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ABSTRACT

Deep learning-based classifiers are known to be vulnerable to adversarial attacks.
Existing methods for defending against such attacks require adding a defense
mechanism or modifying the learning procedure (e.g., by adding adversarial exam-
ples). This paper shows that for certain data distribution one can learn a provably
robust classifier using standard learning methods and without adding a defense
mechanism. More specifically, this paper addresses the problem of finding a robust
classifier for a binary classification problem in which the data comes from a mixture
of Gaussian clusters with orthonormal cluster centers. First, we characterize the
largest ¢s-attack any classifier can defend against while maintaining high accuracy,
and show the existence of optimal robust classifiers achieving this maximum /5-
robustness. Next, we show that given data sampled from the orthonormal cluster
model, gradient flow on a two-layer network with a polynomial ReL.U activation
and without adversarial examples provably finds an optimal robust classifier.

1 INTRODUCTION

The vulnerability of deep neural networks to adversarial attacks (Szegedy et al.,[2014), which are
typically human-imperceptible perturbations to the input data, has led to numerous efforts in building
defenses against these attacks (Shafahi et al., [2019; |Papernot et al.| 2016} |Wong et al., 2019; |Guo
et al.} 2018 Cohen et al.,|2019} |ILevine & Feizil 2020; |Yang et al., [2020; Sulam et al.| |[2020; Kinfu &
Vidal, [2022). These defenses have been counteracted by new adaptive attacks (Athalye et al., 2018}
Carlini et al., 2019; |Croce & Hein, [2020), leading to new defenses and so on. Even in the era of Large
Language Models, adversarial attacks exist (Chao et al.;[2023; |Shah et al.,[2023), leading to undesired
or harmful model outputs, and the competition between adversaries and defenders continues (Robey
et al.,|[2023; J1 et al., [2024). While such a competition allows us to design more robust networks, it
will not end unless many fundamental questions about adversarial robustness are answered.

One question is what is the maximum adversarial perturbation a neural network can tolerate? Many
works on certified robustness (Cohen et al., | 2019; [Fazlyab et al., [2020; Zhang et al.,|2018) aim to
find a certified radius such that a neural network can provably maintain a high prediction accuracy
for adversarial attacks within that radius. However, their reported certified radii are often too small
compared to what can be achieved by practical defenses (Tramer et al.| [2018;|Guo et al.| [2018; |Gowal
et al.l [2020; Wu et al., [2020). Yet, practical defenses come at the cost of computing adversarial
examples, or sophisticated model designs, mostly without theoretical guarantees, except for the case
of linear classifiers (Zou et al., [2021)). This also motivates an intriguing question: Is it possible to
(provably) find a robust network by standard training methods, without adversarial examples?

We argue that these questions can be answered by exploiting properties of the data distribution, which
most aforementioned works fail to do. Indeed, recent works show that the existence of a robust
classifier is closely related to data geometry. For instance, [Pal et al.| (2023} 2024) show that if the data
is localized, i.e., if the distribution of the data given the class concentrates in a set of small volume,
then a robust classifier is guaranteed to exist. Moreover, they show that a 27 separation (w.r.t. to some
distance metric) between the sets that contain each class-conditioned probability mass is sufficient
for the existence of a robust classifier against attacks of radius r in the same distance metric.

This paper shows that such a relationship between data geometry and adversarial robustness has
deeper implications: For certain data distributions, one can characterize the maximum robustness any
classifier can achieve, based on how class-conditional probability masses are separated. Moreover,
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one can make suitable architectural designs that exploit the data geometry, such that a nearly
optimal robust classifier is provably learned by standard training methods, such as gradient descent.
Specifically, we consider a balanced mixture of K-Gaussian clusters in R”, split into two classes:

N(“17a2I/D)7"' »/\/(HKNOZ2I/D)aN(HK1+1a042I/D)7'" ,N(HK,Q2I/D)7 (1)

positive (41) class negative (—1) class

where the cluster centers 1, -- , bx € RPL are othonormal, o? denotes the intra-cluster variance,
and the ambient dimension D is sufficiently large. We explain our contributions as follows:

Maximum /5-robustness This mixture of Gaussian distribution satisfies data localization and
separation properties similar to those studied in[Pal et al.|(2023). As illustrated in Figure[I]for the case
of two clusters (one from the positive class and one from the negative class), the class-conditioned
probability masses concentrate around two (D — 1)-dimensional affine subspaces separated by a
Euclidean distance of almost v/2. Based on such observation, our first set of results are:

Theorem (Theorem|(I| & [2| informal). No classifier can defend against an adversarial attack of (o
radius 72 However, one can construct a nearly optimal robust classifier that can defend against

attacks of radius arbitrarily close to ? when D is sufficiently large.

Our results show that data localization and separation are important properties in understanding
the maximum achievable robustness for a classifier. Moreover, we will show that the classifier we
construct is the Bayes optimal classifier w.r.t. the 0-1 loss, which operates as a nearest-cluster rule:
classifiers that exploit the multi-cluster data structure are naturally and optimally robust.
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Figure 2: Given sampled data from () with 12 positive
clusters and 8 negative clusters (D = 2000), gradient
descent (SGD, small initialization) on (bias-free, width-
200) two-layer ReLU network (ReLU) fails to find a
robust classifier. This issue persists after 1) increasing
depth to 4 (MLP); 2) (blindly) switching to another acti-
vation (Tanh); or 3) using a linear classifier (LogReg).
However, by choosing a suitable activation (pReLU,
p = 3), GD can find a nearly optimal robust classifier.

Figure 1: Illustration of two clusters in
high-dimensions, each concentrated on
a (D —1)-dimensional affine subspace
such that the subspaces are separated by
a Euclidean distance of /2.

Learning optimal robust networks So far everything seems to be intuitive and straightforward
given the fairly simple distributional assumption. However, issues arise when one does not know
the data distribution a priori and seeks a classifier by training a neural network on sampled data via
gradient descent. As Figure [2suggests, a trained multi-layer ReLU network fails to find a classifier
with the same level of robustness as the Bayes classifier (which indeed can defend against attack of

radius ~ %, as our results suggest). This matter is first discussed by |[Frei et al.| (2023, where they
show that any two-layer ReLU network trained by gradient descent under data samples from (T)) is
non-robust against adversarial attacks of /5-radius © (\/%), where K is the total number of clusters.

Later, [Min & Vidal| (2024) show that this issue is caused by the fact that a ReLU network fails to
learn, internally with its weight parameters, the multi-cluster structure of the data distribution, despite
that the sampled data points are revealing such a structure. Therefore, while the structural property of
the data distribution allows one to construct an optimal robust classifier, gradient descent algorithms
on neural networks may struggle to learn these key properties, leading to non-robust classifiers.
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To address this issue, Min & Vidal| (2024) propose to change the activation. More specifically,
replacing the ReLU activation with a polynomial ReLU activation (pReLU) with polynomial degree
p as a hyperparameter. They empirically show that when p = 3, the pReLU network can internally
learn the data structure, leading to a more robust classifier, and they conjecture that this improvement
in robustness happens when p > 3. However, a rigorous analysis of convergence is not provided. Our
second set of results is to develop a full convergence analysis for gradient flow, a continuous time
limit of gradient descent by taking the stepsize to zero, on a two-layer pReLU network and show that:

Theorem (Theorem & Corollary (1| informal). When p > 2 and the intra-cluster variance o is
sufficiently small, gradient flow on pReLU networks converges to a nearly optimal robust classifier.

Our analysis is based on prior works on gradient descent/flow with small initialization on two-layer
ReLU networks |[Maennel et al.[(2018); [Phuong & Lampert|(2021); [Boursier et al.| (2022)); Kumar &
Haupt| (2024); |Chistikov et al.|(2023)); Wang & Ma|(2023); Min et al.|(2024) and extends to pReLU
networks. We show how the implicit bias of the gradient flow dynamics critically depends on a
careful choice of activation function, allowing the network to learn accurately the underlying data
structure, which, as we have discussed, is essential for finding a robust classifier.

Notation We denote the inner product between vectors  and y by (x,y) = = "y, and the cosine of
the angle between them as cos(x,y) = (127, 7g7)- For ann x m matrix A, we let [| A[| and [| A|[
denote the spectral and Frobenius norm of A, respectively. We also define 1 4 as the indicator for a
statement A: 14 = 1if Ais true and 14 = 0 otherwise. We also let N (s, 22) denote the normal
distribution with mean p and covariance matrix 32, and Unif(S) denote the uniform distribution
over a set S. Lastly, we let [N] denote the integer set {1,--- , N}.

2  OPTIMAL ROBUST CLASSIFIERS FOR ORTHONORMAL CLUSTERS

Orthonormal cluster model We study a balanced mixture of K Gaussian clusters, and K of them
belong to the positive (+1) class and Ky := K — K; of them the negative (—1) class. Formally,
consider a tuple of random variables (X, Y, Z) on RP x {+1, —1} x [K] representing observed data,
observed class label, and latent cluster membership, respectively, defined as follow:

Z ~Unif({1,-- ,K}), X|Z ~N (pz,0°I/D), Y|Z =1z<k, — 1z5k,, 2)

where the 1, - - - , px, called cluster centers, are a set of orthonormal vectors in RP ie. (pg, ) =
1;—1. We denote the marginal distribution of (X, Y")-pair as Dx y.

{y-robust classifier for Dy y»  Our interest is to find a classifier that not only accurately predicts
the label y given an observed data x, but do so in a way that is robust to some adversarial attacks on
observation x. Specifically, we search for a classifier f : R — R such that with high probability
min| = f(x + rd)y > 0 for some r > 0 given a new sample (x,y) from Dx y. When r = 0,
f(x)y > 0 suggest that sign (f(x)) correctly predicts the label y; When r > 0, minj g =1 f(z +
rd)y > 0 suggest that sign ( f (x + rd)) still makes correct prediction on y even though observation
x has been corrupted by some adversarial attack rd, thus robust to adversarial attacks of lo-norm
radius r. Ideally, we want a classifier that is robust to attack of radius r, with as large r as possible.

Maximum achievable />-robustness Inevitably, any classifier fails to be robust if the adversary

has too much power, i.e., the attack radius r exceeds some value. Indeed, for the data distribution

Dx,y of our interest, no classifier can defend against attacks of radius %, as formally shown below:
Theorem 1. Let f : RP — R be any Lebesgue measurable function such that the random variable

ming<1 {f (:c + gd) y} is also measurable. Given a sample (x,y) ~ Dx,y, we have

. V2 min{K;, K.

We refer the readers to Appendix [B.I]for the proof. We explain Theorem [T|from a geometric perspec-
2
tive (we have discussed some in the introduction): Consider the case of two clusters A/ (ul, I )
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and N (ug, I ) of different classes. As shown in Flgure when ambient dimension D is large,
we expect that each cluster concentrates around a D — 1 affine subspace that is orthogonal to the
vector f4; — fto. Most importantly, the distance between these two affine subspaces is /2, suggesting
that given any decision boundary that separates two affine subspaces, an adversary can perturb a
substantial portion of the probability mass of these clusters to cross the boundary with an attack
radius ? The same argument holds for the K -clusters cases, where every two clusters are separated
by a Euclidean distance /2. We also note that extending Theorem to attacks in another metric
amounts to measuring this separation in that metric. Our second result shows the Bayes optimal
classifier w.r.t. 0-1 loss is also nearly optimally robust:

Theorem 2. The Bayes optimal classifier for label Y given observation x w.r.t. 0-1 loss is
sign (f*(a)), where f*(z) = Yot exp (W) - Z§=K1+1 exp (%) . Moreover, given
a sample (z,y) ~ Dx,y, we have, for any % <v <2

. V2 —v D12
* >1-— — .
Piz,y)~Dx v <|g}1£11 |:f (:c + 3 d|lyl>0]>1-2Kexp ( 64a2> @)

We refer the readers to Appendixfor the proof. If we pick v = © ( (%) i) in Theorem then

2, 1
the result shows that f* is robust against attacks of radius ? -0 ((%) *) with probability at least

1
1-O(Kexp(—(£)?)) over new sample from Dx y. Therefore, f* is nearly optimal robust

2 . . . . . . . .
when %5 = o(1), i.e. the ambient dimension is large or the intra-class variance is small.
Interpreting f* as a nearest-cluster rule We explain why this Bayes classifier is of interest. We
have the following derivation:

e (S (252) e (25)

2
. (6%
= sign (max (@ pk) —  omax (@, )+ O(log K—))

where the second inequality is due to the fact that % log(-) function is a non-decreasing function, and

the third inequality is because LogSumExp({z1, - - - , zx }) function with a temperature % uniformly
. . 2 . .

approximate maxy, 23 with an error (9( log K %) When the error is small, the Bayes classifier f*(x)

finds the closest cluster center to & and outputs the label to that cluster, which is a nearest-cluster rule.

Therefore, by exploiting the multi-cluster structure of Dx y, f* achieves the maximum /¢5-robustness.

So far we have shown that a nearly optimal robust classifier for Dx y can be easily constructed as a
nearest-cluster rule. However, as we discussed in the introduction, gradient descent algorithms with
sampled data often fail to find a classifier with the same level of robustness. Next, we address the
problem of finding a nearly optimal robust classifier by gradient flow dynamics.

3 OPTIMAL ROBUST CLASSIFIERS OBTAINED VIA GRADIENT FLOW

In this section, we aim to find a nearly optimal ¢5-robust classifier for Dx y by vanilla gradient
descent without adversarial training. We start by stating the problem of training two-layer networks
with gradient flow (gradient descent with infinitesimal step size). Then we show that with a pReLLU
activation, gradient flow provably finds a classifier that is nearly optimal ¢5-robust.

3.1 PRELIMINARIES: GRADIENT FLOW ON TWO-LAYER NETWORKS
pReLU network We consider a two-layer pReLU network (Min & Vidall |2024) defined as follow:
h oP({(x, w; \
10 @30) = 3" o, TUE) g o). )

=1 g

4



Under review as a conference paper at ICLR 2025

fP) can be viewed as a generalized version of the ReLU network. When p = 1, f(1) is exactly a
two-layer ReLU network. When p > 1, the output of the hidden activation is equal to the one of
the ReLU network multiplying cos? ! (z, w;) (Min & Vidal, 2024), which discourages large angle
separation between data x and neuron w;.

{5-loss function and balanced dataset Given a dataset {x;, y; }?_,, one define the loss function as
L0;{zi,yi}0y) = i, (i, 9i) , where §; = fP)(z;;0) . For classification problem, the typical
choice of ¢ can be exponential exp(—yg), or logistic loss log(1 + exp(—y3)). Most of our theoretical
analysis works for these choices for /. However, using classification losses poses additional challenges
in analyzing the late phase of the training (details explained in later sections). Therefore, our theorem
considers a {o-loss: {(y,§) = %|ly — §||% and the extension to classification losses is discussed in

Section[3.2.4]

As for the dataset, since Dx y samples data with equal probability from each cluster, there are
approximately equal number of samples from each cluster when we sample a large number of data.
Therefore, instead of considering a dataset directly sampled from Dx y, we consider the following

balanced dataset D = {x;,y; } <, where
x; ~ N (g, @®I/D) y; = Ly<k, — Lisg,, (k—1)N+1<i<kN,1<k<K. (6)

We call this dataset balanced because D has exactly N samples from each cluster \” (pr,a?I/D).
This assumption allows us to omit the additive perturbations in our analysis introduced by unbalanced
per-cluster sample size.

Gradient flow with small and balanced initialization Given the network parametrization 6 and

the loss function £ constructed from a balanced dataset D, we consider training the network by the
following gradient flow (GF) dynamic

6= —Vol (0;15) . 0(0)= 6, %)
We assume the initialization 6(0) is e-small and balanced, formally defined as the following.
Assumption 1 (e-small and balanced initialization). The initialization 6(0) = {w;(0),v,(0) ;?:1

satisfies the following: there exists an initialization shape {w o, vjo}?:l with Winin < [Jwjol| <
Whnax, V4, for some Winin, Winax > 0 and an initialization scale ¢ > 0 such that

w;(0) = ewjo, v;(0) = €vjo, |wjoll = |vjol, V. ®)

Under a balanced initialization, we have |w;(0)|| = |v;(0)], Vj, and this balancedness holds through-
out GF trajectory (See Appendix [D.1): ||w;(t)[| = |v;(#)|, Vj. The balancedness between w; and
v; allows us to focus on the dynamics of w;, which has been a common assumption in prior work
of this type (Maennel et al., 2018} Boursier et al., [2022; [Chistikov et al., 2023; [Min et al., [2024)).
Readers may view this assumption as made out of convenience, but it is essential for a tractable
analysis (also allowing an elegant interpretation of dynamics of w; (Maennel et al., 2018} [Boursier &
Flammarion| 2024)), and the theoretical results out of this assumption match the empirical results
when no balancedness is enforced (Min et al. [2024).

Given a balanced initialization, one can show that sign(v;(¢)) = sign(v;(0)), ¥4, ¥t > 0 (Boursier
et all [2022). Roughly speaking, sign(v;(0)) determines the dynamical behavior of neuron w;
under gradient flow: neurons with sign(v;(0)) = +1 tend to align its direction with one of the
positive cluster centers, pi, k = 1,--- , K7, and those with sign(v,(0)) = —1 tend to align with
one of the negative cluster centers. For this reason, we define the following neuron index sets:
Ny == {j € [h] : sign(v;(0)) = +1} and N_ := {j € [h] : sign(v;(0)) = —1}.

'Readers may find it more appropriate to study gradient flow as differential inclusion, instead of differential
equation, since ReL.U is non-differentiable at 0. However, our focus is on pReLU network with p > 2, which
renders the network f (P) differentiable everywhere.
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3.2 MAIN RESULTS: PRELU (p > 2) PROVABLY FINDS (NEAR)-OPTIMAL ROBUST CLASSIFIERS

pReLU classifier and the conjecture Min & Vidal| (2024)) study the adversarial robustness of the
following pReLU classifier (that can be expressed by f(») (x; @) with some choice of 6):

K1 K

FO(x) =3 o' m) =, o 0@ ), ©)

and show that F'(P)(z) is robust to adversarial attacks of ¢, radius arbitrarily close to @ when

% is large (Now based on our Section we know that F(P)(z) is nearly optimally robust). They
conjecture that when p > 3 and the intra-cluster variance o2 is small, the gradient flow on pReLU
network f(P)(-; @) with small initialization finds a classifier that is close to FP)(z) up to a constant
scaling factor. Then they argue that such proximity to F(®) (x) implies that the trained network has
the same level of robustness as F'(P) (2). Our main results fully prove this conjecture with p > 2.

Closeness to () implies robustness We first show that given any classifier f(z) that is positively
homogeneous of degree 1 w.r.t. « and is close to F’P(x) in terms of some distance measure, it is
nearly optimal robust when the intra-class variance is small (We refer to Appendix [C]for the proof.).

Proposition 1. Given a classifier f that satisfies f(yx) = ~vf(x),Vx € RP, Vy > 0 and
P
dist(f, F®)) = inf .o supgego-1 |cf(x) — F®)(x)| < v for some p > 2and 0 < v < (%) .

Then for a sample (x,y) ~ Dx y, we have

. V2 — 81/% DV% 3
P(zy)~Dx.y (lgflilllf <:B—|— fd y| >0 | >1-2Kexp ToKIa2 —4 exp <_8042> .

(10)

Given this result, it remains to show that gradient flow finds a network f()(-; @) (which is positively
homogeneous of degree 1) that is close to F'(P) in the distance measure defined above. We will first
discuss an additional assumption required on the initialization, then state our main result.

3.2.1 NON-DEGENERATE INITIALIZATION SHAPE

To properly define a non-degenerate initialization shape, we need to define a radial Voronoi tessella-
tion of RP~1/{0} given a tuple of unit-norm vectors { g3 }rec.

Definition 1. Given a tuple of unit-norm vectors { iy }rcxc, define the following ([]+ := max{-,0}):
Ry = {weRP71/{0} | [cos(pr, w)]+ > [cos(py, w)]4, VI # k},k € K, (Voronoi regions)
R® == {weRP~1/{0} | [cos(ps, w)]4+ =0,Vk € K} . (Void region)

From this definition, it is clear that {R}, }rex, R° are disjoint subsets of RP~1/{0}. We are ready to
define a non-degenerate initialization shape, whose formal definition is stated below:

Definition 2 (Non-degenerate initialization shape). A set of initialization shape {wjo} ;e is non-
degenerate w.r.t. a set of unit-norm vectors { i, }rex if it satisfies that

* (Neurons must be within one of the regions)Vj € N, wjo € (Uke,C ’Rk) URe;
* (Non-void regions must contain at least one neuron) ¥k € IC, 3j € N such that wjo € Ry,

where {Ry}rex and R° are the Voronoi regions and void region defined in Definition |I| w.r.t.
{11} rex. Moreover, we let d(w, S) = 1 — supgcg 520 cos(w, 8) and define non-degeneracy gap:

A= min{{w. e(min }d(wjo,a( U Rk))7 min d(wjo,aRo)} ) (11)

Usex R s {wjoeR°}
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Whenever a vector w falls into one of the Ry, it means that: 1) the angle 1
between w and the corresponding gy, is less than 7; and 2) compared
to all other s, py is the closest (in angle) to w. We hope that neurons
initialized within some R, converge to the corresponding i), under GF,

and those initialized within R° stay in R° (This is indeed the case, see

Section[3.2.3).

The special case when a neuron is exactly initialized on the boundary of

these Voronoi regions 6( Ukex Rk) cannot be analyzed since if a neuron = R°
has equal angular distance to two g vectors, there is no way to determine
which p vector it converges to under GF with sampled data around these

p vectors. Similarly, if a neuron is initialized at the boundary between Figure 3: Illustration of a
some R, and R°, then we can not determine whether it converges to o, non-degenerate initializa-
or it falls into the interior of R° and stays after that. Therefore we require tion shape {wio, w20}
an initialization shape with a positive non-degeneracy gap. Moreover, W.L.t. two orthonormal
every R, must contain one neuron, ensuring the corresponding g, gets Vectors {e1, fo }.
learned. This leads to our assumption of non-degenerate initialization.

R1

wio

Non-degeneracy

>A

Assumption 2. (Initialization has at least A non-degeneracy gap) 3A > 0 such that {wjo}jen,
is non-degenerate w.r.t. {p1<k<k, with at least A non-degeneracy gap, and {wjo}jen_ is
non-degenerate w.r.t. {f } k, <k<k with at least A non-degeneracy gap.

As one can see, this condition is stated per class: Positive (Negative) neurons must be initialized
to be non-degenerate w.r.t. cluster centers from the positive (negative) class. We let { R }1<r<k,
and {Ry } i, <k<k be the Voronoi regions defined by {1 }1<r<k, and { g } i, <k<x respectively
jEN+ij0€Rk7 1<k<K; and N, —
jEN_ijoeRk, Ki+1<k<K ¢
[h] — Ui<k< kN As suggested in our previous discussion, we show that (See Section b under
GF, all neurons in A, converge in angle to gy, which is an essential part of our theoretical results.

and define the neuron index sets N, := {

3.2.2 CONVERGENCE OF PRELU (p > 2) ON ORTHONORMAL CLUSTERS

Now we are ready to state our main theorem:

Theorem 3 (pReLU converges to optimal robust classifier for orthonormal clusters). Let p > 2. Given
0 < 0 < 1 and a sufficiently small a%, consider data dimension D > Q(aa 2) and per-cluster sample
size Q(ag?) < N < (exp(ag?)). With probability at least 1 — 8, the GF dynamics with a balanced
dataset D = {zi, y; } BN sampled with intra-cluster variance o < o3, starting from some e-small

and balanced (Assumption initialization 0(0) that satisfies Assumption E]with a non-degeneracy
gap A = O(1) and has a sufficiently small initialization scale ¢ = © (agK), leads to a solution

O(t),t > 0 such that: for some t* = O (10g (%0) and T* = © (log O%) + 0 (W) with
[t*,T*] # 0, we have L(8(t)) = O(ad),Vt € [t*,T*] and

sup sup

f0(@;0(1) - PP (@)| < O (ad) - (12)
te[t*, T*] zeSP—1

Q, 6, O hide logarithmic factor log % and constant factors that depend on p (in the worst case, 2P).
We organize the subsequent discussions as follows: First, we state several remarks on understanding
our main result and comparing it with prior work; Then we move to a more technical discussion on

its proof sketch in Section[3.2.3} Lastly, we state in Section [3.2.4] several technical limitations of our
results and suggesting improvement in future research.

Nearly optimal robust classifier via GF  The major implication of Theorem [3]is that one can find
a nearly optimal /s-robust classifier by GF without adversarial examples. When the intra-cluster
variance o is small, along the GF trajectory there exists a f (") (-; (t)) that is O(a3) close to a nearly
optimal ¢5-robust classifier F’ (p), and such proximity to F' (@) implies the same level of ¢5-robustness,
as shown in Proposition We can immediately conclude that () is also nearly optimal £5-robust:
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Corollary 1 (Nearly optimal /y-robustness). Given any fP)(-;0(t)) obtained at t € [t*, T*] from
L2
Theorem |3} it can defend against adversarial attacks of radius @ - (9(045) with probability

~ =2
1-— O(ao (t ")) over a new sample (x,y) ~ Dx y, thus nearly optimal {5-robust for Dx y .

Comparison with prior work: robust classifier for orthonormal clusters The study of finding a
robust classifier for clusters with orthogonal cluster centers is initiated by |Fre1 et al.|(2023)), where
they theoretically show that any classifier obtained by gradient descent on a two-layer ReLU network
is susceptible to an adversarial attack of ¢5-radius O(\/—%), despite that one can easily construct

a ReLU network that is robust to attacks of radius ©(1) [’} Then Min & Vidal| (2024) explain this
non-robustness issue of ReLU from a neural alignment perspective (Maennel et al., 2018} [Boursier &
Flammarion, |2024), and propose pReLU to replace ReLU activation. They state as a conjecture that
training pReLU network f®) (+; @) under samples from D y leads to a classifier that is close to F®)
when intra-cluster variance o is small, and provide empirical validation to their conjecture. Our
work takes one step further to theoretically prove the convergence of pReLU towards F ) under GF,
and also show that the achieved ¢5-robustness is nearly optimal. Also, we believe a small initialization
is critical for finding a robust classifier as our data is approximately low-dimension thus adversarial
examples exist if the initialization scale is large Melamed et al.| (2024)).

Comparison with prior work: GF on the two-layer network with small initialization Over
the past year, gradient descent/flow with small initialization has been studied for both linear net-
works |Gidel et al.| (2019)); [Stoger & Soltanolkotabi| (2021) and nonlinear networks [Maennel et al.
(2018); [Phuong & Lampert| (2021)); Boursier et al.|(2022); Kumar & Haupt| (2024); |Chistikov et al.
(2023)); [Wang & Ma| (2023); |[Min et al.| (2024); [Tsoy & Konstantinov| (2024), to understand the im-
plicit bias of gradient descent algorithms towards structurally simple networks. Our analysis follows
this line of work, as we will explain in Section [3.2.3]in detail, and also advances by considering a
more complicated dataset. Specifically, the GF on two-layer ReLU networks has been studied for
orthogonally separable dataPhuong & Lampert| (2021)); Min et al.[(2024); Chistikov et al.|(2023), that
is, data with the same (different) label has positive (negative) correlation, for mutually orthogonal
data Boursier et al.| (2022)), and for positively correlated data (but only with two data points) Wang &
Mal (2023)). Our data assumption is closest to mutually orthogonal data Boursier et al.|(2022) (if we
set o = 0), but considers a non-zero intra-cluster variance, which has not been studied in any of the
aforementioned work.

3.2.3 PROOF SKETCH

For simplicity, we consider the case a® = o2 and use a? throughout this section. The discussion

is conditioned on a good event (happens with probability at least 1 — §) when samples are well
concentrated around their respective cluster centers.

Overall proof Our proof in spirit is close to that of Boursier et al| (2022), with a two-phase
analysis of GF dynamics focusing on different quantities. Specifically, at the initial phase, called
alignment phase, one studied the dynamics of the neuron direction % through cosine angles
J

between w; and cluster center p,, where one show, for all k and j € N, that Ckj = cos (g, w;)
monotonically increases until it reaches 1 — (’)(oﬂ), that is, as we mentioned earlier, neurons
initialized within R, converge in angle to the corresponding ftj;. Then in the second convergence
phase, we show that all ci; can probably stay above 1 — O(a2) until 7, and in the meantime, the
norm~of the neurons (measured by .. |w;]|? for each k) monotonically grow until reaches
1 + O(a?) before t*. Moreover, the norm of the neurons initialized in the void region stays small:
i, lw;(B)]] = 6(a?). These three conditions cx; > 1 — O(a?), |1 =3, [lw;]?] < O(a?)
and ) [w;l = () together imply the desired bound between f(*) and F(P). We refer the
readers to Figure |4|for an illustration of these phases.

2|Prei et al.|(2023) considers data sampled from N (\/Buk, oI ), 1 < k < K, thus their results should be
rescaled by \/—% when applied to Dx,y .
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Figure 4: Important quantities (alignment and weight norms) and their dynamics long GF trajectory

Alignment phase (See Appendix |E) During the alignment phase (the time interval between 0
and some O (log %) time, where € is the initialization scale). The norms of the weights stays @(e)
small, which follows a similar proof in Boursier et al.|(2022)); Min et al.|(2024). The small norm
bound on weights, together with the positive non-degeneracy gap assumption, allows the following
characterization of the alignment for 1 < k < K, j € Ny:

d _ o -
%ij Z Cpcijl( Ck]) +O <\/* \/*) +O <O‘2 + \/5) +O(6) ) (13)

for some constant C' > 0. Consider the case when o = 0, and € — 0, for j € N}, the dynamics
4oy > Cpcf_l( cij) characterize the nominal effect of cluster centers uk, 1<k < Kon
neuron direction H H. each cluster centers is either attracting or repelling H H’ depending on
whether their label matches the sign of v;, and the aggregate effect is pushing Tl ” towards gy, the
closest cluster center to w; in angle at initialization. We call k-th cluster the target cluster for w;.

The rest of the terms are considered perturbations due to noisy samples around cluster centers and a
non-zero initialization scale: The first O ( TN + \F) term is due to the noisy samples from (the

target) k-th cluster. Since we have a A = ©(1) non-degeneracy gap, w; has a positive inner product
with every sampled data within the k-th cluster, then one can utilize concentration results to bound

the effect of noise. The second O <a2 + %) term is due to the noisy samples from other non-target
clusters. Unfortunately, we have no control over how many of them have positive inner products with
w, thus a worse bound O (az) is derived. Lastly O (¢) is due to an e-small weight norm because the
nominal effect is derived when weight norms are all zero. With N = Q(a2) samples, D = Q(a~2)
dimension, and small ¢, the dominant terms become O (az), allowing us to prove the following:
Proposition 2 (Alignment in pReLU network). Given the same assumptions as in Theorem [3|and
consider the same GF solution 6(t),t > 0. There exist some t; = O (log 2) and ty = O (log 1)
such that Yk and Vj € Ny, cos (pg, wi(t)) > 1 — O(a?), Vt € [t1,ts].

We explicitly state the result during the alignment phase in Proposition [2]to highlight the difference
between its described alignment for pReLLU network (p > 2) to that of Boursier et al.[(2022) for
ReLU networks, where neurons are aligned with class average py = » <k<r, Mk and p_ =

> K, +1<k<x Mk instead of cluster centers.

Convergence phase (See Appendix [F) During the convergence phase, the weight norm grows and
exceeds e-level, as suggested by the following dynamics:

G = (1= T w40 (o) 4 0@ +0@) ) T hwyl, a4
JEN JEN JEN
which holds whenever cx; > 1 — O (a?),Vk, j € Nj. The nominal dynamics 2 iens llwjl? =
(1- D ieN: |w; %) D ieN: llw;||* describes the weight growth if ¢i; = 1,Vk, j € N} and o = 0.
Following nominal dynamics, ;. [lw; |2 converges to 1 for every k, minimizes the /5-loss.
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The rest of the terms are considered perturbations due to noisy samples around cluster centers and
o

the fact that alignment cy; are only close to 1. The first o ( \/ﬁ) is due to the noisy sample from

the target k-th cluster, the second O (a2) term is from imperfect alignment c;,; > 1 — O (042), and

the last O (aP) term is from the noisy sample from the non-target clusters (Notice that now ws are
almost orthogonal to non-target clusters, thus the effect of non-target clusters is smaller than during
alignment phase). With N = Q(a~2) samples, the dominant terms become O(a?), allowing us to
show that 3=\ [lw;||* converges to 1 + O(a?) within ¢* time.

The only missing piece is that this argument requires cj; > 1 — O (042) ,Vk,j € Ny but one no
longer has (T3)) after e (log %) when weight norm starts to grow to é(l)—level. Nonetheless, once

the alignment ¢y is 1 — O (az), it is hard to drop below this level as it relies on the attraction from
non-target clusters but they are now near orthogonal to the neurons. Indeed, during the convergence
phase, we can show that %ckj > -0 (am‘“{p’4}) , by which we show ¢y can stay at 1 — O (a2)

level until 7 time. Since T > t* for small «, our analysis of the weight norm growth is valid.

3.2.4 TECHNICAL LIMITATIONS OF CURRENT RESULTS

We conclude by discussing several technical limitations of our current results and potential avenues to
address them. These limitations are listed in an order that the most challenging ones are stated first.

Requirement on the initialization The initialization requires a non-degeneracy gap A = (1),
which generally cannot be achieved by random initialization: the cosines between neurons and cluster

centers are O(%) with high probability. Given that D = €(a~2), the actually non-degeneracy

gap of a random initialization is O(«). We have discussed this issue when we define non-degenerate
initialization in Section[3.2.T} When neurons are initialized close to the boundary between a Voronoi
region Ry, and another region R; (or the void region R°), whether they align with g, or with p; (or
get further into void region) depends on the actually sampled points in the dataset. In this regard,
when weights are randomly initialized, there is a “burn-in" phase during which neurons “choose"
their target clusters depending on the samples, then once they get away from the boundary of these
Voronoi regions with A = ©(1) gap, we can characterize the GF dynamics afterward by Theorem

Upper bound on N Regarding our requirement (o ?) < N < 6(exp(ay 2)), we have discussed
the lower bound N > Q(a;?) in Section In fact, one can remove this lower bound and get a
final bound (’)(“—\/Oﬁ) in Theorem The upper bound N < 6(exp(ay 2)) may seem puzzling. This
issue originates from ReLU nonlinearity: a data point must activate a neuron by having a positive inner
product. Our analysis requires that a neuron w; is activated by every data point from its target cluster,
which is translated into two conditions: 1) ©(1) non-degeneracy gap; and 2) v/log Nag = 06(1).
Here /log N oy is essentially the radius of a /5-ball centered at a cluster center that can contain all
the sampled points from that cluster with high probability. Without these conditions, there will be
outliers in sampled points, which must be handled with extra analysis. We believe this is possible
because those outliers will be rare and thus may have a negligible effect on the dynamics.

Extension to classification losses Our results for the alignment phase directly apply to classification
losses: The choice of the loss £(y, §) only affects the alignment dynamics through V;4(y, §)|3=0, and
this quantity is same (may up to a constant scaling) regardless of whether ¢ is exponential, logistic,
or {». However, the analysis of convergence phase critically depends on ¢: Recall that in Section
MWe show that the nominal weight norm dynamics are 2 = (1 — 2)z,2 = > v, [lw; |2 for
{5 loss. For exponential loss, the nominal dynamics become 2 = exp(—z)z, whose closed-form
solution is not available. A better characterization of the solution to the nominal dynamics of the type
Z = exp(—z)z in future research naturally leads to an extension of Theorem to classification losses.

Analysis until finite time 7*  Our focus is on the distance between f()(-; 8(t)) and F®), thus we
restrict to the time interval [0, 7] when we have explicit control of all relevant quantities (alignment,
weight norms, etc.). To show convergence towards a minimizer of the loss after 7, we believe
applying the results in (Chatterjee| (2022) suffices, following the approach in|Boursier et al.[(2022).

10
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A NUMERICAL EXPERIMENTS

A.1 ADDITIONAL EXPERIMENTS ON LEARNING ROBUST CLASSIFIER FOR DATA FROM
ORTHONORMAL CLUSTERS

In this section, we provide additional experiments to that in Figure 2] highlighting the importance

of parametrization of function space, and the hyperparameters of training algorithm in determining
whether one can succeed in obtaining robust classifier for data from orthonormal clusters.

Robust Acc. against £; PGD Attack

1.0 VY = PRelU (p=3) w. large init
\ ‘\ == poly RelLU (deg=3) w. large init
08\ —— PRelU (p=3)
> \ “ == poly RelLU (deg=3)
§0'6 ‘\1 Bayes
3 \‘\
204 \‘\
W
0.2 \\\\
S S~
0.0 o=

00 02 04 06 08 10 12 14 16 1.8

Attack Radius
Figure 5: Given sampled data from (I)) with 12 positive clusters and 8 negative clusters (D = 2000),
gradient descent (SGD, small initialization) on (bias-free, width-200) two-layer network with regular
polynomial ReLU activation of degree 3 fails to find a robust classifier. Moreover, if one increases the
variance of the random initialization, both regular polynomial ReL.U network and pReL.U network
can not find a robust classifier. All networks here are trained for a sufficient amount of epochs until
they achieve perfect training accuracy on a synthesis dataset of our orthonormal cluster model of size
20000.

Regular polynomial ReLLU networks In this experiment, we consider both the regular polynomial
ReLU networks to pReLU networks. In particular, recall that the regular polynomial ReLU networks
are defined as:

ZUJ (z,w;)), (é = {wj,v; ?:1)-

(Two layer Networks with Polynomial ReLU activation with degree p)
We note its difference with pReLLU networks: regular polynomial ReLLU networks do not have a
weight normalization at the first layer. Nonetheless, when p is fixed, it is easy to verify that the
function/hypothesis spaces induced by pReLU networks and regular polynomial ReLU networks

are the same: any function f®)(x;8) for some 6 = {w;,v;})_, is equivalent to g(x; 6) with
0 = {wj, Hu,;%}?:l

Regular polynomial ReL U networks v.s. pReLU Although the induced function/hypothesis spaces
are the same, GD on regular polynomial ReLU networks and pReLU finds classifiers with different
levels of robustness. As one can see in Figure 5] with a small initialization (all weight entries are
randomly initialized as (0, 1 x 10~%)), SGD on a pReL.U network successfully finds a classifier that
is as robust as the Bayes classifier. However, SGD on a regular polynomial ReLU network fails to find
a robust classifier. This suggests that the way the function/hypothesis spaces are parametrized is also
important in determining the robustness of the networks trained by GD, as different parametrization
induces different implicit biases of GD in selecting the loss minimizer in the function space.

Effect of initialization scale Finally, when one uses a large initialization scale, where all weight
entries are randomly initialized as A(0,0.25), even the GD on a pReLU network fails to find a
robust classifier. This is not surprising as the initialization scale also controls the implicit bias of

GD [Moroshko et al.|(2020), and many works |[Maennel et al.| (2018)); [Stoger & Soltanolkotabi (2021});
Li et al.|(2018; 202 1)) have theoretically shown the advantage of using a small initialization scale in

3The neurons with ||w;|| = 0 should be eliminated from the parameters for this argument to hold.
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A.2 CAT V.S. DOG CLASSIFICATION VIA TRANSFER LEARNING

In this section, we solve the tasks of classifying cats and dogs via transfer learning
using extracted features from a ResNet152 trained on ImageNet
[2009). We conjecture that the extracted features of the dog (or cat) class may naturally have many
clusters: when the feature extractor is trained on ImageNet, dogs are further labeled by their breeds.
Thus the extracted features of dogs of the same breed should be sufficiently close, and features of
dogs of different breeds should be sufficiently far apart, based on the well-known neural collapse
phenomenon (Papyan et al., 2020} (Galanti et al., 202T). If such a multi-cluster structure exists in the
extracted feature, then we expect training pReLU as a classification head can achieve better robust
accuracy compared to its ReLU counterpart.

The rest of the section is organized as follows: First, we show that the extracted features of cats
v.s. dogs dataset exhibits a multi-cluster structure; Then we train pReLU networks with different
choices of p as a classification head and compute the robust accuracy of these train networks with
AutoAttack (Croce & Hein|, [2020) on the extracted feature space.
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Multi-cluster structure of extracted feature We first collect extracted features of the entire cat
v.s. dog dataset [2013)), center these features by the global mean feature vector and then
normalized all the features. Then we take a subset of the centered, normalized features (for the sake
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of simplicity, we call the centered, normalized features as features) from the same class (cat or
dog), do spectral clustering (Ng et al.| 2001) on the features, then compute the inner product between
the features. From FigureE and[/| we see even within the same (dog) class, the extracted features
have a multi-cluster structure, and we conjecture that this is because when the feature extractor is
trained on ImageNet, dogs are further labeled by their breeds. Interestingly, if we perform the same
visualization for cat images, as in Figure[§]and[9] the multi-cluster structure still exists but with less
prominent clusters; We conjecture that this is because ImageNet has much less cat classes than dog
classes.

Training pReLU as classification head Now, with the extracted features of cat v.s. dog dataset,
we train two-layer pReL.U networks with different choices of p using Adam, following the same
experiment settings in (Min & Vidal, [2024)). After training, we compute the robust accuracy of the
trained networks under adaptive adversarial /5 and /., attacks (Croce & Hein| [2020). We observe
that pReLU networks with larger p achieve better robust accuracy than ReLU networks (p = 1).

Accuracy, Robust Accuracy Robust Accuracy
1.00 %@W‘—-—M— 1.0 under L2 PGD Attack 10 under L-infinity PGD Attack
7 0.8 .
0.95 ( 0.8
0.6 0.6
0.90
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0.85 — p=20
— p=3.0 0.2 0.2
0.80 p=4.0
0 20 40 01 3z 3 4 0% 600 0.025 0050 0075 0.100
Epoch £ Attack Radius (in feature space) £ Attack Radius (in feature space)

Figure 10: Cat and dog classi- Figure 11: Robust accuracy Figure 12: Robust accuracy
fication: Training and test ac- of trained networks under ¢, of trained networks under (o
curacy v.s. training epochs PGD attacks. PGD attacks.

In summary, we show that in a transfer learning scenario, the multi-cluster structure arises due to
the distinguishing power of the feature extractor trained on large datasets with finer labels, and we
show that in this case, pReLU networks with larger p achieve better robustness compared to its ReLU
counterpart. Admittedly, our current Theorems cannot fully explain the observed experimental results
since the extracted features form clusters with large variances, and there are some correlations among
these clusters, which does not follow our data assumption. Relaxing our data assumption to large
variance, and allowing inter-cluster correlation is an import future research direction.

16



Under review as a conference paper at ICLR 2025

B OPTIMAL ROBUST CLASSIFIER FOR ORTHONORMAL CLUSTERS

In this section, we discuss the optimal robust classifier for orthonormal clusters. We first show

that any measurable classifier can not defend against an adversarial attack of ¢5 radius f , leading

to a robust error of at least ME1K2}  Then we consider the Bayes optimal class1ﬁer f*(x) =

arg max, P (Y = y|x) and show that it is also optimally robust: it can defend against any adversarial
attack of /5 radius ? — o(1), as the dimension of the data D increases.

B.1 MAXIMUM ROBUSTNESS AGAINST {5 ADVERSARIAL ATTACKS

We need the following lemma (we provide proof after proving Theorem|T])

Lemma 1. For any n X m matrix, let a be the number of rows that contain at least one non-
positive entry and b be the number of columns that contain at least one non-negative entry. Then
a+b > min{n, m}.

With Lemmal(I] we are ready to prove Theorem|[I}
Theorem 1 (Restated). Let f : R — R be any Lebesgue measurable function such that the random
variable min| g <1 [f (:c + gd) y} is also measurable. Given a sample (x,y) ~ Dx y, we have

Hd\|<1

Proof. We start with the following:

P(lglligl [f( fd) 1<0>:§:1P<|1£121[ <x+\g§d>y] <0|z=k>P(z:k)

(B.2)
For k < K,
. V2
Pe (ﬁﬁlgl f (Nk +e+ Td <0

i <|gl|igl [f <m \fd> y] <0l== k)
P€< min [f( b l+€)] >
Ki+1<I<K

The measurability of f ensures this lower bound exists. Similarly, we have for K; +1 < k <
V2 V2
P i —d <0|lz=k|=P in |— : —d
<|53121lf<w+ 2 4)v| =0l AU A
> (e [ (5" <)) = 0)
1<I<K;
E+ ul

> ([ (5 )] 20)

v

vV

Therefore,
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: V2
- < —
+ Z P<||{ﬁ|121[f<w+2d y| <0|z=k
K1 +1<k<K
1 . H +
K| 2 P (Klﬁlﬁg {f( 2 +€>} SO)
1<k<K;
+ Z P max | f M—I—s >0
€ \i<i<k, 2 =

Ki+1<k<K

A5 frlmm () <o

1<h<K,
n Z / (122((1 (.uk + s)} > O> p(e)

Ki+1<k<K

B ?/ 1§§K1 1 (Klﬂggx [f ( + E)] ) (B.3)

+ o <1<Z<K1 [f “kﬂ” )}20) ple),  (B4)

Ki+1<k<K

Y

—_

and if we define the K x K5 matrix

My(e) := {f (w

+ )} (B.5)
2 1<k<K;, K1+1<I<K

. . . =+
and examine carefully enough, we notice that >3, _ x 1 (ming, 1<i<i [f (#5535 +¢)] <0)
is the number of rows of M;(e) that contains at least one non-positive entry and
Dk ri<k<ri L (max;<i<k, [f (452 +€)] > 0) is the number of columns of M (e) that con-
tains at least one non-negative entry. By Lemma[T] we have

. V2 1 :
P (ﬁ}% [f <w - 2d> y] < 0) 2BH =+ /mln{K1,Kz}p(€)-

P (lrtﬁigl [f (:r, n ?d) y] < o) > W (B.6)

O

Therefore

Proof of Lemma(l} We denote C*(n, m) the minimum value of a+b over all possible choice of nxm
matrices. It suffices to show C*(n,m) > min{n, m} (The equality is obtained by an all-positive
matrix when n < m and an all-negative matrix otherwise), and we prove it by induction.

Forn =1,m =1, C*(n,m) = 1. This is trivial. We need to show that if C*(n, m) = min{n, m}
holds for some n and m, then

* C*(n,m+1) = min{n,m + 1};
e and C*(n+ 1,m) = min{n + 1, m}.

We shall prove these two cases:

18
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Casel C*(n,m)> min{n,m} = C*(n,m+ 1) > min{n, m + 1}

Given an n x m matrix M and an agumented matrix M’ = [M wv], we let a,b and a’, b’ be the
row/column counts of our interest for M and M’ respectively. Without loss of generality, we suppose
the first a rows of M all contain at least one non-positive entry (and the rest do not, by definition of
a). We know that @ + b > min{n, m}, and

a=a+ Z 1(v; <0), b =b+ 1(maxwv; > 0), (B.7)
i=a+1 ¢
which is .
a +V =a+b+ > 1(v; <0)+1(maxwv; >0). (B.8)
1=a+1

There are two scenarios:
1. When a = n, we have Z?:a-&-l 1(v; <0) 4 1(max;v; >0) >0
2. When a < n, we have ) 7" ., 1(v; <0) + 1(max; v; > 0) > 1.

Therefore, we find that

a’+b" > min{n+b,a+b+1} > min{n, min{n, m}+1} = min{n, n+1, m+1} = min{n, m+1}.
(B.9)
This shows C*(n, m + 1) > min{n, m + 1}.

Case2 C*(n+1,m)>min{n+1,m}= C*(n+1,m)>min{n+1,m}

Given an n X m matrix M and an agumented matrix M’ = [ . ] , we let a,b and o', b’ be the

row/column counts of our interest for M and M respectively. Without loss of generality, we suppose
the first b columns of M all contain at least one non-negative entry (and the rest do not, by definition
of b). We know that a + b > min{n, m}, and

d =a+1(minv; <0), V=b+ Y 1(v;>0), (B.10)
! i=bt1
which is
m
d +b =a+b+ Y 1(v; >0)+1(minv; <0). (B.11)
K2
i=b+1

There are two scenarios:
1. When b = m, we have 3", | 1(v; > 0) + 1(min; v; <0) >0
2. When b < m, we have 1", | 1(v; > 0) + 1(min; v; < 0) > 1.

Therefore, we find that

a’+b > min{a+m, a+b+1} > min{m, min{n, m}+1} = min{m, n+1, m+1} = min{n+1,m} .

(B.12)
This shows C*(n + 1,m) > min{n + 1, m}. O
B.2 BAYES OPTIMAL CLASSIFIER W.R.T. 0-1 LOSS
Our proof will use Hoeffding’s inequality for high-dimensional Gaussian vectors
Lemma 2 (Hoeffding inequality). For any unit vector p € SP~1, we have
Dt?
PENN(O,%I>(|<H,E>| >t) < 2exp %2 | - (B.13)
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And the concentration result of the norm of high-dimensional Gaussian vectors
Lemma 3. We have

t2
Pe~N(0,%I> (Jle]| > t) < 4exp (—&“2) , (B.14)
Theorem 2 (Restated). The Bayes optimal classifier for label Y given observation x w.r.t. 0-1 loss is
sign (f*(x)), where f*(x) = ZkK:ll exp (W) - Zf:Kﬁl exp (%) . Moreover, given
a sample (z,y) ~ Dx,y, we have, for any M <v <2

V2 —v Dv?
* >1— - . .
P(m,y)wpx,y <|d|121 [f (m + 5 dlyl >0]>1-2Kexp ( 64a2) (B.15)

Proof. Bayes optimal classifier for Dx y The Bayes optimal classifier w.r.t. 0-1 loss is given by
ff(x) =argmaxP (Y =y | X =)
Y

K
:argmaXZP(Y:y|Z:k,X:m)P(Z:k|X:m)
y j—

_{1, leKl P(Z=k|X=2)>Y1 . P(Z=k|X =ux)
N -1, o.w.

K1
:blgn<zpz k| X =x)— Z P(Z —k;X::c)). (B.16)

k=1 k=Ki+1
Bayes rule and a few derivations give:
P X=x|Z=kP(Z=k)
SEPX=x|Z=0))P(Z=1)

Dlz—pr 2
exp (, [

K 1exp( Dlz— muz)

exp (_ (2] —2<:§&;3k>+\|uk|\2>>) exp (D@;,zuk))
= . (B.17)

Zfil exp (7 D(HwHL2<2§£u>+HMH2)) S oxp (D<z,2m>)
Combining (B.16) and (B.17), we have

_ sign (Zexp( z, uk>> _ EK: exp (D<ZQ“’“>)> . (B.18)

k=Ki+1

P(Z=k|X =)=

Robustness of f*. We now proceed to show that f* is robust near-optimally. Since

\/ﬁ—u
. * <

P(g}lgl [f <a:+ 5 d|ly| <0

K
2_

:ZP min | f* a:+\f Yd y| <0
o\ i<t 2

It suffices to show that V1 < k < K

N V2 —v
P (ﬁﬁlgl |f” (:E—i— 5 d) y‘| <0

When k£ < K4, we have

. V2 —v
P (IIélllill [f <m+ 2 d) y‘| <0

2
— k;) < Kexp (—CD”> . (B.19)
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: * \/5— 14
Bk (lgﬁlill [f <w+ 2 d)] =
Bk <|ghi£1 leXp <52 (1 e+ m)))

+ Y epl| <<Hz,€> + @ (d, Ml>>>
I#£k,1<I<K,
- ) ep| <<uz,-€> + \/52_ ‘(. m>>) <0
K +1<I<K
QV@M»
2 ((uz,6> + \/52_ Y d, uz>>> <0

. D
<P, <|ng121 lexp <a2 (1 + (kk, €) +
2oV (d, Nk>>>

— Z exp
D(mm@%”g”u¢um>> <0

o
N———

(\}

Q‘@

o

I~
| S

5

()

—
!

5

[\]

<P i D 1+ (pk,€) +
=" Ljais [P\ a2 s

— Z exp

K1 +1<I<K

< Pe (lghi;ll lexp (ol; (1 + (s €) + 22— v (d. “k>>>

D V2 —v
— = <
Ky exp (az <Klgg§<Kl<uz,6> + Klgg§SK|<d7 uz)l))] < 0)

K1 +1<I<K
o?

VR

5

\/5—1/
_ .
< P, (lghlgl L+ (., €) + 5 (d, i)
o? \/?—V
- - - <
plogKa— | max  |(m,€)| 7 x e d )l <0
V2 —v V2 —v
< i —
<P. (&Tﬂiﬂ [H 5 (dsp) 5 Klg?gglw,uz)\
042
- — — < .
oK~ o)l . Ne)] <0) . 20
Since
[ \/§—V ﬂ—y
y B
min 11+ 5 (d, px) 5 Klggg\(d,m)l
V2 —v V2 —v 5
> min [14+ — (d, px) — d, u
<1 5 (d, ) 5 K1+1Z<Z<K‘< )|
\/5—1/ 2 \/5—1/ v
> min |1 — V2 d, p)|? + d, > min |1— d||| = ,
min |1- 2 ¢<un X | > i 1= =

we finally have

14 OKZ
B2 <. (25 - G ow ke lGm)l - mox (o) <0)

K1+1<I<K
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v
<P | —=-2 <
<Pe (37 2 il 1 <0)

<K 5 |< €>|>7V <2Ke — 1/2 (B21)
P M XP . .

b 4\/? 640[
Tlle [)1()()f f()l t]le case k > K1 -|— ]. iS alm()st identical. D
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C PRELU CONVERGES TO OPTIMAL {5-ROBUST CLASSIFIER, PART ONE:
CONVERGENCE IMPLIES ROBUSTNESS

We prove Proposition [I|here.

Proposition 1 (Restated). Given a classifier f that satisfies f(yx) = vf(x),Vx € RP, ¥y > 0 and
P

dist(f, F®)) = inf.sosupgesn1 [ef(z) — F®)(z)| < v for somep > 2 and 0 < v < (%) .

Then for a sample (x,y) ~ Dx y, we have
. \/? - 8V% Dl/% 3
P(Q:’y)NDX‘y (lg}lgllf <$ + fd Yy >0 2 1-2K exp —W —4 exp (_W> .

Proof. First of all, since f(yx) = vf(x),Vx € RP,¥y > 0 and the same holds for F()(-), we
suppose the infimum is attained at ¢* > 0, then

“f(n ||>‘F(p) (1)

) < v. With (C2), we have
é >
<0

]

sup | f(z) — FP)(z)| = sup

zeRDP xzeRDP

| < [lf]v, (C2)

where the last inequality uses dist(f, F'

. V2 - 8ur
P (lghlgl -f <w + — 5 )

<d||<1 2 )
- 1 1 1
— 87 2 — 8ur 2 —8ur
=P | min |c¢'f m+\f78ud y—F(”) erfigyd y+F(p) w+\f78ud y| <0
(ETES? 2 2 2
[ 2 8vr \ | 92— 8uv 2 8uv
<P | min |F® m_‘_wd y| — max | f Md y — F® aH_Md yl <0
ldi<1 | ldl<1 2 2
1
8ur 17 17
<P F@ L2 | = max [ f 2y - PO (2] <0, el < 2T ) +p (o > X
| llz][?<9 2 2
\[—SVP ] 17
<P F®) —Fd —mx‘c F® (2 ’<O +P(w2>>
< <|d”<1 ( o| - e, e 2w lal? >
2—8 5\ ] 17
( min F(”) ( v d> y| < 3u> <||:c2 > > .
laf<1 | 2
The second term P (||z||? > i) is easy to bound, our focus is to show
V2~ 8uv CDv?
P| min |F® = " d < >2(K +1 - .

which resembles the result in[Min & Vidal| (2024} Theorem 1), but one can not directly obtain (C.3)
from this existing result. Nonetheless, we can partially follow Min & Vidal| (2024, Theorem 1)’s
proof and obtain (C.3)) (with non-trivial new derivations), as shown below:

1
5] ( min | F® (m + \[_8w’d> yl < 3u)
ldli<1 2

K 1
— P min |F® 2+ Md y| < 3v
T \ldli<1 2

k=

Since

z—k)P(z—k),
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It suffices to show that V1 < k < K

2 — b D2
P min |F® w—l—md y| <3v|z=k| <2(Ks+2)exp _L )
lldll<1 2 2
When k < K7, we have

(K2 +1)2a2
(C4)
P(min F(p)< \f 8Vpd>y]§3l/z:k>
ldl<1 2
=P, ( min | F® (:c + Md> y‘| < 31/)
ldl|<1 2
V2 — Suv
P. P11 _—
(ﬁlﬂﬁl [U < + (pns€) + 5 (d, p)
V2 — SV%
+ Y o ((Nl>5>+2<d7ﬂl>
1#£k,1<I<K;
1
2 —8ur
o Z o? <<H’lve>+\[zy<dvul>> < 3v
Ky +1<I<K

\/i _
2

Su¥
- ap<<m7e> <duz>> < | (©3
Ki4+1<I<K

We define the event

_ gyl
Then, by [Min & Vidal (2024, Lemma 2)

€ =P min o (14 Gune) + 223 @
NEIES! ’ 2 ’

/5
2 —8ur
> <<ul,e>+f2”<d,m>) <3
K1 +1<I<K
\f—81/%
< P
< P <|g1|1£11 [0 <1+ (Lr,€) + 5 (d, px)

>, o <<Ml,€> + V2-&i

9 <d7 Hl>> S 31/7 & + P (56)
Ki1+1<I<K

(C.7)
1
Since under event &, we have oP (1 + (pk, €) + ﬁ} Y2 (d, uk>>
p
(1 + (s &) + V2= 8“ (d, ,uk)> , we can proceed with

(1 Fue+ 2" m)
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-2 "p<<ﬂl’€>+m<d,m>> <3u,€| +P(E)

2
K1 +1<I<K

(1 e+ 2 uk>>

< P. | min
ldl|<1

- (<|uz,e>|+ﬁ‘28””|<d,m>|> —3u]<o7£)+P<e°>

Ki+1<I<K
V2 — 81/%
P in |1 A
< P. (3121 + (i, €) + 5 (d, i)
1/p
V2 — 81/% P .
- Z <| </~Ll?€>‘+#|<d?u’l>‘ +3v <0a5 +P(8)
Ki+1<I<K
\/» 1 \/» 1 1/p
— 8ur — 8ur
< ; ye o _ve— o P
< Pe i L+ 5 (d, pr) 5 > Hdow)|
Ki+1<I<K
=M*(v)
1/p
- > (e )" +3v — [ {pr,e) | <0,E | +P(E)
Ki+1<I<K
<SP AMW) - > )| = (Bv)r — (k) [ <0 +P(E), (C8)
Ki+1<I<K

From the proof of Min & Vidal| (2024, Theorem 1), we have M*(v) = 4\/51/%. Therefore we have

C=P.| 3 o)+ (ue)| > M) - (3u>é) +P(E)
K1 +1<I<K

> P, Z |</'l’l7€>|+‘<l-1/k,€>|> (4\[2_3%) l/% _|_P(50)

K1 +1<I<K

>Pe| > e[+ | (me) | > Vavr | +P(E°)

Ky +1<I<K

\/51/%
> C
> P, <1r<r}€a<xK (g, e)| > % +P(&9)

2

V2us . Dy?» .
ZKP5<|<M1,€>|> i7a +P (%) = 2K exp Py +P ().

Therefore, we have

P < min [f (a:Jr \@28’/?d> y] < O) < 2K exp (;?2’/0;> +P(EY+P <|a:2 > g) )

ldll<1

Finally, by
V2 2 2D
P(£) <P <|<H1m€>| >1- - | <P <<“k75>| = 5) = 2€Xp< 25a2>
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2
17 (17 17 1 3

The proof is finished, notice that the bad event ||z||* > LI is chosen arbitrarily, so one can derive
more general results by letting the results depend on the choice of a bad event. But for our purpose,
we do not need it. O
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D PRELU CONVERGES TO OPTIMAL {5-ROBUST CLASSIFIER, PART TWO:
BASIC RESULTS ON NEURON DYNAMICS AND GOOD EVENTS

In this and the following sections, we let £;(t) := £(y;, fP)(x;;0(t))) denote the loss on data
point (x;,y;), and V;¢; denotes the derivation of ¢; w.r.t. its second argument, the network output.
Moreover, we let ¢; := cos(p;, w;(t)) denote the cosine angle between cluster center g5, and neuron
w;. Note: For simplicity, we drop the time dependence in 6(t), v;(t), w;(t), L(t),€;(t), cx;(t) and
write 8, v;, w;, L, ¢;, c;;; whenever it is clear that they come from the GF solution thus depend on
time. Note: It suffices to prove the case o = a, we thus use o to both denote the intra-class
variance and the oy we use to control the order of all the relevant quantities in our proofs.

We also let Zy, := {i : (k — 1)N + 1 < i < kN}, the index set of data sampled from k-th cluster.
D.1 RESULTS ON NEURON DYNAMICS

Neuron dynamics: Under GF, we have

X p-l o({x;, w;))|P
iw- _ 7%ng& o) (P[J((wi,wﬁ)] i — (p— 1)[ ({4, ’ inl wj)

dt [ [P~ [[w; [P+

1 plie:, ;)P s, w;)]P
N fos | 2R I e (g — 1) I s
N ZW( oy o=t~ P Dy s

and similarly,

d 1 [(@i, w;)]P
=N 2 Vil

i(xq,w,;)>0

d
dt (wTwJ> -

- 1 p[<wi7wj>}p [<$ ij”p
=N 2 Vﬂ“ﬂ'( CH R )

|
\)

S
SE

£

g

<7
~_—

lp—1
i:(@,w,; ) >0 ||w./H
_ 2 [<wzaw7>]
=N >, Vil A=
i{axi,w;)>0

and

d o d 2 (i, wj)]?
—V; =20,V = —— Vgliv
TN 2T

Therefore, we have

d

%(ij] v}) =0, (D.1)
thus w ] (t)w;(t) — U?(t) = w, (0)w,;(0) — v3(0), V¢, since we have a balanced initialization such
that ij(())'wj(O) — ©v7(0),Vj. Such balancedness holds for all time ¢. Using this balancedness

= ||w;||?,Vj € [h], we can write

%’“’j:*w X it “’J”( (= iy j|>>p1“‘”‘<p”(<””“3§n>)pnz§>’

wj)>
(D.2)
where we use that sign(v;(¢)) = sign(v;(0)), which is another consequence of balancedness Boursier]
et al.|(2022)); [Min et al.|(2024). We will study the dynamics of w; from now on, and one can write
the time derivatives of the norm and direction of these neurons:
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Neuron norm dynamics:

d
<l

= 2<wj7jtwj>
. W(zﬂ;)v " ||w]||< (<wz,j||>)p1<wj,wi>—<p—1> (<wi,”:jjj>)p||wjn>
. W(;)v b st (o ({0 722 ) ) st = -0 ({20 )) oyl

- 2B g (e )) ) ®3)

i:(aq,w;)>0
Neuron angular dynamics:

4w,
dt |[wj]l

wiw] \ 1 d
S B A Rt
( wj||2> ;[ dt ™
ey ) (o (o) (oo o)) 1
S S A A Vil | I — is i—(p—1 i
N <;> ’ fwil1Z ) \7 A\ Ty == =D (P, l1)) Tl
sign(v; (0)) (< >)p_1( < w; > w; )
= - v gl (3] i (2 . D4
N Z PN Ty TN gl ) Twgll) - PF

Finally, from the directional dynamics % H%H’ we obtain
J

4. _ 4w
at " AR Gt |

| (D.5)
and whenever |cy;| # 0, we have

g |

oglc
dt 81

1 d
=——c

crj dt

S sl VL (CH o)) (2 (i) @9

Our proof has the same structure as prior works |Boursier et al.[(2022)); [Min et al.| (2024)): We will

study neuron’s angular dynamics (D.J) at the early phase (alignment phase) of the GF training, and
then study neuron’s norm dynamics (D.3)) at the later phase (convergence phase).

Lastly, in order to prove Lemma 7] and Proposition [2]in the next subsection, we need the following:

We let {ptrt1, -+ ,p} be an orthonormal basis for the subspace that is orthogonal to
span{pt1,-- - , px }, and we can define ¢; = cos(py, w;), k = K+1,---,D. Since {p1,--- ,up}
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forms an orthonormal basis for the ambient space RP . we have

ks T 11
[|w;]]

Moreover, we can write the same time-derivatives %ckj, % log |cxj| for ci; = cos(pr, wj), k =
K +1,---,D asin (D.3) and (D.6), respectively.

Lastly, the following inequality will be used frequently in our proof:

D

D
2 _
IICIEDS

k=1

k=1

2
=1. (D.7)

2

Sa< S qal<| Y &) =0-a)F (D.8)

£k 1<I<D,I#£k 1<I<D,l#£k

Note: The sum operation ) , _, implicitly assumes I < K. We will explicitly indicate the range of [
if it can take values between K + 1 and D.

D.2 GooD EVENT

For a balanced dataset D = {z;, y; YN, notice that z; = Briyt+Ei for some e; € N (0, %I).
We define the following good event w.r.t. these €;s and show that they happen with high probability:
Lemma 4. We define the event Eqy,q when the following happens:

L |leill < 4/8log 15N, W1 <i < KN;

2 a .
2. [{pn,ei)| <4 /2log ¥5H & V1 <i < KN,1<k<K;

3 ez, &ill < 4/2log 2o/ N, VI <k < K

4. Y ez, lleil* < 8log 8Ea2N, V1 <k < K

We have P (Egooa) > 1 — 0. Furthermore, for simplicity, we write

L ;|| < Cy/log ¥, ¥1 < i < KN;

2. [{pr,ei) | < O\log 558 4 V1 <i < KN, 1<k < K;

31 ez, il < Cy/log Bav/N, V1 < k < K;
4. Yiez, leil? < Clog Fa?N, V1 <k < K,

for some universal constant C > 0.

Proof. We proof relavent probabilities one by one:

1. By Lemma[3] we have

2
P(lle;|| >t) <4 . D.9
(leill = t) < eXP< 8a2> (D.9)
2. By Lemma[2] we have
P(l (r,€i) | > t) <2 bt (D.10)
)| =>1) <2exp | — . .
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3. Apply Lemmato the vector Zielk €;, we have

2
P( Zsi 2t> < 4exp (_8]:§fa2> . (D.11)

1€y
4. Apply Lemma [3]to the vector that is the concatenation of all &;, ¢ € N, and notice that its norm
isequal to /> ;7 |l&ill?, hence

t2
P <Z leall* > t2) < dexp (—W) : (D.12)

i€Ty,

Therefore,

16KN b
P(IIEiI > \/810giaa> < N V1<i< KN,

8K2Ni < )
5 VD)~ 1K:N’

Zq/810g165Ka\/N>§4i(, Vi<k<K,

P (l (e, €i) [ >4/ 2log

P( > e

1€y
16K 12 )
2 2
P(Z leill” > 8log 5 aN) §4€XP<—W>§4K, VI<k<K
€Ly,
The union bound shows that P (gp0q) <1 —9. O

30



Under review as a conference paper at ICLR 2025

E PRELU CONVERGES TO OPTIMAL /¢5-ROBUST CLASSIFIER, PART THREE:
ALIGNMENT PHASE

E.1 AUXILIARY LEMMAS

We need the following lemmas (proofs provided in Appendix [G])

Lemma 5. Given an initialization shape that satisfies Assumption[2|with non-degeneracy gap A > 0,
then for j € Ny, we have

cr;(0) = cos(pr, w;(0)) > \/; ((1—1A)2 - 1) = Ay, (E.1)

-2
c; (0)
ck;(0)
Lemma 6. Let p > 2. Condition on good event Egppq. Given some 1 < k < K and some j € N3
and suppose the following is true at some point on the GF trajectory:

< (1 —V2A)P72:=1— Ay, VI # k with y; = y and ¢;;(0) > 0 (E2)

1. Ckj Z Al,'
2.l < (1 - V2A) VI £ k.

Then the following holds:

d 1k K
23 Chi > pey; "As(1 = ) — Cy log FQQ —Cy max £ (pr; 0(8)]
for some universal constant Cy, Cy that depends on p. If one further assume cy; > %, then the
lower bound can be improved as

d —1

&ij > Pcij (1

Lemma 7. Let p > 2. Condition on good event Eg,0q. Given an initialization shape that satisfies
Assumption 2| with non-degeneracy gap A > 0, define

APTAL(1— Ay) APTTAL(1 — VEA) }}

1
ST

> (1—cxj)—Ch log%a2 — Oy max|f(p)(a:i;9)| ,

t1q := inf {t . max | fP) (x;; 0(t)] > min{
?

op+1 ) 2K 2op+1
(E.3)
Then the following holds V't < ty4:
eri(t) > exi(0) > A VI <k < K,j €Ny, (E4)
and
-2 -2
;0 < e, () <1—As.andVl#k,j € Ny. (E.5)

—2 —  p—2
Cij (t) Clj (0)
Lemma 8. Let p > 2. Condition on good event Egpoq4, then with any balanced initialization scale
€< W, the solution to gradient flow dynamics satisfies

max

vt

(E.6)

max ?

1 1
®) (1, 2
mgx|f (1x; 0(1)] < 2eVRW, < TN log (2P1\/Ee> .

The following lemma will be used to upper-bound the time each neuron spends until reaching a
neighborhood of some data py;.

Lemma 9. Let p > 2. Given some C > 0, if for some z(t), the following holds
d
pred > C2P7 )Vt e [0,T], 2(0) = 20, 2(T) = 21, (E.7)

Sor some 0 < zg < z1 < 1. Then the travel time T for z(t) to go from zg to z; satifies:
1
S ——F——=573- (E.8)
(p—2)Cx
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Lemma 10. Let p > 2. Given some C > 0, if for some z(t), the following holds

d
%220(1—2),Vt€ [0,T7, 2(0) = z0, 2(T) = 21, (E.9)
Sor some 0 < zg < z1 < 1. Then the travel time T for z(t) to go from 2y to z; satifies:
1 1
T< =1 . E.10
sgleT— (E.10)

The following lemma will be used to lower-bound the time each neuron can stay around the neighbor-
hood of some data puy.

E.2 PROOF OF PROPOSITION[2]

Proposition 2 (Restated). Given the same assumptions as in Theorem 3| and consider the same
GF solution 6(t),t > 0. There exist some t; = O (log é) and ty = O (log %) such that Vk and

Vi € N, cos (g, w;(t)) > 1 — O(a?), Vt € [t1,ta] .

Proof of Proposition|2| Breakdown the proofs We let

K
=1 . i i . >1— 02 ) )
t1 := inf {t mﬁn}g}\l& cji(t) >1—Clog 5 } (E.11)
We define
| APTTTAL (1 - AY)
€0 := min ,
2p+2\/ﬁWr%lax
AP Ay (1 - V2A)
2K 2022,
pAIf_lAQCYQ
SVAWz2, '
1 20 2 1
—=exp | 4K — + lo .
vh ’ ( ((p — 2)pA, AP p(2m1 - 2) s Clog ?(12)) }
(E.12)

Our goal is to show that if the initialization scale € < ¢ (Notice that our assumption € = O (a®X)
can satisfies this inequality), then

1. miny minjepn;, cx;(t) grows above 1 — C'log %oﬂ before

tl = L

20 2 .
o Dpd AT T pEr ) 198 Tiog TraE

2. Any cy;(t) staying above 1 — C'log & a? during [t1, t2], where t5 1= 557 log (2%11\/%6);

The remaining proof is to show them one by one.

Upper bound on t; When 1 < k < K, j € N}, implies that w;o € Ry, and sign(v;) = 1. We shall
primarily focus on this case as the proof is nearly identical for K; + 1 < k < K. We prove it by
contradiction.

vVt < t;, we have
APTIAL(1— Ay) APTTAL(1 - V2A)
op+1 ’ 9K op+1

max | fP) (x;0)| < min{ } , (By Lemmal[§|and (E12))

(E.13)
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and

[\v]

Y <1-Ay,Vi#kjeN,.  (By(EI3) and Lemmal) (E.14)

J

S

crj(t) > Ay,

=k

Suppose t; > t1, then 3k, j € N} such that t( ) =inf{t : ¢4, (t) > 1 — —} > t1. However, for
0 <t < t1, we have, by Lemma@ for this partlcular k.7,

Whenever cy; > Al,

d 1= K
dtij > pc’,;j 1A2(1 —cxj) — Chlog —a? =0, max |f(p)(uk; 0(t)l, (E.15)

)
4
Whenever cj; > 5
1

d . K
%ckj > pc’;j <1 — 2p_2> (1 —cg;) — Crlog KQQ — Oy max |f(p) (px; 0(t)) , (E.16)

Notice that by Lemma|§| and (E.12), we have

pAPT Aya?

i (E.17)

max | f %) (x;; 0)| <
These suffices to show that c;,; will reach 1 — 2 in less than ; time.

For some choice of C' and sufficiently small «, we have: Whenever, N i < %,

1% K
exj 2 pef; Aol = ery) — Crlog —=a® — Comax | /) (puy; 6(1)]

> pep; ' Ay (1 - \/?) -G log%az -y ml?x|f(p)(u,k;0(t)|

< 4 K AP Aza?
> pef; As (1 - ﬁ) ~ Cilog Sa® — (=L =20

P p-13% 4 P p—1x
Z §C£J A2 (1 - 5> 2 %Ci] Ag, (E18)

4
dt

where we uses the fact that ¢;; > A1 in the last inequality. Whenever, f <cp <1— —,

d 1 K
il peh; (1 — 2p_2) (1 —cgj) — Crlog —a* — Cy max |FP) (pge; 0(2)]

]

K
Zp(?l)—l -2)(1 —cxj) — C1 logga —Cy max|f(17)(uk 0(t)|
K APTTA
>p(2r7" - 2)(1—%)—011%?@2_02%

(2P~ = 2)(1 — exy), (E.19)

"@

%
VS

where we uses the fact that c; < 1—-C log a? in the last 1nequahty The right-hand sides of
and (E-19) is positive, which proves that ck; is monotonically increasing before reaching
1-— Clog 5 a?. Lastly,

1. by Lemma|§|and (E-18), it takes at most time for cy; to travel from A; to \/g :

20
(p—2)pA2 AT~

2. by Lemmand (ET9). it takes at most ;52— log & 1og1%a2 time for ¢y to travel from \/%
to 1 — Clog +a?

33



Under review as a conference paper at ICLR 2025

Therefore, we have

2 2 2 1
25— int{t ey >1- S < 0

; < E—— log =1,
19 2 (p — 2)pAs A} 2 p(2r-1t-2) C'log %oﬁ !

(E.20)
which contradicts our initial assumption that ¢y (t) > ¢1. Hence t; < ¢;.

Maintaining C log %oﬂ alignment until £, We have shown that at some ¢; < £1, all ci; have grown
above 1 — C'log £ a?. Now we show that any cy;(t) stays above 1 — C'log & a? between [t1, to]. It
suffices to show that for any ¢ < o,

d

7 Chj >0. (E21)

cr;j=1-Clog £ a2
Indeed, the inequality (E.I6) is still valid before t5, i.e.

1
Ip—2

d -
— Ckj Z pcij ! (]_ —

K
il ) (1 —cxj) — Crlog —a? — Cy m]?x\f(p)(uk;e(tﬂ

d
K AP Ana?
> p(2P7t —2)(1 — ¢x;) — C1 log Fa2 - Cg% .

Therefore, for some choice of C' and sufficiently small «,

d K K AP ALa?
—Cij > ;0(27’_1 —2)C'log —a?—Clog —a?— Cgu >0. (E22)
dt —1— K 2 5 6 4
ck;j=1-Clog 5«
Hence K
mkin}g}% crj(t) > 1 —Clog FaQ’W € [t1,t2]. (E.23)
O
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F PRELU CONVERGES TO OPTIMAL /5-ROBUST CLASSIFIER, PART FOUR:
CONVERGENCE PHASE

F.1 AXUILIARY LEMMAS

We need the following lemmas (proofs provided in Appendix [G)):

Lemma 11. Let p > 2. Condition on good event E,y04. Suppose the following is true at some point
on the GF trajectory:

1. ij(t) 2 1-— 2Ca10g%a27 Vk,j eNk,
2. e, [w;]|? <1+ Cylog £a?, Vk;
3% e lwill? = 6(a?).

Then the following holds for every 1 < k < K, i € Ty,

2
FP(@;0) < > [lwy| (1 4 2P72C4 [log KaNa2> +2KCa?;

JENR

K2N
P (xz;;0) > Z w2 (1 — 4pCy/log 5 az) —2KCaP.

JENR

Lemma 12. Let p > 2. Condition on good event E,404. Suppose the following is true at some point
on the GF trajectory:

1. ¢j(t) > 1—-2C,log %oﬂ, Vk,j € Ny
2. Y ien, llwil? <1+ Cylog 5a?, Vk;
305 e Il 12 = 3(a2).
Furthermore, suppose additionally that for some k,j € Ny:
1—2C,log %aQ <eg(t) <1—C,log %aQ;
Then the following holds for the same k., j,

d KZN min
£ij Z —-CK log TO{ {p4} .

Lemma 13. Let p > 2. Condition on good event Eo0q. Suppose the following is true at some point
on the GF trajectory :

1 cpj(t) >1—2C,log Ka?, k,j € Ni;
2. 3 ien w;]|? <1+ Cylog 502, Vk;
3 Yjen. lwjl? = o(a?).

Then the following holds for every 1 < k < K,

d K
S ) <2 (1= 3 gl 4 Crog e ) [ 3 sl
JEN, JEN JENK
and
d 2 2 K 2 2
S ) 2o (1= 3 gl - Crog e | [ 3 sl

JENK JEN JEN

where C' is some universal constant such that C' < C,.
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Lemma 14. Consider the same assumptions as in Proposition|2| Given the t1 in Proposition|2| the
following holds V1 < k < K:

2P 2K
> flw;(t)]* > exp <—p~~p_2> W2, €. (F.1)
JEN p(p - 2)A2A1

Lemma 15. Given some 0 < A < i, if for some z(t), the following holds

%z >(1—2z—-A)z, 2(0) =2, 2(T) = 21, (F2)

Sfor some 0 < zy < %, and zy < z1 < 1 — A. Then the travel time T for z(t) to go from zq to z;
satisfies:

1 1
T<2llog—— +1log— ) . F3
Lemma 16. Condition on good event €44, we have
S w0 =a6(a?), vt <T*. (F4)
JEN

Lemma 17. If the neurons {w; };-L:l satisfies the following for some 0 < § < 1l andv,( > 0:
* maxy max;en, Ck;(t) > 1—196;

1= Y e lwsl2| < vs
* Yjene lwjl* < ¢
then supcgp—1 | fP) (2;0) — F®) (x)| < K(1+v)(2P — 1)20 + Kv + ¢

F.2 PROOF OF THEOREM[3]

Theorem 3 (Restated). Let p > 2. Given 0 < 6 < 1 and a sufficiently small a%, consider data
dimension D > Q(ag ?) and per-cluster sample size Q(ay?) < N < o(exp(ag ?)). With probability
at least 1 — §, the GF dynamics with a balanced dataset D = {x;, yl}fg}’ sampled with intra-cluster

variance o < o3, starting from some e-small and balanced (Assumption initialization 0(0) that
satisfies Assumption with a non-degeneracy gap A = ©(1) and has a sufficiently small initialization

scale e = © (agK), leads to a solution 0(t),t > 0 such that: for some t* = O <log a%)) and

" =0 (log aio) +Q <amm{lpz2}) with [t*, T*] # 0, we have L(0(t)) = O(ad),Vt € [t*, T*]

and

sup sup
te[tr, T*] meSD—1

P (z;0(t)) — F(m(:c)’ <0 (ad). (E5)

Proof. We have shown in Proposition 2] and Lemma [T4] that:
1. Any cy;(t) staying above 1 — C, log %oﬂ during [t1, ta];

2pP 2K
2. > iens lw;(t1)||> > exp <7TI(P£)W) W2, € foreveryl1 <k < K.

We define
1 2P H2 1
t" = t;1 +2|lo + —— +lo F.6
;(11/) ( & (C = Cy)log %aQ p(p — 2)A2Af72 & Wr%in62> (F6)
* C max{2—p,—2
O(log %)
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Since e = ©(a®K). For sufficiently small «, we have O(log 1) = t* < T* = ©(amn{2-7.~2}),
Our goal is to show that

1. Before T, one must have maxy, max;c s, cx;(t) > 1 — 2C, log £ a? and D ieN: lw;()]* <
14 Cylog %aQ;

2. Before T, for all k, whenever .\ [|w;(?) |2 reaches 1 — C,, log £ a2, it can not drop below
1—Cylog %az;

3. After ¢*, for all k, one musthave >\ [|w; 12 >1-2C,log Ka?.

We also have 3\ [lw; |> = 6(a?), then applying Lemma [17| gives the desired result. The
statement that £(t) = O(a?) is due to the fact that |y; — f®)(z4;0(t))| = O(a?) during [t*, T*].

First claim: The two inequalities hold before ¢, thus it suffices to study

K
73 := inf {t > to: m]?x]ng% ckj(t) <1 —-2C1log 5a2} ,

K
infdt>ty: Z |w;|* > 1 —i—C’logFoz2 ,
JEN
and show that min{7s, 74} > T*. We proof it by contradiction, suppose min{rs, 74} < T*, then it
must be either 73 = min{73, 74} < T* or 74 = min{7s, 74} < T*.

T4 -

Consider the first case that 73 = min{73, 74} < T*, then there exists some k and j € N and some
T3— > to such that

K K
1 —2Clog goﬂ <eg(t) <1—Clog FaQ,Vt € [r3-, 73], (E.8)
K K
ckj(m3-) =1—Clog ?042, ckj(m3) =1 —2Clog 3042 (F.9)

since cg;(t) is continuous and has to travel from 1 — C'log %oﬂ to 1l —2C'log %oﬂ. By Lemma@
we have

d K*N
Jckj > —CKlog —<—a™™P4) vt € [y 73]

dt ™
Then by the fundamental theorem of calculus, we have
K ™ d ™ K2N .
—C'log 5012 = cj(13) — erj(m3-) = / ik 2 / —CKlog —— aminte )
T37 TB,
K?N .
= —(13 — 13- )CK log 5 amin{pa}
(F.10)
Therefore, for some constant C' > 0,
C
(rs —75.) > a2 2} o (1 ) > gmax(2-p-2) (F.11)
IOg K(QSN log K;N
2,73 P} a - i i 2, . -
[t2, T3] has length at least ; C —amax{2=p,=2} thys is an interval that contains [t2, 7*]. Contradict
og ——%—

5
ing our assumption that 73 < 7. The case one is thus eliminated.

Consider the second case that 74 = min{73, 74} < T*, then by the continuity of ||w;||, we know that
there exists some k such that 37 - [|w;(7a) |2 =1+ C, log £a?. However, by Lemma we
have, at 74,

d K
T DollwilPf <2 1= Y flwyl? +C'log —a” > lwil*]

JENE JENK JEN
———

=14Cy, log %oﬂ
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K

JEN

which indicates that 3~ . [lw; |2 can not surpass 1 + C,, log & a? after 74, violating the definition
of 74, leading to a contradiction. Therefore the second case is eliminated as well. We must have
min{7s, 74} > T*. The first claim is proved.

Second claim By Lemma|[I3](it applies to any ¢ < 7™ given the proof in our first step), we have

d K K
dt Z ||wj||2 >2 (C’w log KQQ —Clog 6a2> Z ijHQ
JEN Yjen, lw;ill2=1-Cy log §a?
>0.
Therefore, whenever .y, [[w; (t)||* reaches 1 — C,, log £a?, it can not drop below 1 —

Cy log %oﬂ. The second claim is proved.

Third claim Lastly, we just need an upper bound on the travel time for > ;. [lw;(t) |? to go from

> jen llw;i(ta) |2 to 1 — C,, log £a?, for which we simply combine Lemma andto see
the travel time is upper bounded by

1 P2 1
211o + — +lo F.12
( S0 CologKa? " plp—2)RAr 2 Wiin€2> "
Thus Y7 x, [lw; ()]|* must reach 1 — G, log & o® by *. O
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G PRELU CONVERGES TO OPTIMAL /5-ROBUST CLASSIFIER, PART FIVE:
PROOFS FOR AUXILIARY LEMMAS

Lemma 5 (Restated). Given an initialization shape that satisfies Assumption[2|with non-degeneracy
gap A > 0, then for j € Ny, we have

ck;(0) = cos(py, w;(0)) > \/; ((1—1A)2 - 1) = Ay, (G.1)

&A72(0 _
CZ_QEO; < (1= V2A)P72:=1— Ay, VI # k with y, = yy, and ¢;;(0) >0 (G.2)
kj

Proof. We prove both inequalities by contradiction.

First inequality Suppose 0 < ¢;(0) = cos(py, w;(0)) = cos(p, wjo) < Ay, then consider
Wjo = T, and
S ¢k (0)
W=wWj— ————~
30 1-— ij(O)
Notice that here cx;(0) = cos(px, wjo) = (px, Wjo). It is easy to verify that (p;, w) = 0,V1 <
| < K, thus w € 9(Uyex Ri). and

(i — Wjo) - (G.3)

(wjo, U R ) =1- sup cos (wjo, w) < 1 — cos(wjp, W), (G.4)
kex wea(UkE,c Rk)

Since one can compute

<1I7]0a ~> 1 + Ck] Ck](o)) > A

1
= >1- )
[l — ,/1+20k] J1+262,(0)

where the last inequality is due to our assumption that ¢y (0) < A;. Combining (G-4)(G.3), we have

<wjo, U R« ) (G.6)

ke

cos(wjo, w) = (G.5)

which contradicts our assumption that the non-degeneracy gap is at least A.

?72(0)

Second inequality Suppose there exists an [ # k such that y; = y; and - piz(o) > (1 —+2A)P2
and ¢;;(0) > 0, we pick the [ that has the largest ¢;;(0), then consider w ;o = Hw o> and

~ ~ ¢k (0) —c15(0

wzwjo——kj( ) el )(Mk—m)~ (G.7)

2

It can be verified that ||| = 1, cos(py, w) = cos(p, w) = O+ O) “and cos(pn,, W) =
coS(m, Wjo) < cos(py, W), Vm # k or I. All of the above together implies w € (ORx) N (OR;) C

9(Upex Re), and

(wjo, U R ) =1- sup cos (Wjp, w) < 1 — cos(w;op, W), (G.8)
kek wed(Uper R

One can compute

et L e I
[[wjoll[|w]] 2

w,g, W
cos(wjg, W) = (050, W)
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2
~ 1\ 2
(1 —(1- Ag)pfz)
>1- 5 =1-A, (G.9)
. . . . ijiz(o) p—2 ..
where the last inequality is due to our assumption that - o) > (1 — v2A)P~2. Combining
ij

(G.4)(G.5), we have
d (wjo,a( U Rk)) <A, (G.10)

kek
which contradicts our assumption that the non-degeneracy gap is at least A. O

Lemma 6 (Restated). Let p > 2. Condition on good event E4oq. Given some 1 < k < K and some
j € Ny and suppose the following is true at some point on the GF trajectory:

1 cpj > Ay

2. lail < (1 - VaA) VI £ k.

Ckj

Then the following holds:
S PR — o) — K 2_ P) (4, -
1 Ck > pey; Ao(l —cxy) — Crlog 5 C’gm]?x\f (pr; 0(t)|

for some universal constant Cy, Cy that depends on p. If one further assume cy; > %, then the
lower bound can be improved as

1
2r—2

d _
Chj chij ! (1 -

K
pn ) (l—ckj)—Cllog?aQ—Cgmlax|f(p)(:vi;9)|,

Proof. When1 < k < K7, j € N, implies that j € N thus sign(v;) = 1. We shall primarily focus
on this case as the proof is nearly identical for K7 +1 < k < K.

1 w; pt w;
= 3 v”ezp<<$lv 4 >) (IJ’ y Lj _<wia ! >C )
N oyl ) et = (@0 g )

1 w; p—1 w.:
1S = 1000 p ((on ) (G = (it Yo )
N i:(w§>>0 ”wJ” Hw7H !
1 w; Pt w;
N yz‘p(<mi,j>) (</Jk7-'137> - <mi7]>ckj>
iz, w; ) >0 Hw]” ”wJ”
1 ( ) 'LU] p=1 'LUJ
N [P (xi;0)p | ( x4, (g, i) — ( @4y — ) Cij
i@, w;) >0 ij” ”wJ”

:=I"1 (will be treated later)

v () (em (o))

€Ly (i, w;)>0

(a)
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_*Z > . Oyip<<wia||$j>>p_l ((Nk7wi>_<wia||1wuj”>ckj> +1I4

I#k i€y (x;,w;

0)
(G.11)

We handle these two terms differently:

1 w,

N Z Yip (<$Za > ( Ko, Ti) — <5Bi, J> ij)

N et forws ]II |||
k(i w;) >0

1 p-l W,
= xN p ll’k"_sla > <I‘Lk7 k+€z _<l—l/k+€i,]>0k')
N Z (< ]H lwjll /™

1€Ly
W
1- ckj iu'k?a > <€ia u)j”>ck]>
J

)

- w2 o ((mre iy >>
) (1 (o) )
(

1€Ly
1
= 3 2 o (e )
p—1
<“”€“ |>> (pi 1)

i€Ty,
:=T"o (will be treated later)

p—1
w; 2 w;
- § eni+ (e, —2 1—c2. — <si,>ck»> 1Ty (G.12)
( ! < |ij>) ( + llw,ll /™

’LGI}C

(a)

1
+Nzyz

1€Ty,

With the Taylor expansion

p—1 2
/LUJ 1 —92 w w;
e, _ - e e, Ry (e, -2 G.13
(oot (o)) =+ om0 (o g b (e )|+ @19
where Ry, = (pfl)(pfz)gc’“ﬁ@)pi and ¢y, between 0 and <el, Tw ”> comes from the Lagrange
residual. Clearly |R; | < 2P~3p?. Combining (G.12)(G.13), we have
(a)
= (G.12)
1 92 w;
= PCZ]' (1- Cij) + (‘pCZj +pp— l)Cij (1- Cij)) Z <5i7 |wj||>
i€y, J
1 w; 2
L Cplp— Vew + R - &) <s>
v , WD) 2 10 T
2 w
et 2 < )| (o) o
wj wj
_ 1 4.
> =) — w2 | Y e - 22 3 el = w2t Y [l 4T
€Ly i€y 1€Ly
> pel (1= chy) - w0 | Y e - 221t 3 el - 2%t 3 [l ma e + T
1€y 1€y 1€y
_ K K2N
chijl(l—cij)—C log 5 \F —or~t 3Czlog§a — 27333 log 5 a® +Ty.
(G.14)
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‘We leave the bound as the last one for now and turn to the other term:

(b)

3

w8 L E () (e (o))

l#k i€Z;:(x;,w;)>0

IO

1k i€T;:(mi,w;) >0

¥

1#£k

’U.}j P
Yi p <Clj + <Ei, 7”’“’” >) Ckj
J

p—1
. ) Wy .
S wrfar(eegy)) e

1€y (aq, w;)>0

Ik €T,

With the Taylor expansion

<Clj| +

where R =
residual. Clearly |Ry| < 2P~2p2. Combining (G.12)(G.13), we have

(b)

- @139

v

v

Y

Y

Y

=Y pley|Per; — %Z > o= Vley [P ter

1k

=3 pleslPers — 52 30 plo — Dlew !

'LUj >
£
< s

pp—1)(lei;|+¢)P 2
2

P <Clj| +

:=I"3(will be treated later)

<Ei7 e >
o, |
P w.
= |ci;|P + pley P~ ‘<€-, ]>‘ + Ry,
> ! ! 7wy

p
> Ckj +F3 (G15)

’LU]‘ >
e —I
< |

2
. (G.16)

l

and (;, between 0 and ‘<sz, Tl H >’ comes from the Lagrange

2
+T'3

Nl SE S

< lw ||>
l#k i€y w;

Ckj i, & - K2p72p302 IOg 7042 + Fg s
[ | 5

£k €T,

I£k Ik i€,
1 _ _ K
= plelPer; — N SN pp = Dle P er (||EiH 1—cg;+ (e, Nk>|> — K27 7*p*C?log 3042 + T3,
I£k Ik i€
_ [ K2N _ K
— Zp|clj|pckj — Zp2|clj|p 1cij log 5 C 1— cij — K2P72p3C? log ?az +T1'3
I#k I£k

1 J—
= D0 D e — Dley P ey (i, )

I#k €T,

:=I"4 (will be treated later)

e [P ez [P~ KN _ K
pcﬁj1 Z ]_ |]\2 Zp cjp_Q lci;1Cy [ log 5 ay/1—ci; | — K2P 2p30210g3a2+f‘3+114

1#£k

£k ki

;P2 2 2,302
max = Zlcl]| Zp|cl7|0 log 5 ay/1=ci; | = K2P7*p°C* log 5& +I3+1y
kj I#k I£k
e [P 2 / 2,802 K
rgéag( s Z |cl7 —pC log 5 1-— ck] Z leij| | — K2P7*p°C*log — 5 a?+T5+Ty
kj I£k I#k
ey P2

- K
) Z|clJ —pC’/Klog ay/1 ck] Z\CUP —K2”_2p30210gga2+F3+F4

Ik 1k
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v

. ey P2 [ KN K
—PpCh; (r}?g C%J,g (1_Ci]’)> (1—pC Klog 5 a(l — ckj) — K2P2p*C? log 5a2+F3+F4

|p—2
b (e
2 " 1%k CZ]-
Finally, combining (G-14)(G:17), we have
d . ey P2 K K2N
S Cki = pey; (1 — rg?]s(# (1-ct;)—C1 log 5 \ﬁ — Clog FQQ — C4log 5 3
— |Taf = [T2| = [Ts] — [Ty

K
) (1-— cij) — K2P72p3C? log FaQ +T3+Ty (G.17)

K K2N
)(1—c;w) C1 IOggf C’210g6a — C4log 3 a?

— 01 = [Pa| = T3] — [Ty,

where the readers should be able to find universal constants C}, C%, C% from the derivation. It remains
to bound these |I';|,¢ = 1, - - , 4. Indeed, we can find the following bound:

i@y, w,)>
1 _
< max |7 (z;; 0)| Yo |l @)
i:(xg,w; ) >0

< 2P max | £ (2 0)|,
1

Tl = |~ Zyp(<u e, >>p1<u )
2 = | %7 7 k [T TOUET ky&i
N & [y
1 1 1 K2N «
< § 2 Pl o] < p2 Oy los =

1€Ty

1 w; p—1
s = |-~ yip ( ; <>) (bt )
N j o,

l#k i€Zy:(x;,w;)>0

1 1 1 K2N «
< 3 2 Pl sl < p2771 Oy flog ==
1€Ty,
1 -
ITal = | =5 20 D2 oo = Dley [~ en l{es )|
I£k i€,
K2N a
S—ZZ p? [{pr, €:)| < Kp?C'y/log —— ik
I#k i€,
With these norm bounds, we have
L
dt
1 ‘Cl‘|p_2 K
> pey; (1—1}17350%52) (1—ciy) = O log = 5 \ﬁ — Cylog —a
K%N K2N
— C4log o® — O mlax|f(p)(wi;9)| — Ciy[log —— \/OL

1 (1 Z a1 ey - Kop_ ®) (.-
>pey; | 1—max — —— | (1 —cy;) — Crlog 5O Coymax | f\P (x;;0)].
,j g
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Lastly, our bound is

1. When we only assumed czj; > A:

d -1 e P2
pes > pey; (1 — max

K
1+£k ng—Q ) (1 —ij) — (1 log ol — O, m?x‘f(P)(mi;O)‘

]

-13 K
> pcgj 1A2(1 —cxj) — Chlog goﬂ —C, max |f(p)($i; 0)|

2. When we further assume c; > \/g, we have that 3=, clzj =1- cij < 1, then max 4y, || <

\/g. Therefore
|p—2 ) . p—2 1
1fmax% 1= maxyy cy >1- 0, (G.18)
(e Cﬁj Chj 2p

which leads to

d » 1 K
77 ki > pey; (1 - 2p_2> (1 —cp;) —Chlog ?o? —Cy max |fP)(x4;0))| .
O

Lemma 7 (Restated). Let p > 2. Condition on good event Egy0q. Given an initialization shape that
satisfies Assumption 2| with non-degeneracy gap A > 0, define

APTTAL(1— Ay) APTTAL(1—V2A)

t1q := inf {t : max \f(p)(a:i;H(tﬂ > min{

2p+1 ’ 2K 2p+1
(G.19)
Then the following holds V't < t14:
cri(t) > e (0) > AL VI < k< K,j €Ny, (G.20)
and
2] | 2(0) < .
- < <1—-As.andVl#k,jeNy. (G.21)
2 2
kj (t) kj 0

Proof: When1 < k < K3, j € N, implies that j € N thus sign(v;) = 1. We shall primarily focus
on this case as the proof is nearly identical for K; +1 < k < K.

Overview of the proof: We will prove by contradiction, we let 71 := inf{t : Jk,j €

: . lep 2] 1% (0)]
Ny, s.t. cg;(t) < ¢;(0)} and 75 := inf {t :3k,j € Ni, &l # k, s.t. ékj(t) > ékj(o) } by
lef 2 ()]

7
crj (t)

the continuity of every cy;(t) and every on the interval [0, 71] and [0, 73] respectively,

|27 2(r2)] |2 72(0)]
cej(t2)  — ck;(0)
min{7y, 79} > t1, then there is nothing to be proved, otherwise, there are two cases:

we know that cg;(T1) = cx;(0) for some k,j and

for some k,j, 1. If

1. When 7 = min{7, 72} < t1,, we show that for the k, j such that ¢ ;(71) = ¢x;(0)

d

ek 20, (G.22)

t=71

which says cg; (11 + At) > ¢;(0) for every sufficiently small A¢, contradicting the definition of
T1.
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2. When 75 = min{7, 72} < t1,, we show that for the k, j, [ such that lcé; ((sz))l = ‘CCk (8)‘
2 ¥
d . oyl
log <0, G.23
dt - ( )

Ck;7 t= T2

which says % < ¢x;(0) for every sufficiently small At (due to the monotonicity of log

function), contradicting the definition of 75.

Time derivatives of log cosine angles We have shown in that for every 1 < ! < D, whenever

lcii| > 0,
d
%1og|clj|
1 W p—1 @ w.
-5 X vitor((ern)) (M (e 2
i:(xq,w;)>0 ||ij Clj HwJH
! w; \\" (@)
= —— VA£1p<<x“]>> ) 3
N <§> ! Jw; | i
1 P
+ N Z v &p (<m17 >) .
(@i, wj) H j”

Case One: 7; = min{7y, 72 }. This case is relatively easier as we have already shown Lemma@ For
the k, j such that ¢;; = A

d

K
27 Cki cf As(1 — ¢p;) — Oy log —a? — p2rt? m?x|f(p)(a;i;0)|,

4]

=71

()

by Lemmal6](conditions are satisified at ¢ = 71 and one should be able to get (*) using the intermediate
results in the proof of Lemma|[6). Then

~ ~ ~ K
> pAP T Ay (1 — Ay) — O log —a? — p2P* max | ) (z;; 0)|,

@ij t:Tl 6
(11<t1a) -~ K 4~ -
> pAPTTA(1 - Ay) - Oy logga — pAf 'Ay(1—Ay)
1 K
> APTIAL(1— Ay )7011og§a2 >0,
for sufficiently small a.
Case Two: 72 = min{7y,»}. For the k, j, such that ‘Cf:jc ((T?))l = ‘CCk (g;)l we have (although

we omit the notation, all the derivations are at 75, so that ¢;; can appear in the denominator of a
fraction.)

d 1 |Clj‘
dt ij
d
d 10g|clj| IOng]
-1
= = > Vilip <<w >>p ((uz,wﬁ B <Mk7wi>>
Ni:(ml,w]>>0 || JH Cij Ckj
]. w. p*l <# {Iﬁ> < a:>
= (p) oW L) Kk, T
¥ (4 — £ (s ))p(<wz, ol >> ( P )
i{xi,w;) >0 Jj j y
1 i p <<a; “’J’>>p_1 <<Hfl,-'13i> B <uk,wi>>
N i{xi,w;) >0 l ; ”wJ” Cij Ckj
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1 ) p—1 . i
-y X f(p)($i§0)p(<5l7i,u)j>> ((mw) B <uk,w>>
i@, w;) >0 [, Clj Chj
=I"
-1
- . Z yip<<uk+g. wj>>p <<“l»l‘k+€i> _ <Ukauk+€i>)
€L, (@i, w5 ) >0 ||w] H Cij Ckj
- w; \\" MLt E b+ g
N Z Yi p <<uz +si,3>) (wl Hi ) (B, >)
€T (@, w;) >0 ||'w3|| Cij Chj
1 w.: p—1 , Ly + €4 My + €
N > > Yi p (</iz/ +€i,3>) <<“l potei) (e, z>> T
1<U<K €Ly :{xi,w;)>0 ”wJ” Clj Ckj
VAL Ak
! Wi v 1 , € ,Ej
= — Z yip<ckj+<5i,J>> <_+ (11, €5) _ (pk >>
i€Tk (i, w;)>0 ”wJH Ckj Clj Chj
1 w; Pt 1 ,€i 25 €4
N Yip <cw + <sJ>) ( (o &) (b >)
i€ (@i, w;)>0 ||'w]|| Cij Cij Ckj
! wj Pl , €4 , €4
> > yip(cl/j+<5iam>) (wg >7<”§‘ >>+r1
1<U'<K €Ty (@i,w;)>0 J ] kj
VAL £k
1 w, p—1 1
=N Z Yi D | Crj +( €55 77— -
1€y (x; ,w;) >0 ||'LU]H Ckj
1 W p—1 1
N Yip Cz-+<ei,J>) () + Ty +Ty, (G.24)
N 2 ( ! [[w;ll cij e

€Ly (i, w;) >0

We view 'y, I'5 as “perturbation term" and will control their norms later. For the first two terms in

(G.24), we have, respectively:

1

€Ly (xx; ,w;) >0

__Pr
N -
€Ty
_ b -2
L
1€y
p -2
1€y
p -2
1€y

w
Z Yi p (ij + <€i; w1

<ij + <€7;, Hi

J

) (e
) e

oo pein)
R R b AV

[lw; 1l
oo\
1—
Ckj

ij
w.
(e )]
= (1) Tw,]]

ij

)

w;||

w;
w; |

e Wi
"7 e

max; HEZ” > _ 2 4K2N

-
ek (0) P

J

8log

+p(p_1) a,
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and similarly,

—_

w;j Pl
~ vip|aj+ <5i> T >> ()
P> . ( ’ ] =

€L (@ ,wj ) >

w; p—1
oo rii)
D

< P
N €L (T, w;)>0 Gy
_p 2 ‘<€ ij|\>‘
SN Z |ci;] 1+(p—1) o
. lj
1€y (@, w;)>0
< pley|P~2 + pp — 1)4/8log 4K;Na, 1<I<K
=0, K<Il<D

Therefore we have

d Clj _ _ 4K2N
D tog ] < e ey 11x0) + 20(p — 1)y 8108 T o 0y |1
t Ckj )

_ _ 4K2N
< —p(ef;” = leyyP7%) + 2p(p — 1)1 /8log ——a — [T | — T
_ c;1P2 4K2N
S_pczj2<1—|iﬂ_2>+2p(p—l) 8log 5 a— T — |2
kj

o 4K2N
< —pAY 2A2+2p(p—1)\/810g 5 a— |y — Lol .

It remains to bound these [I'; |, [I'2|. Indeed, we can find the following bound| (note that at 75, we
have |¢;j| = ¢x;(1 — V2A)) and ¢; > Aq):

_ ! ®) (.- Wy ot (e, i) (g, T4)
ni=ly X P@0p( (= Lo e
0 J J J

i@y, w;)>

1 w; \["7N () | | (B, i) |
¥ 5 1o p|(en ) zill_ L

N Z [[w; | ek (1 —V24) Ckj
Kp?p“ (2<t1a) 1

1<i<KN
_— < —
A(—ver) - 2P

1 w; rt ;€4 ;€4
Ta| = |+ Yip (<~’L‘u —I >) (<Hz ) >>
N i [[w;|] cij Chj

~1
! [ | [ ea) |
ij(]. —V QA) Ckj
< () | Kp2rt! < CKp2rt! K2N «
max JEi) | = < = o —
=R MRS T van) T A a—vem) VP TS UD
Finally, we arrived at
d, . oyl

IN

< max|f")(z;;0)| ATT?A,,

IA
|

(e am)
I AN ]

% Ckj

t=To
2 CKp2rt! K2N «

Al-van)V 75 VD

*It may take some time to recollect the terms we omitted in (G.24) and regroup them into I'>

. . 4K
< —pAf_QAg + 2p(p — 1)4/8log

N 1 zp 9%
5o+ 5pAY Ay +
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1 <, 9+ 4K2N CKp2rt! K2N o
< —=pAPTP Ay 4+ 2p(p — 1)4/810 a+ = o <0, (G25
< —5PAT A2+ 2p(p —1)4/8log — R0 vam V' 75 =0 @2
for sufficiently small a. O

Lemma 8 (Restated). Let p > 2. Condition on good event o4, then with any balanced initialization

scale € < W, the solution to gradient flow dynamics satisfies

1 1
(p)
ma | ) (g ()] < 2VAIW 2, w<2,,+2K1g(2p1 ﬂe). (G.26)

Proof. Let T := inf{t : max; |f(xy;0(t))] > 2evVhW2, }, then Vt < T, j € [h], we have

%“wﬂ‘”zz—zw S vt (o)) | e

i@y, w;)>
(<m ,W; >)
1
< 2N2|V@€i|||wj||2|\wi||l’
i=1
op+1 KN
< D 0+ (@ 0))]) |y
i=1
o1 KN
< TS eV AW )
=1
< PP+ 4eVRWE, ) 2. G27)

Let 7j := inf{t : ||[w;(?)|* > 23?}{%}, and let j* := arg min; 7, then 7j« = min; 7; < T due to
the fact that

w;, Tk
F@s0)] = | Y L mpoons TR €20 5 P < 2B
JE[R] J€[R]

which implies "|f (ax: 0(1))| > 2eV/AW2,,, = 3j, s.1.[[w; (1) |2 > awwe.".

Then for ¢ < 7;-, we have

2 <P (+4eVRWE ) (G.28)

By Gronwall’s inequality, we have V¢ < 7;-
- ()2 < exp (27 K1+ VAWt ;- (0)]2,

= exp (2”“[((1 + 4eVRW2 )t ) €2[|wj=ol?

< exp <2p+1K(1+46\FW§1aX) ) EW?2 .

Suppose T+ < 5rir log (zp e ) then by the continuity of |lw;- ()||?, we have

2eW?

max

P < [l ()|

2 < exp (2P+1K(1 + 4eVRW2

207 ) EWE,

1 1
p+1 2 - - 21172
< exp (2 K1+ 46\/Ewmax)2p+2 log <2P—1\/Ee)> €“Wihax
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IN

1 + 46\/EWr%1ax 1 2 2
exp ( 5 log <2P1\/Ee>> eWihax

1 W2
exp (log | ————= | | W2, = —22<
> (on (v ) ) e =570

which leads to a contradiction 2¢ < e. Therefore, one must have T' > 7+ > 5; = % log (QP_ 11 \/Ee)'

IN

This finishes the proof.
Lemma 9 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds
d
pred > C2P7 Wt e [0,T], 2(0) = 20, 2(T) = 21, (G.29)
for some 0 < zg < z1 < 1. Then the travel time T for z(t) to go from zy to z; satifies:
1
< ———. (G.30)
(p—2)Czh?
Proof. We have
zZ1 1 T
—dz > dt G.31
/ZO Gorie 2 | (@3
thus
1 1 1 1
T< — ——— | < — . (G.32)
(p—2)C (zg 2P 2) (p—2)C2h2
O
Lemma 10 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds
d
T >C(1—2),Vte[0,T], 2(0) = 2o, 2(T) = 21, (G.33)
Jor some 0 < zg < z1 < 1. Then the travel time T for z(t) to go from zy to z; satifies:
1
T< =1 . 34
< glosi—o (G.34)
Proof. We have
zZ1 1 T
—dz > / dt, (G.35)
/20 C(l - z) 0
thus . ) .
— 20
T< =11 <=1 . G.36
_C<0g121>_00g121 ( )
O

Lemma 11 (Restated). Let p > 2. Condition on good event Eyy0q. Suppose the following is true at
some point on the GF trajectory:

L cp(t) >1—2C, log £a?, Vk,j € Ny,
2. X ien, lw;||> <1+ Cylog %aQ, Vk;
3. e, llwill? = 6(a?).

Then the following holds for every 1 < k < K, i € T,

2
FP(@i;0) < Y Jlwy <1+2p+2C\/10g K5Na2> +2KCa?;

JENK
K2N
P (x;;0) > Z Jw, ||® (1 — 4pCy/log 5 a2> —2KCaP.
JENK
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Proof. Our proof ignores terms related to neurons in AV, as they only introduce a 6() perturbation.

F(z;;0)

I
e
g

vh ‘ (<||Zf”>)
:ZN”w<<Z“">> +2 2 lhwilfe” (=)
= 5 et (g + (7)) + T F st (e + (720 )) @30

JENK I#k jEN,
Upper bound:

f(p) (mi; 9)
= (G.37)

w; w.
< 3 bl (oo +[(qapeen)]) + (52 3% vt (o + (i)
JEN il I#k JEN: I

(a) (b

For the first term, we have

p
(@) < 3l (14 ledll /1 =, + | (s, o))

JENK
9 p
<Y fhwyl (1+||ez|| 21— ) + | (i) |)
JENK
/ K2N a \’
g |'w]H2 (1+20 log a +C >
JENE \/>

IN

2
S w2 (1+2p+20\/log S a2> ,

JEN

for sufficiently small . For the second term, we have

p
<ZZ<'C“'+‘<E“|| ||>D
1£k wj
P
sak(‘/l—czﬁneiu L=+ | i) |)

<2K

P
V20— ag) + e <1—ckj>+<uk,ei>)

K2N
> <2KCaP. (G.38)

2K<C’a+0 log a +C

@ (x;0 Z [ w;||? (1 + 2P72C4 [log ) +2KCaP . (G.39)
JENL
Lower bound:

P (z;;0)

3\@

Therefore
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- @3
w; W
> 3 tyl? (g + [ (72 ) [ X hwslior (e + (720
FENG il £k jEN, J
(a) <@G39)

For the first term, we have

@2 3ty (1~ lleally/1 =y — e )

JENR

P
> 57 Juy? (1 - e 2<1ckj>|<uk,ei>|)

JEN

p
2
> Z | w, || (1—26’ log a - KN a4 >

75
1 —4pC'y/log KzNa2> ,
for sufficiently small . Therefore
FP(@i;0) > > [lw;| (1 — 4pCy/log KZNoﬂ) —2KCa? . (G.40)

JEN

O

Lemma 12 (Restated). Let p > 2. Condition on good event Eq,04. Suppose the following is true at
some point on the GF trajectory:

1. cpj(t) > 1—2C,log Ka?, Vk,j € Ny,
2. Y ien, llwil? <1+ Cylog 5a?, VE;
35 e w12 = 3a2).
Furthermore, suppose additionally that for some k,j € Ny:
1-2C,log %oﬁ <epi(t) £1-Cglog %oﬁ

Then the following holds for the same k, j,

d

KQN min
27 Cki > —CKlog — @ {pa}y

Proof: When1 < k < K3, j € N, implies that j € N thus sign(v;) = 1. We shall primarily focus
on this case as the proof is nearly identical for K; +1 < k < K.

4
dt

]. p—1 wj
=y X W”(<”’“’“ [ ]||>) (<“’“”“>‘<’”“ ||wj>c’”'>

i(xq,w,;)>0
Ly @i (a2 (e — (20 Ve
- N Yi Ty, p Li, ||w|| Mk, Tg Ty, HwH Ckj

i(xq,w;)>0 J J

w.; p=1 w;
L5 (1= 3 )2 p(<mi, ; >) (<uk,xi>—<wi,ﬂ>ck')
EZI ﬁ% J w,] w,]1 /7

(a)

ij
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w

L1
N

D

1€y

> llwsl? ~

= (fﬂz; 6) p(<ﬂ%

[[w;l

MCERE

)

()

DY

l?ék‘ iEI[:(iB{,,‘U}j>>

(= D@0 <<mnzwu||>> (1m0 (o g pews)

(e

We deal with these terms one by one:

Since 3¢, [lw;][? < 1+ Ca?, for (a), there are two cases:

1. When1—>" JEN: [lw;||* > 0, Follow the same derivations from (G.12) to (G.14), we have
p—1 ws
@=1- % bl 5 0 (o))" (o — (o 2 ey
g Tl |
K
-1
> (1= lwilP? <pczj (1= ;) = Oy low G — 215 CPlog s —o<a2>>
JENK
2 2yp—1 . C* 2 L3 C?
>1- Z [lw;]| p(1 —Ca*)?P (Ca —4a>—Cp log 5 \F — 27 p°C* log
JEN
>0

)

for some choice of C and sufficiently small c.

2. When —Ca? <1 -3 . |lw,|[* <0, we have

p—1
w.
(a) = 1— Z ||’LUJH2 N Z (<$Za || >) (<I‘Lk7wl> - <$i, m
jENk 1€y ] !
o1 w; Pt 2
> = Y| 5 5 o ((mepay) (1 1+
S = [Jw; ||
> [1= 3 Jlwy|?| p2r! (1 —cij + 2l (k&) | + |l
JEN
K2N
> C4/log 3 a*,

Therefore, we always have
K2N ,

(a) >C 5

log

The second term (b) is easy: by Lemma , we know that ’ZjeNk |lw;]|? —

O(y/log 2N 02), then by the a similar derivation as in (GA2), we have

S -

i€Tr \JENL

52
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(G41)

)

2 .
1_ijckrj)
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(G.43)

@ (x4 0) ’

)

ij)

K
—a®—o
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1 N\ |
> | Y sl = @i 0)| 5 5 o ((ongit)) (1 e |+ | (o i)

JEN i€T w;|

ij)

K%N
> C'log

o', (G.44)
For the last term, we have

@-5L X - ( (e >) (w2~ (o2 s

l#k i€Z;:(x;,w;)>0 ”wJH ij”

—EZZ p(Cl‘+ ’<€ 'w]> )p_l (<uk €i) +ajcrj + ‘<6 'w]> Ck‘)
N ’ o T sl /17

I#k i€T;

2 p—1
>3 (V- el 1-dy) (e + /1= yens + lleilly/1 = yens)

£k €T,

K2N
> ~CK\[log =—a.

Finally, we can conclude that

d K2N .
i —CK log Tamm{l”‘*} ) (G.45)

O

Lemma 13 (Restated). Let p > 2. Condition on good event Eq404. Suppose the following is true at
some point on the GF trajectory :

1. cpj(t) >1—2C,log Ka?, k,j € Ny
2. Y ien, llwil? <1+ Cylog 5a?, VE;
3.3 e, lwill? = 6(a?).

Then the following holds for every 1 < k < K,

d K
| D lwsl? ) <2{ 1= Y7 flwslP+ Clog wa® | [ 3 Jlwsl? |
JEN JEN JENE
and
d 2 2 K 2 2
| D Mwil? ) =2 1= 3 flwyl? ~ Clog a® | [ 3 Jlwyl? | .
JEN JEN JEN

where C' is some universal constant such that C' < C,.

Proof. When1 < k < K7, j € N, implies that j € N thus sign(v;) = 1. We shall primarily focus
on this case as the proof is nearly identical for K7 + 1 < k < K. We start with (D.3)):

d 2 \\”
Glol= 25 1oy ((me ) ) hwl?

i:(@y,w,; ) >0 wJ”

kS e e ((mgy))

€L (@ ,w; wj”
k(X ,w;) >0

(a)
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+%Z Y Wi fP(50)) <<-’Bia = >)P [Jw; |?

£k i€Zy: (m;,w; [[w; |
(@i, w;)>0

="
For the first term, we have

@=x D (- fP:0) <<$||:UU;||>Y

1€k (s ,w;) >0

=y S0 e (o)
v S S () + R 3 e (o)) ()

I#k jEN;

-x 2 (1 S e (= fo)) ) (o)) + % 22 5 pitte (o)) -

LEIk I#k jEN;

=I'y
Ww. P ny P
w2 |1 X vt (s (o)) ) (o0 () e
’LEIk ENk J J
We shall focus on the first term. With the Taylor expansion
P 2
w -1 'LUJ wJ
ck‘+<€i7‘]>) :Cp+pcp <€i7>+RL <€i7> ) (G46)
( ’ [[ ;] S [[ ;]| [[ ;]|

where Ry = w and (7, between 0 and ‘<ei, %M comes from the Lagrange

residual. Clearly | Rz | < 2P~2p?. Then we have

w; P w. P
5 2|1 3w (o (onp)) ) (ot (o)
i€y JEN J ;

= D Il

JENK

—1 2 2p—1
-2 Y el ) 5 3 ()

jGNk 1€y

1 w; 2 w,;
o)y o) o )
( ki & N 2 ||| |||

1€y
Finally, we are ready to derive the upper and lower bound. For lower bound,

= 2((a) +T1) [lw; |

w; b wj : 2
225 X (1= S sl (et (o)) | (oo (o)) =0l = il | o)
i€Ty, ]ENk J

ill
wj 1
% e 2o )| - Co
N <§k wj||>‘ NZ

w;
0 |
€Ly, J

2
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2
) =Tl = IF2I> ;]

-0(\<w:z;:>

K
>2 = > llwylPeh - log 2 % C?log a2 —o(a?) = [[1] = [T | flw;]|?
5,ﬁ 5
JENG
> 2 1—— 177_0215 —o(a®) = Iy =T 112
> — > llwyl* = Cy/log og —a? —o(a?) — [[] = T2 | [lw,ll
5§ VN 5
FENE
>2 1—7— 2 177_0215 —o(a?) —|Ty| - |T 1%
> p > llwyl|* = Cy/log og =a? —o(a®) — [[1] = [T | fJwyll
5§ VN 5
JEN

It remains to bound these |T'1|, |I'2|. Indeed, we can find the following bound:

n=xY Y e ((s))

Ik 4€Ty: (s ,w; ) >0 il

< PR Z e (=)

s ZZ(<H|>>

< v 55 ()

: Z;<l (o))

< Z%;(Mw@n — (e | < KCar

Do) = |+ Z > 2 lwil*o™ <<$HZ>>

'LEIk I#k jEN; ]”

253 ({2 | < eew

ZEI 1#k

IN

Therefore,

d K
D2 > 2 (1= 3 g 2 = Clog X0t | o 2.
JEN,

since when « is sufficiently small, the dominant term is of order o?.

Similarly, for the upper bound, we can have

K
= 3l Py + Oy flog —c + CPlog oo + 0(a®) + [T+ [T | sy
JENE
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Ca? K
<2(1 —j;; [|lw;]? (1 - 2) -C 1og 5 T +C? log?oﬂ +o(a®) + |I'q| + I
k

JENK

<213 P + Clog 0? | Jany |
JENK

O

Lemma 14 (Restated). Consider the same assumptions as in Proposition[2} Given the t, in Proposi-
tion[2} the following holds V1 < k < K:

D+2
S o ()P = exp (2” : K) Wi G.47)
FEN, p(p - Q)AQAl

Proof. The proof will be in two parts: first, we define, for each k,

2 (By its definition)
) .= inf {t: min cg;(t) > 3} <

aux JEN ty ) (G48)

and show that

2pP 2K
> w (tE))1* > exp <—M> > lw;(0)]. (G.49)

JEN JENE

Then we show that > [|w;(t1) |2 is non-decreasing during [t;(m)g, t1].

Lower bound at tz(,ﬁ,)(: We shall focus on the case 1 < k£ < K. In the proofs of Proposition |2} we

have shown in (E-I8)) that when ¢ < tﬁu’fQ < t1, the following is true: Vj € Ny

d < _
Tk = Dapef; v (G.50)
By Lemma[9] we have
(k) . 2 1
taux =inf<lt: ij Z g S W . (GSI)
- 2

Now we are ready to lower bound 3 - [|w;( aux) |: In the same way we derived (G.27), we can
also obtain: for ¢ < ¢4,

d
T llwj? = =2 K (1 4+ 4eVRIVE ) flwj [P > =272 K [l | (G:52)
thus
LS gl > 272K Y g (G.53)
JENK JENK

Finally, by Gronwall’s inequality, we have

S Jlaos ()12 > exp (~2p7 2K t)) 3 oy (0))

JEN JEN

2pP 2K
2 exp 7p—.,~p_2 WI?IiHEQ .
p(p — 2)AsAY

Norm is non-decreasing afterward The techniques we will be using here is similar to those used in
proving previous lemma, so we describe the argument briefly.

56
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K
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Suppose 1 < k£ < K, we have the norm dynamics
d

2
@y
2 P 9
S AT (=N
W T
2 w; P
3 X w({me)) el 0()
i@ w;) >0 ! Recall how we handle I'; in the proof of Lemma@
2 P 9
> 2 (S (o) - S ()| st + 000
i€Ty Wi £k i€T, w;
2 P 9
P
i€Ty w; 1#£k i€y W
Taylor expansion, refer to (G.46) Taylor expansion, refer to (G.16)
K2N
> 2 c,';j—zcljw—o( log — a>—0(a2) |w;]|* + O(e) .
1k

When ¢;; > %, we have
=D leylP =y —(1—ciyE >0, (G.54)
£k

then for sufficiently small « and €, we have % [lw; | > 0. Then during tS,{fQ <t < t;, we have

d

= > lwil*>0. (G.55)

JEN

The proof is finished. O

Lemma 18. /5/Restated] Given some 0 < A < i, if for some z(t), the following holds
d
T >(1—2z—-A)z, 2(0) =z, 2(T) = 21, (G.56)

Jor some 0 < 2y < %, and zy < z1 < 1 — A. Then the travel time T for z(t) to go from zg to z;
satisfies:

1 1
T<2(log——— tlog— ) . (G.57)
1—21—A 20
Proof. We have
/Zl 1 T
x> / dt, (G.58)
20 (I—Z—A)Z 0
thus
1 1—2— A 1 1
T < 1 1—<2171—. G.59
_].A(O 1-— 17A+0g )_ <0g121A+0g20> ( )
O

Lemma 16 (Restated). Condition on good event €04, we have

D llwi0)]> = 6(a?), ¥t < T*. (G.60)
JENC
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Proof. We deal with neurons with sign(v;) = +1, the other case has a similar proof.

If j € N, it means wjy is initialized into the void region with ¢;;(0) < 0 and |cy;(¢)| = O(1), for
1 < k < K. Therefore, the inner product between w;(0) and a data point x; from the k-th cluster is
always negative, and this holds continuously as long as c;(t) < 0 and |cx;(t)] = O(1).

We will show that

1. Until ¢ < t*, we still have ¢;(t) < 0 and |c;(t)| = ©(1), thus none of the data in positive
clusters activates w;.

2. Then cx;(t) < 0 and |cx;(t)] = O(1) suggests that, >~ - |lw;]|* has an at most O(a?) growth
rate. And during [t*, 7], with a slightly different argument, 3\, [|w) ||? still has an at most
O(a?) growth rate, thus continually stays at 6(a?).

The a more formal proof requires proof by contradiction, with previous lemmas we have proved, but
the provided argument should easily be translated into a proof by contradiction.

First step: Givena j € N, UN, and 1 < k < K, we have during ¢t < t*,

= zlv P2 Wp<<“”’ || J||>>p1 (the.20 = (oot o)

1 w, Pt w;
=-= > > Vylip <<wz, ]>) (B, i) — <wi, . >ij
N kS K ety >0 e — s

w;)>

—0(%5)
Yy vt (e a0 ()
=—-= ol Tl j —= .
NK1+1§Z§Ki€IZ:(mi,w]‘>>O o > vD

Since V4¢; is either < 0 (during alignment phase) or = O(a?) (after norm growth). Then we always
have 4¢;; = O(a?). Therefore, Vt < t*

crj(t) < e (0) +t-0(a?) < ¢;(0) + *0(a?) = ¢1;(0) + O <a2 log ;) , (G.61)

thus, we still have ¢;(t) < 0 and |cy;(t)] = ©(1).

Second step: During [0, t*], since none of the data in positive clusters activates w;, we have

d 2 1 i 2
SlwilP=-251 > Vil mz,” jH el

i(a;,w;)>0
! w;j ? 2
=251 X > Vil (@i [P
K1+1<I<K i€, (x; [,
1+1<ISK i€y (i, w;) >0
Since V;¢; is either < 0 (during alignment phase) or = O(a?) (after norm growth). We have

gt llws]I* = O(?) - [|w;]*.

During [t*,T*], we have V¢; = O(a?) for all i (as the consequence of ’1 =D jen, [|lw; |2
O(a?) and Lemma|11). Therefore we still have 2 |jw;||> = O(a?) - [Jw; .
Then we have vt < T,

&3 w0l < 0 (exp(@>T) X w0 < 01) 3 s (0)[ < O() = (o).

JEN JEN JEN.
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Lemma 17 (Restated). If the neurons {wj} _, satisfies the following for some 0 < 6 < 1 and
v, (> 0:

* maxy max;ep, Ckj(t) > 1—146;

L]

1= Y e lwj2| < v
* Yjene llwill? < ¢
then supgegp—1 | fP) (x;0) — F®)(z)| < K(1+v)(2P —1)26 + Kv +

Proof.
£ (a: 0) (G.63)

=z orllwg, 7))
K IIwyllp !

_ Zsign(vj)ijHQW

h
= 3 st s o ((72.2))
= 3 Sl ((2re)) - XY el ({2 )
1<k< Iy jEN ol Ki+1<h<K jEN, o]
+ Z sign(v;)||w;||*o? <<” "k >> (G.64)

jENC

For the first term, we have Vo € SP—1

) ijn%p(<”’w"j|,m>) S oP({puns )

1<k<K; jENK 1<k<K;

< Y| X e (e - e ) = (s

1<k<Ki |jENL

S| e () + | 2 ”

1<k<Ki |j€ENK

IN

o )

= > D0 llwylPo? (s @) +2(1 = cxy) — 0" ({pr, @)

1<k<K; |jEN

< 30D willPe” (k) + 21— exy)) = Y llwylPo? (e, @)

1<k<K; JENk jENk

+ > 1D lwilPe”((pes @) — 0" ((pr, )
1<k<K; |jENk

< Y (v [of (km) +2(1 =) — (o)) + DY v]eP (s, @)

1<k<Ki 1<k<K;
< D (4w [of (s ®) +2(1 - cxy) — o (@) + Kv

1<k<K;
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S Kl(]. + I/)(2p — 1)2(5 —+ K1V7

where the last inequality is due to the following derivation (notice that ReLU o(z) is non-decreasing
in z, and polynomial 2P is non-decreasing for z > 0)
|07 ((pr, @) + 2(1 = cx;)) — P ({pw, )|
=0 (e, @) +2(1 = cx;)) — ((pe, )
<(1+425)P —1< (2P —1)26.

Similarly, for the second term, we have Va € SP~1

OIS S (C= ) B DR ()

Ki1+1<k<K jeN} Ki1+1<k<K
SKQ(l + V)(Qp — 1)2(5 + KQI/

Lastly, for the third term, we have

5= sientos s Po? ({2.2) )| < 3 ol < ¢

JENC JENC

Therefore, for any x € SP-1 we have

’f(p) (;0) — F® (a:)‘

<| = S i ((fpe) - ttmea)

1<k<K; jEN} 1<k<K;

"
HOX S e ((re)) - Y )
K14+1<k<K jEN J K1+1<k<K

. w
£ S sign(vg) w207 <<az>)
2 o,

<K(1+v)(2P —1)20 + Kv +C
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