (36)

D Decoder: The decoder receives as input: (i) the encoded history of the encoder and (ii) the future
sequence of treatments. Then, it outputs an estimate of the CAPOs by adjusting for time-varying
confounding. It has a linear input layer νDϕ , a neural vector field fD

ϕ and an output layer µD
ϕ .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Training: During training, the decoder receives the final latent representation zEi,t of the encoder as
well as the observed treatments (At, N

a
t) = (ai,t, n

a
i,t). It then transforms the encoder representa-

tion through zDi,t = νDϕ (zEi,t) and computes

zDi,τ = zDi,t +

∫ τ

t

fD
ϕ (zDi,s, s) d[ai,s−, n

a
i,s−], (37)

where d[ai,s−, n
a
i,s−] denotes Riemann-Stieltjes integration w.r.t. the control path. At time τ , we

pass zDi,τ through the linear output layer µD
ϕ . Importantly, the decoder is trained by minimizing the

MSE loss weighted by the stabilized weights, i.e.,

LD
τ =

J∏
j=1

ˆ̃wtai,j
MSE

(
µD
ϕ (zDi,τ , ai,τ), yi,τ

)
, (38)

where
ˆ̃wtai,j

≡ ˆ̃wtai,j
(h̄i,tai,j

) = ξ̂tai,j (āi,tai,j , n̄
a
i,tai,j

)ŵtai,j
(h̄i,tai,j

), (39)

using the stability network ξ̂s(·) and the weight network ŵs(·), respectively. By Proposition 3, we
thereby target the optimal model parameters ϕ̂ which, unlike existing methods, explicitly adjust for
time-varying confounding in continuous time.

4.4 INFERENCE

In order to estimate CAPOs for an observed history H̄t− = h̄k,t− and a future sequence of treat-
ments (At, N

a
t) = (a∗,t, n

a
∗,t), we first encode the history via

zEk,t = zEk,0 +

∫ t

0

fE
ϕ (zEk,s, s) d[hk,s−]. (40)

This latent representation is then passed to the decoder along with (a∗,t, n
a
∗,t) in order to compute

the final representation

zDk,τ = νDϕ (zEk,t) +

∫ τ

t

fD
ϕ (zDk,s, s) d[a∗,s−, n

a
∗,s−]. (41)

Finally, the output layer µD
ϕ of the decoder is used to estimate the CAPO at time τ , given the history

H̄t− = h̄k,t−, via

Ê
[
Yτ [a∗,t, n

a
∗,t]
∣∣ H̄t− = h̄k,t−

]
= µD

ϕ (zDk,τ , ak,τ). (42)

5 NUMERICAL EXPERIMENTS

Baselines: We now demonstrate the performance of our SCIP-Net against key neural baselines for
estimating CAPOs over time (see Table 1). Importantly, our choice of baselines and datasets is
consistent with prior literature (e.g., Bica et al., 2020; Lim et al., 2018; Melnychuk et al., 2022;
Seedat et al., 2022). Further, we report the performance of the CIP-Net ablation, where we directly
train the decoder with the unstabilized weights. This allows us to understand the performance gain
of our stabilized weights. Note that the CIP-Net ablation is still a new method (as no other neural
method performs proper adjustments for time-varying confounding in continuous time).

Datasets: We use a (i) synthetic dataset based on a tumor growth model (Geng et al., 2017), and
a (ii) semi-synthetic dataset based on the MIMIC-III dataset (Johnson et al., 2016). For both
datasets, the outcomes are simulated, so that we have access to the ground-truth potential outcomes,
which allows for comparing the performance in terms of root mean squared error (RMSE). We
report the mean ± the standard deviation over five runs with different seeds. We perform rigorous
hyperparameter tuning for all baselines to ensure a fair comparison (see Supp. G).

Tumor growth data: Tumor growth models are widely used for estimating CAPOs over time. It is
a model for the evolution of lung cancer Yt under radio therapy treatment Ac

t and chemo therapy

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

treatment Ar
t (details in Supp. E.1. Here, we follow Vanderschueren et al. (2023), where observation

times are at arbitrary, irregular timestamps. However, our setup has two differences: (i) We are not
primarily interested in informative sampling times. Instead, we consider a scenario with observation
times completely at random. Hence, observation times follow a Hawkes process with constant inten-
sity. (ii) Further, we do not consider an RCT setting. Instead, treatment assignments are confounded
via Ac

t , A
r
t ∼ Ber((γ/Dmax(D̄15(Ȳt−1 − D̄max/2)), where γ controls the confounding strength, and

Dmax and D̄15 are the maximum and average tumor diameter over the last 15 days, respectively.
For evaluation, we can then generate ground truth potential outcomes under hard interventions that
would be unobserved in real-world data. For this, we randomly sample treatment sequences, ir-
respective of the history, as is done in (Melnychuk et al., 2022). Below, we vary the prediction
horizons (up to three days ahead) and the confounding strength.We provide details in Supp. E.1.

4 5 6 7 8 9 10
Confounding strength ()

4

6

8

10

12

Av
er

ag
e

R
M

SE

CT
CRN
RMSN
G-Net
TECDE
No-adjustment CDE
CIP-Net (ours)
SCIP-Net (ours)

(a) One day ahead prediction

4 5 6 7 8 9 10
Confounding strength ()

2

4

6

8

10

Av
er

ag
e

R
M

SE

CT
CRN
RMSN
G-Net
TECDE
No-adjustment CDE
CIP-Net (ours)
SCIP-Net (ours)

(b) Two days ahead prediction

4 5 6 7 8 9 10
Confounding strength ()

2

3

4

5

6

7

8

9

Av
er

ag
e

R
M

SE

CT
CRN
RMSN
G-Net
TECDE
No-adjustment CDE
CIP-Net (ours)
SCIP-Net (ours)

(c) Three days ahead prediction

Figure 3: Performance for the tumor growth model. We compare different forecast horizons and
different confound strengths. Shown is the average RMSE of the potential outcomes under hard
interventions over five seeds. Our proposed SCIP-Net performs best, followed by our CIP-Net.

The results are in Fig. 3. We make the following observations: (1) Our proposed SCIP-Net per-
forms best. The performance gains become especially obvious for increasing levels of time-varying
confounding because ours is the first method to perform proper adjustments in continuous time.
(2) Our proposed SCIP-Net performs more robust than the CIP-Net ablation, which demonstrates
the effectiveness of our stabilized weights over the unstabilized weights. The stabilized weights
help estimating more accurately especially for larger prediction horizons and strong confounding.
(3) Nevertheless, our CIP-Net, has a competitive performance. (4) The only baseline designed for
continuous time is TE-CDE (shown in green), which we outperform by a large margin. (5) All other
neural baselines are instead designed for discrete time (shown in gray) and are outperformed clearly.

MIMIC-III data: Our experiments are based on the MIMIC-III extract from Wang et al. (2020).
Here, we use real-world covariates at irregular measurement timestamps, and then simulate treat-
ments and outcomes, respectively. This is done analogous to (Melnychuk et al., 2022), such that we
have access to the ground-truth potential outcomes. For the outcome variable, we additionally apply
a random observation mask in order to mimic observations at arbitrary, irregular timestamps. We
provide more details in Supp. E.2.

Prediction window CT CRN RMSNs G-Net TE-CDE CIP-Net (ours) SCIP-Net (ours) Rel. improvement
(τ − t) = 1 hours 1.052± 0.069 1.049± 0.065 1.075± 0.074 1.021± 0.069 0.915± 0.025 0.876± 0.041 0.877± 0.044 +4.1%
(τ − t) = 2 hours 1.196± 0.272 1.088± 0.374 1.130± 0.274 1.095± 0.335 0.784± 0.145 0.785± 0.117 0.634± 0.148 +19.1%
(τ − t) = 3 hours 1.444± 0.232 1.262± 0.355 1.300± 0.304 1.330± 0.198 1.240± 0.242 1.291± 0.400 1.089± 0.322 +12.2%

Table 2: Performance for MIMIC-III. Reported is the average RMSE of the potential outcomes
under hard interventions over five seeds. We highlight the relative improvement of our SCIP-Net
over existing baselines. Again, our proposed SCIP-Net performs best.

Table 2 shows the results for different prediction windows. (1) Our SCIP-Net has the lowest error
among all methods and performs thus again best. (2) Our CIP-Net ablation, which is a new method
in itself, again has highly competitive performance. (3) Yet, the ablation shows that using stabi-
lized weights as in SCIP-Net (as opposed to the unstabilized weights as in CIP-Net) makes a large
contribution to the overall performance.

Conclusion: To the best of our knowledge, SCIP-Net is the first neural method for estimating con-
ditional average potential outcomes through proper adjustments for time-varying confounding in
continuous time. For this, we first derive a tractable expression for inverse propensity weighting in
continuous time. Then, we propose stabilized weights in continuous time to stabilize the training
objective. Our experiments show that our SCIP-Net has clear benefits over existing baselines when
observation times and treatment times take place at arbitrary, irregular timestamps.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ahmed Allam, Stefan Feuerriegel, Michael Rebhan, and Michael Krauthammer. Analyzing patient
trajectories with artificial intelligence. Journal of Medical Internet Research, 23(12):e29812,
2021.

Heejung Bang and James M. Robins. Doubly robust estimation in missing data and causal inference
models. Biometrics, 61(4):962–973, 2005.

Agamirza E. Bashirov, Emine Mısırlı, Yücel Tandoğdu, and Ali Özyapıcı. On modeling with multi-
plicative differential equations. Applied Mathematics - A Journal of Chinese Universities, 26:425
– 438, 2011.

Samuel L. Battalio, David E. Conroy, Walter Dempsey, Peng Liao, Marianne Menictas, Susan Mur-
phy, Inbal Nahum-Shani, Tianchen Qian, Santosh Kumar, and Bonnie Spring. Sense2Stop: A
micro-randomized trial using wearable sensors to optimize a just-in-time-adaptive stress manage-
ment intervention for smoking relapse prevention. Contemporary Clinical Trials, 109:106534,
2021.

Inci Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil Jain, and Jiayu Zhou. Patient subtyping via
time-aware lstm networks. In KDD, 2017.

Ioana Bica, Ahmed M. Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. In ICLR, 2020.

Ioana Bica, Ahmed M. Alaa, Craig Lambert, and Mihaela van der Schaar. From real-world patient
data to individualized treatment effects using machine learning: Current and future methods to
address underlying challenges. Clinical Pharmacology and Therapeutics, 109(1):87–100, 2021.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Zhengping Che, Sanjay Purushotham, KyungHyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific Reports, 8(1):6085,
2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In NeurIPS, 2018.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. In NeurIPS, volume 36, 2023.

Amanda Coston, Edward H. Kennedy, and Alexandra Chouldechova. Counterfactual predictions
under runtime confounding. In NeurIPS, 2020.

Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
effects: From theory to learning algorithms. In AISTATS, 2021.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In KDD, 2016.

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, and Mihaela van der Schaar. Causal
machine learning for predicting treatment outcomes. Nature Medicine, 30:958–968, 2024.

Dennis Frauen, Tobias Hatt, Valentyn Melnychuk, and Stefan Feuerriegel. Estimating average causal
effects from patient trajectories. In AAAI, 2023.

Dennis Frauen, Konstantin Hess, and Stefan Feuerriegel. Model-agnostic meta-learners for estimat-
ing heterogeneous treatment effects over time. arXiv preprint, 2024.

Crispin W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sci-
ences. Springer-Verlag, Berlin; Heidelberg, 1985. ISBN 3540156070.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Changran Geng, Harald Paganetti, and Clemens Grassberger. Prediction of treatment response
for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-
mathematical model. Scientific Reports, 7(1):13542, 2017.

Richard D. Gill and Soren Johansen. A survey of product-integration with a view toward application
in survival analysis. Annals of Statistics, 18(4), 1990.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, 2018.

Tobias Hatt and Stefan Feuerriegel. Sequential deconfounding for causal inference with unobserved
confounders. arXiv preprint, 2021a.

Tobias Hatt and Stefan Feuerriegel. Estimating average treatment effects via orthogonal regulariza-
tion. In CIKM, 2021b.

Konstantin Hess, Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. G-transformer for
estimating conditional average potential outcomes over time. arXiv preprint, 2024a.

Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bayesian neural
controlled differential equations for treatment effect estimation. In ICLR, 2024b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Çağlar Hızlı, ST John, Anne Juuti, Tuure Saarinen, Kirsi Pietiläinen, and Pekka Marttinen. Causal
modeling of policy interventions from sequences of treatments and outcomes. In ICML, 2023.

Guido W. Imbens and Donald B. Rubin. Causal inference for statistics, social, and biomedical sci-
ences: An introduction. Cambridge University Press, Cambridge, 2015. ISBN 9781139025751.

Fredrik D. Johansson, Uri Shalit, and David Sonntag. Learning representations for counterfactual
inference. In ICML, 2016.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. MIMIC-III,
a freely accessible critical care database. Scientific Data, 3(1):160035, 2016.

Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal effects
under unobserved confounding. In AISTATS, 2019.

Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
Electronic Journal of Statistics, 17:3008–3049, 2023.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. In NeurIPS, 2020.

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural SDEs as
Infinite-Dimensional GANs. In ICML, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Milan Kuzmanovic, Tobias Hatt, and Stefan Feuerriegel. Deconfounding temporal autoencoder:
Estimating treatment effects over time using noisy proxies. In ML4H, 2021.

Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M. Sow, Piyush
Madan, Jun Li, Mohamed Ghalwash, Zach Shahn, and Li-wei Lehman. G-Net: A recurrent net-
work approach to G-computation for counterfactual prediction under a dynamic treatment regime.
In ML4H, 2021.

Bryan Lim, Ahmed M. Alaa, and Mihaela van der Schaar. Forecasting treatment responses over
time using recurrent marginal structural networks. In NeurIPS, 2018.

Judith J. Lok. Statistical modeling of causal effects in continuous time. Annals of Statistics, 36(3),
2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In ICML, 2018.

Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, and Stefan Feuerriegel. DiffPO: A causal
diffusion model for learning distributions of potential outcomes. In NeurIPS, 2024.

Farokh Marvasti. Nonuniform sampling. Springer US, 2001, 2001. ISBN 9781461512295.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
counterfactual outcomes. In ICML, 2022.

Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Bounds on representation-induced
confounding bias for treatment effect estimation. In ICLR, 2024.

James Morrill, Patrick Kidger, Lingyi Yang, and Terry Lyons. Neural controlled differential equa-
tions for online prediction tasks. arXiv preprint, 2106.11028, 2021.

Krikamol Muandet, Montonobu Kanagawa, Sorawit Saengkyongam, and Sanparith Marukatat.
Counterfactual mean embeddings. Journal of Machine Learning Research, 22:1–71, 2021.

Elizabeth Murray, Eric B. Hekler, Gerhard Andersson, Linda M. Collins, Aiden Doherty, Chris Hol-
lis, Daniel E. Rivera, Robert West, and Jeremy C. Wyatt. Evaluating Digital Health Interventions:
Key Questions and Approaches. American Journal of Preventive Medicine, 51(5):843–851, 2016.

Jerzy Neyman. On the application of probability theory to agricultural experiments. Annals of
Agricultural Sciences, 10:1–51, 1923.

Yilmazcan Özyurt, Mathias Kraus, Tobias Hatt, and Stefan Feuerriegel. AttDMM: An attentive deep
Markov model for risk scoring in intensive care units. In KDD. 2021.

James M. Robins. A new approach to causal inference in mortality studies with a sustained exposure
period: Application to control of the healthy worker survivor effect. Mathematical Modelling, 7:
1393–1512, 1986.

James M. Robins. Robust estimation in sequentially ignorable missing data and causal inference
models. Proceedings of the American Statistical Association on Bayesian Statistical Science, pp.
6–10, 1999.

James M. Robins and Miguel A. Hernán. Estimation of the causal effects of time-varying exposures.
Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press, Boca Raton, 2009.

James M. Robins, Miguel A. Hernán, and Babette Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

Kjetil Røysland. A martingale approach to continuous-time marginal structural models. Bernoulli,
17(3):895 – 915, 2011.

Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 66(5):688–701, 1974.

Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581, 1976.

Donald B. Rubin. Bayesian inference for causal effects: The role of randomization. Annals of
Statistics, 6(1):34–58, 1978.

Helene C. Rytgaard, Thomas A. Gerds, and Mark J. van der Laan. Continuous-time targeted min-
imum loss-based estimation of intervention-specific mean outcomes. The Annals of Statistics,
2022.

Helene C. Rytgaard, Frank Eriksson, and Mark J van der Laan. Estimation of time-specific interven-
tion effects on continuously distributed time-to-event outcomes by targeted maximum likelihood
estimation. Biometrics, 79(4):3038–3049, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maresa Schroeder, Dennis Frauen, Jonas Schweisthal, Konstantin Hess, Valentyn Melnychuk, and
Stefan Feuerriegel. Conformal prediction for causal effects of continuous treatments. arXiv
preprint, 2024.

Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. In NeurIPS,
2017.

Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der Schaar. Continuous-
time modeling of counterfactual outcomes using neural controlled differential equations. In
ICML, 2022.

Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: Gener-
alization bounds and algorithms. In ICML, 2017.

Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural tem-
poral point processes: A review. In IJCAI, 2021.

Yi Shirakawa, Toru; Li, Yulun Wu, Sky Qiu, Yuxuan Li, Mingduo Zhao, Hiroyasu Iso, and Mark
van der Laan. Longitudinal targeted minimum loss-based estimation with temporal-difference
heterogeneous transformer. In ICML, 2024.

Hossein Soleimani, Adarsh Subbaswamy, and Suchi Saria. Treatment-response models for counter-
factual reasoning with continuous-time, continuous-valued interventions. In UAI, 2017.

Mark J. van der Laan and Susan Gruber. Targeted minimum loss based estimation of causal effects
of multiple time point interventions. The International Journal of Biostatistics, 8(1):Article 9,
2012.

Toon Vanderschueren, Alicia Curth, Wouter Verbeke, and Mihaela van der Schaar. Accounting for
informative sampling when learning to forecast treatment outcomes over time. In ICML, 2023.

Shirly Wang, Matthew B.A. McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C.
Hughes, and Tristan Naumann. MIMIC-extract: A data extraction, preprocessing, and repre-
sentation pipeline for MIMIC-III. In CHIL, 2020.

Yanbo Xu, Yanxun Xu, and Suchi Saria. A non-parametric bayesian approach for estimating
treatment-response curves from sparse time series. In ML4H, 2016.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Irregular time series: Outside of the causal literature, stochastic processes in continuous time
and irregular time series are a heavily studied area of research, in particular in terms of stochastic
processes (Gardiner, 1985). Directly related to the continuous time literature are non-uniformly
spaced observations and their impact on inference (Marvasti, 2001). Irregular observation times
can also be seen as a special case of missing data (Rubin, 1976). More recently, neural network
architectures handling irregularity involve explicit incorporation of time gaps into recurrent units
(Baytas et al., 2017), or otherwise handling missing values in recurrent neural networks (Che et al.,
2018; Brouwer et al., 2019). Further, transformers have been adapted for irregular time series (Chen
et al., 2023) and neural point processes Du et al. (2016); Shchur et al. (2021). Finally, and directly
related to our work, neural controlled differential equations (Kidger et al., 2020; 2021; Morrill et al.,
2021) can directly handle irregular time series by design. However, these works focus on traditional
estimation and not causal inference tasks. In other words, the above methods solve a different task
and would be biased in our setting.

Conditional average potential outcomes in the static setting: A large body of research focuses
on methods for estimating conditional average potential outcomes in the static setting (e.g., Curth
& van der Schaar, 2021; Hatt & Feuerriegel, 2021b; Johansson et al., 2016; Kallus et al., 2019; Ma
et al., 2024; Schroeder et al., 2024; Shalit et al., 2017). However, they cannot adequately address
the complexities of time-varying data, which are crucial in healthcare applications where patient
conditions evolve over time (e.g., EHRs (Allam et al., 2021; Bica et al., 2021), wearable devices
(Battalio et al., 2021; Murray et al., 2016)).

Nonparametric methods in continuous time: Some nonparametric methods have been proposed
(Hatt & Feuerriegel, 2021a; Hızlı et al., 2023; Schulam & Saria, 2017; Soleimani et al., 2017; Xu
et al., 2016), but they suffer from scalability issues. Further, some struggle with static and high-
dimensional covariates, complex outcome distributions, or impose additional identifiability assump-
tions. As a result, we focus on neural methods for their flexibility and scalability.

Additional research directions: Hess et al. (2024b) propose a neural method for uncertainty quan-
tification of conditional average potential outcomes in continuous time. Further, Vanderschueren
et al. (2023) develop a framework to account for bias due to informative observation times. Both
approaches are orthogonal to our work and do not focus on time-varying confounding. Further,
additional research directions in discrete time consider nonparametric learners (Frauen et al., 2024)
and robust estimation of the G-computation formula (Hess et al., 2024a). Other works focus on
learning treatment effects from noisy proxies (Kuzmanovic et al., 2021). Finally, there are efforts to
leverage neural methods for estimating average potential outcomes (Frauen et al., 2023; Shirakawa
et al., 2024). However, these methods are not applicable to our setting, as the do not operate in
continuous time and do not focus on estimating CAPOs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PRODUCT INTEGRATION

Product integration is a useful tool for describing stochastic processes and their joint likelihoods in
continuous time (e.g., in survival analysis; see Gill & Johansen, 1990; Rytgaard et al., 2022; 2023).
In the following, we provide a brief introduction to product integration. Importantly, the type that
we refer to is also known as the geometric integral or the multiplicative integral (Bashirov et al.,
2011).

The product integral P can intuitively be thought of as the infinitesimal limit of the product operator
Π, or, equivalently, as the multiplicative version of the Riemann-integral

∫
. That is, the standard

Riemann-integral is defined as

∫
[a,b]

f(x) dx = lim
∆x→0

∑
i

f(x̄i)∆x, (43)

where ∆x = xi+1 − xi and x̄ ∈ (xi, xi+1) for a partition
⋃

i[xi, xi+1] of [a, b].

The product-integral is analogously defined as

T
[a,b]

f(x)dx = lim
∆x→0

∏
i

f(x̄i)
∆x. (44)

For the proofs in Supp. D, we make use of the identity

T
[a,b]

f(x)dx = exp
(∫
[a,b]

log f(x) dx
)
, (45)

which holds since

T
[a,b]

f(x)dx = lim
∆x→0

∏
i

f(x̄)∆x (46)

= lim
∆x→0

exp
(
log
∏
i

f(x̄i)
∆x
)

(47)

= lim
∆x→0

exp
(∑

i

log f(x̄i)
∆x
)

(48)

=exp
(

lim
∆x→0

∑
i

log f(x̄i)
∆x
)

(49)

=exp
(∫
[a,b]

log f(x) dx
)
. (50)

Similar to the additivity of the standard integral
∫

, the product integral P is multiplicative. That is,
we have that for a < b < c

T
[a,c]

f(x)dx = T
[a,b]

f(x)dx T
[b,c]

f(x)dx, (51)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

which can be shown with the above exp-log identity

T
[a,c]

f(x)dx = exp
(∫
[a,c]

log f(x) dx
)

(52)

=exp
(∫
[a,b]

log f(x) dx+

∫
[b,c]

log f(x) dx
)

(53)

=exp
(∫
[a,b]

log f(x) dx
)
exp

(∫
[b,c]

log f(x) dx
)

(54)

=T
[a,b]

f(x)dx T
[b,c]

f(x)dx. (55)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C NEURAL DIFFERENTIAL EQUATIONS

We provide a brief summary of neural ordinary differential equations and neural controlled differ-
ential equations, similar to that in (Hess et al., 2024b).

Neural ODEs: Neural ordinary differential equations (ODEs) (Chen et al., 2018; Haber & Ruthotto,
2018; Lu et al., 2018) integrate neural networks with ordinary differential equations. In a neural
ODE, the neural network fϕ(·) defines the vector field of the initial value problem

Zt =

∫ t

0

fϕ(Zs, s) ds, Z0 = X. (56)

Thereby, a neural ODE captures the continuous evolution of hidden states Zt over a time scale.
Thereby, it learns a continuous flow of transformations, where the input X = Z0 is passed through
an ODE solver to obtain the output Ŷ = Zτ (possibly, after another output transformation).

While neural ODEs are generally suitable for describing a continuous time evolution, they have an
important limitation: all data need to be captured in the initial value. Hence, they are not capable
of updating their hidden states as new data becomes available over time, as is the case for, e.g.,
electronic health records.

Neural CDEs: Neural controlled differential equations (CDEs) (Kidger et al., 2020) overcome the
above limitation. Put simply, one can think of them as a continuous-time counterpart to recurrent
neural networks. Given a path of data Xt ∈ Rdx , t ∈ [0, τ], a neural CDE consists of an embedding
network νϕ(·), a readout network µϕ(·), and a neural vector field fϕ. Then, the neural CDE is
defined as

Ŷ = µϕ(Zτ), Zt =

∫ t

0

fϕ(Zs, s) d[Xs], t ∈ (0, τ] with Z0 = νϕ(X0), (57)

where Zt ∈ Rdz and fϕ(Zt, t) ∈ Rdz×dx . The integral here is a Riemann-Stieltjes integral, where
fϕ(Zs, s) d[Xs] corresponds to matrix multiplication. In this context, the neural differential equation
is controlled by the process [Xs]. Importantly, one can rewrite it (under some regularity conditions)
as

Zt =

∫ t

0

fϕ(Zs, s)
dXs

ds
ds, t ∈ (0, T̄]. (58)

Calculating the time derivative requires a C1-representation of the data Xt for all t ∈ [0, τ]. As a
result, irregularly sampled observations ((t0, X0), (t1, X1), . . . , (tn, Xn) must be interpolated over
time, producing a continuous representation Xt. Here, we can use any interpolation scheme such as
linear interpolation (Morrill et al., 2021) as in TE-CDE (Seedat et al., 2022). Then, the neural CDE
essentially reduces to a neural ODE for optimization.

The key difference to neural ODEs is, however, that the neural vector field is controlled by se-
quentially incoming data and, therefore, updates the hidden states as data becomes available over
time. This is a clear advantage over ODEs, which require capturing all data in the initial value and
because of which neural ODEs are not suitable.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D PROOFS OF PROPOSITIONS

Proposition 1. Under assumptions (i)–(iii), we can estimate the conditional average potential out-
come from observational data (i.e., from data sampled under dP0) via inverse propensity weighting,
that is,

E
[
Yτ [a∗,t, n

a
∗,t]
∣∣∣ H̄t− = h̄t−

]
= E

[
Yτ T

s≥t

Ws

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,), H̄t− = h̄t−

]
, (59)

where the inverse propensity weights for s ≥ t are defined as

Ws ≡ ws(H̄s) =
dG∗,s(H̄s)

dG0,s(H̄s)
. (60)

Proof. The proof follows similar ideas as in (Rytgaard et al., 2022):

E
[
Yτ [a∗,t, n

a
∗,t] | H̄t− = h̄t−

]
(61)

=

∫
yτ [a∗,t, n

a
∗,t]T

s≥t

dQ0,s(h̄s) dG0,s(h̄s) (62)

=

∫
yτ [a∗,t, n

a
∗,t]T

s≥t

dQ0,s(h̄s) dG∗,s(h̄s) (63)

=︸︷︷︸
(iii)

∫
yτ [a∗,t, n

a
∗,t]T

s≥t

dQ0,s(h̄s | (At, N
a
t) = (a∗,t, n

a
∗,t)) dG∗,s(h̄s | (At, N

a
t) = (a∗,t, n

a
∗,t)) (64)

=︸︷︷︸
(i)

∫
yτ T

s≥t

dQ0,s(h̄s | (At, N
a
t) = (a∗,t, n

a
∗,t)) dG∗,s(h̄s | (At, N

a
t) = (a∗,t, n

a
∗,t)) (65)

=︸︷︷︸
(ii)

∫
yτ T

s≥t

dG∗,s(h̄s | (At, N
a
t) = (a∗,t, n

a
∗,t))

dG0,s(h̄s | (At, N
a
t) = (a∗,t, n

a
∗,t))

× T
s≥t

dQ0,s(h̄s | (At, N
a
t) = (a∗,t, n

a
∗,t)) dG0,s(h̄s | (At, N

a
t) = (a∗,t, n

a
∗,t)) (66)

= E
[
Yτ T

s≥t

ws(H̄s | (At, N
a
t) = (a∗,t, n

a
∗,t))

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
(67)

= E
[
Yτ T

s≥t

ws(H̄s)
∣∣∣ (At, N

a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
(68)

= E
[
Yτ T

s≥t

Ws

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
, (69)

where Equation 66 uses the multiplicativity of the product integral.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 2. Let ta∗,0 = t for notational convenience. The unstabilized weights in Equation 12
satisfy

T
s≥t

Ws

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
=

J∏
j=1

Wta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
,

(70)

where

Wta∗,j
=

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | H̄s−) ds

λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄ta∗,j−)
. (71)

Proof. The inverse propensity weight in Equation 12 is by definition given by

T
s≥t

dG∗,s(H̄s)

dG0,s(H̄s)
= T

s≥t

(
dΛa

∗(s | H̄s−)π∗,s(As | H̄s−)

dΛa
0(s | H̄s−)π0,s(As | H̄s−)

)Na(ds)(
1− dΛa

∗(s | H̄s−)

1− dΛa
0(s | H̄s−)

)1−Na(ds)

.

(72)

We simplify the first part via

T
s≥t

(
dΛa

∗(s | H̄s−)π∗,s(As | H̄s−)

dΛa
0(s | H̄s−)π0,s(As | H̄s−)

)Na(ds)

(73)

=T
s≥t

(
λa
∗(s | H̄s−)π∗,s(As | H̄s−) ds

λa
0(s | H̄s−)π0,s(As | H̄s−) ds

)Na(ds)

(74)

=exp

[∫
s≥t

log

(
λa
∗(s | H̄s−)π∗,s(As | H̄s−)

λa
0(s | H̄s−)π0,s(As | H̄s−)

)
Na(ds)

]
(75)

=exp

 ∑
Ta
j ∈T a

τ \T a
t

log

(
λa
∗(T

a
j | H̄Ta

j −)π∗,Ta
j
(ATa

j
| H̄Ta

j −)

λa
0(T

a
j | H̄Ta

j −)π0,Ta
j
(ATa

j
| H̄Ta

j −)

) (76)

=
∏

Ta
j ∈T a

τ \T a
t

λa
∗(T

a
j | H̄Ta

j −)π∗,Ta
j
(ATa

j
| H̄Ta

j −)

λa
0(T

a
j | H̄Ta

j −)π0,Ta
j
(ATa

j
| H̄Ta

j −)
. (77)

Now, since we condition on Na
t = na

∗,t, we know that the jumping times are given by

T a
τ \ T a

t = {ta∗,j}Jj=1. (78)

Hence, we have that

∏
Ta
j ∈T a

τ

λa
∗(T

a
j | H̄Ta

j −)π∗,Ta
j
(ATa

j
| H̄Ta

j −)

λa
0(T

a
j | H̄Ta

j −)π0,Ta
j
(ATa

j
| H̄Ta

j −)
|
(
(At, N

a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(79)

=

J∏
j=1

λa
∗(t

a
∗,j | H̄ta∗,j−)π∗,ta∗,j (a∗,ta∗,j | H̄ta∗,j−)

λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄ta∗,j−)
|
(
(At, N

a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(80)

=

J∏
j=1

(
λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄a
t∗,j−)

)−1

|
(
(At, N

a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
.

(81)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Further, we can simplify the second part via

T
s≥t

(
1− dΛa

∗(s | H̄s−)

1− dΛa
0(s | H̄s−)

)1−Na(ds)

(82)

=T
s≥t

(
1− P∗(N

a(ds) = 1 | H̄s−)

1− P0(Na(ds) = 1 | H̄s−)

)1−Na(ds)

(83)

= lim
K→∞

K∏
k=1

(
P∗(N

a([tk, tk+1)) = 0 | H̄tk−)

P0(Na([tk, tk+1)) = 0 | H̄tk−)

)1−Na([tk,tk+1))

(84)

=exp
[
−
∫
s≥t

λa
∗(s | H̄s−) ds

]
/ exp

[
−
∫
s≥t

λa
0(s | H̄s−) ds

]
(85)

=exp
[∫

s≥t

λa
0(s | H̄s−) ds−

∫
s≥t

λa
∗(s | H̄s−) ds

]
, (86)

where
⋃K

k=1[tk, tk+1) is a disjoint partition of [t, τ] with limK→∞ maxk≤K(tk+1 − tk) = 0. Fi-
nally, again by conditioning on Na

t = na
∗,t, we have that∫

s≥t

λa
∗(s | H̄s−) ds

∣∣∣ (Na
∗,t = na

∗,t

)
=

∫
s≥t

1{ta∗,j}J
j=1

(s) ds
∣∣∣ (Na

∗,t = na
∗,t

)
= 0, (87)

which leaves

T
s≥t

(
1− dΛa

∗(s | H̄s−)

1− dΛa
0(s | H̄s−)

)1−Na(ds) ∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(88)

= exp
[∫

s≥t

λa
0(s | H̄s−) ds

] ∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
. (89)

Combining Equation 81 with Equation 89, the unstabilized weights are then given by

T
s≥t

Ws

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(90)

=T
s≥t

dG∗,s(H̄s)

dG0,s(H̄s)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(91)

=exp
[∫

s≥t

λa
0(s | H̄s−) ds

]
×

J∏
j=1

(
λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄ta∗,j−)
)−1 ∣∣∣ ((At, N

a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(92)

=

J∏
j=1

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | H̄s−) ds

λa
0(t

a
∗,j | H̄ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | H̄ta∗,j−)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
(93)

=

J∏
j=1

Wta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

)
. (94)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Definition 1. For s ≥ t, let the scaling factor Ξs be given by the ratio of the marginal transition
probabilities of treatment, that is,

Ξs ≡ ξs(Ās, N̄
a
s) =

dG0,s(Ās, N̄
a
s)

dG∗,s(Ās, N̄a
s)

. (95)

We define the stabilized weights W̃s as

W̃s = ΞsWs. (96)

Proposition 3. The optimal parameters ϕ̂ in Equation 14 can equivalently be obtained by

ϕ̂ = argmin
ϕ

EP0

[(
Yτ −mϕ(At, N

a
t , H̄t−)

)2

T
s≥t

W̃s

∣∣∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
. (97)

Proof. The scaling factor is a constant conditionally on the future and past treatment propensity and
frequency, i.e.,

Ξs | (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t− (98)

=Ξs | (At, N
a
t) = (a∗,t, n

a
∗,t), (At−, N̄

a
t−) = (āt−, n̄

a
t−) (99)

=ξs([ā∗,s, āt−], [n̄
a
∗,s, n̄

a
t−]) (100)

≡const., (101)

where we use

[ā∗,s, āt−] =
(⋃

t≤r≤t

a∗,r

)
∪
(⋃

r<t

ar

)
and [na

∗,s, n
a
∗,t−] =

(⋃
t≤r≤t

na
∗,r

)
∪
(⋃

r<t

na
r

)
(102)

for the concatenation of interventional and observational treatments at time s ≥ t. Hence, with
Ξs ∈ R+, we can use linearity of the expectation and multiplicativity of the product integral, such
that

argmin
ϕ

EP0

[(
(Yτ −mϕ(At, N

a
t , H̄t−))

2

T
s≥t

W̃s

) ∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
(103)

=argmin
ϕ

EP0

[(
(Yτ −mϕ(At, N

a
t , H̄t−))

2

T
s≥t

ΞsWs

) ∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
(104)

=argmin
ϕ

{(
T
s≥t

ξs([ā∗,s, āt−], [n̄
a
∗,s, n̄

a
t−])

)
(105)

×
(
EP0

[
(Yτ −mϕ(At, N

a
t , H̄t−))

2

T
s≥t

Ws

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

])}
(106)

=argmin
ϕ

EP0

[
(Yτ −mϕ(At, N

a
t , H̄t−))

2

T
s≥t

Ws

∣∣∣ (At, N
a
t) = (a∗,t, n

a
∗,t), H̄t− = h̄t−

]
(107)

=ϕ̂. (108)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proposition 4. Let ta∗,0 = t for notational convenience. The scaling factor Ξs from Equation 17
then satisfies

T
s≥t

Ξs

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(109)

=

J∏
j=1

Ξta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)
, (110)

where

Ξta∗,j
=

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−

)π0,ta∗,j
(ata∗,j | Āta∗,j−, N̄

a
ta∗,j−

)

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | Ās−, N̄a

s−) ds
. (111)

Proof. For the proof, we follow the steps as in the proof of Proposition 2.

By definition, Ξs satisfies

T
s≥t

Ξs = T
s≥t

dG0,s(Ās, N̄
a
s)

dG∗,s(Ās, N̄a
s))

(112)

=T
s≥t

(
dΛa

0(s | Ās−, N̄
a
s−))π0,s(As | Ās−, N̄

a
s−)

dΛa
∗(s | Ās−, N̄a

s−)π∗,s(As | Ās−, N̄a
s−)

)Na(ds)(
1− dΛa

0(s | Ās−, N̄
a
s−)

1− dΛa
∗(s | Ās−, N̄a

s−)

)1−Na(ds)

(113)

First, we simplify

T
s≥t

(
dΛa

0(s | Ās−, N̄
a
s−)π0,s(As | Ās−, N̄

a
s−)

dΛa
∗(s | Ās−, N̄a

s−)π∗,s(As | Ās−, N̄a
s−)

)Na(ds)

(114)

=T
s≥t

(
λa
0(s | Ās−, N̄

a
s−)π0,s(As | Ās−, N̄

a
s−) ds

λa
∗(s | Ās−, N̄a

s−)π∗,s(As | Ās−, N̄a
s−) ds

)Na(ds)

(115)

=exp

[∫
s≥t

log

(
λa
0(s | Ās−, N̄

a
s−)π0,s(As | Ās−, N̄

a
s−)

λa
∗(s | Ās−, N̄a

s−)π∗,s(As | Ās−, N̄a
s−)

)
Na(ds)

]
(116)

=exp

 ∑
Ta
j ∈T a

τ \T a
t

log

(
λa
0(T

a
j | ĀTa

j −, N̄
a
Ta
j −)π0,Ta

j
(ATa

j
| ĀTa

j −, N̄
a
Ta
j −)

λa
∗(T

a
j | ĀTa

j −, N̄a
Ta
j −)π∗,Ta

j
(ATa

j
| ĀTa

j −, N̄a
Ta
j −)

) (117)

=
∏

Ta
j ∈T a

τ \T a
t

λa
0(T

a
j | ĀTa

j −, N̄
a
Ta
j −)π0,Ta

j
(ATa

j
| ĀTa

j −, N̄
a
Ta
j −)

λa
∗(T

a
j | ĀTa

j −, N̄a
Ta
j −)π∗,Ta

j
(ATa

j
| ĀTa

j −, N̄a
Ta
j −)

. (118)

Conditionally on Na
t = na

∗,t, the jumping times are fixed, i.e.,

T a
τ \ T a

t = {ta∗,j}Jj=1. (119)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Therefore, it follows that

∏
Ta
j ∈T a

τ

λa
0(T

a
j | ĀTa

j −, N̄
a
Ta
j −)π0,Ta

j
(ATa

j
| ĀTa

j −, N̄
a
Ta
j −)

λa
∗(T

a
j | ĀTa

j −, N̄a
Ta
j −)π∗,Ta

j
(ATa

j
| ĀTa

j −, N̄a
Ta
j −)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(120)

=

J∏
j=1

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−

)π0,ta∗,j
(a∗,ta∗,j | Āta∗,j−, N̄

a
ta∗,j−

)

λa
∗(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−

)π∗,ta∗,j (a∗,ta∗,j | Āta∗,j−, N̄
a
ta∗,j−

)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(121)

=

J∏
j=1

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | Āta∗,j−, N̄
a
ta∗,j−)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)
.

(122)

For the second part, we also follow the steps as in Proposition 2, that is,

T
s≥t

(
1− dΛa

0(s | Ās−, N̄
a
s−)

1− dΛa
∗(s | Ās−, N̄a

s−)

)1−Na(ds)

(123)

=T
s≥t

(
1− P0(N

a(ds) = 1 | Ās−, N̄s−)

1− P∗(Na(ds) = 1 | Ās−, N̄s−)

)1−Na(ds)

(124)

= lim
K→∞

K∏
k=1

(
P0(N

a([tk, tk+1)) = 0 | Ātk−, N̄tk−)

P∗(Na([tk, tk+1)) = 0 | Ātk−, N̄tk−)

)1−Na([tk,tk+1))

(125)

=exp
[
−
∫
s≥t

λa
0(s | Ās−, N̄

a
s−) ds

]
/ exp

[
−
∫
s≥t

λa
∗(s | Ās−, N̄

a
s−) ds

]
(126)

=exp
[∫

s≥t

λa
∗(s | Ās−, N̄

a
s−) ds−

∫
s≥t

λa
0(s | Ās−, N̄

a
s−) ds

]
, (127)

where
⋃K

k=1[tk, tk+1) is a disjoint partition of [t, τ] with limK→∞ maxk≤K(tk+1 − tk) = 0. Fi-
nally, again by conditioning on Na

t = na
∗,t, we have that

∫
s≥t

λa
∗(s | Ās−, N̄s−) ds

∣∣∣ (Na
t = na

∗,t

)
=

∫
s≥t

1{ta∗,j}J
j=1

(s) ds
∣∣∣ (Na

t = na
∗,t

)
= 0, (128)

which leaves

T
s≥t

(
1− dΛa

0(s | Ās−, N̄s−)

1− dΛa
∗(s | Ās−, N̄s−)

)1−Na(ds) ∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(129)

= exp
[
−
∫
s≥t

λa
0(s | Ās−, N̄s−) ds

] ∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)
.

(130)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Finally, we combine equation 122 with equation 130. Hence, the scaling factors satisfy

T
s≥t

Ξs

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(131)

=T
s≥t

dG0,s(Ās, N̄
a
s)

dG∗,s(Ās, N̄a
s)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(132)

=exp
[
−
∫
s≥t

λa
0(s | Ās−, N̄

a
s−) ds

]
×

J∏
j=1

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−)π0,ta∗,j

(a∗,ta∗,j | Āta∗,j−, N̄
a
ta∗,j−)

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(133)

=

J∏
j=1

λa
0(t

a
∗,j | Āta∗,j−, N̄

a
ta∗,j−

)π0,ta∗,j
(a∗,ta∗,j | Āta∗,j−, N̄

a
t∗,j−)

exp
∫
s∈[ta∗,j−1,t

a
∗,j)

λa
0(s | Ās−, N̄a

s−) ds

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)

(134)

=

J∏
j=1

Ξta∗,j

∣∣∣ ((At, N
a
t) = (a∗,t, n

a
∗,t), (Āt−, N̄

a
t−) = (āt−, n̄

a
t−)
)
. (135)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E DATA GENERATION

E.1 TUMOR GROWTH DATA

The tumor data used in Sec. 5 was simulated based on the lung cancer model proposed by Geng
et al. (2017), which has been previously used in several works (Lim et al., 2018; Bica et al., 2020;
Li et al., 2021; Melnychuk et al., 2022; Seedat et al., 2022; Vanderschueren et al., 2023).

Specifically, we adopt the simulation framework introduced by Vanderschueren et al. (2023), which
includes irregularly spaced observations. However, different to their work, we explicitly add con-
founding bias to the treatment assignment (that is, both treatment times and treatment choice).

The tumor volume is the outcome variable. It evolves over time according to the ordinary differential
equation

dYt =

1 + ρ log

(
K

Yt

)
︸ ︷︷ ︸

Tumor growth

− αcct︸︷︷︸
Chemotherapy

− (αrdt + βrd
2
t)︸ ︷︷ ︸

Radiotherapy

+ ϵt︸︷︷︸
Noise

Yt dt, (136)

where ρ is the tumor growth rate, K represents the carrying capacity, and αc, αr, and βr control
the effects of chemotherapy and radiotherapy, respectively. The term ϵt introduces randomness into
the dynamics. The parameters were drawn following the distributions as in Geng et al. (2017),
with details provided in Table 3. The variables ct and dt represent chemotherapy and radiotherapy
treatments, respectively, and follow previous works (Lim et al., 2018; Bica et al., 2020; Seedat et al.,
2022). Time t is measured in days.

Variable Parameter Distribution Value (µ, σ2)

Tumor growth Growth parameter ρ Normal (7.00× 10−5, 7.23× 10−3)
Carrying capacity K Constant 30

Radiotherapy Radio cell kill αr Normal (0.0398, 0.168)
Radio cell kill βr – Set to βr = 10× αr

Chemotherapy Chemo cell kill αc Normal (0.028, 7.00× 10−4)

Noise – ϵt Normal (0, 0.012)

Table 3: Parameter details for the synthetic data generating process.

The radiation dosage dt and chemotherapy drug concentration ct are applied with probabilities The
treatments are administered according to the following, history dependent treatment probabilities

Ac
t , A

r
t ∼ Ber

(
σ

(
γ

Dmax
(D̄15(Ȳt−1 − D̄max/2

))
, (137)

where γ controls the confounding strength, Dmax is the maximum tumor volume, D̄15 the average
tumor diameter of the last 15 time steps, and γ controls the confounding strength. For test data,
we want to evaluate the potential outcomes under hard interventions. Hence, uniformly sample a
random treatment sequence and apply it to the outcome, irrespective of the history, as is done in
(Melnychuk et al., 2022).

Importantly, this treatment assignment process is only used for training and validation. For testing,
we randomly sample hard interventions as described in Sec. 3. Thereby, we can directly investigate
how all baselines perform under time-varying confounding.

We add an observation process that randomly masks away observations of the outcome variable.
Hence, at some days, the tumor diameter remains unobserved. Irregular observations times are the
domain that continuous time methods are tailored for.

For this, our setup is consistent with Vanderschueren et al. (2023), who define the observation pro-
cess as a Hawkes process with intensity λy

0(t) given by

λy
0(t) = sigmoid

[
ω

(
D̄t

Dref
− 1

2

)]
, (138)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where ω determines the informativeness of the sampling, Dref = 13 cm represents the reference
tumor diameter, and D̄t is the average tumor diameter over the past 15 days. In this work, however,
our main focus is not informative sampling, which is an orthogonal research direction. Therefore,
we opted for setting the informativeness parameter to ω = 0. Thereby, we are in the setting that is
known as sampling completely a random.

Following Kidger et al. (2020), we added a multivariate counting variable that counts the number of
observations up to each day, respectively. We normalized this counting variable with the maximum
time scale τ .

Finally, consistent with (Lim et al., 2018; Bica et al., 2020; Seedat et al., 2022; Vanderschueren
et al., 2023), we introduced patient heterogeneity by modeling distinct subgroups. Each subgroup
differs in their average treatment response, characterized by the mean of the normal distributions.
Specifically, for subgroup A, we increased the mean of αr by 10%, and for subgroup B, we increased
the mean of αc by 10%.

The observed time window for training, validation, and testing is set to τ = 30 days. We generate
1000 observations for training, validation, and testing, respectively.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.2 MIMIC-III DATA

For our semi-synthetic experiments in Sec. 5, we upon the MIMIC-extract dataset (Wang et al.,
2020), which is based on the MIMIC-III database (Johnson et al., 2016) and widely used in research
(e.g., Özyurt et al., 2021). Importantly, measurements in this dataset have irregular timestamps for
different covariates. Therefore, we can directly use this missingness without artificially introduces
any masking process for covariates.

In our setup, we use 9 time-varying covariates (i.e., vital signs) alongside the static covariates gen-
der, ethnicity, and age. As we are interested in conditional average potential outcomes, we need to
introduce a synthetic data outcome generation process. For this, we simulate a two-dimensional out-
come variable for training and validation purposes and generate interventional outcomes for testing.
As defined in Sec. 3, we add past observed outcomes to the list of covariates. Hence, have have a
dx = 14-dimensional covariate space. The outcome-generation process follows (Melnychuk et al.,
2022):

Simulating untreated outcomes: We first simulate two untreated outcomes Ỹ j
t for j = 1, 2 as fol-

lows:

Ỹ j
t = αj

sB-spline(t) + αj
gg

j(t) + αj
ff

j
Y (Xt) + ϵt, (139)

where αj
s, αj

g , and αj
f are weight parameters. Here, B-spline(t) is drawn from a mixture of three

cubic splines, and f j
Y (·) is a random function approximated using random Fourier features from a

Gaussian process.

Simulating treatment assignments: We simulate da = 3 synthetic treatments Al
t for l = 1, 2, 3

according to:

Al
t ∼ Ber(plt), plt = σ

(
γl
Y Y

A,l
t−1 + γl

Xf l
Y (Xt) + bl

)
, (140)

where γl
Y and γl

X are parameters that control the influence of past treatments and covariates on
treatment assignment. Y A,l

t represents a summary of previously treated outcomes, bl is a bias term,
and f l

Y (·) is another random function sampled using a random Fourier features approximation of a
Gaussian process. For test data, we want to evaluate the potential outcomes under hard interventions.
Hence, uniformly sample a random treatment sequence and apply it to the outcome, irrespective of
the history, as is done in (Melnychuk et al., 2022).

Applying treatments to outcomes: Finally, for training and validation, treatments are applied to the
untreated outcomes Ỹ tj using:

Y j
t = Ỹ tj +

t∑
i=t−ωl

minl=1,...,da
1Al

i=1p
l
iβ

l,j

(ωl − i)2
, (141)

where ωl defines the duration of the treatment effect window, and βl,j determines the maximum
effect of treatment Al on outcome Y j

t . Importantly, we do not follow this treatment assignment
mechanism for testing. Instead, as we are interested in estimating conditional average potential
outcomes, we randomly assign hard interventions as in Sec. 3.

Masking the outcome: Finally, we add an observation mask to the outcome variable Y j
t . For this,

we randomly mask away the outcome variable with observation probability p = 0.15

In our experiments in Sec. 5, we used 1000 samples for training, validation and testing, respectively.
For testing, we simulate 50 different intervention sequences per patient. The time window was set
between 30 ≤ T ≤ 50.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F ADDITIONAL RESULTS

F.1 VARIATION OF OBSERVATION INTENSITIES

In the following, we evaluate the stability of our SCIP-Net for different sampling intensities. For
this, we use the tumor growth model as in Section 5. In our main study, observation times follow
a history-dependent intensity process as informed by prior literature (Vanderschueren et al., 2023).
Here, the observation probabilities λy

0(t) are given by

λy
0(t) = sigmoid

[
ω

(
D̄t

Dref
− 1

2

)]
, (142)

where ω determines the informativeness of the sampling, Dref = 13 cm represents the reference
tumor diameter, and D̄t is the average tumor diameter over the past 15 days. More details are
provided in Supplement E.1.

In our main study in Section 5, we focused on the sampling completely at random setting, where we
set the informativeness parameter ω = 0. In the following, we increase the informativeness param-
eter up to ω = 0.5. Tables 4 and 5 show the performance of our SCIP-Net against the baselines. We
find that our SCIP-Net has very robust performance and consistently outperforms the baselines.

Informativeness of Prediction window G-Net CT RMSNs CRN TE-CDE SCIP-Net
observation times in days (Li et al., 2021) (Melnychuk et al., 2022) (Lim et al., 2018) (Bica et al., 2020) (Seedat et al., 2022) (ours)

ω = 0.0
1 5.69± 1.09 6.45± 0.95 7.01± 1.29 8.31± 1.23 7.86± 0.80 4.33± 0.89
2 5.10± 1.64 7.30± 2.18 5.87± 1.45 7.32± 1.59 7.21± 0.88 4.24± 0.44
3 4.51± 1.20 6.19± 1.72 4.86± 1.36 5.97± 1.21 6.10± 0.77 4.15± 1.20

ω = 0.1
1 6.65± 0.86 6.64± 0.82 7.88± 1.12 8.15± 0.68 7.95± 1.90 5.63± 2.15
2 6.19± 1.44 6.09± 1.43 6.37± 1.19 7.73± 1.66 7.69± 1.56 4.57± 0.82
3 5.26± 1.20 5.24± 1.09 5.16± 0.97 6.31± 1.29 6.57± 1.29 4.18± 0.53

ω = 0.2
1 6.57± 0.87 6.33± 0.51 7.21± 1.16 8.56± 1.70 7.83± 0.49 5.47± 1.72
2 6.14± 1.49 5.86± 1.26 6.67± 1.41 7.91± 1.37 7.65± 1.56 4.69± 0.41
3 5.22± 1.23 5.05± 0.99 5.43± 1.11 6.45± 1.11 6.48± 1.24 4.30± 0.42

ω = 0.3
1 6.40± 1.05 6.26± 0.73 7.01± 1.37 7.54± 0.59 8.65± 1.31 5.48± 2.12
2 6.05± 1.64 5.71± 1.31 6.69± 1.72 7.76± 1.29 7.61± 1.66 4.74± 0.27
3 5.13± 1.33 4.91± 0.99 5.39± 1.34 6.32± 1.07 6.49± 1.44 4.25± 0.45

ω = 0.4
1 6.35± 0.39 6.27± 0.81 6.86± 0.77 8.51± 0.75 7.66± 0.98 5.97± 1.76
2 6.02± 1.20 5.79± 1.37 6.57± 1.53 8.12± 1.66 7.48± 1.92 4.73± 0.63
3 5.12± 0.97 4.98± 1.04 5.38± 1.22 6.51± 1.31 6.34± 1.62 4.28± 0.66

ω = 0.5
1 5.97± 0.39 5.98± 0.83 7.07± 0.45 9.29± 1.03 8.56± 1.24 6.39± 1.52
2 5.64± 1.10 5.51± 1.37 6.57± 1.34 7.96± 1.61 7.68± 1.98 4.77± 0.89
3 4.82± 0.91 4.81± 1.07 5.38± 1.09 6.50± 1.29 6.46± 1.46 4.29± 0.69

Table 4: Informative sampling: Performance for the tumor growth model with irregular sampling
times and confounding strength γ = 8. We vary the informative sampling parameter ω. Our
SCIP-Net has robust performance and consistently outperforms the baselines.

Informativeness of Prediction window G-Net CT RMSNs CRN TE-CDE SCIP-Net
observation times in days (Li et al., 2021) (Melnychuk et al., 2022) (Lim et al., 2018) (Bica et al., 2020) (Seedat et al., 2022) (ours)

ω = 0.0
1 8.74± 0.49 8.85± 1.39 9.52± 0.98 12.15± 0.71 10.02± 1.22 5.13± 0.44
2 6.48± 1.23 8.41± 0.75 6.98± 1.16 8.35± 0.91 8.09± 0.99 4.91± 0.31
3 5.39± 0.98 7.05± 0.58 5.61± 0.93 6.74± 0.80 6.73± 0.95 4.47± 0.39

ω = 0.1
1 9.16± 0.32 8.71± 0.73 10.08± 0.60 11.11± 1.06 11.15± 0.65 4.99± 0.74
2 7.45± 1.08 6.77± 0.64 7.35± 1.04 8.91± 1.11 8.42± 1.25 4.84± 0.81
3 6.17± 0.95 5.75± 0.71 5.91± 0.85 7.14± 0.89 6.95± 1.09 4.53± 0.90

ω = 0.2
1 8.99± 0.32 8.84± 0.99 9.34± 0.83 11.30± 0.98 10.92± 0.11 5.37± 1.47
2 7.32± 1.11 6.99± 0.32 7.69± 1.03 8.99± 1.02 8.53± 0.95 5.03± 0.50
3 6.08± 0.98 5.89± 0.45 6.18± 0.87 7.20± 0.85 6.99± 0.84 4.59± 0.47

ω = 0.3
1 8.81± 0.43 8.65± 0.99 9.42± 0.72 11.28± 0.90 10.91± 0.71 6.33± 2.31
2 7.25± 1.14 6.84± 0.41 7.89± 1.05 9.00± 0.99 8.74± 0.83 6.04± 2.14
3 6.02± 0.99 5.80± 0.57 6.33± 0.92 7.19± 0.79 7.23± 0.74 5.98± 2.10

ω = 0.4
1 8.59± 0.32 8.42± 1.60 8.74± 1.02 11.46± 0.39 11.30± 1.04 4.50± 0.38
2 7.08± 1.03 6.63± 0.62 7.08± 0.69 8.84± 0.97 8.47± 1.19 4.79± 0.71
3 5.86± 0.88 5.65± 0.42 5.73± 0.64 7.10± 0.78 6.91± 0.82 4.62± 0.88

ω = 0.5
1 8.11± 0.42 8.19± 1.43 8.65± 1.25 11.96± 0.37 11.38± 0.64 4.80± 0.72
2 6.73± 1.11 6.51± 0.77 7.29± 0.49 9.02± 1.00 8.60± 1.10 4.94± 0.59
3 5.60± 0.95 5.57± 0.55 5.89± 0.51 7.22± 0.83 7.07± 0.92 4.72± 0.73

Table 5: Informative sampling: Performance for the tumor growth model with irregular sampling
times and confounding strength γ = 6. As in Table 4, we vary the informative sampling parameter
ω. Our SCIP-Net again demonstrates superior performance and outperforms all baselines.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F.2 ABLATION STUDY: SDIP-NET FOR DISCRETE TIME

Confounding strength Prediction window in days G-Net (Li et al., 2021) CT (Melnychuk et al., 2022) RMSNs (Lim et al., 2018) CRN (Bica et al., 2020) SDIP-Net (ours)

γ = 4
1 1.86± 0.15 2.44± 0.24 1.73± 0.17 2.44± 0.22 1.53± 0.12
2 2.17± 0.51 2.11± 0.52 2.62± 0.65 2.78± 0.68 3.40± 0.80
3 2.22± 0.49 1.97± 0.47 2.32± 0.57 2.55± 0.64 2.74± 0.68

γ = 5
1 2.27± 0.35 2.88± 0.31 2.10± 0.26 3.37± 0.54 1.86± 0.18
2 2.90± 0.39 2.93± 0.44 3.74± 0.41 4.03± 0.33 4.78± 0.36
3 2.91± 0.37 2.79± 0.47 3.30± 0.36 3.68± 0.35 3.87± 0.32

γ = 6
1 2.59± 0.40 3.37± 0.46 2.60± 0.42 4.14± 0.62 1.93± 0.28
2 3.31± 0.41 3.36± 0.58 4.43± 0.66 4.97± 0.89 5.58± 1.14
3 3.31± 0.41 3.15± 0.58 3.87± 0.59 4.39± 0.76 4.48± 0.84

γ = 7
1 3.06± 0.63 4.13± 0.43 3.14± 0.52 5.04± 0.58 2.23± 0.49
2 3.61± 0.54 3.89± 0.91 5.11± 1.07 5.48± 1.18 5.96± 1.39
3 3.51± 0.57 3.75± 1.17 4.31± 0.93 4.79± 1.08 4.70± 1.06

γ = 8
1 3.37± 0.77 4.39± 0.62 3.61± 0.65 5.80± 0.87 2.42± 0.53
2 3.74± 0.58 3.86± 0.63 5.56± 0.77 5.95± 0.99 6.14± 0.94
3 3.68± 0.46 3.79± 0.71 4.64± 0.61 5.15± 0.72 4.92± 0.78

γ = 9
1 3.52± 0.71 4.72± 0.57 3.88± 0.69 6.34± 0.81 2.58± 0.64
2 4.41± 1.13 4.78± 1.16 7.00± 1.50 6.87± 1.46 7.17± 1.47
3 4.28± 1.07 4.80± 1.48 5.70± 1.22 5.90± 1.30 5.72± 1.21

γ = 10
1 3.81± 0.86 5.23± 0.58 4.23± 1.00 6.61± 1.02 2.74± 0.67
2 4.72± 0.53 5.07± 1.09 8.32± 1.22 7.47± 1.10 7.52± 1.16
3 3.54± 0.42 4.69± 0.86 6.35± 0.89 6.25± 0.82 5.94± 0.79

Table 6: Ablation study: Performance for the tumor growth model with regular sampling times.
Our SDIP-Net ablation has comparable performance to the state-of-the-art baselines for estimating
CAPOs in discrete time.

We perform an ablation study, where we use our stabilized inverse propensity weights in the discrete-
time setting. For this, we use the tumor growth data as in Section 5. However, we do not apply an
observation mask. Instead, all timestamps are observed.

Here, we use an LSTM (Hochreiter & Schmidhuber, 1997) as the neural backbone in order to
demonstrate that our approach is also applicable to other neural backbones. Our stabilized discrete
time inverse propensity network (SDIP-Net) has comparable performance to the baselines. Table 6
shows the results, which thus confirm the effectiveness of our approach. Nevertheless, we empha-
size that our approach is tailored for the continuous time setting, and not for the more unrealistic
discrete-time setting.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G HYPERPARAMETER TUNING

In order to ensure a fair comparison of all methods, we close follow hyperparameter tuning as in
(Melnychuk et al., 2022) and (Hess et al., 2024a). In particular, we performed a random grid search.
Below, we report the tuning grid for each method. Importantly, all methods are only tuned on
factual data. For optimization, we use Adam (Kingma & Ba, 2015). Both TE-CDE (Seedat et al.,
2022) and our SCIP-Net used a simple Euler quadrature and linear interpolation for the Neural CDE
control path (Morrill et al., 2021). For the neural CDE of both methods and the integrated intensity
in our SCIP-Net, we did not tune the grid size of the solver. Further, we emphasize that different
quadrature schemes may impact training time. Fortunately, we did not encounter large differences
in performance between schemes of different orders and, hence, opted for Euler integration.

Runtime: All methods were trained on 1× NVIDIA A100-PCIE-40GB. On average, training our
SCIP-Net took 29.4 minutes on tumor growth data and approximately 1.7 hours on MIMIC-III data,
which is comparable to the baselines.

Method Component Hyperparameter Tuning range

CRN (Bica et al., 2020)

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFC) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
FC hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

CT (Melnychuk et al., 2022) (end-to-end)

Transformer blocks (J) 1,2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Attention heads (nh) 1
Transformer units (dh) 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Sequential dropout rate (p) 0.1, 0.2
Max positional encoding (lmax) 15
Number of epochs (ne) 50

RMSNs (Lim et al., 2018)

Propensity
treatment
network

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Propensity
history
network

Encoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Decoder

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1dyxa, 2dyxa, 4dyxa, 8dyxa, 16dyxa
LSTM dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 50

G-Net (Li et al., 2021) (end-to-end)

LSTM layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
LSTM output size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
LSTM dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

TE-CDE (Seedat et al., 2022)

Encoder

Neural CDE (Kidger et al., 2020) hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Neural CDE hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Neural CDE hidden units (dh) Balanced representation size of encoder
Balanced representation size (dz) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Feed-forward hidden units (nFF) 0.5dz , 1dz , 2dz , 3dz , 4dz
Neural CDE dropout rate (p) 0.1, 0.2
Number of epochs (ne) 50

SCIP-Net (ours)

Weight
network

Neural CDE (Kidger et al., 2020) hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Neural CDE hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Neural CDE dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Treatment
network

Encoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
Neural CDE hidden units (dh) 0.5dyxa, 1dyxa, 2dyxa, 3dyxa, 4dyxa
Neural CDE dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 50

Decoder

Neural CDE hidden layers (J) 1
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
Neural CDE hidden units (dh) 1dyxa, 2dyxa, 4dyxa, 8dyxa, 16dyxa
Neural CDE dropout rate (p) 0.1, 0.2
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 50

Table 7: Following (Melnychuk et al., 2022), we let dyxa = dy + dx + da be the overall input size.
Further, dz is the hidden representation size of our SCIP-Net, and corresponds to the balanced
representation size of TE-CDE (Seedat et al., 2022), CRN (Bica et al., 2020), and CT (Melnychuk
et al., 2022), and the LSTM output size of G-Net (Li et al., 2021).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H CHALLENGES IN CAUSAL INFERENCE

In the following, we first provide a brief introduction to causal inference in the static setting. Then,
we explain the key differences to causal inference in the time-varying setting. For simplicity, we
assume that timestamps are regular. Thereby, we can explain the dependencies of the variables on a
causal graph. In particular, we provide intuition behind what time-varying confounding is and why
simple history adjustments are insufficient for estimating conditional average potential outcomes.

H.1 STATIC SETTING

Intervention

Figure 4: Causal graph in the static setting. Conditional on X , intervening on treatment A leads to
removal of the causal connection between observed confounders and treatment. Hence, under the
three standard identifiability assumptions, the so-called backdoor adjustment is sufficient to estimate
the conditional average potential outcome.

In the static setting, we aim to estimate the conditional average potential outcome (CAPO) E[Y [a∗ |
X = x], which is the expected outcome of an individual under a specific intervention, given a
set of covariates. In order to estimate the CAPO without bias, we leverage the potential outcome
framework (Neyman, 1923; Rubin, 1974) and need to make the following three assumptions that are
standard in the literature (Muandet et al., 2021; Kennedy, 2023):

• Consistency: The observed outcome corresponds to the potential outcome under the treat-
ment actually received:

Y = Y [a∗] if A = a∗. (143)

• Positivity: Every individual has a non-zero probability of receiving any treatment, given
their covariates:

P(A = a | X = x) > 0 for all a and x. (144)

This assumption ensures that all treatment levels are adequately represented within strata
defined by X .

• Ignorability: The potential outcomes are independent of treatment assignment, given co-
variates:

Y [a∗] ⊥ A | X = x (145)

This implies that all confounders of the treatment-outcome relationship are captured by X .
Hence, there is no bias from unmeasured confounding.

Under these assumptions, the CAPO can be identified as

E[Y [a∗] | X = x] = E[Y | A = a∗, X = x]. (146)

The above is also known as backdoor adjustment (see Figure 4). Put simply, it means that we can
estimate the CAPO by simply regressing Y on A and X and, thereby, correctly target our estimand
of interest.

H.2 TIME-VARYING SETTING

In the time-varying setting, estimating the CAPO is more challenging. This is due to the fact that
simple history backdoor adjustments are not sufficient for targeting the correct estimand. In order

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

History

Future treatment

Unobserved during
inference

Effect of treatment

Time-varying
confounding effect

Intervention

Figure 5: Causal graph in the time-varying setting for a two-step-ahead prediction. Different from
the static setting, conditioning on the history alone (i.e., a backdoor adjustment) is not enough to
adjust for all sources of confounding. Instead, future outcomes and covariates are unobserved during
inference. Hence, they bias the estimates via so-called time-varying confounding (red arrows). In
order to remove all connections into the treatment nodes, we require proper adjustments.

to visualize this on a discrete graph, we assume that timestamps are recorded regularly. Impor-
tantly, all difficulties for estimating the CAPO in the discrete-time setting directly translate into our
continuous-time setting. In the following, we assume that the history H̄t consists of (X̄t, Ȳt, Āt−1).

As in the static setting, we require three assumptions under which we can estimate the CAPO for
a sequence of treatments. These assumptions are standard in the literature (e.g., Li et al., 2021;
Melnychuk et al., 2022):3

• Consistency: The observed outcome corresponds to the potential outcome under the treat-
ment actually received. Formally:

Yτ = Yτ [a∗,t] if At = a∗,t (147)

• Positivity: Every individual has a non-zero probability of receiving any treatment, given
their history:

P(At = at | H̄t = h̄t) > 0 for every h̄t such that P(H̄t = h̄t) > 0. (148)

• Sequential ignorability: The potential outcomes are independent of treatment assignment,
given their history:

Yτ [a∗,t] ⊥ At | H̄t = h̄t (149)

In particular, sequential ignorability ensures that there are no unobserved confounders.

While the above looks similar to the static setting, there is one important difference: even though
we assume the absence of unobserved confounding, there exists so-called time-varying confounding
(see Figure 5). Time-varying confounding means that past treatments influence future covariates,
which, in turn, affect both subsequent treatment assignment and outcomes. This feedback loop

3We state the continuous-time analogue in Section 3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

complicates the estimation of conditional average potential outcomes. Importantly, future time-
varying confounders are unobserved during inference, which is akin to runtime confounding in the
static setting (Coston et al., 2020). Simply conditioning on the history H̄t does not account for this
dynamic relationship and will lead to biased estimates. More formally, this means that

E[Yτ [at,∗] | H̄t = h̄t] ̸= E[Yτ | H̄t = h̄t, At = a∗,t], (150)

as is detailed, for example, in (Frauen et al., 2024). However, there are existing concepts for estimat-
ing the left-hand side, which date back to works such as (Robins, 1999; Robins et al., 2000; Robins
& Hernán, 2009).

Hence, if we simply regressed the outcome variable on the history and future treatments, we would
get biased estimates, as we would target an incorrect estimand. To overcome this, we need proper
adjustments such as G-computation or inverse propensity weighting (in the discrete-time setting,
more adjustments can be found in (Frauen et al., 2024)).

In order to point out the difference between the two terms in Equation 150, it is most comprehensive
to look at the so-called G-computation formula. G-computation (Bang & Robins, 2005; Robins,
1999; Robins & Hernán, 2009) identifies the CAPO as

E[Yτ [a∗,t] | H̄t = h̄t]

=E
{
E
[
. . .E

{
E[Yτ | H̄τ−1, Aτ−1 = a∗,τ−1] | H̄t

τ−2, Aτ−2 = aτ−2,∗
}

(151)

. . .
∣∣H̄t

t+1, At+1 = a∗,t+1

]∣∣H̄t = h̄t, At = a∗,t

}
.

Clearly, the quantity in Equation 151 is entirely different from the right-hand side in Equation 150
and involves several pseudo-outcome regressions. A step-by-step proof for Equation 151 can be
found in (Hess et al., 2024a).4

In our work, we opted for the (continuous-time version of) inverse propensity weighting. As we
detailed in Section 3, inverse propensity weighting directly estimates the outcome under the in-
terventional distribution, conditionally on the observed history. In some sense, this also has an
interpretation related to oversampling the outcome variable proportional to the inverse propensity
score. However, the true propensity score is entirely unknown in observational data such as EHRs
(Feuerriegel et al., 2024) and, hence, needs to be estimated.5 In the continuous time setting, it is
further completely unclear what a tractable version of the propensity score looks like. As a remedy,
we derived this quantity in our Proposition 2.

4As a side note, there is still no neural approach for G-computation in the continuous-time setting. This
may be an interesting direction for future work.

5This is also one of the reasons why we cannot generate true counterfactuals purely based on observational
data via oversampling or else, as we do not have access to the propensity score. Instead, we need synthetic data
for validation.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

I DISCUSSION ON BALANCING

In the following, we provide a brief discussion on balanced representations in causal inference. In
particular, we state formally why balancing is not a proper adjustment for time-varying confounders.

Balancing for counterfactual inference was originally proposed for the static setting (Johansson
et al., 2016). Here, the authors seek to estimate the treatment effect of an intervention – a quantity
that is directly related to the CAPO. For this, the authors work with the standard Neyman-Rubin
causal model. That is, they operate under the three standard assumptions (i) consistency, (ii) overlap,
and (iii) ignorability as introduced in Supplement H.1. Hence, the backdoor adjustment is sufficient
to target the correct estimand and avoid confounding bias. That is, it holds that

E[Y [a∗] | X = x] = E[Y | A = a∗, X = x]. (152)

Instead, the primary goal in (Johansson et al., 2016) is to reduce estimation variance due to the dis-
tribution shift from the observational to the interventional distribution. Say, for example, treatment
A = a∗ is the treatment of interest for counterfactual inference. However, given certain covari-
ate values, this treatment is barely recorded in the observational dataset. Hence, the counterfactual
outcome can only be estimated with large variance due to low overlap in the training set.

To reduce the finite-sample estimation variance of

ÊN [Y | X = x,A = a∗], (153)

Johansson et al. (2016) suggest balancing. Here, ÊN can be an arbitrary regression model. Impor-
tantly, if there was infinite data N → ∞, balancing would not be required, as V[ÊN] → 0. In partic-
ular, assuming ÊN is sufficiently expressive, we would recover the true parameter E[Y [a∗] | X = x],
as we target the correct estimand E[Y | X = x,A = a∗].

Instead, in our time-varying setting, we need proper adjustments to ensure that we target the correct
estimand. In particular, it is unique to the time-varying setting that simple backdoor adjustments are
not sufficient to adjust for time-varying confounding (see Supplement H.2).

Disadvantages of balancing: Some methods such as CRN (Bica et al., 2020), CT (Melnychuk
et al., 2022) and TE-CDE (Seedat et al., 2022) use a balancing objective. Therein, the authors apply
balancing on top of performing backdoor adjustments E[Yτ | H̄t = h̄t, At = a∗,t]. For this, they
employ adversarial training losses of the form

MSE − λ× Balancing loss. (154)

Clearly, even for infinite data, this loss somehow depends on a balancing parameter λ. Hence,
CRN, CT and TE-CDE target an estimand Eλ[(·) | H̄t = h̄t, At = a∗,t] that also depends on a
balancing hyperparameter λ. Here, (·) stands for an a priori unknown quantity, as it is unclear what
the criterion is for fixed λ. However, in general, there does not exist a balancing hyperparameter λ
such that the estimand Eλ[(·) | H̄t = h̄t, At = a∗,t] coincides with the conditional average potential
outcome E[Yτ [a∗,t]|H̄t = h̄t]. And even if there was such a λ, there would be no way to validate the
choice on observational data. In sum, it is completely unclear what the targeted estimand is under
an adversarially balanced objective.

Empirically, balancing in the time-varying setting as in H.2 can help reduce the finite-sample esti-
mation variance, yet it is not designed to adjust for time-varying confounding (which is our main
objective). Instead, it may even increase bias (Melnychuk et al., 2024). Further, the proofs in (Mel-
nychuk et al., 2022) and (Bica et al., 2020) guarantee only the following for balancing: under certain
conditions, the minimax game induced by the adversarial loss has a global minimum, which is at-
tained for representations that are invariant to the treatment assigned. This, however, by no means
implies that the correct estimand is targeted by balancing. In other words, balancing does not adjust
for time-varying confounding, which is unlike our method.

35

	Introduction
	Related Work
	Problem Formulation
	SCIP-Net
	Rewriting the objective for computational tractability
	Stabilized weights
	Neural architecture
	Inference

	Numerical Experiments
	Extended related work
	Product integration
	Neural Differential Equations
	Proofs of propositions
	Data generation
	Tumor growth data
	Mimic-III data

	Additional results
	Variation of observation intensities
	Ablation study: SDIP-Net for discrete time

	Hyperparameter tuning
	Challenges in causal inference
	Static setting
	Time-varying setting

	Discussion on balancing

