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ABSTRACT

Deep learning-based classifiers are known to be vulnerable to adversarial attacks.
Existing methods for defending against such attacks require adding a defense
mechanism or modifying the learning procedure (e.g., by adding adversarial exam-
ples). This paper shows that for certain data distribution one can learn a provably
robust classifier using standard learning methods and without adding a defense
mechanism. More specifically, this paper addresses the problem of finding a robust
classifier for a binary classification problem in which the data comes from a mixture
of Gaussian clusters with orthonormal cluster centers. First, we characterize the
largest ℓ2-attack any classifier can defend against while maintaining high accuracy,
and show the existence of optimal robust classifiers achieving this maximum ℓ2-
robustness. Next, we show that given data sampled from the orthonormal cluster
model, gradient flow on a two-layer network with a polynomial ReLU activation
and without adversarial examples provably finds an optimal robust classifier.

1 INTRODUCTION

The vulnerability of deep neural networks to adversarial attacks (Szegedy et al., 2014), which are
typically human-imperceptible perturbations to the input data, has led to numerous efforts in building
defenses against these attacks (Shafahi et al., 2019; Papernot et al., 2016; Wong et al., 2019; Guo
et al., 2018; Cohen et al., 2019; Levine & Feizi, 2020; Yang et al., 2020; Sulam et al., 2020; Kinfu &
Vidal, 2022). These defenses have been counteracted by new adaptive attacks (Athalye et al., 2018;
Carlini et al., 2019; Croce & Hein, 2020), leading to new defenses and so on. Even in the era of Large
Language Models, adversarial attacks exist (Chao et al., 2023; Shah et al., 2023), leading to undesired
or harmful model outputs, and the competition between adversaries and defenders continues (Robey
et al., 2023; Ji et al., 2024). While such a competition allows us to design more robust networks, it
will not end unless many fundamental questions about adversarial robustness are answered.

One question is what is the maximum adversarial perturbation a neural network can tolerate? Many
works on certified robustness (Cohen et al., 2019; Fazlyab et al., 2020; Zhang et al., 2018) aim to
find a certified radius such that a neural network can provably maintain a high prediction accuracy
for adversarial attacks within that radius. However, their reported certified radii are often too small
compared to what can be achieved by practical defenses (Tramèr et al., 2018; Guo et al., 2018; Gowal
et al., 2020; Wu et al., 2020). Yet, practical defenses come at the cost of computing adversarial
examples, or sophisticated model designs, mostly without theoretical guarantees, except for the case
of linear classifiers (Zou et al., 2021). This also motivates an intriguing question: Is it possible to
(provably) find a robust network by standard training methods, without adversarial examples?

We argue that these questions can be answered by exploiting properties of the data distribution, which
most aforementioned works fail to do. Indeed, recent works show that the existence of a robust
classifier is closely related to data geometry. For instance, Pal et al. (2023; 2024) show that if the data
is localized, i.e., if the distribution of the data given the class concentrates in a set of small volume,
then a robust classifier is guaranteed to exist. Moreover, they show that a 2r separation (w.r.t. to some
distance metric) between the sets that contain each class-conditioned probability mass is sufficient
for the existence of a robust classifier against attacks of radius r in the same distance metric.

This paper shows that such a relationship between data geometry and adversarial robustness has
deeper implications: For certain data distributions, one can characterize the maximum robustness any
classifier can achieve, based on how class-conditional probability masses are separated. Moreover,
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one can make suitable architectural designs that exploit the data geometry, such that a nearly
optimal robust classifier is provably learned by standard training methods, such as gradient descent.
Specifically, we consider a balanced mixture of K-Gaussian clusters in RD, split into two classes:

N
(
µ1, α

2I/D
)
, · · · ,N

(
µK1

, α2I/D
)︸ ︷︷ ︸

positive (+1) class

,N
(
µK1+1, α

2I/D
)
, · · · ,N

(
µK , α2I/D

)︸ ︷︷ ︸
negative (−1) class

, (1)

where the cluster centers µ1, · · · ,µK ∈ RD are othonormal, α2 denotes the intra-cluster variance,
and the ambient dimension D is sufficiently large. We explain our contributions as follows:

Maximum ℓ2-robustness This mixture of Gaussian distribution satisfies data localization and
separation properties similar to those studied in Pal et al. (2023). As illustrated in Figure 1 for the case
of two clusters (one from the positive class and one from the negative class), the class-conditioned
probability masses concentrate around two (D−1)-dimensional affine subspaces separated by a
Euclidean distance of almost

√
2. Based on such observation, our first set of results are:

Theorem (Theorem 1 & 2, informal). No classifier can defend against an adversarial attack of ℓ2
radius

√
2
2 . However, one can construct a nearly optimal robust classifier that can defend against

attacks of radius arbitrarily close to
√
2
2 when D is sufficiently large.

Our results show that data localization and separation are important properties in understanding
the maximum achievable robustness for a classifier. Moreover, we will show that the classifier we
construct is the Bayes optimal classifier w.r.t. the 0-1 loss, which operates as a nearest-cluster rule:
classifiers that exploit the multi-cluster data structure are naturally and optimally robust.

Figure 1: Illustration of two clusters in
high-dimensions, each concentrated on
a (D−1)-dimensional affine subspace
such that the subspaces are separated by
a Euclidean distance of

√
2.

Figure 2: Given sampled data from (1) with 12 positive
clusters and 8 negative clusters (D = 2000), gradient
descent (SGD, small initialization) on (bias-free, width-
200) two-layer ReLU network (ReLU) fails to find a
robust classifier. This issue persists after 1) increasing
depth to 4 (MLP); 2) (blindly) switching to another acti-
vation (Tanh); or 3) using a linear classifier (LogReg).
However, by choosing a suitable activation (pReLU,
p = 3), GD can find a nearly optimal robust classifier.

Learning optimal robust networks So far everything seems to be intuitive and straightforward
given the fairly simple distributional assumption. However, issues arise when one does not know
the data distribution a priori and seeks a classifier by training a neural network on sampled data via
gradient descent. As Figure 2 suggests, a trained multi-layer ReLU network fails to find a classifier
with the same level of robustness as the Bayes classifier (which indeed can defend against attack of
radius ∼

√
2
2 , as our results suggest). This matter is first discussed by Frei et al. (2023), where they

show that any two-layer ReLU network trained by gradient descent under data samples from (1) is
non-robust against adversarial attacks of ℓ2-radius Θ

(
1√
K

)
, where K is the total number of clusters.

Later, Min & Vidal (2024) show that this issue is caused by the fact that a ReLU network fails to
learn, internally with its weight parameters, the multi-cluster structure of the data distribution, despite
that the sampled data points are revealing such a structure. Therefore, while the structural property of
the data distribution allows one to construct an optimal robust classifier, gradient descent algorithms
on neural networks may struggle to learn these key properties, leading to non-robust classifiers.
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To address this issue, Min & Vidal (2024) propose to change the activation. More specifically,
replacing the ReLU activation with a polynomial ReLU activation (pReLU) with polynomial degree
p as a hyperparameter. They empirically show that when p = 3, the pReLU network can internally
learn the data structure, leading to a more robust classifier, and they conjecture that this improvement
in robustness happens when p ≥ 3. However, a rigorous analysis of convergence is not provided. Our
second set of results is to develop a full convergence analysis for gradient flow, a continuous time
limit of gradient descent by taking the stepsize to zero, on a two-layer pReLU network and show that:
Theorem (Theorem 3 & Corollary 1, informal). When p > 2 and the intra-cluster variance α2 is
sufficiently small, gradient flow on pReLU networks converges to a nearly optimal robust classifier.

Our analysis is based on prior works on gradient descent/flow with small initialization on two-layer
ReLU networks Maennel et al. (2018); Phuong & Lampert (2021); Boursier et al. (2022); Kumar &
Haupt (2024); Chistikov et al. (2023); Wang & Ma (2023); Min et al. (2024) and extends to pReLU
networks. We show how the implicit bias of the gradient flow dynamics critically depends on a
careful choice of activation function, allowing the network to learn accurately the underlying data
structure, which, as we have discussed, is essential for finding a robust classifier.

Notation We denote the inner product between vectors x and y by ⟨x,y⟩ = x⊤y, and the cosine of
the angle between them as cos(x,y) = ⟨ x

∥x∥ ,
y

∥y∥ ⟩. For an n×m matrix A, we let ∥A∥ and ∥A∥F
denote the spectral and Frobenius norm of A, respectively. We also define 1A as the indicator for a
statement A: 1A = 1 if A is true and 1A = 0 otherwise. We also let N (µ,Σ2) denote the normal
distribution with mean µ and covariance matrix Σ2, and Unif(S) denote the uniform distribution
over a set S. Lastly, we let [N ] denote the integer set {1, · · · , N}.

2 OPTIMAL ROBUST CLASSIFIERS FOR ORTHONORMAL CLUSTERS

Orthonormal cluster model We study a balanced mixture of K Gaussian clusters, and K1 of them
belong to the positive (+1) class and K2 := K − K1 of them the negative (−1) class. Formally,
consider a tuple of random variables (X,Y, Z) on RD ×{+1,−1}× [K] representing observed data,
observed class label, and latent cluster membership, respectively, defined as follow:

Z ∼ Unif({1, · · · ,K}), X|Z ∼ N
(
µZ , α

2I/D
)
, Y |Z = 1Z≤K1 − 1Z>K1 , (2)

where the µ1, · · · ,µK , called cluster centers, are a set of orthonormal vectors in RD, i.e. ⟨µk,µl⟩ =
1l=k. We denote the marginal distribution of (X,Y )-pair as DX,Y .

ℓ2-robust classifier for DX,Y Our interest is to find a classifier that not only accurately predicts
the label y given an observed data x, but do so in a way that is robust to some adversarial attacks on
observation x. Specifically, we search for a classifier f : RD → R such that with high probability
min∥d∥=1 f(x + rd)y > 0 for some r ≥ 0 given a new sample (x, y) from DX,Y . When r = 0,
f(x)y > 0 suggest that sign (f(x)) correctly predicts the label y; When r > 0, min∥d∥=1 f(x +
rd)y > 0 suggest that sign (f(x+ rd)) still makes correct prediction on y even though observation
x has been corrupted by some adversarial attack rd, thus robust to adversarial attacks of ℓ2-norm
radius r. Ideally, we want a classifier that is robust to attack of radius r, with as large r as possible.

Maximum achievable ℓ2-robustness Inevitably, any classifier fails to be robust if the adversary
has too much power, i.e., the attack radius r exceeds some value. Indeed, for the data distribution
DX,Y of our interest, no classifier can defend against attacks of radius

√
2
2 , as formally shown below:

Theorem 1. Let f : RD → R be any Lebesgue measurable function such that the random variable
min∥d∥≤1

[
f
(
x+

√
2
2 d
)
y
]

is also measurable. Given a sample (x, y) ∼ DX,Y , we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ min{K1,K2}

K
. (3)

We refer the readers to Appendix B.1 for the proof. We explain Theorem 1 from a geometric perspec-
tive (we have discussed some in the introduction): Consider the case of two clusters N

(
µ1,

α2

D I
)

3
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and N
(
µ2,

α2

D I
)

of different classes. As shown in Figure 1, when ambient dimension D is large,
we expect that each cluster concentrates around a D − 1 affine subspace that is orthogonal to the
vector µ1 −µ2. Most importantly, the distance between these two affine subspaces is

√
2, suggesting

that given any decision boundary that separates two affine subspaces, an adversary can perturb a
substantial portion of the probability mass of these clusters to cross the boundary with an attack
radius

√
2
2 . The same argument holds for the K-clusters cases, where every two clusters are separated

by a Euclidean distance
√
2. We also note that extending Theorem 1 to attacks in another metric

amounts to measuring this separation in that metric. Our second result shows the Bayes optimal
classifier w.r.t. 0-1 loss is also nearly optimally robust:
Theorem 2. The Bayes optimal classifier for label Y given observation x w.r.t. 0-1 loss is
sign (f∗(x)), where f∗(x) =

∑K1

k=1 exp
(

D⟨x,µk⟩
α2

)
−
∑K

k=K1+1 exp
(

D⟨x,µk⟩
α2

)
. Moreover, given

a sample (x, y) ∼ DX,Y , we have, for any 2
√
2α2 logK

D ≤ ν ≤
√
2,

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
> 0

)
≥ 1− 2K exp

(
−Dν2

64α2

)
. (4)

We refer the readers to Appendix B.2 for the proof. If we pick ν = Θ
((

α2

D

) 1
4
)

in Theorem 2, then

the result shows that f∗ is robust against attacks of radius
√
2
2 −Θ

((
α2

D

) 1
4
)

with probability at least

1 − O
(
K exp

(
−
(
D
α2

) 1
2
))

over new sample from DX,Y . Therefore, f∗ is nearly optimal robust
when α2

D = o(1), i.e. the ambient dimension is large or the intra-class variance is small.

Interpreting f∗ as a nearest-cluster rule We explain why this Bayes classifier is of interest. We
have the following derivation:

sign (f∗(x)) = sign

(∑K1

k=1
exp

(
D ⟨x,µk⟩

α2

)
−
∑K

k=K1+1
exp

(
D ⟨x,µk⟩

α2

))
= sign

(
α2

D
log

(
K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

))
−α2

D
log

(
K∑

k=K1+1

exp

(
D ⟨x,µk⟩

α2

)))

= sign
(

max
1≤k≤K1

⟨x, µk⟩ − max
K1+1≤k≤K

⟨x, µk⟩+O
(
logK

α2

D

))
,

where the second inequality is due to the fact that α2

D log(·) function is a non-decreasing function, and
the third inequality is because LogSumExp({z1, · · · , zK}) function with a temperature D

α2 uniformly
approximate maxk zk with an error O

(
logK α2

D

)
. When the error is small, the Bayes classifier f∗(x)

finds the closest cluster center to x and outputs the label to that cluster, which is a nearest-cluster rule.
Therefore, by exploiting the multi-cluster structure of DX,Y , f∗ achieves the maximum ℓ2-robustness.

So far we have shown that a nearly optimal robust classifier for DX,Y can be easily constructed as a
nearest-cluster rule. However, as we discussed in the introduction, gradient descent algorithms with
sampled data often fail to find a classifier with the same level of robustness. Next, we address the
problem of finding a nearly optimal robust classifier by gradient flow dynamics.

3 OPTIMAL ROBUST CLASSIFIERS OBTAINED VIA GRADIENT FLOW

In this section, we aim to find a nearly optimal ℓ2-robust classifier for DX,Y by vanilla gradient
descent without adversarial training. We start by stating the problem of training two-layer networks
with gradient flow (gradient descent with infinitesimal step size). Then we show that with a pReLU
activation, gradient flow provably finds a classifier that is nearly optimal ℓ2-robust.

3.1 PRELIMINARIES: GRADIENT FLOW ON TWO-LAYER NETWORKS

pReLU network We consider a two-layer pReLU network (Min & Vidal, 2024) defined as follow:

f (p) (x;θ) =
∑h

i=1
vj

σp(⟨x,wj⟩)
∥wj∥p−1

(θ := {wj , vj}hj=1) , (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

f (p) can be viewed as a generalized version of the ReLU network. When p = 1, f (1) is exactly a
two-layer ReLU network. When p > 1, the output of the hidden activation is equal to the one of
the ReLU network multiplying cosp−1(x,wj) (Min & Vidal, 2024), which discourages large angle
separation between data x and neuron wj .

ℓ2-loss function and balanced dataset Given a dataset {xi, yi}ni=1, one define the loss function as
L(θ; {xi, yi}ni=1) =

∑n
i=1 ℓ(yi, ŷi) ,where ŷi = f (p)(xi;θ) . For classification problem, the typical

choice of ℓ can be exponential exp(−yŷ), or logistic loss log(1+exp(−yŷ)). Most of our theoretical
analysis works for these choices for ℓ. However, using classification losses poses additional challenges
in analyzing the late phase of the training (details explained in later sections). Therefore, our theorem
considers a ℓ2-loss: ℓ(y, ŷ) = 1

2∥y − ŷ∥2, and the extension to classification losses is discussed in
Section 3.2.4.

As for the dataset, since DX,Y samples data with equal probability from each cluster, there are
approximately equal number of samples from each cluster when we sample a large number of data.
Therefore, instead of considering a dataset directly sampled from DX,Y , we consider the following
balanced dataset D̂ = {xi, yi}KN

i=1 , where

xi ∼ N
(
µk, α

2I/D
)
, yi = 1k≤K1

− 1k>K1
, (k − 1)N + 1 ≤ i ≤ kN, 1 ≤ k ≤ K . (6)

We call this dataset balanced because D̂ has exactly N samples from each cluster N (µk, α
2I/D).

This assumption allows us to omit the additive perturbations in our analysis introduced by unbalanced
per-cluster sample size.

Gradient flow with small and balanced initialization Given the network parametrization θ and
the loss function L constructed from a balanced dataset D̂, we consider training the network by the
following gradient flow (GF) dynamics1:

θ̇ = −∇θL
(
θ; D̂

)
, θ(0) = θ0 , (7)

We assume the initialization θ(0) is ϵ-small and balanced, formally defined as the following.

Assumption 1 (ϵ-small and balanced initialization). The initialization θ(0) = {wj(0), vj(0)}hj=1

satisfies the following: there exists an initialization shape {wj0, vj0}hj=1 with Wmin ≤ ∥wj0∥ ≤
Wmax,∀j, for some Wmin,Wmax > 0 and an initialization scale ϵ > 0 such that

wj(0) = ϵwj0, vj(0) = ϵvj0, ∥wj0∥ = |vj0|,∀j . (8)

Under a balanced initialization, we have ∥wj(0)∥ = |vj(0)|,∀j, and this balancedness holds through-
out GF trajectory (See Appendix D.1): ∥wj(t)∥ = |vj(t)|,∀j. The balancedness between wj and
vj allows us to focus on the dynamics of wj , which has been a common assumption in prior work
of this type (Maennel et al., 2018; Boursier et al., 2022; Chistikov et al., 2023; Min et al., 2024).
Readers may view this assumption as made out of convenience, but it is essential for a tractable
analysis (also allowing an elegant interpretation of dynamics of wj (Maennel et al., 2018; Boursier &
Flammarion, 2024)), and the theoretical results out of this assumption match the empirical results
when no balancedness is enforced (Min et al., 2024).

Given a balanced initialization, one can show that sign(vj(t)) = sign(vj(0)),∀j,∀t ≥ 0 (Boursier
et al., 2022). Roughly speaking, sign(vj(0)) determines the dynamical behavior of neuron wj

under gradient flow: neurons with sign(vj(0)) = +1 tend to align its direction with one of the
positive cluster centers, µk, k = 1, · · · ,K1, and those with sign(vj(0)) = −1 tend to align with
one of the negative cluster centers. For this reason, we define the following neuron index sets:
N+ := {j ∈ [h] : sign(vj(0)) = +1} and N− := {j ∈ [h] : sign(vj(0)) = −1}.

1Readers may find it more appropriate to study gradient flow as differential inclusion, instead of differential
equation, since ReLU is non-differentiable at 0. However, our focus is on pReLU network with p > 2, which
renders the network f (p) differentiable everywhere.
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3.2 MAIN RESULTS: PRELU (p > 2) PROVABLY FINDS (NEAR)-OPTIMAL ROBUST CLASSIFIERS

pReLU classifier and the conjecture Min & Vidal (2024) study the adversarial robustness of the
following pReLU classifier (that can be expressed by f (p)(x;θ) with some choice of θ):

F (p)(x) =
∑K1

k=1
σp(⟨x,µk⟩)−

∑K

k=K1+1
σp(⟨x,µk⟩) , (9)

and show that F (p)(x) is robust to adversarial attacks of ℓ2 radius arbitrarily close to
√
2
2 when

D
α2 is large (Now based on our Section 2, we know that F (p)(x) is nearly optimally robust). They
conjecture that when p > 3 and the intra-cluster variance α2 is small, the gradient flow on pReLU
network f (p)(·;θ) with small initialization finds a classifier that is close to F (p)(x) up to a constant
scaling factor. Then they argue that such proximity to F (p)(x) implies that the trained network has
the same level of robustness as F (p)(x). Our main results fully prove this conjecture with p > 2.

Closeness to F (p) implies robustness We first show that given any classifier f(x) that is positively
homogeneous of degree 1 w.r.t. x and is close to F p(x) in terms of some distance measure, it is
nearly optimal robust when the intra-class variance is small (We refer to Appendix C for the proof.).

Proposition 1. Given a classifier f that satisfies f(γx) = γf(x),∀x ∈ RD, ∀γ > 0 and

dist(f, F (p)) = infc>0 supx∈SD−1 |cf(x) − F (p)(x)| ≤ ν for some p > 2 and 0 < ν ≤
(√

2
8

)p
.

Then for a sample (x, y) ∼ DX,Y , we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
>0

)
≥1−2K exp

(
− Dν

2
p

2K2α2

)
−4 exp

(
− 3

8α2

)
.

(10)

Given this result, it remains to show that gradient flow finds a network f (p)(·;θ) (which is positively
homogeneous of degree 1) that is close to F (p) in the distance measure defined above. We will first
discuss an additional assumption required on the initialization, then state our main result.

3.2.1 NON-DEGENERATE INITIALIZATION SHAPE

To properly define a non-degenerate initialization shape, we need to define a radial Voronoi tessella-
tion of RD−1/{0} given a tuple of unit-norm vectors {µk}k∈K.

Definition 1. Given a tuple of unit-norm vectors {µk}k∈K, define the following ([·]+ := max{·, 0}):

Rk :=
{
w∈RD−1/{0} | [cos(µk,w)]+ > [cos(µl,w)]+,∀l ̸= k

}
, k ∈ K, (Voronoi regions)

R◦ :=
{
w∈RD−1/{0} | [cos(µk,w)]+ = 0,∀k ∈ K

}
. (Void region)

From this definition, it is clear that {Rk}k∈K,R◦ are disjoint subsets of RD−1/{0}. We are ready to
define a non-degenerate initialization shape, whose formal definition is stated below:

Definition 2 (Non-degenerate initialization shape). A set of initialization shape {wj0}j∈N is non-
degenerate w.r.t. a set of unit-norm vectors {µk}k∈K if it satisfies that

• (Neurons must be within one of the regions) ∀j ∈ N , wj0 ∈
(⋃

k∈K Rk

)⋃
R◦;

• (Non-void regions must contain at least one neuron) ∀k ∈ K, ∃j ∈ N such that wj0 ∈ Rk ,

where {Rk}k∈K and R◦ are the Voronoi regions and void region defined in Definition 1 w.r.t.
{µk}k∈K. Moreover, we let d(w, S) = 1− sups∈S,s ̸=0 cos(w, s) and define non-degeneracy gap:

∆ := min

{
min

{wj0∈(
⋃

k∈K Rk)}
d
(
wj0, ∂

( ⋃
k∈K

Rk

))
, min
{wj0∈R◦}

d
(
wj0, ∂R◦

)}
. (11)
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Figure 3: Illustration of a
non-degenerate initializa-
tion shape {w10,w20}
w.r.t. two orthonormal
vectors {µ1,µ2}.

Whenever a vector w falls into one of the Rk, it means that: 1) the angle
between w and the corresponding µk is less than π

2 ; and 2) compared
to all other µs, µk is the closest (in angle) to w. We hope that neurons
initialized within some Rk converge to the corresponding µk under GF,
and those initialized within R◦ stay in R◦ (This is indeed the case, see
Section 3.2.3).

The special case when a neuron is exactly initialized on the boundary of
these Voronoi regions ∂

(⋃
k∈K Rk

)
cannot be analyzed since if a neuron

has equal angular distance to two µ vectors, there is no way to determine
which µ vector it converges to under GF with sampled data around these
µ vectors. Similarly, if a neuron is initialized at the boundary between
some Rk and R◦, then we can not determine whether it converges to µk,
or it falls into the interior of R◦ and stays after that. Therefore we require
an initialization shape with a positive non-degeneracy gap. Moreover,
every Rk must contain one neuron, ensuring the corresponding µk gets
learned. This leads to our assumption of non-degenerate initialization.

Assumption 2. (Initialization has at least ∆ non-degeneracy gap) ∃∆ > 0 such that {wj0}j∈N+

is non-degenerate w.r.t. {µk}1≤k≤K1
with at least ∆ non-degeneracy gap, and {wj0}j∈N− is

non-degenerate w.r.t. {µk}K1≤k≤K with at least ∆ non-degeneracy gap.

As one can see, this condition is stated per class: Positive (Negative) neurons must be initialized
to be non-degenerate w.r.t. cluster centers from the positive (negative) class. We let {Rk}1≤k≤K1

and {Rk}K1≤k≤K be the Voronoi regions defined by {µk}1≤k≤K1
and {µk}K1≤k≤K respectively

and define the neuron index sets Nk :=

{
j ∈ N+ : wj0 ∈ Rk, 1 ≤ k ≤ K1

j ∈ N− : wj0 ∈ Rk, K1 + 1 ≤ k ≤ K
and Nc :=

[h]− ∪1≤k≤KNk. As suggested in our previous discussion, we show that (See Section 3.2.3) under
GF, all neurons in Nk converge in angle to µk, which is an essential part of our theoretical results.

3.2.2 CONVERGENCE OF PRELU (p > 2) ON ORTHONORMAL CLUSTERS

Now we are ready to state our main theorem:

Theorem 3 (pReLU converges to optimal robust classifier for orthonormal clusters). Let p > 2. Given
0 ≤ δ ≤ 1 and a sufficiently small α2

0, consider data dimension D ≥ Ω̃(α−2
0 ) and per-cluster sample

size Ω̃(α−2
0 ) ≤ N ≤ õ(exp(α−2

0 )). With probability at least 1− δ, the GF dynamics with a balanced
dataset D̂ = {xi, yi}KN

i=1 sampled with intra-cluster variance α2 ≤ α2
0, starting from some ϵ-small

and balanced (Assumption 1) initialization θ(0) that satisfies Assumption 2 with a non-degeneracy
gap ∆ = Θ(1) and has a sufficiently small initialization scale ϵ = Θ̃

(
α8K
0

)
, leads to a solution

θ(t), t ≥ 0 such that: for some t∗ = Õ
(
log 1

α0

)
and T ∗ = Θ̃

(
log 1

α0

)
+ Ω̃

(
1

α
min{p−2,2}
0

)
with

[t∗, T ∗] ̸= ∅, we have L(θ(t)) = Õ(α4
0),∀t ∈ [t∗, T ∗] and

sup
t∈[t∗,T∗]

sup
x∈SD−1

∣∣∣f (p)(x;θ(t))− F (p)(x)
∣∣∣ ≤ Õ

(
α2
0

)
. (12)

Ω̃, õ, Õ hide logarithmic factor log K
δ and constant factors that depend on p (in the worst case, 2p).

We organize the subsequent discussions as follows: First, we state several remarks on understanding
our main result and comparing it with prior work; Then we move to a more technical discussion on
its proof sketch in Section 3.2.3; Lastly, we state in Section 3.2.4 several technical limitations of our
results and suggesting improvement in future research.

Nearly optimal robust classifier via GF The major implication of Theorem 3 is that one can find
a nearly optimal ℓ2-robust classifier by GF without adversarial examples. When the intra-cluster
variance α2 is small, along the GF trajectory there exists a f (p)(·;θ(t)) that is Õ(α2

0) close to a nearly
optimal ℓ2-robust classifier F (p), and such proximity to F (p) implies the same level of ℓ2-robustness,
as shown in Proposition 1. We can immediately conclude that f (p) is also nearly optimal ℓ2-robust:

7
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Corollary 1 (Nearly optimal ℓ2-robustness). Given any f (p)(·;θ(t)) obtained at t ∈ [t∗, T ∗] from

Theorem 3, it can defend against adversarial attacks of radius
√
2
2 − Õ

(
α

2
p

0

)
with probability

1− Õ
(
α
−2(1− 2

p )
0

)
over a new sample (x, y) ∼ DX,Y , thus nearly optimal ℓ2-robust for DX,Y .

Comparison with prior work: robust classifier for orthonormal clusters The study of finding a
robust classifier for clusters with orthogonal cluster centers is initiated by Frei et al. (2023), where
they theoretically show that any classifier obtained by gradient descent on a two-layer ReLU network
is susceptible to an adversarial attack of ℓ2-radius O

(
1√
K

)
, despite that one can easily construct

a ReLU network that is robust to attacks of radius Θ(1) 2. Then Min & Vidal (2024) explain this
non-robustness issue of ReLU from a neural alignment perspective (Maennel et al., 2018; Boursier &
Flammarion, 2024), and propose pReLU to replace ReLU activation. They state as a conjecture that
training pReLU network f (p)(·;θ) under samples from DX,Y leads to a classifier that is close to F (p)

when intra-cluster variance α2 is small, and provide empirical validation to their conjecture. Our
work takes one step further to theoretically prove the convergence of pReLU towards F (p) under GF,
and also show that the achieved ℓ2-robustness is nearly optimal. Also, we believe a small initialization
is critical for finding a robust classifier as our data is approximately low-dimension thus adversarial
examples exist if the initialization scale is large Melamed et al. (2024).

Comparison with prior work: GF on the two-layer network with small initialization Over
the past year, gradient descent/flow with small initialization has been studied for both linear net-
works Gidel et al. (2019); Stöger & Soltanolkotabi (2021) and nonlinear networks Maennel et al.
(2018); Phuong & Lampert (2021); Boursier et al. (2022); Kumar & Haupt (2024); Chistikov et al.
(2023); Wang & Ma (2023); Min et al. (2024); Tsoy & Konstantinov (2024), to understand the im-
plicit bias of gradient descent algorithms towards structurally simple networks. Our analysis follows
this line of work, as we will explain in Section 3.2.3 in detail, and also advances by considering a
more complicated dataset. Specifically, the GF on two-layer ReLU networks has been studied for
orthogonally separable data Phuong & Lampert (2021); Min et al. (2024); Chistikov et al. (2023), that
is, data with the same (different) label has positive (negative) correlation, for mutually orthogonal
data Boursier et al. (2022), and for positively correlated data (but only with two data points) Wang &
Ma (2023). Our data assumption is closest to mutually orthogonal data Boursier et al. (2022) (if we
set α = 0), but considers a non-zero intra-cluster variance, which has not been studied in any of the
aforementioned work.

3.2.3 PROOF SKETCH

For simplicity, we consider the case α2 = α2
0 and use α2 throughout this section. The discussion

is conditioned on a good event (happens with probability at least 1 − δ) when samples are well
concentrated around their respective cluster centers.

Overall proof Our proof in spirit is close to that of Boursier et al. (2022), with a two-phase
analysis of GF dynamics focusing on different quantities. Specifically, at the initial phase, called
alignment phase, one studied the dynamics of the neuron direction wj

∥wj∥ through cosine angles
between wj and cluster center µk, where one show, for all k and j ∈ Nk, that ckj := cos (µk,wj)

monotonically increases until it reaches 1 − Õ(α2), that is, as we mentioned earlier, neurons
initialized within Rk converge in angle to the corresponding µk. Then in the second convergence
phase, we show that all ckj can probably stay above 1− Õ(α2) until T ∗, and in the meantime, the
norm of the neurons (measured by

∑
j∈Nk

∥wj∥2 for each k) monotonically grow until reaches
1± Õ(α2) before t∗. Moreover, the norm of the neurons initialized in the void region stays small:∑

j∈Nc
∥wj(t)∥ = õ(α2). These three conditions ckj ≥ 1− Õ(α2),

∣∣1−∑j∈Nk
∥wj∥2

∣∣ ≤ Õ(α2)

and
∑

j∈Nc
∥wj∥ = õ(α2) together imply the desired bound between f (p) and F (p). We refer the

readers to Figure 4 for an illustration of these phases.

2 Frei et al. (2023) considers data sampled from N (
√
Dµk, α

2I), 1 ≤ k ≤ K, thus their results should be
rescaled by 1√

D
when applied to DX,Y .
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Figure 4: Important quantities (alignment and weight norms) and their dynamics long GF trajectory

Alignment phase (See Appendix E) During the alignment phase (the time interval between 0
and some Õ

(
log 1

ϵ

)
time, where ϵ is the initialization scale). The norms of the weights stays Õ(ϵ)

small, which follows a similar proof in Boursier et al. (2022); Min et al. (2024). The small norm
bound on weights, together with the positive non-degeneracy gap assumption, allows the following
characterization of the alignment for 1 ≤ k ≤ K, j ∈ Nk:

d

dt
ckj ≥ Cpcp−1

kj (1− c2kj) + Õ
(

α√
N

+
α√
D

)
+ Õ

(
α2 +

α√
D

)
+ Õ (ϵ) , (13)

for some constant C > 0. Consider the case when α = 0, and ϵ → 0, for j ∈ Nk, the dynamics
d
dtckj ≥ Cpcp−1

kj (1 − c2kj) characterize the nominal effect of cluster centers µk, 1 ≤ k ≤ K on
neuron direction wj

∥wj∥ : each cluster centers is either attracting or repelling wj

∥wj∥ , depending on
whether their label matches the sign of vj , and the aggregate effect is pushing wj

∥wj∥ towards µk, the
closest cluster center to wj in angle at initialization. We call k-th cluster the target cluster for wj .

The rest of the terms are considered perturbations due to noisy samples around cluster centers and a
non-zero initialization scale: The first Õ

(
α√
N

+ α√
D

)
term is due to the noisy samples from (the

target) k-th cluster. Since we have a ∆ = Θ(1) non-degeneracy gap, wj has a positive inner product
with every sampled data within the k-th cluster, then one can utilize concentration results to bound
the effect of noise. The second Õ

(
α2 + α√

D

)
term is due to the noisy samples from other non-target

clusters. Unfortunately, we have no control over how many of them have positive inner products with
wj , thus a worse bound Õ

(
α2
)

is derived. Lastly Õ (ϵ) is due to an ϵ-small weight norm because the
nominal effect is derived when weight norms are all zero. With N = Ω̃(α−2) samples, D = Ω̃(α−2)

dimension, and small ϵ, the dominant terms become Õ
(
α2
)
, allowing us to prove the following:

Proposition 2 (Alignment in pReLU network). Given the same assumptions as in Theorem 3 and
consider the same GF solution θ(t), t ≥ 0. There exist some t1 = O

(
log 1

α

)
and t2 = O

(
log 1

ϵ

)
such that ∀k and ∀j ∈ Nk, cos (µk, wj(t)) ≥ 1− Õ(α2), ∀t ∈ [t1, t2] .

We explicitly state the result during the alignment phase in Proposition 2 to highlight the difference
between its described alignment for pReLU network (p > 2) to that of Boursier et al. (2022) for
ReLU networks, where neurons are aligned with class average µ+ =

∑
1≤k≤K1

µk and µ− =∑
K1+1≤k≤K µk instead of cluster centers.

Convergence phase (See Appendix F) During the convergence phase, the weight norm grows and
exceeds ϵ-level, as suggested by the following dynamics:

d

dt

∑
j∈Nk

∥wj∥2 =

(
1−

∑
j∈Nk

∥wj∥2 + Õ
(

α√
N

)
+ Õ

(
α2
)
+ Õ (αp)

) ∑
j∈Nk

∥wj∥2 , (14)

which holds whenever ckj ≥ 1− Õ
(
α2
)
,∀k, j ∈ Nk. The nominal dynamics d

dt

∑
j∈Nk

∥wj∥2 =(
1−

∑
j∈Nk

∥wj∥2
)∑

j∈Nk
∥wj∥2 describes the weight growth if ckj = 1,∀k, j ∈ Nk and α = 0.

Following nominal dynamics,
∑

j∈Nk
∥wj∥2 converges to 1 for every k, minimizes the ℓ2-loss.

9
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The rest of the terms are considered perturbations due to noisy samples around cluster centers and
the fact that alignment ckj are only close to 1. The first Õ

(
α√
N

)
is due to the noisy sample from

the target k-th cluster, the second Õ
(
α2
)

term is from imperfect alignment ckj ≥ 1− Õ
(
α2
)
, and

the last Õ (αp) term is from the noisy sample from the non-target clusters (Notice that now wjs are
almost orthogonal to non-target clusters, thus the effect of non-target clusters is smaller than during
alignment phase). With N = Ω̃(α−2) samples, the dominant terms become Õ(α2), allowing us to
show that

∑
j∈Nk

∥wj∥2 converges to 1± Õ(α2) within t∗ time.

The only missing piece is that this argument requires ckj ≥ 1 − Õ
(
α2
)
,∀k, j ∈ Nk but one no

longer has (13) after Θ̃
(
log 1

ϵ

)
when weight norm starts to grow to Θ̃(1)-level. Nonetheless, once

the alignment ckj is 1− Õ
(
α2
)
, it is hard to drop below this level as it relies on the attraction from

non-target clusters but they are now near orthogonal to the neurons. Indeed, during the convergence
phase, we can show that d

dtckj ≥ −Õ
(
αmin{p,4}) , by which we show ckj can stay at 1− Õ

(
α2
)

level until T ∗ time. Since T ∗ ≥ t∗ for small α, our analysis of the weight norm growth is valid.

3.2.4 TECHNICAL LIMITATIONS OF CURRENT RESULTS

We conclude by discussing several technical limitations of our current results and potential avenues to
address them. These limitations are listed in an order that the most challenging ones are stated first.

Requirement on the initialization The initialization requires a non-degeneracy gap ∆ = Θ(1),
which generally cannot be achieved by random initialization: the cosines between neurons and cluster
centers are O

(
1√
D

)
with high probability. Given that D = Ω̃(α−2), the actually non-degeneracy

gap of a random initialization is Õ(α). We have discussed this issue when we define non-degenerate
initialization in Section 3.2.1: When neurons are initialized close to the boundary between a Voronoi
region Rk and another region Rl (or the void region R◦), whether they align with µk or with µl (or
get further into void region) depends on the actually sampled points in the dataset. In this regard,
when weights are randomly initialized, there is a “burn-in" phase during which neurons “choose"
their target clusters depending on the samples, then once they get away from the boundary of these
Voronoi regions with ∆ = Θ(1) gap, we can characterize the GF dynamics afterward by Theorem 3.

Upper bound on N Regarding our requirement Ω̃(α−2
0 ) ≤ N ≤ õ(exp(α−2

0 )), we have discussed
the lower bound N ≥ Ω̃(α−2

0 ) in Section 3.2.3. In fact, one can remove this lower bound and get a
final bound Õ

(
α0√
N

)
in Theorem 3. The upper bound N ≤ õ(exp(α−2

0 )) may seem puzzling. This
issue originates from ReLU nonlinearity: a data point must activate a neuron by having a positive inner
product. Our analysis requires that a neuron wj is activated by every data point from its target cluster,
which is translated into two conditions: 1) Θ(1) non-degeneracy gap; and 2)

√
logNα0 = õ(1).

Here
√
logNα0 is essentially the radius of a ℓ2-ball centered at a cluster center that can contain all

the sampled points from that cluster with high probability. Without these conditions, there will be
outliers in sampled points, which must be handled with extra analysis. We believe this is possible
because those outliers will be rare and thus may have a negligible effect on the dynamics.

Extension to classification losses Our results for the alignment phase directly apply to classification
losses: The choice of the loss ℓ(y, ŷ) only affects the alignment dynamics through ∇ŷℓ(y, ŷ)|ŷ=0, and
this quantity is same (may up to a constant scaling) regardless of whether ℓ is exponential, logistic,
or ℓ2. However, the analysis of convergence phase critically depends on ℓ: Recall that in Section
3.2.3 we show that the nominal weight norm dynamics are ż = (1 − z)z, z =

∑
j∈Nk

∥wj∥2 for
ℓ2 loss. For exponential loss, the nominal dynamics become ż = exp(−z)z, whose closed-form
solution is not available. A better characterization of the solution to the nominal dynamics of the type
ż = exp(−z)z in future research naturally leads to an extension of Theorem 3 to classification losses.

Analysis until finite time T ∗ Our focus is on the distance between f (p)(·;θ(t)) and F (p), thus we
restrict to the time interval [0, T ∗] when we have explicit control of all relevant quantities (alignment,
weight norms, etc.). To show convergence towards a minimizer of the loss after T ∗, we believe
applying the results in Chatterjee (2022) suffices, following the approach in Boursier et al. (2022).
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A NUMERICAL EXPERIMENTS

A.1 ADDITIONAL EXPERIMENTS ON LEARNING ROBUST CLASSIFIER FOR DATA FROM
ORTHONORMAL CLUSTERS

In this section, we provide additional experiments to that in Figure 2, highlighting the importance
of parametrization of function space, and the hyperparameters of training algorithm in determining
whether one can succeed in obtaining robust classifier for data from orthonormal clusters.

Figure 5: Given sampled data from (1) with 12 positive clusters and 8 negative clusters (D = 2000),
gradient descent (SGD, small initialization) on (bias-free, width-200) two-layer network with regular
polynomial ReLU activation of degree 3 fails to find a robust classifier. Moreover, if one increases the
variance of the random initialization, both regular polynomial ReLU network and pReLU network
can not find a robust classifier. All networks here are trained for a sufficient amount of epochs until
they achieve perfect training accuracy on a synthesis dataset of our orthonormal cluster model of size
20000.
Regular polynomial ReLU networks In this experiment, we consider both the regular polynomial
ReLU networks to pReLU networks. In particular, recall that the regular polynomial ReLU networks
are defined as:

g(x; θ̃) =

h∑
j=1

vjσ
p(⟨x,wj⟩) , (θ̃ := {wj , vj}hj=1) .

(Two-layer Networks with Polynomial ReLU activation with degree p)
We note its difference with pReLU networks: regular polynomial ReLU networks do not have a
weight normalization at the first layer. Nonetheless, when p is fixed, it is easy to verify that the
function/hypothesis spaces induced by pReLU networks and regular polynomial ReLU networks
are the same: any function f (p)(x;θ) for some θ = {wj , vj}hj=1 is equivalent to g(x; θ̃) with
θ̃ = {wj ,

vj
∥wj∥p−1 }hj=1

3.

Regular polynomial ReLU networks v.s. pReLU Although the induced function/hypothesis spaces
are the same, GD on regular polynomial ReLU networks and pReLU finds classifiers with different
levels of robustness. As one can see in Figure 5, with a small initialization (all weight entries are
randomly initialized as N (0, 1×10−4)), SGD on a pReLU network successfully finds a classifier that
is as robust as the Bayes classifier. However, SGD on a regular polynomial ReLU network fails to find
a robust classifier. This suggests that the way the function/hypothesis spaces are parametrized is also
important in determining the robustness of the networks trained by GD, as different parametrization
induces different implicit biases of GD in selecting the loss minimizer in the function space.

Effect of initialization scale Finally, when one uses a large initialization scale, where all weight
entries are randomly initialized as N (0, 0.25), even the GD on a pReLU network fails to find a
robust classifier. This is not surprising as the initialization scale also controls the implicit bias of
GD Moroshko et al. (2020), and many works Maennel et al. (2018); Stöger & Soltanolkotabi (2021);
Li et al. (2018; 2021) have theoretically shown the advantage of using a small initialization scale in
GD.

3The neurons with ∥wj∥ = 0 should be eliminated from the parameters for this argument to hold.
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A.2 CAT V.S. DOG CLASSIFICATION VIA TRANSFER LEARNING

In this section, we solve the tasks of classifying cats and dogs (Cukierski, 2013) via transfer learning
using extracted features from a ResNet152 (He et al., 2016) trained on ImageNet (Deng et al.,
2009). We conjecture that the extracted features of the dog (or cat) class may naturally have many
clusters: when the feature extractor is trained on ImageNet, dogs are further labeled by their breeds.
Thus the extracted features of dogs of the same breed should be sufficiently close, and features of
dogs of different breeds should be sufficiently far apart, based on the well-known neural collapse
phenomenon (Papyan et al., 2020; Galanti et al., 2021). If such a multi-cluster structure exists in the
extracted feature, then we expect training pReLU as a classification head can achieve better robust
accuracy compared to its ReLU counterpart.

The rest of the section is organized as follows: First, we show that the extracted features of cats
v.s. dogs dataset exhibits a multi-cluster structure; Then we train pReLU networks with different
choices of p as a classification head and compute the robust accuracy of these train networks with
AutoAttack (Croce & Hein, 2020) on the extracted feature space.

Figure 6: Pairwise inner product of the fea-
tures of 3000 images of dogs from cat v.s.
dog dataset Cukierski (2013). The features
are clustered into 9 clusters via spectral clus-
tering.

Figure 7: Average pairwise inner product be-
tween features from two clusters of dogs fea-
tures. The features are clustered into 9 clus-
ters; Each pixel (i, j), 1 ≤ i, j ≤ 9 represents
the average inner product between features
from cluster i and cluster j.

Figure 8: Pairwise inner product of the fea-
tures of 3000 images of cats from cat v.s. dog
dataset Cukierski (2013). The features are
clustered into 10 clusters via spectral cluster-
ing.

Figure 9: Average pairwise inner product be-
tween features from two clusters of cats fea-
tures. The features are clustered into 10 clus-
ters; Each pixel (i, j), 1 ≤ i, j ≤ 10 repre-
sents the average inner product between fea-
tures from cluster i and cluster j.

Multi-cluster structure of extracted feature We first collect extracted features of the entire cat
v.s. dog dataset (Cukierski, 2013), center these features by the global mean feature vector and then
normalized all the features. Then we take a subset of the centered, normalized features (for the sake
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of simplicity, we call the centered, normalized features as features) from the same class (cat or
dog), do spectral clustering (Ng et al., 2001) on the features, then compute the inner product between
the features. From Figure 6 and 7, we see even within the same (dog) class, the extracted features
have a multi-cluster structure, and we conjecture that this is because when the feature extractor is
trained on ImageNet, dogs are further labeled by their breeds. Interestingly, if we perform the same
visualization for cat images, as in Figure 8 and 9, the multi-cluster structure still exists but with less
prominent clusters; We conjecture that this is because ImageNet has much less cat classes than dog
classes.

Training pReLU as classification head Now, with the extracted features of cat v.s. dog dataset,
we train two-layer pReLU networks with different choices of p using Adam, following the same
experiment settings in (Min & Vidal, 2024). After training, we compute the robust accuracy of the
trained networks under adaptive adversarial ℓ2 and ℓ∞ attacks (Croce & Hein, 2020). We observe
that pReLU networks with larger p achieve better robust accuracy than ReLU networks (p = 1).

Figure 10: Cat and dog classi-
fication: Training and test ac-
curacy v.s. training epochs

Figure 11: Robust accuracy
of trained networks under ℓ2
PGD attacks.

Figure 12: Robust accuracy
of trained networks under ℓ∞
PGD attacks.

In summary, we show that in a transfer learning scenario, the multi-cluster structure arises due to
the distinguishing power of the feature extractor trained on large datasets with finer labels, and we
show that in this case, pReLU networks with larger p achieve better robustness compared to its ReLU
counterpart. Admittedly, our current Theorems cannot fully explain the observed experimental results
since the extracted features form clusters with large variances, and there are some correlations among
these clusters, which does not follow our data assumption. Relaxing our data assumption to large
variance, and allowing inter-cluster correlation is an import future research direction.
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B OPTIMAL ROBUST CLASSIFIER FOR ORTHONORMAL CLUSTERS

In this section, we discuss the optimal robust classifier for orthonormal clusters. We first show
that any measurable classifier can not defend against an adversarial attack of ℓ2 radius

√
2
2 , leading

to a robust error of at least min{K1,K2}
K . Then we consider the Bayes optimal classifier f∗(x) =

argmaxy P (Y = y|x) and show that it is also optimally robust: it can defend against any adversarial
attack of ℓ2 radius

√
2
2 − o(1), as the dimension of the data D increases.

B.1 MAXIMUM ROBUSTNESS AGAINST ℓ2 ADVERSARIAL ATTACKS

We need the following lemma (we provide proof after proving Theorem 1)
Lemma 1. For any n × m matrix, let a be the number of rows that contain at least one non-
positive entry and b be the number of columns that contain at least one non-negative entry. Then
a+ b ≥ min{n,m}.

With Lemma 1, we are ready to prove Theorem 1.
Theorem 1 (Restated). Let f : RD → R be any Lebesgue measurable function such that the random
variable min∥d∥≤1

[
f
(
x+

√
2
2 d
)
y
]

is also measurable. Given a sample (x, y) ∼ DX,Y , we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ min{K1,K2}

K
. (B.1)

Proof. We start with the following:

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
=

K∑
k=1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
P (z = k)

(B.2)
For k ≤ K1,

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
= Pε

(
min
∥d∥≤1

[
f

(
µk + ε+

√
2

2
d

)]
≤ 0

)

≥ Pε

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
.

The measurability of f ensures this lower bound exists. Similarly, we have for K1 + 1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
= Pε

(
min
∥d∥≤1

[
−f

(
µk + ε+

√
2

2
d

)]
≤ 0

)

≥ Pε

(
min

1≤l≤K1

[
−f

(
µk + µl

2
+ ε

)]
≤ 0

)
= Pε

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
.

Therefore,

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
P (z = k)

=
1

K

 ∑
1≤k≤K1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
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+
∑

K1+1≤k≤K

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
≥ 1

K

 ∑
1≤k≤K1

Pε

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)

+
∑

K1+1≤k≤K

Pε

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
=

1

K

 ∑
1≤k≤K1

∫
1

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
p(ε)

+
∑

K1+1≤k≤K

∫
1

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
p(ε)


=

1

K

∫  ∑
1≤k≤K1

1

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
(B.3)

+
∑

K1+1≤k≤K

1

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

) p(ε) , (B.4)

and if we define the K1 ×K2 matrix

Mf (ε) :=

[
f

(
µk + µl

2
+ ε

)]
1≤k≤K1, K1+1≤l≤K

(B.5)

and examine carefully enough, we notice that
∑

1≤k≤K 1
(
minK1+1≤l≤K

[
f
(
µk+µl

2 + ε
)]

≤ 0
)

is the number of rows of Mf (ε) that contains at least one non-positive entry and∑
K1+1≤k≤K 1

(
max1≤l≤K1

[
f
(
µk+µl

2 + ε
)]

≥ 0
)

is the number of columns of Mf (ε) that con-
tains at least one non-negative entry. By Lemma 1, we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ (B.4) ≥ 1

K

∫
min{K1,K2}p(ε) .

Therefore

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ min{K1,K2}

K
. (B.6)

Proof of Lemma 1. We denote C∗(n,m) the minimum value of a+b over all possible choice of n×m
matrices. It suffices to show C∗(n,m) ≥ min{n,m} (The equality is obtained by an all-positive
matrix when n ≤ m and an all-negative matrix otherwise), and we prove it by induction.

For n = 1,m = 1, C∗(n,m) = 1. This is trivial. We need to show that if C∗(n,m) = min{n,m}
holds for some n and m, then

• C∗(n,m+ 1) = min{n,m+ 1};

• and C∗(n+ 1,m) = min{n+ 1,m}.

We shall prove these two cases:
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Case 1 C∗(n,m) ≥ min{n,m} ⇒ C∗(n,m+ 1) ≥ min{n,m+ 1}
Given an n ×m matrix M and an agumented matrix M ′ = [M v], we let a, b and a′, b′ be the
row/column counts of our interest for M and M ′ respectively. Without loss of generality, we suppose
the first a rows of M all contain at least one non-positive entry (and the rest do not, by definition of
a). We know that a+ b ≥ min{n,m}, and

a′ = a+

n∑
i=a+1

1(vi ≤ 0), b′ = b+ 1(max
i

vi ≥ 0) , (B.7)

which is

a′ + b′ = a+ b+

n∑
i=a+1

1(vi ≤ 0) + 1(max
i

vi ≥ 0) . (B.8)

There are two scenarios:

1. When a = n, we have
∑n

i=a+1 1(vi ≤ 0) + 1(maxi vi ≥ 0) ≥ 0

2. When a < n, we have
∑n

i=a+1 1(vi ≤ 0) + 1(maxi vi ≥ 0) ≥ 1 .

Therefore, we find that

a′+b′ ≥ min{n+b, a+b+1} ≥ min{n,min{n,m}+1} = min{n, n+1,m+1} = min{n,m+1} .
(B.9)

This shows C∗(n,m+ 1) ≥ min{n,m+ 1}.

Case 2 C∗(n+ 1,m) ≥ min{n+ 1,m} ⇒ C∗(n+ 1,m) ≥ min{n+ 1,m}

Given an n × m matrix M and an agumented matrix M ′ =

[
M
v

]
, we let a, b and a′, b′ be the

row/column counts of our interest for M and M ′ respectively. Without loss of generality, we suppose
the first b columns of M all contain at least one non-negative entry (and the rest do not, by definition
of b). We know that a+ b ≥ min{n,m}, and

a′ = a+ 1(min
i

vi ≤ 0), b′ = b+

m∑
i=b+1

1(vi ≥ 0) , (B.10)

which is

a′ + b′ = a+ b+

m∑
i=b+1

1(vi ≥ 0) + 1(min
i

vi ≤ 0) . (B.11)

There are two scenarios:

1. When b = m, we have
∑m

i=b+1 1(vi ≥ 0) + 1(mini vi ≤ 0) ≥ 0

2. When b < m, we have
∑m

i=b+1 1(vi ≥ 0) + 1(mini vi ≤ 0) ≥ 1 .

Therefore, we find that

a′+b′ ≥ min{a+m, a+b+1} ≥ min{m,min{n,m}+1} = min{m,n+1,m+1} = min{n+1,m} .
(B.12)

This shows C∗(n+ 1,m) ≥ min{n+ 1,m}.

B.2 BAYES OPTIMAL CLASSIFIER W.R.T. 0-1 LOSS

Our proof will use Hoeffding’s inequality for high-dimensional Gaussian vectors
Lemma 2 (Hoeffding inequality). For any unit vector µ ∈ SD−1, we have

P
ε∼N

(
0,α

2

D I
) (| ⟨µ, ε⟩ | > t) ≤ 2 exp

(
−Dt2

2α2

)
. (B.13)
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And the concentration result of the norm of high-dimensional Gaussian vectors
Lemma 3. We have

P
ε∼N

(
0,α

2

D I
) (∥ε∥ > t) ≤ 4 exp

(
− t2

8α2

)
, (B.14)

Theorem 2 (Restated). The Bayes optimal classifier for label Y given observation x w.r.t. 0-1 loss is
sign (f∗(x)), where f∗(x) =

∑K1

k=1 exp
(

D⟨x,µk⟩
α2

)
−
∑K

k=K1+1 exp
(

D⟨x,µk⟩
α2

)
. Moreover, given

a sample (x, y) ∼ DX,Y , we have, for any 2
√
2α2 logK

D ≤ ν ≤
√
2,

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
> 0

)
≥ 1− 2K exp

(
−Dν2

64α2

)
. (B.15)

Proof. Bayes optimal classifier for DX,Y The Bayes optimal classifier w.r.t. 0-1 loss is given by

f∗(x) = argmax
y

P (Y = y | X = x)

= argmax
y

K∑
k=1

P (Y = y | Z = k,X = x)P (Z = k | X = x)

=

{
1, if

∑K1

k=1 P (Z = k | X = x) >
∑K

k=K1+1 P (Z = k | X = x)

−1, o.w.

= sign

(
K1∑
k=1

P (Z = k | X = x)−
K∑

k=K1+1

P (Z = k | X = x)

)
. (B.16)

Bayes rule and a few derivations give:

P (Z = k | X = x) =
P (X = x | Z = k)P (Z = k)∑K
l=1 P (X = x | Z = l)P (Z = l)

=
exp

(
−D∥x−µk∥2

2α2

)
∑K

l=1 exp
(
−D∥x−µl∥2

2α2

)
=

exp
(
−D(∥x∥2−2⟨x,µk⟩+∥µk∥2))

2α2

)
∑K

l=1 exp
(
−D(∥x∥2−2⟨x,µl⟩+∥µl∥2)

2α2

) =
exp

(
D⟨x,µk⟩

α2

)
∑K

l=1 exp
(

D⟨x,µl⟩
α2

) . (B.17)

Combining (B.16) and (B.17), we have

f∗(x) = sign

(
K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

)
−

K∑
k=K1+1

exp

(
D ⟨x,µk⟩

α2

))
. (B.18)

Robustness of f∗. We now proceed to show that f∗ is robust near-optimally. Since

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)
P (z = k) ,

It suffices to show that ∀1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)
≤ K exp

(
−CDν2

16α2

)
. (B.19)

When k ≤ K1, we have

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)
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= Pε

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)]
≤ 0

)

= Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

+
∑

l ̸=k,1≤l≤K1

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
|⟨µl, ε⟩|+

√
2− ν

2
|⟨d,µl⟩|

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

− K2 exp

(
D

α2

(
max

K1+1≤l≤K
|⟨µl, ε⟩|+

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

))]
≤ 0

)

≤ Pε

(
min
∥d∥≤1

[
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

− α2

D
logK2 − max

K1+1≤l≤K
|⟨µl, ε⟩| −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]
≤ 0

)

≤ Pε

(
min
∥d∥≤1

[
1 +

√
2− ν

2
⟨d,µk⟩ −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]

− α2

D
logK2 − |⟨µk, ε⟩| − max

K1+1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
, (B.20)

Since

min
∥d∥≤1

[
1 +

√
2− ν

2
⟨d,µk⟩ −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]

≥ min
∥d∥≤1

1 + √
2− ν

2
⟨d,µk⟩ −

√
2− ν

2

√ ∑
K1+1≤l≤K

|⟨d,µl⟩|2


≥ min
∥d∥≤1

1− √
2− ν

2

√
2

√
| ⟨d,µk⟩ |2 +

∑
K1+1≤l≤K

|⟨d,µl⟩|2
 ≥ min

∥d∥≤1

[
1−

√
2− ν√
2

∥d∥

]
=

ν√
2
,

we finally have

(B.20) ≤ Pε

(
ν√
2
− α2

D
logK2 − |⟨µk, ε⟩| − max

K1+1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
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≤ Pε

(
ν

2
√
2
− 2 max

1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
≤ KPε

(
|⟨µ1, ε⟩| ≥

ν

4
√
2

)
≤ 2K exp

(
−Dν2

64α2

)
. (B.21)

The proof for the case k ≥ K1 + 1 is almost identical.
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C PRELU CONVERGES TO OPTIMAL ℓ2-ROBUST CLASSIFIER, PART ONE:
CONVERGENCE IMPLIES ROBUSTNESS

We prove Proposition 1 here.
Proposition 1 (Restated). Given a classifier f that satisfies f(γx) = γf(x),∀x ∈ RD, ∀γ > 0 and

dist(f, F (p)) = infc>0 supx∈SD−1 |cf(x) − F (p)(x)| ≤ ν for some p > 2 and 0 < ν ≤
(√

2
8

)p
.

Then for a sample (x, y) ∼ DX,Y , we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
>0

)
≥1−2K exp

(
− Dν

2
p

2K2α2

)
−4 exp

(
− 3

8α2

)
.

(C.1)

Proof. First of all, since f(γx) = γf(x),∀x ∈ RD,∀γ > 0 and the same holds for F (p)(·), we
suppose the infimum is attained at c∗ ≥ 0, then

sup
x∈RD

|c∗f(x)− F (p)(x)| = sup
x∈RD

∣∣∣∣c∗f ( x

∥x∥

)
− F (p)

(
x

∥x∥

)∣∣∣∣ ∥x∥ ≤ ∥x∥ν , (C.2)

where the last inequality uses dist(f, F (p)) ≤ ν. With (C.2), we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

≤P

(
min
∥d∥≤1

[
c∗f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

=P

(
min
∥d∥≤1

[
c∗f

(
x+

√
2− 8ν

1
p

2
d

)
y − F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y + F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥d∥≤1

∣∣∣∣∣c∗f
(
x+

√
2− 8ν

1
p

2
d

)
y − F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

∣∣∣∣∣ ≤ 0

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥z∥2≤9

∣∣∣c∗f (z) y − F (p) (z) y
∣∣∣ ≤ 0, ∥x∥2 ≤ 17

2

)
+ P

(
∥x∥2 >

17

2

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥z∥2≤9

∣∣∣c∗f (z) y − F (p) (z) y
∣∣∣ ≤ 0

)
+ P

(
∥x∥2 >

17

2

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)
+ P

(
∥x∥2 >

17

2

)
.

The second term P
(
∥x∥2 > 17

2

)
is easy to bound, our focus is to show

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)
≥ 2(K + 1) exp

(
−CDν2

K2α2

)
, (C.3)

which resembles the result in Min & Vidal (2024, Theorem 1), but one can not directly obtain (C.3)
from this existing result. Nonetheless, we can partially follow Min & Vidal (2024, Theorem 1)’s
proof and obtain (C.3) (with non-trivial new derivations), as shown below:

Since

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)
P (z = k) ,
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It suffices to show that ∀1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)
≤ 2(K2 + 2) exp

(
− CDδ2

2(K2 + 1)2α2

)
.

(C.4)
When k ≤ K1, we have

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)

= Pε

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)

= Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

+
∑

l ̸=k,1≤l≤K1

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν


≤ Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν

 (C.5)

We define the event

E :=

{
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩ ≥ 0,∀d ∈ SD−1

}
, (C.6)

Then, by Min & Vidal (2024, Lemma 2),

(C.5) = Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν


≤ Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν, E

+ P (Ec)

(C.7)

Since under event E , we have σp

(
1 + ⟨µk, ε⟩+

√
2−8ν

1
p

2 ⟨d,µk⟩
)

=(
1 + ⟨µk, ε⟩+

√
2−8ν

1
p

2 ⟨d,µk⟩
)p

, we can proceed with

(C.7) = Pε

(
min
∥d∥≤1

[(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)p
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−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν, E

+ P (Ec)

≤ Pε

(
min
∥d∥≤1
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1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)p

−
∑

K1+1≤l≤K

(
⟨|µl, ε⟩ |+

√
2− 8ν

1
p

2
| ⟨d,µl⟩ |

)p

− 3ν

 < 0, E

+ P (Ec)

≤ Pε

(
min
∥d∥≤1

[
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

−

 ∑
K1+1≤l≤K

(
| ⟨µl, ε⟩ |+

√
2− 8ν

1
p

2
| ⟨d,µl⟩ |

)p

+ 3ν

1/p
 < 0, E

+ P (Ec)

≤ Pε

 min
∥d∥≤1

1 + √
2− 8ν

1
p

2
⟨d,µk⟩ −

√
2− 8ν

1
p

2

 ∑
K1+1≤l≤K

| ⟨d,µl⟩ |p
1/p


︸ ︷︷ ︸

:=M∗(ν)

−

 ∑
K1+1≤l≤K

(| ⟨µl, ε⟩ |)p + 3ν

1/p

− | ⟨µk, ε⟩ | < 0, E

+ P (Ec)

≤ Pε

M∗(ν)−
∑

K1+1≤l≤K

| ⟨µl, ε⟩ | − (3ν)
1
p − | ⟨µk, ε⟩ | < 0

+ P (Ec) , (C.8)

From the proof of Min & Vidal (2024, Theorem 1), we have M∗(ν) = 4
√
2ν

1
p . Therefore we have

(C.8) = Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | > M∗(ν)− (3ν)
1
p

+ P (Ec)

≥ Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | >
(
4
√
2− 3

1
p

)
ν

1
p

+ P (Ec)

≥ Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | >
√
2ν

1
p

+ P (Ec)

≥ Pε

(
max

1≤k≤K
| ⟨µk, ε⟩ | >

√
2ν

1
p

K

)
+ P (Ec)

≥ KPε

(
| ⟨µ1, ε⟩ | >

√
2ν

1
p

K

)
+ P (Ec) ≥ 2K exp

(
− Dν

2
p

K2α2

)
+ P (Ec) .

Therefore, we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)
≤ 2K exp

(
− Dν

2
p

K2α2

)
+ P (Ec) + P

(
∥x∥2 >

3

2

)
.

Finally, by

P (Ec) ≤ P

(
|⟨µk, ε⟩| ≥ 1−

√
2

2

)
≤ P

(
|⟨µk, ε⟩| ≥

2

5

)
≤ 2 exp

(
− 2D

25α2

)
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P

(
∥x∥2 >

17

2

)
≤ P

(
∥ε∥ ≥

√
17

2
− 1

)
≤ 4 exp

−

(√
17

2
− 1

)2
1

8α2

 ≤ 4 exp

(
− 3

8α2

)
,

The proof is finished, notice that the bad event ∥x∥2 > 17
2 is chosen arbitrarily, so one can derive

more general results by letting the results depend on the choice of a bad event. But for our purpose,
we do not need it.
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D PRELU CONVERGES TO OPTIMAL ℓ2-ROBUST CLASSIFIER, PART TWO:
BASIC RESULTS ON NEURON DYNAMICS AND GOOD EVENTS

In this and the following sections, we let ℓi(t) := ℓ(yi, f
(p)(xi;θ(t))) denote the loss on data

point (xi, yi), and ∇ŷℓi denotes the derivation of ℓi w.r.t. its second argument, the network output.
Moreover, we let ckj := cos(µi,wj(t)) denote the cosine angle between cluster center µk and neuron
wj . Note: For simplicity, we drop the time dependence in θ(t), vj(t),wj(t),L(t), ℓi(t), ckj(t) and
write θ, vj ,wj ,L, ℓi, ckj whenever it is clear that they come from the GF solution thus depend on
time. Note: It suffices to prove the case α = α0, we thus use α to both denote the intra-class
variance and the α0 we use to control the order of all the relevant quantities in our proofs.

We also let Ik := {i : (k − 1)N + 1 ≤ i ≤ kN}, the index set of data sampled from k-th cluster.

D.1 RESULTS ON NEURON DYNAMICS

Neuron dynamics: Under GF, we have

d

dt
wj = − 1

N

KN∑
i=1

∇ŷℓi vj

(
p[σ(⟨xi,wj⟩)]p−1

∥wj∥p−1
xi − (p− 1)

[σ(⟨xi,wj⟩)]p

∥wj∥p+1
wj

)
= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj

(
p[⟨xi,wj⟩]p−1

∥wj∥p−1
xi − (p− 1)

[⟨xk,wj⟩]p

∥wj∥p+1
wj

)
and similarly,

d

dt
vj = − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi
[⟨xi,wj⟩]p

∥wj∥p−1

Balancedness: We compute

d

dt
(w⊤

j wj) = 2

〈
d

dt
wj ,wj

〉
= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj

(
p[⟨xi,wj⟩]p

∥wj∥p−1
− (p− 1)

[⟨xk,wj⟩]p

∥wj∥p−1

)

= − 2

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj
[⟨xi,wj⟩]p

∥wj∥p−1
,

and

d

dt
v2j = 2 vj

d

dt
vj = − 2

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj
[⟨xi,wj⟩]p

∥wj∥p−1

Therefore, we have
d

dt
(w⊤

j wj − v2j ) ≡ 0 , (D.1)

thus w⊤
j (t)wj(t)− v2j (t) = w⊤

j (0)wj(0)− v2j (0),∀t, since we have a balanced initialization such
that w⊤

j (0)wj(0) − v2j (0),∀j. Such balancedness holds for all time t. Using this balancedness
v2j ≡ ∥wj∥2,∀j ∈ [h], we can write

d

dt
wj = − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi ∥wj∥

(
p

(〈
xi,

wj

∥wj∥

〉)p−1

xi − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p
wj

∥wj∥

)
,

(D.2)
where we use that sign(vj(t)) = sign(vj(0)), which is another consequence of balancedness Boursier
et al. (2022); Min et al. (2024). We will study the dynamics of wj from now on, and one can write
the time derivatives of the norm and direction of these neurons:
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Neuron norm dynamics:

d

dt
∥wj∥2

= 2

〈
wj ,

d

dt
wj

〉
= −2

sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi ∥wj∥

(
p

(〈
xi,

wj

∥wj∥

〉)p−1

⟨wj ,xi⟩ − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥

)

= −2
sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓk ∥wj∥
(
p

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥ − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥
)

= −2
sign(vj(0))

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 (D.3)

Neuron angular dynamics:

d

dt

wj

∥wj∥

=

(
I −

wjw
⊤
j

∥wj∥2

)
1

∥wj∥
d

dt
wj

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi

(
I −

wjw
⊤
j

∥wj∥2

)(
p

(〈
xi,

wj

∥wj∥

〉)p−1

xi − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p
wj

∥wj∥

)

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
xi −

〈
xi,

wj

∥wj∥

〉
wj

∥wj∥

)
. (D.4)

Finally, from the directional dynamics d
dt

wj

∥wj∥ , we obtain

d

dt
ckj =

〈
µk,

d

dt

wj

∥wj∥

〉
= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
,

(D.5)

and whenever |ckj | ≠ 0, we have

d

dt
log |ckj |

=
1

ckj

d

dt
ckj

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µk,xi⟩
ckj

−
〈
xi,

wj

∥wj∥

〉)
(D.6)

Our proof has the same structure as prior works Boursier et al. (2022); Min et al. (2024): We will
study neuron’s angular dynamics (D.5) at the early phase (alignment phase) of the GF training, and
then study neuron’s norm dynamics (D.3) at the later phase (convergence phase).

Lastly, in order to prove Lemma 7 and Proposition 2 in the next subsection, we need the following:

We let {µK+1, · · · ,µD} be an orthonormal basis for the subspace that is orthogonal to
span{µ1, · · · ,µK}, and we can define ckj = cos(µk,wj), k = K+1, · · · , D. Since {µ1, · · · ,µD}
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forms an orthonormal basis for the ambient space RD, we have

D∑
k=1

c2kj =

D∑
k=1

∣∣∣∣〈µk,
wj

∥wj∥

〉∣∣∣∣2 = 1 . (D.7)

Moreover, we can write the same time-derivatives d
dtckj , d

dt log |ckj | for ckj = cos(µk,wj), k =
K + 1, · · · , D as in (D.5) and (D.6), respectively.

Lastly, the following inequality will be used frequently in our proof:

∑
l ̸=k

cplj ≤
∑

1≤l≤D,l ̸=k

|clj |p ≤

 ∑
1≤l≤D,l ̸=k

c2lj


p
2

=
(
1− c2kj

) p
2 (D.8)

Note: The sum operation
∑

l ̸=k implicitly assumes l ≤ K. We will explicitly indicate the range of l
if it can take values between K + 1 and D.

D.2 GOOD EVENT

For a balanced dataset D̂ = {xi, yi}KN
i=1 , notice that xi = µ⌈ i

N ⌉ + εi for some εi ∈ N
(
0, α2

D I
)

.
We define the following good event w.r.t. these εis and show that they happen with high probability:

Lemma 4. We define the event Egood when the following happens:

1. ∥εi∥ ≤
√
8 log 16KN

δ α, ∀1 ≤ i ≤ KN ;

2. | ⟨µk, εi⟩ | ≤
√

2 log 8K2N
δ

α√
D
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K;

3. ∥
∑

i∈Ik
εi∥ ≤

√
2 log 8K

δ α
√
N, ∀1 ≤ k ≤ K

4.
∑

i∈Ik
∥εi∥2 ≤ 8 log 16K

δ α2N, ∀1 ≤ k ≤ K

We have P (Egood) ≥ 1− δ. Furthermore, for simplicity, we write

1. ∥εi∥ ≤ C
√
log K2N

δ α, ∀1 ≤ i ≤ KN ;

2. | ⟨µk, εi⟩ | ≤ C
√

log K2N
δ

α√
D
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K;

3. ∥
∑

i∈Ik
εi∥ ≤ C

√
log K

δ α
√
N, ∀1 ≤ k ≤ K;

4.
∑

i∈Ik
∥εi∥2 ≤ C log K

δ α
2N, ∀1 ≤ k ≤ K ,

for some universal constant C > 0.

Proof. We proof relavent probabilities one by one:

1. By Lemma 3, we have

P (∥εi∥ ≥ t) ≤ 4 exp

(
− t2

8α2

)
. (D.9)

2. By Lemma 2, we have

P (| ⟨µk, εi⟩ | ≥ t) ≤ 2 exp

(
−Dt2

2α2

)
. (D.10)
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3. Apply Lemma 3 to the vector
∑

i∈Ik
εi, we have

P

(∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥ ≥ t

)
≤ 4 exp

(
− t2

8Nα2

)
. (D.11)

4. Apply Lemma 3 to the vector that is the concatenation of all εi, i ∈ Nk and notice that its norm
is equal to

√∑
i∈Ik

∥εi∥2, hence

P

(∑
i∈Ik

∥εi∥2 ≥ t2

)
≤ 4 exp

(
− t2

8Nα2

)
. (D.12)

Therefore,

P

(
∥εi∥ ≥

√
8 log

16KN

δ
α

)
≤ δ

4KN
, ∀1 ≤ i ≤ KN ,

P

(
| ⟨µk, εi⟩ | ≥

√
2 log

8K2N

δ

α√
D

)
≤ δ

4K2N
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K ,

P

(∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥ ≥
√
8 log

16K

δ
α
√
N

)
≤ δ

4K
, ∀1 ≤ k ≤ K ,

P

(∑
i∈Ik

∥εi∥2 ≥ 8 log
16K

δ
α2N

)
≤ 4 exp

(
− t2

8Nα2

)
≤ δ

4K
, ∀1 ≤ k ≤ K .

The union bound shows that P (Egood) ≤ 1− δ .
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E PRELU CONVERGES TO OPTIMAL ℓ2-ROBUST CLASSIFIER, PART THREE:
ALIGNMENT PHASE

E.1 AUXILIARY LEMMAS

We need the following lemmas (proofs provided in Appendix G)
Lemma 5. Given an initialization shape that satisfies Assumption 2 with non-degeneracy gap ∆ > 0,
then for j ∈ Nk, we have

ckj(0) = cos(µk,wj(0)) ≥

√
1

2

(
1

(1−∆)2
− 1

)
:= ∆̃1, (E.1)

cp−2
lj (0)

cp−2
kj (0)

≤ (1−
√
2∆)p−2 := 1− ∆̃2,∀l ̸= k with yl = yk and clj(0) > 0 (E.2)

Lemma 6. Let p > 2. Condition on good event Egood. Given some 1 ≤ k ≤ K and some j ∈ Nk

and suppose the following is true at some point on the GF trajectory:

1. ckj ≥ ∆̃1;

2. |clj |
ckj

≤ (1−
√
2∆),∀l ̸= k.

Then the following holds:
d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| ,

for some universal constant C1, C2 that depends on p. If one further assume ckj ≥
√

4
5 , then the

lower bound can be improved as
d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| ,

Lemma 7. Let p > 2. Condition on good event Egood. Given an initialization shape that satisfies
Assumption 2 with non-degeneracy gap ∆ > 0, define

t1a := inf

{
t : max

i
|f (p)(xi;θ(t)| > min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}}
.

(E.3)
Then the following holds ∀t ≤ t1a:

ckj(t) ≥ ckj(0) ≥ ∆̃1,∀1 ≤ k ≤ K, j ∈ Nk , (E.4)
and

|cp−2
lj (t)|
cp−2
kj (t)

≤
|cp−2

lj (0)|
cp−2
kj (0)

≤ 1− ∆̃2 . and ∀l ̸= k, j ∈ Nk . (E.5)

Lemma 8. Let p > 2. Condition on good event Egood, then with any balanced initialization scale
ϵ ≤ 1

4
√
hW 2

max

, the solution to gradient flow dynamics satisfies

max
k

|f (p)(µk;θ(t))| ≤ 2ϵ
√
hW 2

max , ∀t ≤ 1

2p+2K
log

(
1

2p−1
√
hϵ

)
. (E.6)

The following lemma will be used to upper-bound the time each neuron spends until reaching a
neighborhood of some data µk.
Lemma 9. Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ Czp−1 ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (E.7)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

(p− 2)Czp−2
0

. (E.8)
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Lemma 10. Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ C(1− z) ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (E.9)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

C
log

1

1− z1
. (E.10)

The following lemma will be used to lower-bound the time each neuron can stay around the neighbor-
hood of some data µk.

E.2 PROOF OF PROPOSITION 2

Proposition 2 (Restated). Given the same assumptions as in Theorem 3 and consider the same
GF solution θ(t), t ≥ 0. There exist some t1 = O

(
log 1

α

)
and t2 = O

(
log 1

ϵ

)
such that ∀k and

∀j ∈ Nk, cos (µk, wj(t)) ≥ 1− Õ(α2), ∀t ∈ [t1, t2] .

Proof of Proposition 2. Breakdown the proofs We let

t1 := inf

{
t : min

k
min
j∈Nk

ckj(t) ≥ 1− C log
K

δ
α2

}
. (E.11)

We define

ϵ0 := min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+2
√
hW 2

max

,

∆̃p−1
1 ∆̃2(1−

√
2∆)

2K2p+2
√
hW 2

max

,

p∆̃p−1
1 ∆̃2α

2

8
√
hW 2

max

,

1√
h
exp

(
−4K

(
20

(p− 2)p∆̃2∆̃
p−2
1

+
2

p(2p−1 − 2)
log

1

C log K
δ α

2

))}
.

(E.12)

Our goal is to show that if the initialization scale ϵ ≤ ϵ0 (Notice that our assumption ϵ = Θ(α8K)
can satisfies this inequality), then

1. mink minj∈Nk
ckj(t) grows above 1− C log K

δ α
2 before

t̄1 := 20

(p−2)p∆̃2∆̃
p−2
1

+ 2
p(2p−1−2) log

1
C log K

δ α2 ;

2. Any ckj(t) staying above 1− C log K
δ α

2 during [t1, t2], where t2 := 1
2p+2K log

(
1

2p−1
√
hϵ

)
;

The remaining proof is to show them one by one.

Upper bound on t1 When 1 ≤ k ≤ K1, j ∈ Nk implies that wj0 ∈ Rk and sign(vj) = 1. We shall
primarily focus on this case as the proof is nearly identical for K1 + 1 ≤ k ≤ K. We prove it by
contradiction.

∀t ≤ t̄1, we have

max
i

|f (p)(xi;θ)| ≤ min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}
, (By Lemma 8 and (E.12))

(E.13)
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and

ckj(t) ≥ ∆̃1,
cp−2
lj

cp−2
kj

≤ 1− ∆̃2 ,∀l ̸= k, j ∈ Nk . (By (E.13) and Lemma 7) (E.14)

Suppose t1 ≥ t̄1, then ∃k, j ∈ Nk such that t(k)1j := inf{t : ckj(t) ≥ 1 − α2

2 } > t̄1. However, for
0 ≤ t ≤ t̄1, we have, by Lemma 6, for this particular k, j,

Whenever ckj ≥ ∆̃1,

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| , (E.15)

Whenever ckj ≥
√

4

5
,

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| , (E.16)

Notice that by Lemma 8 and (E.12), we have

max
i

|f (p)(xi;θ)| ≤
p∆̃p−1

1 ∆̃2α
2

4
(E.17)

These suffices to show that ckj will reach 1− Cα2

2 in less than t̄1 time.

For some choice of C and sufficiently small α, we have: Whenever, ∆̃1 ≤ ckj ≤
√

4
5 ,

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ pcp−1
kj ∆̃2

(
1−

√
4

5

)
− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ pcp−1
kj ∆̃2

(
1−

√
4

5

)
− C1 log

K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4
.

≥ p

2
cp−1
kj ∆̃2

(
1−

√
4

5

)
≥ p

20
cp−1
kj ∆̃2 , (E.18)

where we uses the fact that ckj ≥ ∆̃1 in the last inequality. Whenever,
√

4
5 ≤ ckj ≤ 1− Cα2

2 ,

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4

≥ p

2
(2p−1 − 2)(1− ckj) , (E.19)

where we uses the fact that ckj ≤ 1 − C log K
δ α

2 in the last inequality. The right-hand sides of
(E.18) and (E.19) is positive, which proves that ckj is monotonically increasing before reaching
1− C log K

δ α
2. Lastly,

1. by Lemma 9 and (E.18), it takes at most 20

(p−2)p∆̃2∆̃
p−2
1

time for ckj to travel from ∆̃1 to
√

4
5 ;

2. by Lemma 10 and (E.19), it takes at most 2
p(2p−1−2) log

1
C log K

δ α2 time for ckj to travel from
√

4
5

to 1− C log K
δ α

2.
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Therefore, we have

t
(k)
1j := inf{t : ckj(t) ≥ 1− α2

2
} ≤ 20

(p− 2)p∆̃2∆̃
p−2
1

+
2

p(2p−1 − 2)
log

1

C log K
δ α

2
= t̄1 ,

(E.20)
which contradicts our initial assumption that ckj(t) > t̄1. Hence t1 ≤ t̄1.

Maintaining C log K
δ α

2 alignment until t2 We have shown that at some t1 ≤ t̄1, all ckj have grown
above 1− C log K

δ α
2. Now we show that any ckj(t) stays above 1− C log K

δ α
2 between [t1, t2]. It

suffices to show that for any t ≤ t2,

d

dt
ckj

∣∣∣∣
ckj=1−C log K

δ α2

≥ 0 . (E.21)

Indeed, the inequality (E.16) is still valid before t2, i.e.

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4
.

Therefore, for some choice of C and sufficiently small α,

d

dt
ckj

∣∣∣∣
ckj=1−C log K

δ α2

≥ p(2p−1− 2)C log
K

δ
α2−C1 log

K

δ
α2−C2

p∆̃p−1
1 ∆̃2α

2

4
≥ 0 . (E.22)

Hence
min
k

min
j∈Nk

ckj(t) ≥ 1− C log
K

δ
α2,∀t ∈ [t1, t2] . (E.23)
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F PRELU CONVERGES TO OPTIMAL ℓ2-ROBUST CLASSIFIER, PART FOUR:
CONVERGENCE PHASE

F.1 AXUILIARY LEMMAS

We need the following lemmas (proofs provided in Appendix G):
Lemma 11. Let p > 2. Condition on good event Egood. Suppose the following is true at some point
on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K, i ∈ Ik,

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp ;

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp .

Lemma 12. Let p > 2. Condition on good event Egood. Suppose the following is true at some point
on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Furthermore, suppose additionally that for some k, j ∈ Nk:

1− 2Ca log
K

δ
α2 ≤ ckj(t) ≤ 1− Ca log

K

δ
α2;

Then the following holds for the same k, j,

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} .

Lemma 13. Let p > 2. Condition on good event Egood. Suppose the following is true at some point
on the GF trajectory :

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

and

d

dt

∑
j∈Nk

∥wj∥2
 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

where C is some universal constant such that C < Cw.
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Lemma 14. Consider the same assumptions as in Proposition 2. Given the t1 in Proposition 2, the
following holds ∀1 ≤ k ≤ K:∑

j∈Nk

∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 . (F.1)

Lemma 15. Given some 0 < ∆ < 1
4 , if for some z(t), the following holds

d

dt
z ≥ (1− z −∆)z, z(0) = z0, z(T ) = z1 , (F.2)

for some 0 < z0 ≤ 1
4 , and z0 ≤ z1 < 1 −∆. Then the travel time T for z(t) to go from z0 to z1

satisfies:

T ≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (F.3)

Lemma 16. Condition on good event Egood, we have∑
j∈Nc

∥wj(t)∥2 = õ(α2) , ∀t ≤ T ∗ . (F.4)

Lemma 17. If the neurons {wj}hj=1 satisfies the following for some 0 ≤ δ ≤ 1 and ν, ζ > 0:

• maxk maxj∈Nk
ckj(t) ≥ 1− δ;

•
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ ≤ ν;

•
∑

j∈N c ∥wj∥2 ≤ ζ,

then supx∈SD−1

∣∣f (p)(x;θ)− F (p)(x)
∣∣ ≤ K(1 + ν)(2p − 1)2δ +Kν + ζ

F.2 PROOF OF THEOREM 3

Theorem 3 (Restated). Let p > 2. Given 0 ≤ δ ≤ 1 and a sufficiently small α2
0, consider data

dimension D ≥ Ω̃(α−2
0 ) and per-cluster sample size Ω̃(α−2

0 ) ≤ N ≤ õ(exp(α−2
0 )). With probability

at least 1− δ, the GF dynamics with a balanced dataset D̂ = {xi, yi}KN
i=1 sampled with intra-cluster

variance α2 ≤ α2
0, starting from some ϵ-small and balanced (Assumption 1) initialization θ(0) that

satisfies Assumption 2 with a non-degeneracy gap ∆ = Θ(1) and has a sufficiently small initialization

scale ϵ = Θ̃
(
α8K
0

)
, leads to a solution θ(t), t ≥ 0 such that: for some t∗ = Õ

(
log 1

α0

)
and

T ∗ = Θ̃
(
log 1

α0

)
+ Ω̃

(
1

α
min{p−2,2}
0

)
with [t∗, T ∗] ̸= ∅, we have L(θ(t)) = Õ(α4

0),∀t ∈ [t∗, T ∗]

and
sup

t∈[t∗,T∗]

sup
x∈SD−1

∣∣∣f (p)(x;θ(t))− F (p)(x)
∣∣∣ ≤ Õ

(
α2
0

)
. (F.5)

Proof. We have shown in Proposition 2, and Lemma 14 that:

1. Any ckj(t) staying above 1− Ca log
K
δ α

2 during [t1, t2];

2.
∑

j∈Nk
∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p−2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2, for every 1 ≤ k ≤ K.

We define

t∗ = t1︸︷︷︸
O(1)

+2

(
log

1

(C − Cw) log
K
δ α

2
+

2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

+ log
1

W 2
minϵ

2

)
(F.6)

T ∗ = t2︸︷︷︸
Θ(log 1

ϵ )

+
C

log K2N
δ

αmax{2−p,−2} (F.7)
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Since ϵ = Θ(α8K). For sufficiently small α, we have O(log 1
α ) = t∗ ≤ T ∗ = Θ(αmin{2−p,−2}).

Our goal is to show that

1. Before T ∗, one must have maxk maxj∈Nk
ckj(t) ≥ 1− 2Ca log

K
δ α

2 and
∑

j∈Nk
∥wj(t)∥2 ≤

1 + Cw log K
δ α

2;

2. Before T ∗, for all k, whenever
∑

j∈Nk
∥wj(t)∥2 reaches 1−Cw log K

δ α
2, it can not drop below

1− Cw log K
δ α

2;

3. After t∗, for all k, one must have
∑

j∈Nk
∥wj∥2 ≥ 1− 2Cw log K

δ α
2 .

We also have
∑

j∈Nc
∥wj∥2 = õ(α2), then applying Lemma 17 gives the desired result. The

statement that L(t) = Õ(α4) is due to the fact that |yi − f (p)(xi;θ(t))| = Õ(α2) during [t∗, T ∗].

First claim: The two inequalities hold before t2, thus it suffices to study

τ3 := inf

{
t ≥ t2 : max

k
max
j∈Nk

ckj(t) ≤ 1− 2C log
K

δ
α2

}
,

τ4 := inf

t ≥ t2 :
∑
j∈Nk

∥wj∥2 ≥ 1 + C log
K

δ
α2

 ,

and show that min{τ3, τ4} ≥ T ∗. We proof it by contradiction, suppose min{τ3, τ4} ≤ T ∗, then it
must be either τ3 = min{τ3, τ4} ≤ T ∗ or τ4 = min{τ3, τ4} ≤ T ∗.

Consider the first case that τ3 = min{τ3, τ4} ≤ T ∗, then there exists some k and j ∈ Nk and some
τ3− ≥ t2 such that

1− 2C log
K

δ
α2 ≤ ckj(t) ≤ 1− C log

K

δ
α2,∀t ∈ [τ3− , τ3] , (F.8)

ckj(τ3−) = 1− C log
K

δ
α2, ckj(τ3) = 1− 2C log

K

δ
α2 (F.9)

since ckj(t) is continuous and has to travel from 1− C log K
δ α

2 to 1− 2C log K
δ α

2. By Lemma 6,
we have

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} ,∀t ∈ [τ3− , τ3] .

Then by the fundamental theorem of calculus, we have

−C log
K

δ
α2 = ckj(τ3)− ckj(τ3−) =

∫ τ3

τ3−

d

dt
ckj ≥

∫ τ3

τ3−

−CK log
K2N

δ
αmin{p,4}

= −(τ3 − τ3−)CK log
K2N

δ
αmin{p,4} ,

(F.10)
Therefore, for some constant C > 0,

(τ3 − τ3−) ≥
C

log K2N
δ

αmax{2−p,−2} ⇒ (τ3 − t2) ≥
C

log K2N
δ

αmax{2−p,−2} . (F.11)

[t2, τ3] has length at least C

log K2N
δ

αmax{2−p,−2} thus is an interval that contains [t2, T ∗]. Contradict-

ing our assumption that τ3 ≤ T ∗. The case one is thus eliminated.

Consider the second case that τ4 = min{τ3, τ4} ≤ T ∗, then by the continuity of ∥wj∥, we know that
there exists some k such that

∑
j∈Nk

∥wj(τ4)∥2 = 1 + Cw log K
δ α

2. However, by Lemma 11, we
have, at τ4,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2︸ ︷︷ ︸
=1+Cw log K

δ α2

+C log
K

δ
α2


∑

j∈Nk

∥wj∥2
 ,
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= 2

(
(C − Cw) log

K

δ
α2

)∑
j∈Nk

∥wj∥2
 < 0 ,

which indicates that
∑

j∈Nk
∥wj∥2 can not surpass 1+Cw log K

δ α
2 after τ4, violating the definition

of τ4, leading to a contradiction. Therefore the second case is eliminated as well. We must have
min{τ3, τ4} ≥ T ∗. The first claim is proved.

Second claim By Lemma 13 (it applies to any t ≤ T ∗ given the proof in our first step), we have

d

dt

∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣∑

j∈Nk
∥wj∥2=1−Cw log K

δ α2

≥ 2

(
Cw log

K

δ
α2 − C log

K

δ
α2

)∑
j∈Nk

∥wj∥2
 ,

≥ 0 .

Therefore, whenever
∑

j∈Nk
∥wj(t)∥2 reaches 1 − Cw log K

δ α
2, it can not drop below 1 −

Cw log K
δ α

2. The second claim is proved.

Third claim Lastly, we just need an upper bound on the travel time for
∑

j∈Nk
∥wj(t)∥2 to go from∑

j∈Nk
∥wj(t1)∥2 to 1− Cw log K

δ α
2, for which we simply combine Lemma 13, 14,and 15 to see

the travel time is upper bounded by

2

(
log

1

(C − Cw) log
K
δ α

2
+

2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

+ log
1

W 2
minϵ

2

)
. (F.12)

Thus
∑

j∈Nk
∥wj(t)∥2 must reach 1− Cw log K

δ α
2 by t∗.
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G PRELU CONVERGES TO OPTIMAL ℓ2-ROBUST CLASSIFIER, PART FIVE:
PROOFS FOR AUXILIARY LEMMAS

Lemma 5 (Restated). Given an initialization shape that satisfies Assumption 2 with non-degeneracy
gap ∆ > 0, then for j ∈ Nk, we have

ckj(0) = cos(µk,wj(0)) ≥

√
1

2

(
1

(1−∆)2
− 1

)
:= ∆̃1, (G.1)

cp−2
lj (0)

cp−2
kj (0)

≤ (1−
√
2∆)p−2 := 1− ∆̃2,∀l ̸= k with yl = yk and clj(0) > 0 (G.2)

Proof. We prove both inequalities by contradiction.

First inequality Suppose 0 < ckj(0) = cos(µk,wj(0)) = cos(µk,wj0) < ∆̃1, then consider
w̃j0 =

wj0

∥wj0∥ , and

w̃ = w̃j0 −
ckj(0)

1− ckj(0)
(µk − w̃j0) . (G.3)

Notice that here ckj(0) = cos(µk,wj0) = ⟨µk, w̃j0⟩. It is easy to verify that ⟨µl, w̃⟩ = 0,∀1 ≤
l ≤ K, thus w̃ ∈ ∂

(⋃
k∈K Rk

)
, and

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
= 1− sup

w∈∂
(⋃

k∈K Rk

) cos (w̃j0,w) ≤ 1− cos(w̃j0, w̃) , (G.4)

Since one can compute

cos(w̃j0, w̃) =
⟨w̃j0, w̃⟩
∥w̃j0∥∥w̃∥

=
1 + ckj(0)(1− ckj(0))√

1 + 2c2kj(0)
≥ 1√

1 + 2c2kj(0)
> 1−∆ , (G.5)

where the last inequality is due to our assumption that ckj(0) < ∆̃1. Combining (G.4)(G.5), we have

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
< ∆ , (G.6)

which contradicts our assumption that the non-degeneracy gap is at least ∆.

Second inequality Suppose there exists an l ̸= k such that yl = yk and
cp−2
lj (0)

cp−2
kj (0)

> (1−
√
2∆)p−2

and clj(0) > 0, we pick the l that has the largest clj(0), then consider w̃j0 =
wj0

∥wj0∥ , and

w̃ = w̃j0 −
ckj(0)− clj(0)

2
(µk − µl) . (G.7)

It can be verified that ∥w̃∥ = 1, cos(µk, w̃) = cos(µl, w̃) =
ckj(0)+clj(0)

2 , and cos(µm, w̃) =
cos(µm, w̃j0) ≤ cos(µl, w̃),∀m ̸= k or l. All of the above together implies w̃ ∈ (∂Rk)∩ (∂Rl) ⊂
∂
(⋃

k∈K Rk

)
, and

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
= 1− sup

w∈∂
(⋃

k∈K Rk

) cos (w̃j0,w) ≤ 1− cos(w̃j0, w̃) , (G.8)

One can compute

cos(w̃j0, w̃) =
⟨w̃j0, w̃⟩
∥w̃j0∥∥w̃∥

= 1− (ckj(0)− clj(0))
2

2

≥ 1−

(
1− clj(0)

ckj(0)

)2
2
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≥ 1−

(
1−

(
cp−2
lj (0)

cp−2
kj (0)

) 1
p−2

)2

2

≥ 1−

(
1− (1− ∆̃2)

1
p−2

)2
2

= 1−∆ , (G.9)

where the last inequality is due to our assumption that
cp−2
lj (0)

cp−2
kj (0)

> (1 −
√
2∆)p−2. Combining

(G.4)(G.5), we have

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
< ∆ , (G.10)

which contradicts our assumption that the non-degeneracy gap is at least ∆.

Lemma 6 (Restated). Let p > 2. Condition on good event Egood. Given some 1 ≤ k ≤ K and some
j ∈ Nk and suppose the following is true at some point on the GF trajectory:

1. ckj ≥ ∆̃1;

2. |clj |
ckj

≤ (1−
√
2∆),∀l ̸= k.

Then the following holds:

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| ,

for some universal constant C1, C2 that depends on p. If one further assume ckj ≥
√

4
5 , then the

lower bound can be improved as

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| ,

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus
on this case as the proof is nearly identical for K1 + 1 ≤ k ≤ K.

d

dt
ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

− 1

N

∑
i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

:=Γ1(will be treated later)

=


1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(a)
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− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(b)

+ Γ1

(G.11)

We handle these two terms differently:

(a) =
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
⟨µk,µk + εi⟩ −

〈
µk + εi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
1− c2kj + ⟨µk, εi⟩ −

〈
εi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
1− c2kj −

〈
εi,

wj

∥wj∥

〉
ckj

)

+
1

N

∑
i∈Ik

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩︸ ︷︷ ︸
:=Γ2(will be treated later)

=
1

N

∑
i∈Ik

p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
1− c2kj −

〈
εi,

wj

∥wj∥

〉
ckj

)
+ Γ2 (G.12)

With the Taylor expansion(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1

= cp−1
kj + (p− 1)cp−2

kj

〈
εi,

wj

∥wj∥

〉
+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (G.13)

where RL =
(p−1)(p−2)(ckj+ζL)p−2

2 and ζL between 0 and
〈
εi,

wj

∥wj∥

〉
comes from the Lagrange

residual. Clearly |RL| ≤ 2p−3p2. Combining (G.12)(G.13), we have

(a)

= (G.12)

= pcp−1
kj (1− c2kj) +

(
−pcpkj + p(p− 1)cp−2

kj (1− c2kj)
)∑

i∈Ik

〈
εi,

wj

∥wj∥

〉

+
1

N

(
−p(p− 1)ckj + pRL(1− c2kj

)
)
∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
− 1

N
pckjRL

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2〈εi, wj

∥wj∥

〉
+ Γ2

≥ pcp−1
kj (1− c2kj)−

1

N
p2

∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥− 1

N
2p−1p2

∑
i∈Ik

∥εi∥2 −
1

N
2p−3p3

∑
i∈Ik

∥εi∥3 + Γ2

≥ pcp−1
kj (1− c2kj)−

1

N
p2

∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥− 1

N
2p−1p2

∑
i∈Ik

∥εi∥2 −
1

N
2p−3p3

∑
i∈Ik

∥εi∥2 max
i

∥εi∥+ Γ2

≥ pcp−1
kj (1− c2kj)− Cp2

√
log

K

δ

α√
N

− 2p−1p3C2 log
K

δ
α2 − 2p−3p3C3 log

K2N

δ
α3 + Γ2 .

(G.14)
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We leave the bound as the last one for now and turn to the other term:

(b)

= − 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p

ckj

− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩︸ ︷︷ ︸
:=Γ3(will be treated later)

≥ − 1

N

∑
l ̸=k

∑
i∈Il

p

(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

ckj + Γ3 (G.15)

With the Taylor expansion(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

= |clj |p + p|clj |p−1

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (G.16)

where RL =
p(p−1)(|clj |+ζL)p−2

2 and ζL between 0 and
∣∣∣〈εi, wj

∥wj∥

〉∣∣∣ comes from the Lagrange

residual. Clearly |RL| ≤ 2p−2p2. Combining (G.12)(G.13), we have

(b)

= (G.15)

= −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il

pRLckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 + Γ3

≥ −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣−K2p−2p3C2 log
K

δ
α2 + Γ3 ,

≥ −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

(
∥εi∥

√
1− c2kj + |⟨εi,µk⟩|

)
−K2p−2p3C2 log

K

δ
α2 + Γ3 ,

≥ −
∑
l ̸=k

p|clj |pckj −
∑
l ̸=k

p2|clj |p−1ckjC

√
log

K2N

δ
α
√

1− c2kj −K2p−2p3C2 log
K

δ
α2 + Γ3

+− 1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj |⟨εi,µk⟩|︸ ︷︷ ︸
:=Γ4(will be treated later)

= −pcp−1
kj

∑
l ̸=k

|clj |p−2

cp−2
kj

|clj |2 −
∑
l ̸=k

p
|clj |p−2

cp−2
kj

|clj |C
√
log

K2N

δ
α
√

1− c2kj

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

= −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 −
∑
l ̸=k

p|clj |C
√
log

K2N

δ
α
√
1− c2kj

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 − pC

√
log

K2N

δ
α
√
1− c2kj

∑
l ̸=k

|clj |

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 − pC

√
K log

K2N

δ
α
√

1− c2kj

√∑
l ̸=k

|clj |2

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4
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≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

(1− c2kj)

)(
1− pC

√
K log

K2N

δ
α(1− c2kj)

)
−K2p−2p3C2 log

K

δ
α2 + Γ3 + Γ4

≥ −p

2
cp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)−K2p−2p3C2 log

K

δ
α2 + Γ3 + Γ4 (G.17)

Finally, combining (G.14)(G.17), we have

d

dt
ckj ≥ pcp−1

kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)− C ′

1

√
log

K

δ

α√
N

− C ′
2 log

K

δ
α2 − C ′

3 log
K2N

δ
α3

− |Γ1| − |Γ2| − |Γ3| − |Γ4|

≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C ′

1

√
log

K

δ

α√
N

− C ′
2 log

K

δ
α2 − C ′

3 log
K2N

δ
α3

− |Γ1| − |Γ2| − |Γ3| − |Γ4| ,
where the readers should be able to find universal constants C ′

1, C
′
2, C

′
3 from the derivation. It remains

to bound these |Γi|, i = 1, · · · , 4. Indeed, we can find the following bound:

|Γ1| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)∣∣∣∣∣∣
≤ max

i
|f (p)(xi;θ)|

1

N

∑
i:⟨xi,wj⟩>0

∣∣ p∥xi∥p−1 (2∥xi∥)
∣∣

≤ p2p+1 max
i

|f (p)(xi;θ)| ,

|Γ2| =

∣∣∣∣∣ 1N ∑
i∈Ik

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩

∣∣∣∣∣
≤ 1

N

∑
i∈Ik

p∥xi∥p−1 |⟨µk, εi⟩| ≤ p2p−1C

√
log

K2N

δ

α√
D

|Γ3| =

∣∣∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩

∣∣∣∣∣∣
≤ 1

N

∑
i∈Ik

p∥xi∥p−1 |⟨µk, εi⟩| ≤ p2p−1C

√
log

K2N

δ

α√
D

|Γ4| =

∣∣∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj |⟨εi,µk⟩|

∣∣∣∣∣∣
≤ 1

N

∑
l ̸=k

∑
i∈Ik

p2 |⟨µk, εi⟩| ≤ Kp2C

√
log

K2N

δ

α√
D

.

With these norm bounds, we have
d

dt
ckj

≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)− C ′

1

√
log

K

δ

α√
N

− C ′
2 log

K

δ
α2

− C ′
3 log

K2N

δ
α3 − C ′

4 max
i

|f (p)(xi;θ)| − C ′
5

√
log

K2N

δ

α√
D

≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| .
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Lastly, our bound is

1. When we only assumed ckj ≥ ∆̃1:

d

dt
ckj ≥ pcp−1

kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)|

≥ pcp−1
kj ∆̃2(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)|

2. When we further assume ckj ≥
√

4
5 , we have that

∑
l ̸=k c

2
lj = 1− c2kj ≤ 1

5 , then maxl ̸=k |clj | ≤√
1
5 . Therefore(

1−max
l ̸=k

|clj |p−2

cp−2
kj

)
=

(
1−

(
maxl ̸=k |clj |

ckj

)p−2
)

≥ 1− 1

2p−2
, (G.18)

which leads to

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| .

Lemma 7 (Restated). Let p > 2. Condition on good event Egood. Given an initialization shape that
satisfies Assumption 2 with non-degeneracy gap ∆ > 0, define

t1a := inf

{
t : max

i
|f (p)(xi;θ(t)| > min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}}
.

(G.19)
Then the following holds ∀t ≤ t1a:

ckj(t) ≥ ckj(0) ≥ ∆̃1,∀1 ≤ k ≤ K, j ∈ Nk , (G.20)

and

|cp−2
lj (t)|
cp−2
kj (t)

≤
|cp−2

lj (0)|
cp−2
kj (0)

≤ 1− ∆̃2 . and ∀l ̸= k, j ∈ Nk . (G.21)

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus
on this case as the proof is nearly identical for K1 + 1 ≤ k ≤ K.

Overview of the proof: We will prove by contradiction, we let τ1 := inf{t : ∃k, j ∈

Nk, s.t. ckj(t) < ckj(0)} and τ2 := inf

{
t : ∃k, j ∈ Nk,&l ̸= k, s.t.

|cp−2
lj (t)|
ckj(t)

>
|cp−2

lj (0)|
ckj(0)

}
, by

the continuity of every ckj(t) and every
|cp−2

lj (t)|
ckj(t)

on the interval [0, τ1] and [0, τ2] respectively,

we know that ckj(τ1) = ckj(0) for some k, j and
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

for some k, j, l. If
min{τ1, τ2} > t1a then there is nothing to be proved, otherwise, there are two cases:

1. When τ1 = min{τ1, τ2} ≤ t1a, we show that for the k, j such that ckj(τ1) = ckj(0)

d

dt
ckj

∣∣∣∣
t=τ1

≥ 0 , (G.22)

which says ckj(τ1 +∆t) ≥ ckj(0) for every sufficiently small ∆t, contradicting the definition of
τ1.
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2. When τ2 = min{τ1, τ2} ≤ t1a, we show that for the k, j, l such that
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

d

dt
log

|clj |
ckj

∣∣∣∣
t=τ2

≤ 0 , (G.23)

which says |clj(τ1+∆t)|
ckj(τ1+∆t) ≤ ckj(0) for every sufficiently small ∆t (due to the monotonicity of log

function), contradicting the definition of τ2.

Time derivatives of log cosine angles We have shown in (D.6) that for every 1 ≤ l ≤ D, whenever
|clj | > 0,

d

dt
log |clj |

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

−
〈
xi,

wj

∥wj∥

〉)

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1 ⟨µl,xi⟩
clj

+
1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p

.

Case One: τ1 = min{τ1, τ2}. This case is relatively easier as we have already shown Lemma 6. For
the k, j such that ckj = ∆̃

d

dt
ckj

∣∣∣∣
t=τ1

≥ pcp−1
kj ∆̃2(1− ckj)− C1 log

K

δ
α2 − p2p+1 max

i
|f (p)(xi;θ)|︸ ︷︷ ︸
(∗)

,

by Lemma 6 (conditions are satisified at t = τ1 and one should be able to get (*) using the intermediate
results in the proof of Lemma 6). Then

d

dt
ckj

∣∣∣∣
t=τ1

≥ p∆̃p−1
1 ∆̃2(1− ∆̃1)− C1 log

K

δ
α2 − p2p+1 max

i
|f (p)(xi;θ)| ,

(τ1≤t1a)

≥ p∆̃p−1
1 ∆̃2(1− ∆̃1)− C1 log

K

δ
α2 − 1

2
p∆̃p−1

1 ∆̃2(1− ∆̃1)

≥ 1

2
p∆̃p−1

1 ∆̃2(1− ∆̃1)− C1 log
K

δ
α2 ≥ 0 ,

for sufficiently small α.

Case Two: τ2 = min{τ1, τ2}. For the k, j, l such that
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

, we have (although
we omit the notation, all the derivations are at τ2, so that clj can appear in the denominator of a
fraction.)

d

dt
log

|clj |
ckj

=
d

dt
log |clj | −

d

dt
log ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)
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− 1

N

∑
i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)
︸ ︷︷ ︸

:=Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µk + εi⟩
clj

− ⟨µk,µk + εi⟩
ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
µl + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µl + εi⟩
clj

− ⟨µk,µl + εi⟩
ckj

)
1

N

∑
1≤l′≤K
l′ ̸=l,l′ ̸=k

∑
i∈Il′ :⟨xi,wj⟩>0

yi p

(〈
µl′ + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µl′ + εi⟩
clj

− ⟨µk,µl′ + εi⟩
ckj

)
+ Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj
+

⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj
+

⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
1

N

∑
1≤l′≤K
l′ ̸=l,l′ ̸=k

∑
i∈Il′ :⟨xi,wj⟩>0

yi p

(
cl′j +

〈
εi,

wj

∥wj∥

〉)p−1( ⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
+ Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj

)
+ Γ1 + Γ2 , (G.24)

We view Γ1,Γ2 as “perturbation term" and will control their norms later. For the first two terms in
(G.24), we have, respectively:

1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj

)

= − p

N

∑
i∈Ik

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1
1

ckj

= − p

N

∑
i∈Ik

cp−2
kj

1−

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj

p−1

≤ − p

N

∑
i∈Ik

cp−2
kj

1−

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj

p−1

≤ − p

N

∑
i∈Ik

cp−2
kj

1− (p− 1)

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj


≤ −pcp−2

kj + p(p− 1)
maxi ∥εi∥
ckj(0)

≥ −pcp−2
kj + p(p− 1)

√
8 log

4K2N

δ
α ,
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and similarly,

1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj

)

≤ p

N

∑
i∈Il:⟨xi,wj⟩>0

|yi| |clj |p−2

1 +

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
clj

p−1

≤ p

N

∑
i∈Il:⟨xi,wj⟩>0

|clj |p−2

1 + (p− 1)

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
clj


{
≤ p|clj |p−2 + p(p− 1)

√
8 log 4K2N

δ α, 1 ≤ l ≤ K

= 0, K < l ≤ D

Therefore we have

d

dt
log

|clj |
ckj

≤ −p(cp−2
kj − |clj |p−21l≤K) + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −p(cp−2
kj − |clj |p−2) + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −pcp−2
kj

(
1− |clj |p−2

cp−2
kj

)
+ 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −p∆̃p−2
1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2| .

It remains to bound these |Γ1|, |Γ2|. Indeed, we can find the following bound4 (note that at τ2, we
have |clj | = ckj(1−

√
2∆)) and ckj ≥ ∆̃1):

|Γ1| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1N
∑

1≤i≤KN

|f (p)(xi;θ)| p
∣∣∣∣〈xi,

wj

∥wj∥

〉∣∣∣∣p−1
(

| ⟨µl,xi⟩ |
ckj(1−

√
2∆)

+
| ⟨µk,xi⟩ |

ckj

)∣∣∣∣∣∣
≤ max

i
|f (p)(xi;θ)|

Kp2p+1

∆̃1(1−
√
2∆)

(τ2≤t1a)

≤ 1

2
p∆̃p−2

1 ∆̃2 ,

|Γ2| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1N
∑

1≤i≤KN

p

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p−1
(

| ⟨µl, εi⟩ |
ckj(1−

√
2∆)

+
| ⟨µk, εi⟩ |

ckj

)∣∣∣∣∣∣
≤ max

i,k
| ⟨µk, εi⟩ |

Kp2p+1

∆̃1(1−
√
2∆)

≤ CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D

Finally, we arrived at

d

dt
log

|clj |
ckj

∣∣∣∣
t=τ2

≤ −p∆̃p−2
1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α+

1

2
p∆̃p−2

1 ∆̃2 +
CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D

4It may take some time to recollect the terms we omitted in (G.24) and regroup them into Γ2
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≤ −1

2
p∆̃p−2

1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α+

CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D

≤ 0 , (G.25)

for sufficiently small α.

Lemma 8 (Restated). Let p > 2. Condition on good event Egood, then with any balanced initialization
scale ϵ ≤ 1

4
√
hW 2

max

, the solution to gradient flow dynamics satisfies

max
k

|f (p)(µk;θ(t))| ≤ 2ϵ
√
hW 2

max , ∀t ≤ 1

2p+2K
log

(
1

2p−1
√
hϵ

)
. (G.26)

Proof. Let T := inf{t : maxi |f(xk;θ(t))| > 2ϵ
√
hW 2

max}, then ∀t ≤ T, j ∈ [h], we have

d

dt
∥wj∥2 = −2

sign(vj(0))

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

≤ 2
1

N

KN∑
i=1

|∇ŷℓi|∥wj∥2
(⟨xi,wj⟩)p

∥wj∥p

≤ 2
1

N

KN∑
i=1

|∇ŷℓi|∥wj∥2∥xi∥p

≤ 2p+1

N

KN∑
i=1

(1 + |f(xk;θ(t))|)∥wj∥2

≤ 2p+1

N

KN∑
i=1

(1 + 4ϵ
√
hW 2

max)∥wj∥2

≤ 2p+1K(1 + 4ϵ
√
hW 2

max)∥wj∥2 . (G.27)

Let τj := inf{t : ∥wj(t)∥2 > 2ϵM2

2p−1
√
h
}, and let j∗ := argminj τj , then τj∗ = minj τj ≤ T due to

the fact that

|f(xi;θ)| =

∣∣∣∣∣∣
∑
j∈[h]

1⟨wj ,xi⟩>0vj
(⟨wj ,xk⟩)p

∥wj∥p−1

∣∣∣∣∣∣ ≤ 2p
∑
j∈[h]

∥wj∥2 ≤ 2phmax
j∈[h]

∥wj∥2 ,

which implies "|f(xk;θ(t))| > 2ϵ
√
hW 2

max ⇒ ∃j, s.t.∥wj(t)∥2 >
ϵW 2

max

2p−1
√
h

".

Then for t ≤ τj∗ , we have

d

dt
∥wj∗∥2 ≤ 2p+1K(+4ϵ

√
hW 2

max)∥wj∗∥2 . (G.28)

By Grönwall’s inequality, we have ∀t ≤ τj∗

∥wj∗(t)∥2 ≤ exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
∥wj∗(0)∥2 ,

= exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
ϵ2∥wj∗0∥2

≤ exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
ϵ2W 2

max .

Suppose τj∗ < 1
2p+2K log

(
1

2p−1
√
hϵ

)
, then by the continuity of ∥wj∗(t)∥2, we have

2ϵW 2
max

2p−1
√
h
≤ ∥wj∗(τj∗)∥2 ≤ exp

(
2p+1K(1 + 4ϵ

√
hW 2

max)τj∗
)
ϵ2W 2

max

≤ exp

(
2p+1K(1 + 4ϵ

√
hW 2

max)
1

2p+2K
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max
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≤ exp

(
1 + 4ϵ

√
hW 2

max

2
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max

≤ exp

(
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max =
ϵW 2

max

2p−1
√
h
,

which leads to a contradiction 2ϵ ≤ ϵ. Therefore, one must have T ≥ τj∗ ≥ 1
2p+2K log

(
1

2p−1
√
hϵ

)
.

This finishes the proof.

Lemma 9 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ Czp−1 ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (G.29)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

(p− 2)Czp−2
0

. (G.30)

Proof. We have ∫ z1

z0

1

Czp−1
dz ≥

∫ T

0

dt , (G.31)

thus

T ≤ 1

(p− 2)C

(
1

zp−2
0

− 1

zp−2
1

)
≤ 1

(p− 2)Czp−2
0

. (G.32)

Lemma 10 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ C(1− z) ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (G.33)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

C
log

1

1− z1
. (G.34)

Proof. We have ∫ z1

z0

1

C(1− z)
dz ≥

∫ T

0

dt , (G.35)

thus

T ≤ 1

C

(
log

1− z0
1− z1

)
≤ 1

C
log

1

1− z1
. (G.36)

Lemma 11 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at
some point on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K, i ∈ Ik,

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp ;

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp .
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Proof. Our proof ignores terms related to neurons in Nc as they only introduce a õ(α2) perturbation.

f (p)(xi;θ)

=

h∑
j=1

vj
σp(⟨wj ,xi⟩)
∥wj∥p−1

=

h∑
j=1

∥wj∥2σp

(〈
wj

∥wj∥
,xi

〉)

=
∑
j∈Nk

∥wj∥2
(〈

wj

∥wj∥
,xi

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(〈
wj

∥wj∥
,xi

〉)

=
∑
j∈Nk

∥wj∥2
(
ckj +

〈
wj

∥wj∥
, εi

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)
(G.37)

Upper bound:

f (p)(xi;θ)

= (G.37)

≤
∑
j∈Nk

∥wj∥2
(
ckj +

∣∣∣∣〈 wj

∥wj∥
, εi

〉∣∣∣∣)p

︸ ︷︷ ︸
(a)

+

∣∣∣∣∣∣
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)∣∣∣∣∣∣︸ ︷︷ ︸
(b)

.

For the first term, we have

(a) ≤
∑
j∈Nk

∥wj∥2
(
1 + ∥εi∥

√
1− c2kj + | ⟨µk, εi⟩ |

)p
≤
∑
j∈Nk

∥wj∥2
(
1 + ∥εi∥

√
2(1− ckj) + | ⟨µk, εi⟩ |

)p

≤
∑
j∈Nk

∥wj∥2
(
1 + 2C

√
log

K2N

δ
α2 + C

√
log

K2N

δ

α√
D

)p

≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
,

for sufficiently small α. For the second term, we have

(b) ≤ 2
∑
l ̸=k

(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

≤ 2K
(√

1− c2kj + ∥εi∥
√

1− c2kj + | ⟨µk, εi⟩ |
)p

≤ 2K

(√
2(1− ckj) + ∥εi∥

√
(1− ckj) + | ⟨µk, εi⟩ |

)p

≤ 2K

(
Cα+ C

√
log

K2N

δ
α2 + C

√
log

K2N

δ

α√
D

)p

≤ 2KCαp . (G.38)

Therefore

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp . (G.39)

Lower bound:

f (p)(xi;θ)
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= (G.37)

≥
∑
j∈Nk

∥wj∥2
(
ckj +

∣∣∣∣〈 wj

∥wj∥
, εi

〉∣∣∣∣)p

︸ ︷︷ ︸
(a)

−

∣∣∣∣∣∣
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)∣∣∣∣∣∣︸ ︷︷ ︸
≤(G.38)

.

For the first term, we have

(a) ≥
∑
j∈Nk

∥wj∥2
(
1− ∥εi∥

√
1− c2kj − | ⟨µk, εi⟩ |

)p
≥
∑
j∈Nk

∥wj∥2
(
1− ∥εi∥

√
2(1− ckj)− | ⟨µk, εi⟩ |

)p

≥
∑
j∈Nk

∥wj∥2
(
1− 2C

√
log

K2N

δ
α2 − C

√
log

K2N

δ

α√
D

)p

≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
,

for sufficiently small α. Therefore

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp . (G.40)

Lemma 12 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at
some point on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Furthermore, suppose additionally that for some k, j ∈ Nk:

1− 2Ca log
K

δ
α2 ≤ ckj(t) ≤ 1− Ca log

K

δ
α2;

Then the following holds for the same k, j,

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} .

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus
on this case as the proof is nearly identical for K1 + 1 ≤ k ≤ K.
d

dt
ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(a)
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+
1

N

∑
i∈Ik

∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(b)

+
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(c)

.

(G.41)

We deal with these terms one by one:

Since
∑

j∈Nk
∥wj∥2 ≤ 1 + Cα2, for (a), there are two cases:

1. When 1−
∑

j∈Nk
∥wj∥2 ≥ 0, Follow the same derivations from (G.12) to (G.14), we have

(a) =

1−
∑
j∈Nk

∥wj∥2
 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥

1−
∑
j∈Nk

∥wj∥2
(pcp−1

kj (1− c2kj)− Cp2
√
log

K

δ

α√
N

− 2p−1p3C2 log
K

δ
α2 − o(α2)

)

≥

1−
∑
j∈Nk

∥wj∥2
(p(1− Cα2)p−1

(
Cα2 − C2

4
α4

)
− Cp2

√
log

K

δ

α√
N

− 2p−1p3C2 log
K

δ
α2 − o(α2)

)
≥ 0 ,

for some choice of C and sufficiently small α.

2. When −Cα2 ≤ 1−
∑

j∈Nk
∥wj∥2 ≤ 0, we have

(a) =

1−
∑
j∈Nk

∥wj∥2
 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥ −

∣∣∣∣∣∣1−
∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣ 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
1− c2kj + | ⟨µk, εi⟩ |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ −

∣∣∣∣∣∣1−
∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣ p2p−1

(
1− c2kj + 2| ⟨µk, εi⟩ |+ ∥εi∥

√
1− c2kjckj

)

≥ C

√
log

K2N

δ
α4 , (G.42)

Therefore, we always have

(a) ≥ C

√
log

K2N

δ
α4 . (G.43)

The second term (b) is easy: by Lemma 11, we know that
∣∣∣∑j∈Nk

∥wj∥2 − f (p)(xi;θ)
∣∣∣ =

O(
√
log K2N

δ α2), then by the a similar derivation as in (G.42), we have

(b) =
1

N

∑
i∈Ik

∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
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≥ −

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

∣∣∣∣∣∣ 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
1− c2kj + | ⟨µk, εi⟩ |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ C log
K2N

δ
α4 , (G.44)

For the last term, we have

(c) =
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥ − 2

N

∑
l ̸=k

∑
i∈Il

p

(
clj +

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p−1(
⟨µk, εi⟩+ cljckj +

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ − 2

N

∑
l ̸=k

∑
i∈Il

p
(√

1− c2kj + ∥εi∥
√

1− c2kj

)p−1 (
⟨µk, εi⟩+

√
1− c2kjckj + ∥εi∥

√
1− c2kjckj

)
≥ −CK

√
log

K2N

δ
αp .

Finally, we can conclude that

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} . (G.45)

Lemma 13 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at
some point on the GF trajectory :

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

and

d

dt

∑
j∈Nk

∥wj∥2
 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

where C is some universal constant such that C < Cw.

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus
on this case as the proof is nearly identical for K1 + 1 ≤ k ≤ K. We start with (D.3):

d

dt
∥wj∥2 =

2

N

 ∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

= 2


1

N

∑
i∈Ik:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
(a)
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+
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
:=Γ1

 ∥wj∥2

For the first term, we have

(a) =
1

N

∑
i∈Ik:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

(1− f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(〈

xi,
wj

∥wj∥

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(〈
xi,

wj

∥wj∥

〉)(〈xi,
wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(〈

xi,
wj

∥wj∥

〉)p
(〈xi,

wj

∥wj∥

〉)p

+
1

N

∑
i∈Ik

∑
l ̸=k

∑
j∈Nl

∥wj∥2σ2p

(〈
xi,

wj

∥wj∥

〉)
︸ ︷︷ ︸

:=Γ2

.

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

+ Γ2 .

We shall focus on the first term. With the Taylor expansion(
ckj +

〈
εi,

wj

∥wj∥

〉)p

= cpkj + pcp−1
kj

〈
εi,

wj

∥wj∥

〉
+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (G.46)

where RL =
p(p−1)(ckj+ζL)p−2

2 and ζL between 0 and
∣∣∣〈εi, wj

∥wj∥

〉∣∣∣ comes from the Lagrange

residual. Clearly |RL| ≤ 2p−2p2. Then we have

1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

=cpkj −
∑
j∈Nk

∥wj∥2c2pkjpcp−1
kj − 2

∑
j∈Nk

∥wj∥2c2p−1
kj

 1

N

∑
i∈Ik

〈
εi,

wj

∥wj∥

〉
(
RL − p2c2p−2

kj − 2cpkjRL

) 1

N

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 + o

(∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
)

Finally, we are ready to derive the upper and lower bound. For lower bound,

d

dt
∥wj∥2

= 2 ((a) + Γ1) ∥wj∥2

≥ 2

 1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj − C1
1

N

∣∣∣∣∣
〈∑

i∈Ik

εi,
wj

∥wj∥

〉∣∣∣∣∣− C2
1

N

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
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−o

(∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
)

− |Γ1| − |Γ2|

)
∥wj∥2

≥ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj − C

√
log

K

δ

α√
N

− C2 log
K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

(1− Cα2

2

)p

−
∑
j∈Nk

∥wj∥2 − C

√
log

K

δ

α√
N

− C2 log
K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

1− p
Cα2

2
−
∑
j∈Nk

∥wj∥2 − C

√
log

K

δ

α√
N

− C2 log
K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

It remains to bound these |Γ1|, |Γ2|. Indeed, we can find the following bound:

|Γ1| =

∣∣∣∣∣∣ 1N
∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1N
∑
l ̸=k

∑
i∈Il

|yi − f (p)(xi;θ))|
(〈

xi,
wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
l ̸=k

∑
i∈Il

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(
clj +

〈
εi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(√
1− c2kj + ∥εi∥

√
1− c2kj + ⟨µk, εi⟩

)p∣∣∣∣∣∣ ≤ KCαp ,

|Γ2| =

∣∣∣∣∣∣ 1N
∑
i∈Ik

∑
l ̸=k

∑
j∈Nl

∥wj∥2σ2p

(〈
xi,

wj

∥wj∥

〉)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 2N
∑
i∈Ik

∑
l ̸=k

(〈
xi,

wj

∥wj∥

〉)2p
∣∣∣∣∣∣ ≤ KCα2p .

Therefore,

d

dt
∥wj∥2 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

 ∥wj∥2 ,

since when α is sufficiently small, the dominant term is of order α2.

Similarly, for the upper bound, we can have
d

dt
∥wj∥2

= 2 ((a) + Γ1) ∥wj∥2

≤ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj + C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2
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≤ 2

1−
∑
j∈Nk

∥wj∥2
(
1− Cα2

2

)2p

− C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2

≤ 2

1−
∑
j∈Nk

∥wj∥2 + 4p
Cα2

2
+ C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2

≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

 ∥wj∥2

Lemma 14 (Restated). Consider the same assumptions as in Proposition 2. Given the t1 in Proposi-
tion 2, the following holds ∀1 ≤ k ≤ K:∑

j∈Nk

∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 . (G.47)

Proof. The proof will be in two parts: first, we define, for each k,

t(k)aux := inf

{
t : min

j∈Nk

ckj(t) ≥
2

3

}
(By its definition)

≤ t1 , (G.48)

and show that ∑
j∈Nk

∥wj(t
(k)
aux)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

) ∑
j∈Nk

∥wj(0)∥2 . (G.49)

Then we show that
∑

j∈Nk
∥wj(t1)∥2 is non-decreasing during [t

(k)
aux , t1].

Lower bound at t(k)aux: We shall focus on the case 1 ≤ k ≤ K1. In the proofs of Proposition 2, we
have shown in (E.18) that when t ≤ t

(k)
aux ≤ t̄1, the following is true: ∀j ∈ Nk

d

dt
ckj ≥ ∆̃2pc

p−1
kj , (G.50)

By Lemma 9, we have

t(k)aux = inf

{
t : ckj ≥

2

3

}
≤ 1

p(p− 2)∆̃2∆̃
p−2
1

. (G.51)

Now we are ready to lower bound
∑

j∈Nk
∥wj(t

(k)
aux)∥2: In the same way we derived (G.27), we can

also obtain: for t ≤ t1,

d

dt
∥wj∥2 ≥ −2p+1K(1 + 4ϵ

√
hW 2

max)∥wj∥2 ≥ −2p+2K∥wj∥2 , (G.52)

thus
d

dt

∑
j∈Nk

∥wj∥2 ≥ −2p+2K
∑
j∈Nk

∥wj∥2 . (G.53)

Finally, by Grönwall’s inequality, we have∑
j∈Nk

∥wj(t
(k)
aux)∥2 ≥ exp

(
−2pp+2Kt(k)aux

) ∑
j∈Nk

∥wj(0)∥2

≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 .

Norm is non-decreasing afterward The techniques we will be using here is similar to those used in
proving previous lemma, so we describe the argument briefly.
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Suppose 1 ≤ k ≤ K, we have the norm dynamics

d

dt
∥wj∥2

= − 2

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

=
2

N

 ∑
i:⟨xi,wj⟩>0

yi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 + O(ϵ)︸︷︷︸

Recall how we handle Γ1 in the proof of Lemma 6

≥ 2

N

∑
i∈Ik

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p −∑
l ̸=k

∑
i∈Il

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p
 ∥wj∥2 +O(ϵ)

≥ 2

N

∑
i∈Ik

(
ckj +

〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
Taylor expansion, refer to (G.46)

−
∑
l ̸=k

∑
i∈Il

(
|clj |+

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣)p

︸ ︷︷ ︸
Taylor expansion, refer to (G.16)

 ∥wj∥2 +O(ϵ)

≥ 2

cpkj −
∑
l ̸=k

|clj |p −O

(√
log

K2N

δ
α

)
−O

(
α2
) ∥wj∥2 +O(ϵ) .

When ckj ≥ 2
3 , we have

cpkj −
∑
l ̸=k

|clj |p ≥ cpkj − (1− c2kj)
p
2 > 0 , (G.54)

then for sufficiently small α and ϵ, we have d
dt∥wj∥2 ≥ 0. Then during t

(k)
aux ≤ t ≤ t1, we have

d

dt

∑
j∈Nk

∥wj∥2 ≥ 0 . (G.55)

The proof is finished.

Lemma 18. 15[Restated] Given some 0 < ∆ < 1
4 , if for some z(t), the following holds

d

dt
z ≥ (1− z −∆)z, z(0) = z0, z(T ) = z1 , (G.56)

for some 0 < z0 ≤ 1
4 , and z0 ≤ z1 < 1 −∆. Then the travel time T for z(t) to go from z0 to z1

satisfies:

T ≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (G.57)

Proof. We have ∫ z1

z0

1

(1− z −∆)z
dz ≥

∫ T

0

dt , (G.58)

thus

T ≤ 1

1−∆

(
log

1− z0 −∆

1− z1 −∆
+ log

z1
z0

)
≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (G.59)

Lemma 16 (Restated). Condition on good event Egood, we have∑
j∈Nc

∥wj(t)∥2 = õ(α2) , ∀t ≤ T ∗ . (G.60)
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Proof. We deal with neurons with sign(vj) = +1, the other case has a similar proof.

If j ∈ Nc, it means wj0 is initialized into the void region with ckj(0) < 0 and |ckj(t)| = Θ(1), for
1 ≤ k ≤ K1. Therefore, the inner product between wj(0) and a data point xi from the k-th cluster is
always negative, and this holds continuously as long as ckj(t) < 0 and |ckj(t)| = Θ(1).

We will show that

1. Until t ≤ t∗, we still have ckj(t) < 0 and |ckj(t)| = Θ(1), thus none of the data in positive
clusters activates wj .

2. Then ckj(t) < 0 and |ckj(t)| = Θ(1) suggests that,
∑

j∈Nc
∥wj∥2 has an at most O(α2) growth

rate. And during [t∗, T ∗], with a slightly different argument,
∑

j∈Nc
∥wj∥2 still has an at most

O(α2) growth rate, thus continually stays at õ(α2).

The a more formal proof requires proof by contradiction, with previous lemmas we have proved, but
the provided argument should easily be translated into a proof by contradiction.

First step: Given a j ∈ Nc ∪N+ and 1 ≤ k ≤ K1, we have during t ≤ t∗,

d

dt
ckj = − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

= − 1

N

∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1

⟨µk,xi⟩︸ ︷︷ ︸
=O( α√

D
)

−
〈
xi,

wj

∥wj∥

〉
ckj


= − 1

N

∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p

ckj︸︷︷︸
<0

+O
(

α√
D

)
.

Since ∇ŷℓi is either < 0 (during alignment phase) or = O(α2) (after norm growth). Then we always
have d

dtckj = O(α2). Therefore, ∀t ≤ t∗

ckj(t) ≤ ckj(0) + t · O(α2) ≤ ckj(0) + t∗O(α2) = ckj(0) +O
(
α2 log

1

α

)
, (G.61)

thus, we still have ckj(t) < 0 and |ckj(t)| = Θ(1).

Second step: During [0, t∗], since none of the data in positive clusters activates wj , we have

d

dt
∥wj∥2 = −2

1

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

= −2
1

N

 ∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 .

Since ∇ŷℓi is either < 0 (during alignment phase) or = O(α2) (after norm growth). We have
d
dt∥wj∥2 = O(α2) · ∥wj∥2.

During [t∗, T ∗], we have ∇ŷℓi = O(α2) for all i (as the consequence of
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ =

O(α2) and Lemma 11). Therefore we still have d
dt∥wj∥2 = O(α2) · ∥wj∥2.

Then we have ∀t ≤ T ∗,

d

dt

∑
j∈Nc

∥wj(t)∥2 ≤ O
(
exp(α2T ∗)

) ∑
j∈Nc

∥wj(0)∥2 ≤ O(1)
∑
j∈Nc

∥wj(0)∥2 ≤ O(ϵ2) = õ(α2) .

(G.62)
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Lemma 17 (Restated). If the neurons {wj}hj=1 satisfies the following for some 0 ≤ δ ≤ 1 and
ν, ζ > 0:

• maxk maxj∈Nk
ckj(t) ≥ 1− δ;

•
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ ≤ ν;

•
∑

j∈N c ∥wj∥2 ≤ ζ,

then supx∈SD−1

∣∣f (p)(x;θ)− F (p)(x)
∣∣ ≤ K(1 + ν)(2p − 1)2δ +Kν + ζ

Proof.

f (p)(x;θ) (G.63)

=

h∑
j=1

vj
σp(⟨wj ,x⟩)
∥wj∥p−1

=

h∑
j=1

sign(vj)∥wj∥2
σp(⟨wj ,x⟩)

∥wj∥p

=

h∑
j=1

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)

=
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)

+
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
(G.64)

For the first term, we have ∀x ∈ SD−1∣∣∣∣∣∣
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
1≤k≤K1

σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
− µk + µk,x

〉)
− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp

(
⟨µk,x⟩+

∥∥∥∥ wj

∥wj∥
− µk

∥∥∥∥)− σp(⟨µk,x⟩)

∣∣∣∣∣∣
=

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp (⟨µk,x⟩+ 2(1− ckj))−
∑
j∈Nk

∥wj∥2σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp(⟨µk,x⟩)− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

(1 + ν) |σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|+
∑

1≤k≤K1

ν |σp(⟨µk,x⟩)|

≤
∑

1≤k≤K1

(1 + ν) |σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|+K1ν
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≤ K1(1 + ν)(2p − 1)2δ +K1ν ,

where the last inequality is due to the following derivation (notice that ReLU σ(z) is non-decreasing
in z, and polynomial zp is non-decreasing for z > 0)

|σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|
=σp (⟨µk,x⟩+ 2(1− ckj))− (⟨µk,x⟩)
≤ (1 + 2δ)

p − 1 ≤ (2p − 1)2δ .

Similarly, for the second term, we have ∀x ∈ SD−1∣∣∣∣∣∣
∑

K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤K2(1 + ν)(2p − 1)2δ +K2ν

Lastly, for the third term, we have∣∣∣∣∣∣
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)∣∣∣∣∣∣ ≤
∑
j∈N c

∥wj∥2 ≤ ζ

Therefore, for any x ∈ SD−1, we have∣∣∣f (p)(x;θ)− F (p)(x)
∣∣∣

≤

∣∣∣∣∣∣
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
1≤k≤K1

σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)∣∣∣∣∣∣
≤K(1 + ν)(2p − 1)2δ +Kν + ζ
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