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Abstract

Visual grounding is essential for precise perception and reasoning in multimodal
large language models (MLLMs), especially in medical imaging domains. While
existing medical visual grounding benchmarks primarily focus on single-image sce-
narios, real-world clinical applications often involve sequential images, where
accurate lesion localization across different modalities and temporal tracking
of disease progression (e.g., pre- vs. post-treatment comparison) require fine-
grained cross-image semantic alignment and context-aware reasoning. To remedy
the underrepresentation of image sequences in existing medical visual ground-
ing benchmarks, we propose MedSG-Bench, the first benchmark tailored for
Medical Image Sequences Grounding. It comprises eight VQA-style tasks, for-
mulated into two paradigms of the grounding tasks, including 1) Image Dif-
ference Grounding, which focuses on detecting change regions across images,
and 2) Image Consistency Grounding, which emphasizes detection of consistent
or shared semantics across sequential images. MedSG-Bench covers 76 pub-
lic datasets, 10 medical imaging modalities, and a wide spectrum of anatomical
structures and diseases, totaling 9,630 question–answer pairs. We benchmark
proprietary models (e.g., GPT-4o), general-purpose MLLMs (e.g., Qwen2.5-VL)
and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that
even the advanced models exhibit substantial limitations in medical sequential
grounding tasks. To advance this field, we construct MedSG-188K, a large-scale
instruction-tuning dataset tailored for sequential visual grounding, and further
develop MedSeq-Grounder, an MLLM designed to facilitate future research on
fine-grained understanding across medical sequential images. We release all re-
sources on https://github.com/Yuejingkun/MedSG-Bench

1 Introduction

Visual grounding is the key step that transforms MLLMs from coarse alignment between language
expressions and corresponding visual regions to fine-grained visual understanding and reasoning[1].
For example, models like ChatGPT O3[2] often first identify image regions relevant to the questions
during reasoning, which helps reduce hallucinations and enhances the trustworthiness of the results.
This capability is particularly crucial in medical imaging, where understanding the semantic content
of clinical text (e.g., radiology reports) and accurately localizing the corresponding pathological
regions is essential for interpretable and reliable diagnosis[3, 4, 5, 6].

Currently, existing medical visual grounding benchmarks focus mainly on single-image scenarios
[7, 8]. However, real-world clinical diagnosis inherently requires sequential image analysis. As
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These are my scans taken at two different times.

A notable difference has been identified between 

the two scans, located at (62,105),(123,200).

The observed changes indicate a significant improvement in the tumor following 

treatment. We recommend continued monitoring to assess ongoing progress.

The previous cases illustrate brain tumors. In this case, the patient is also suspected 

of having a brain tumor. Could you assist in localizing the suspected lesion?

The predicted brain tumor region for this 

patient is located at (182,105),(243,200).

Predicted region: (102, 204),(211, 232).

(Incorrect location)
Example 1 Example 2

pre- vs. post-treatment images

New patient

Figure 1: Examples of medical image sequences
grounding.

Figure 2: Comparing mainstream MLLMs on
MedSG-Bench.

illustrated in Fig. 1, when assessing disease progression, clinicians routinely perform cross-image
comparison (pre- vs. post-treatment images), tracking lesion evolution by analyzing changes in size,
morphology, and signal intensity across longitudinal CT scans rather than relying solely on a single
static image[9]. This essential practice of lesion localization and semantic alignment across multiple
images forms the cornerstone of reliable clinical reasoning, yet remains underrepresented in current
benchmarks.

To address this gap, we introduce MedSG-Bench, the first comprehensive benchmark specifically
designed for medical visual grounding in sequential images. Built upon 76 publicly available
medical imaging datasets, covering 10 imaging modalities, and 114 clinical tasks, our benchmark
systematically evaluates cross-image grounding capability. Specifically, MedSG-Bench consists
of eight carefully designed VQA-style tasks, organized into two grounding paradigms: 1) Image
Difference Grounding, which targets the detection of differing regions between sequential images,
and 2) Image Consistency Grounding, which focuses on discovering semantically consistent or shared
regions across image sequences. This dual-paradigm grounding benchmark can evaluate the essential
clinical competencies required for medical image analysis.

In summary, the contributions of this work are as follows:

1. We introduce MedSG-Bench, the first benchmark comprising 9,630 VQA-style samples specifically
designed to evaluate the grounding capabilities of MLLMs in medical image sequences. The
benchmark defines eight tasks grouped into two core paradigms, Image Difference Grounding and
Image Consistency Grounding, which jointly serve to evaluate essential clinical competencies required
for medical image analysis.

2. We conduct comprehensive evaluations of proprietary models (e.g., GPT-4o[10]), general-
purpose MLLMs (e.g., Qwen2.5-VL[11]) and medical-domain specialized MLLMs (e.g., HuatuoGPT-
Vision[12]) on MedSG-Bench. Our results (Fig. 2) show that all current MLLMs exhibit substantial
limitations in fine-grained grounding of medical image sequences.

3. To promote progress in this underexplored area, we construct MedSG-188K, a large-scale
instruction-tuning dataset tailored for grounding in medical image sequences. Based on this dataset,
we further develop MedSeq-Grounder, and achieves state-of-the-art performance on MedSG-Bench.

2 Related work

2.1 Multimodal Large Language Models

Recent advances in multimodal large language models (MLLMs) have progressively extended their
capabilities from coarse image-level understanding to fine-grained visual grounding[1, 13]. This
progress has been primarily achieved through three main approaches: 1) instruction tuning with
grounding supervision[14, 15], 2) integrating external localization modules[16, 17, 18, 19, 20, 21, 22]
such as SAM[23] or Grounding DINO[24], and 3) leveraging vision tokenizers to enable perceive-
then-understand paradigms[25, 26]. While these methods have significantly improved grounding
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Table 1: Comparison between MedSG-Bench and other existing benchmarks in the medical field. FG
denotes fine-grained annotation. ∗ indicates the test set.

Benchmark Size Task Multi-modality Multi-organ Image-Sequence FG Max Length
Understanding-oriented medical benchmarks

VQA-RAD[33] 3K 11 ✓ ✓ ✗ ✗ 1
SLAKE∗[29] 2K 10 ✓ ✓ ✗ ✓ 1
OmniMedVQA[34] 128K 5 ✓ ✓ ✗ ✗ 1
GMAI-MMBench[30] 26K 18 ✓ ✓ ✗ ✓ 1
Medical-Diff-VQA∗[31] 70K 7 ✗ ✗ ✓ ✗ 2
MMXU∗[9] 3K 3 ✗ ✗ ✓ ✓ 2

Grounding-oriented medical benchmarks
MS-CXR∗[7] 1K 1 ✗ ✗ ✗ ✓ 1
MeCoVQA-G∗[8] 2K 1 ✓ ✓ ✗ ✓ 1
MedSG-Bench 9K 8 ✓ ✓ ✓ ✓ 6

accuracy within individual images, they largely overlook the clinically relevant and more complex
setting of multi-image visual grounding. MC-Bench[27] first introduced the multi-context visual
grounding task and Migician[28] is the first model to tackle this challenge in the natural image
domain, enabling free-form and accurate grounding across multiple images. Building upon this
paradigm, we extend the exploration to the medical domain, focusing on sequential visual grounding
in clinically meaningful scenarios.

2.2 Medical MLLM Benchmarks

As shown in Table 1, benchmarks in the medical domain have progressed from early settings
involving single-image and single-modality inputs to more advanced configurations covering mul-
tiple organs[29], cross-modal scenarios[30], and multi-image understanding[31, 9]. Some recent
benchmarks[32] have also provided fine-grained annotations to enrich evaluation. However, these
benchmarks primarily emphasize image-level understanding. Even when detailed annotations are
available, they are typically utilized for classification or question answering tasks, rather than for
explicit visual grounding. In contrast, grounding-oriented benchmarks remain scarce in the medical
domain and are currently limited to single-image scenarios[7, 8]. To date, no medical benchmark
has systematically explored sequential visual grounding, a capability that is essential for various
clinical tasks such as cross-view lesion comparison, longitudinal disease progression tracking, and
multi-phase imaging interpretation. To fill this gap, we propose MedSG-Bench, the first benchmark
dedicated to fine-grained visual grounding in sequential medical images.

2.3 Temporal Medical Analysis

Recent studies have increasingly focused on incorporating temporal information to enhance the
effectiveness of radiology retrieval and lesion progression detection. Some approaches[35, 36, 37]
explicitly integrate temporal data as a feature within the model architecture, allowing the model
to directly account for time-based changes in medical images. Other methods[38] treat temporal
data as a dynamic semantic signal, improving the retrieval process by enabling the model to capture
evolving patterns over time. Both strategies have shown promising results in downstream applications,
particularly in medical report generation and disease progression analysis.

3 MedSG-Bench

In this section, we provide an in-depth overview of the careful design and development of MedSG-
Bench, covering the rigorous collection and preprocessing of medical data, the systematic definition
of tasks tailored for sequential visual grounding, and the presentation of detailed dataset statistics.

3.1 Data Collection and Preprocessing

3.1.1 Dataset Review and Selection

As shown in Fig. 4, open data repositories, including Zenodo, Github, among others, were searched
for medical image datasets. Data with permissive licenses (e.g., CC BY 4.0) that allow derivative
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Image Difference Grounding

Please compare these two images 

carefully and ground the 

difference.

(58, 167), (120, 229).

Registered Difference Grounding

Please compare these two images 

carefully and ground their main 

difference in the second image.

(58, 100), (120, 162).

Non-registered Difference Grounding

Image Consistency Grounding

For the object marked with a blue 

bounding box in the first image, 

please recognize and locate it in 

the second image.

Multi-View Grounding

Find and locate where does the 

object in image-1 locate in the 

image-2.

The brain tumor 

in Image 2 is 

located at (96, 

162), (162, 233).

Visual Concept Grounding

Please locate these regions in the 

source image.

The region-1 in 

Image corresponds to 

(100, 110), (200, 220). 

The region-2 in 

Image corresponds to 

(90, 230), (190, 320).

Visual Patch Grounding

For the target marked with a blue 

bounding box in the first image, 

please track it in the second image.

The instrument in 

Image 2 is located at 

(172, 176), (226, 336).

Object Tracking

Visual Consistency Grounding

V-L Consistency Grounding

Find and locate the optic cup in 

these unrelated images.

The optic cup is 

in Image 3 at (74, 

134), (86, 157).

Cross-modal Grounding

For the region highlighted in blue 

in Image 1, please locate the 

functionally or semantically 

corresponding region in Image 2.

The right lung 

is located at (86, 

153), (135, 237).

The breast nodule 

is located at (230, 

101), (284, 157).

Referring Grounding

Figure 3: An illustration of medical image sequences grounding tasks included in MedSG-Bench.

works and redistribution were given priority during selection. We retained only those datasets that
provided local annotations, such as segmentation masks or bounding boxes, which are essential for
grounding-based tasks. To ensure mutual exclusivity among imaging cases, we cross-referenced
dataset metadata and associated papers to identify and remove duplicated samples. Additionally,
we performed a manual quality review to exclude images with poor visual clarity or unreliable
annotations, and verified that all PHI (Protected Health Information) had been properly de-identified
in the source datasets, thereby preserving the overall integrity and usability of the data.

3.1.2 Standardization

Medical imaging datasets exhibit high heterogeneity in format, resolution, intensity distribution, and
metadata quality, with modality-specific characteristics that differ markedly from natural images. To
mitigate this variability, we followed the preprocessing strategy proposed in [39], applying min-max
normalization to rescale pixel intensities to a standardized range, thereby enabling more consistent
downstream processing. To unify the data format, both 3D volumetric scans and video sequences
were converted into 2D RGB images—achieved by slicing along anatomical axes or sampling frames
at fixed intervals, respectively. All images were subsequently resized to 336×336 pixels, and each
image was assigned a unique identifier encoding its imaging modality and associated task. Finally,
all processed images were stored in lossless PNG format to preserve visual fidelity.

3.2 VQA tasks definition and generation

To facilitate fine-grained evaluation of visual grounding for sequential medical images, we define
eight VQA-style tasks, organized into two complementary categories, including Image Difference
Grounding and Image Consistency Grounding, which collectively capture both semantic changes and
invariant features across image sequences, as illustrated in Fig. 3.
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Figure 4: Overview of the MedSG-Bench construction protocol.

3.2.1 Image Difference Grounding

Image Difference Grounding focuses on detecting and localizing regions of changes across sequential
images, enabling assessment of a model’s ability to perceive subtle or clinically relevant variations.

Task 1: Registered Difference Grounding Given a pair of spatially aligned (i.e., registered) images
that are visually identical except for a single region, the model is designed to detect and localize the
difference. To generate such image pairs in a controlled and scalable manner, we begin with a single
medical image and introduce localized perturbations that simulate clinically meaningful variations,
such as disease progression or treatment response. These perturbations comprise both geometric
or appearance-based transformations (e.g., CutPaste[40]), and synthetic anomalies generated using
state-of-the-art medical generative models[41, 42, 43]. To avoid the model learning shortcuts, such
as associating a fixed image position with abnormalities, we randomize the ordering of image pairs,
ensuring that either the normal or the abnormal image may appear in either position.

Task 2: Non-registered Difference Grounding In clinical practice, medical images often exhibit
spatial misalignments due to patient movement, scanner variability, or imperfect registration. This
issue is particularly common when comparing medical images acquired from the same patient at
different time points, where the lack of proper registration can lead to spatial shifts in organs or
lesions, thereby potentially challenging models to distinguish real differences from registration
artifacts. To better simulate such conditions and evaluate the model’s robustness to Non-registered
Difference Grounding, we extend Task 1 by introducing controlled spatial shifts: each image is
randomly translated by up to 20 pixels along both the horizontal and vertical axes. The model is thus
required to identify and accurately localize the primary difference between the two images while
ignoring changes caused by misalignment.

3.2.2 Image Consistency Grounding

Image Consistency Grounding focuses on identifying and aligning invariant semantics across se-
quential medical images, which is essential for cross-view, cross-modal and cross-time alignment in
clinical practice. Specifically, Image Consistency Grounding can be divided into two subcategories:
1) Visual Consistency Grounding (Task 3-7), which evaluates the model’s ability to capture visual
consistency across multiple images; 2) Vision-Language Consistency Grounding (Task 8), which
involves aligning language-referenced information with multiple medical images.

Task 3: Multi-View Grounding Medical images from different views often have geometric
inconsistencies due to patient movement, scanning protocols, or anatomical deformation. To assess
a model’s ability to capture cross-view correspondence, we construct the Multi-View Grounding
task using two implementation strategies. First, we repurpose existing multi-view datasets (e.g.,
VinDr-Mammo) by converting them into a VQA-style format. Second, we simulate multi-view
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Table 2: Detailed statistics of MedSG-Bench.

Task #Datasets #Modalities #Clinical Tasks Max Length

Registered Difference Grounding 50 10 59 2
Non-registered Difference Grounding 50 10 58 2
Multi-view Grounding 30 4 75 3
Object Tracking 30 4 87 6
Visual Concept Grounding 49 10 87 2
Visual Patch Grounding 53 10 78 5
Cross-modal Grounding 24 4 28 4
Referring Grounding 9 8 28 3

MedSG-Bench 76 10 114 6

Figure 5: Proportions of image sequence length (left), data distribution across tasks (middle), and
target-to-image size ratios (right) in MedSG-Bench.

scenarios by extracting three orthogonal slices (axial, sagittal, and coronal) from 3D medical volumes.
Notably, the reference view is not fixed and may vary across different samples.

Task 4: Object Tracking Accurately tracking anatomical structures or instruments across slices of
medical images or frames of surgical video is essential in clinical workflows (e.g., lesion monitoring
and intraoperative navigation). This task evaluates the model’s ability to maintain consistent localiza-
tion of a target object across sequential frames or slices. We construct this task using two types of
data sources. First, we leverage existing surgical videos, where objects such as instruments or tissues
are manually annotated across frames. Second, we simulate spatial tracking scenarios by slicing 3D
medical volumes along a fixed anatomical axis, treating anatomical structures or lesions as trackable
targets across ordered 2D slices.

Task 5: Visual Concept Grounding In clinical scenarios, lesions can exhibit high variability
in locations (e.g., across anatomical regions) and visual appearance due to imaging protocols or
disease subtypes. This variability challenges models to learn robust target representations based
on pathological features, rather than over-relying on spatial biases. This task evaluates the model’s
ability to recognize and localize a visually distinct and semantically coherent concept, including both
pathological findings such as tumors and anatomical structures such as organs or tissue subtypes,
within a complex medical image. The model is provided with a reference image in which the concept
appears under idealized conditions, and must identify the corresponding instance in a target image
with greater visual clutter and contextual complexity. To construct this task, the reference concept is
extracted from the target using segmentation masks to ensure semantic consistency.

Task 6: Visual Patch Grounding Precisely distinguishing nearly identical anatomical structures
(e.g., separating tumor margins from adjacent vasculature) is essential for image-guided interventions
and radiotherapy planning, where subtle visual distinctions determine procedural success. Therefore,
we design this task evaluates the model’s ability to match a local image patch to its original location
within a larger image. It poses significant challenges in contexts where structures like vertebral
segments (e.g., T1 to T12) exhibit nearly identical appearances. To construct this task, we initially
sample 15 patches per image and manually select up to five based on foreground richness, including
organ boundaries, lesion areas, or diagnostically relevant fine structures. The rest are discarded. This
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selective sampling ensures that each retained patch presents a non-trivial grounding challenge while
avoiding visually homogeneous regions.

Task 7: Cross-modal Grounding In clinical practice, the same patient is often examined using
different imaging modalities such as CT, X-ray, or MRI, each highlighting distinct but complementary
aspects of anatomical structures or pathologies. This task assesses the model’s ability to ground
semantically or functionally equivalent regions across differing imaging contexts. Given a reference
region from one image, the model is required to identify the corresponding region in a target image
that may differ in imaging modality (e.g., CT versus MRI) or contrast type (e.g., T1-weighted versus
T2-weighted MRI). Region pairs are manually curated based on metadata such as modality type and
annotated labels to ensure semantic alignment and multimodal consistency.

Task 8: Referring Grounding Clinicians often describe findings or refer to specific regions using
natural language expressions. Enabling models to accurately interpret and associate such expressions
with visual content is essential for enhancing interpretability, supporting human-AI collaboration,
and building reliable decision support systems. Considering the prevalence of partially labeled data in
medical imaging, we carefully curate candidate image sets to ensure that the images are semantically
unrelated. This reduces the risk of referential ambiguity caused by overlapping content or latent
correlations among images.

3.3 Data description

We curated a total of 76 publicly available datasets under permissive licenses, prioritizing those
released with open CC-BY terms to ensure broad accessibility. As summarized in Table 2, MedSG-
Bench spans 10 medical imaging modalities (CBCT, CT, CTA, Colonoscopy, Dermoscopy, Endoscopy,
Fundus, MRI, US, X-ray) and and encompasses 114 distinct clinical tasks, covering a wide range
of anatomical regions and disease types. The benchmark contains 9,630 visual question answering
pairs, derived from 24,341 medical images, designed to assess fine-grained grounding capabilities
across diverse clinical contexts. In addition to task coverage, we also provide detailed statistics on
the proportion of image sequence lengths, data distribution, and target-to-image size ratios (lesions or
anatomical abnormalities are often subtle, localized, and small in size), offering a comprehensive
overview of the benchmark’s complexity and representativeness in Fig. 5.

4 MedSG-188K and MedSeq-Grounder

4.1 MedSG-188K

The construction of MedSG-188K is based on the eight tasks defined by MedSG-Bench. To ensure
diversity in VQA-style queries, we first crafted seed instruction templates tailored to the specific
characteristics of each task, capturing the nuanced demands of distinct clinical scenarios. To mitigate
potential bias and enhance linguistic diversity, we employed multiple large language models (LLMs),
including GPT-4[44], Claude[45], and DeepSeek[46], to expand the seed instruction templates. These
models collectively generated ten diverse free-form instruction variants per task by systematically
varying the phrasing, contextual framing, and query structure. For each medical image sequence,
one of the instruction templates was randomly selected and populated with task-specific content
to generate diverse question-answer pairs. Using this pipeline, we constructed a total of 188,163
VQA-style samples, derived from 324,359 medical images. The distribution of sequence lengths,
data volume is summarized in Fig. 6.

4.2 MedSeq-Grounder

MedSeq-Grounder is developed based on the Qwen2.5-VL-7B model[11] and trained using the
LLaMA-Factory framework[47]. The training is performed with a global batch size of 64 over 15,000
steps, using a learning rate of 5e-6 and 4×A40-48G GPUs.
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Table 3: Performance of different MLLMs on MedSG-Bench. IDG: Image Difference Grounding;
ICG: Image Consistency Grounding; RDG: Registered Difference Grounding; NRDG: Non-registered
Difference Grounding; MV: Multi-view Grounding; OT: Object Tracking; VCG: Visual Concept
Grounding; VPG: Visual Patch Grounding; CMG: Cross-modal Grounding; RG: Referring Ground-
ing; Avg.: Average; IoU and acc@0.5 for all results are shown, all numbers are in percentages.

Model Size
IDG ICG

Avg.
RDG NRDG MV OT VCG VPG CMG RG

Proprietary MLLMs

GPT-4o[10] – 2.42
0.40

3.45
0.20

16.51
8.62

28.19
23.90

13.18
4.70

38.05
26.40

16.02
4.95

23.08
18.02

17.70
10.60

Claude Sonnet 4[45] – 0.67
0.00

0.81
0.10

12.56
3.57

23.11
16.50

6.93
1.40

27.44
13.80

9.04
1.80

19.57
10.80

12.51
5.76

Gemini 2.5 Pro[48] – 9.36
3.20

7.29
2.00

14.26
6.71

19.32
13.80

14.94
10.70

41.11
49.20

24.44
28.12

28.12
22.67

20.66
15.61

General-purpose MLLMs

Qwen2.5-VL[11] 3B 0.59
0.30

1.62
1.30

7.12
3.90

21.32
16.80

6.98
0.80

27.36
3.40

10.02
1.65

12.99
6.82

10.94
4.20

Qwen2.5-VL[11] 7B 0.88
0.30

1.25
0.00

8.48
3.73

22.41
17.80

4.22
1.00

28.87
5.70

16.29
4.45

12.58
6.21

12.31
4.90

Qwen2.5-VL[11] 32B 2.69
1.40

3.48
1.20

7.35
2.61

19.12
13.40

6.53
1.30

26.92
7.10

12.59
4.90

18.71
11.67

12.47
5.71

Qwen2.5-VL[11] 72B 4.37
2.60

3.46
0.80

7.22
2.78

13.11
7.70

10.33
3.50

26.45
6.30

16.32
7.00

20.19
14.10

13.35
6.12

MiniCPM-V-2_6[49] 8B 1.36
0.00

1.50
0.00

15.82
5.20

24.03
18.50

9.90
2.10

28.65
12.20

12.72
3.30

12.44
3.64

13.24
5.27

MiniCPM-O-2_6[50] 8B 1.69
0.10

1.63
0.00

12.11
2.43

15.25
9.60

9.88
1.70

22.96
9.20

9.53
2.35

8.82
2.02

10.12
3.23

mPLUG-Owl3[51] 7B 2.12
0.00

2.55
0.00

15.64
3.64

15.62
4.40

6.80
0.80

30.42
3.60

17.06
4.80

11.92
5.47

13.22
3.19

Mantis-Idefics2[52] 8B 0.49
0.00

0.62
0.00

18.69
8.59

28.04
23.50

6.27
0.50

10.26
1.10

9.59
0.95

6.05
0.54

9.90
3.91

LLaVA-OneVision[53] 7B 1.09
0.00

0.01
0.00

9.26
1.13

10.50
3.20

11.33
1.80

22.20
5.30

19.08
6.70

17.11
5.67

12.39
3.47

LLaVA-OneVision[53] 72B 2.58
0.80

2.87
0.90

11.74
1.39

9.61
2.30

10.95
3.30

32.38
20.30

16.24
5.40

15.43
6.68

13.21
5.18

InternVL3[54] 8B 1.07
0.30

1.20
0.00

14.36
4.42

13.30
6.50

6.43
0.90

18.73
4.60

4.73
1.15

15.16
7.42

9.26
3.19

InternVL3[54] 14B 0.66
0.00

0.71
0.00

13.24
5.31

19.77
13.00

8.60
2.10

13.17
2.40

10.87
3.70

14.57
7.76

10.53
4.41

InternVL3[54] 38B 0.98
0.10

1.76
0.20

12.99
4.79

19.27
13.60

7.63
2.10

17.76
2.90

6.47
1.75

16.59
10.05

10.37
4.44

InternVL3[54] 78B 0.20
0.00

0.53
0.00

6.35
2.43

13.03
8.00

3.57
0.90

11.81
2.50

3.34
0.85

12.76
8.10

6.44
2.90

Migician[28] 7B 15.26
7.80

14.49
6.10

18.16
7.84

21.38
14.90

14.23
7.20

28.87
13.70

21.41
12.15

25.30
18.02

20.29
11.39

Medical-domain specialized MLLMs

MedGemma[55] 4B 0.45
0.00

0.84
0.00

7.80
4.53

26.82
22.40

11.31
0.90

26.59
15.40

5.92
0.50

10.01
1.01

10.55
4.82

HuatuoGPT-Vision[12] 7B 1.35
0.00

1.84
0.20

10.42
2.78

14.57
9.20

7.99
0.80

15.52
2.30

9.46
2.15

9.60
1.82

8.97
2.36

HuatuoGPT-Vision[12] 34B 1.44
0.00

2.15
0.00

9.41
1.65

13.25
8.30

6.43
0.70

14.53
1.40

10.60
2.60

8.60
1.75

8.57
2.09

MedSeq-Grounder (Ours) 7B 83.29
93.20

83.72
94.10

55.03
60.19

62.10
67.20

74.11
82.60

85.25
98.80

78.77
82.75

60.43
65.59

72.55
79.71
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5 Experiments

5.1 Experiment setup

In this study, we evaluate model performance under a zero-shot setting, where the models were
prompted to perform inference without access to in-context examples. We use average Intersection
over Union (IoU) and ACC@0.5 as the evaluation metric.

5.2 Models

We benchmark a diverse collection of state-of-the-art MLLMs on MedSG-Bench, including 1)
proprietary models, 2) general-purpose models that have extended capabilities in the medical domain,
and 3) medical-domain specialized models that are meticulously trained for clinical medicine. All
models support image sequence input and span parameter scales from approximately 3 billion to
70 billion. For public models, we use publicly released checkpoints from their official Hugging
Face repositories[56], selecting the latest or best-performing version within each model family. For
proprietary models, we utilize their respective APIs to access the latest available versions.

Proprietary MLLMs We evaluate GPT-4o[10], Claude Sonnet 4[45], and Gemini 2.5 Pro[48].

General-Purpose MLLMs We evaluate Qwen2.5-VL (3B, 7B, 32B, 72B)[11], MiniCPM-V-
2_6[49], MiniCPM-O-2_6[50], mPlug-owl3[51], Mantis-Idefics2[52], llava_onevision (7B, 72B)[53],
internvl2 (8B, 78B)[57, 58], internvl2_5 (8B, 78B)[59], internvl3 (8B, 14B, 38B, 78B)[54]. For
grounding-oriented MLLMs, we evaluate Migician[28], which supports free-form multi-image
grounding and has strong instruction-following capability.

Medical-domain specialized MLLMs We evaluate HuatuoGPT-Vision (7B, 34B)[12], which is
built on a large-scale and high-quality medical VQA dataset, PubMedVision, as well as other models
such as MedGemma (4B)[55], LLaVA Med v1.5 (7B)[60], and BiMediX2 (8B)[61], which are also
trained on specialized medical datasets for medical-domain tasks.

In our evaluation process, we carefully considered the potential impact of inconsistencies in coordinate
formats across different models. To address this, we consulted the official documentation or papers
for each baseline model to determine the expected coordinate format. For instance, the InternVL
series models normalize coordinates to the range [0, 1000], while Qwen2.5-VL supports absolute
coordinate output, and Gemini 2.5 Pro uses the format [y_min, x_min, y_max, x_max].

5.3 Main Results

Based on the evaluation results presented in Table 3 and 5, we have some findings as follows:

Grounding in medical image sequences is still challenging for all MLLMs Our MedSG-Bench
provides a comprehensive multitask challenge, revealing that even the top-performing model Gemini-
2.5-pro is limited to the average IoU of 20.66% and Acc@0.5 of 15.61% in zero-shot setting. In
particular, most MLLMs struggle with the Image Difference Grounding task. Moreover, the most
advanced models do not consistently excel across all tasks, for example, while Gemini-2.5-pro
achieves relatively high accuracy on the cross-modal grounding task, its performance on multi-
view grounding or object tracking remains notably lower than Mantis and GPT-4o, highlighting
the challenge of generalization across diverse grounding scenarios. With instruction tuning on our
MedSG-188K dataset, the proposed MedSeq-Grounder achieves state-of-the-art performance across
all tasks, demonstrating its effectiveness and robustness in sequential medical visual grounding.

All MLLMs exhibit limitations in detecting small medical targets Small target recognition is a
critical challenge in the medical domain, we further categorized the targets into three groups based
on their bounding box area ratio: small (0-1%), medium (1-10%), and large (>10%). Table 7 demon-
strates that most MLLMs exhibit substantially reduced performance on small targets, underscoring
their limitations in precise medical sequential grounding. In contrast, MedSeq-Grounder consistently
achieves strong performance across all target sizes, demonstrating its robustness grounding capability
in clinically challenging scenarios.
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Medical-domain specialized models are often worse than general-purpose models While
specialist models are explicitly developed for the medical domain, they often underperform non-
specialist open-source models. For example, HuatuoGPT-Vision-7B, lags behind Qwen2.5-VL-7B by
3.34% in average IoU and 2.54% in Acc@0.5 on MedSG-Bench. Notably, it even performs worse
than the smaller-sized Qwen2.5-VL-3B model. This performance gap may be attributed to the nature
of training data used for domain adaptation. Most existing medical instruction-tuning datasets focus
predominantly on image-level understanding tasks, such as classification or report summarization.
While HuatuoGPT-Vision is built upon Qwen-VL, its further tuning on understanding-centric medical
data appears to have degraded its grounding capability. This reflects a case of catastrophic forgetting,
where the model’s original ability for spatial alignment is compromised due to continued learning on
tasks that lack grounding supervision.

Larger or newer models do not guarantee improved grounding performance Although model
scale and recency are commonly associated with improved performance, we find that larger or more
recently released models do not necessarily exhibit stronger grounding capabilities in medical image
sequences. For instance, InternVL2.5-8B and InternVL3-8B both underperform compared to the
earlier InternVL2-8B model, despite architectural updates and increased pretraining. Similarly,
MiniCPM-O-2_6 lags behind MiniCPM-V-2_6, highlighting that newer instruction-tuned variants
may sacrifice grounding performance in favor of improvements on general-purpose understanding
tasks. In some cases, such as with the InternVL family, even the 70B-scale model yields worse results
on MedSG-Bench compared to its 8B counterpart, indicating that grounding ability may not scale
proportionally with model size. These results suggest that many recent models are primarily optimized
for high-level semantic tasks, such as open-ended QA or captioning, and are trained on instruction-
tuning datasets that provide little to no supervision for spatial localization or visual grounding. This
observation further underscores the importance of dedicated benchmarks like MedSG-Bench, which
are specifically designed to evaluate fine-grained grounding and spatial alignment across sequential
medical images.

6 Conclusion

This work introduces MedSG-Bench, the first benchmark specifically designed to evaluate the fine-
grained visual grounding capabilities of MLLMs in sequential medical images. Through systematic
evaluations on eight clinically inspired grounding tasks, we find that all current MLLMs exhibit
substantial limitations in medical image sequences grounding. To address these challenges, we
construct a grounding instruction-tuning dataset, MedSG-188K, and develop MedSeq-Grounder. We
hope our benchmark, dataset, and model will together advance the development of visual grounding
in medical image sequences.

7 Limitations and Future Work

While MedSG-Bench is constructed from a wide range of publicly available datasets, it does not
include private real-world clinical data such as longitudinal studies, multi-timepoint diagnostics,
or follow-up imaging records. This limits its ability to fully capture the temporal complexity and
diagnostic continuity inherent in actual clinical workflows. Meanwhile, MedSeq-Grounder is a
task-specific model for medical image sequences grounding. Directly fine-tuning may reduce its
performance on other tasks such as free-text QA.

In future work, we plan to collaborate with medical institutions to incorporate authentic clinical data,
including patient trajectories across multiple visits and imaging sessions, to enhance the benchmark’s
realism and clinical applicability. And we plan to continue training the model on broader medical
instruction data beyond grounding tasks to enhance its general multimodal capabilities.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have summarized our study in Section Abstract and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We described the limitations in Section 7.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All models evaluated in our experiments are publicly available. In addition,
we release the evaluation code, model weights, and dataset to facilitate reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All resources are available at https://anonymous.4open.science/r/
test-ABC123.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The evaluation is in the zero-shot setting. The hyperparameters for training
MedSeq-Grounder are detailed in Section 4.2. The data statistics are provided in Section 3.3
and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a dataset paper, we did not propose a new method and did not need to
show the statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For evaluations, the models in this paper are all public and only the inference
is needed. The computer resources for inferencing these models are well known. For model
training, we use 4×A40-48G GPUs and execute eight days.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We collect all datasets from the online platforms with the user’s informed
consent and used under specific data use agreements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

26

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: There is no high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper or attached the link to the existing assets used
in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: For the newly proposed datasets, we provide detailed description.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing in this study
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used GPT-4 to assist in the expansion and refinement of instruction
templates, which are central to our dataset and instruction tuning process. Furthermore,
we employed existing multimodal large language models (MLLMs) as the foundation for
instruction tuning, which constitutes a core methodological component of our approach.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Details

In this section, we provide the detailed datasets used in MedSG-Bench, including the name of
the dataset, the modality, the dimension of data, and the accessible links. As shown in Table 4,
MedSG-Bench is constructed from 76 datasets across 10 medical image modalities.

Table 4: Detailed datasets information in MedSG-Bench.

Dataset Modality Dim Accessible links
4C2021[62] CT 3D https://aistudio.baidu.com/datasetdetail/89548
AbdomenCT1K[63] CT 3D https://github.com/JunMa11/AbdomenCT-1K
ACDC[64] MRI 3D https://humanheart-project.creatis.insa-lyon.fr/

database/
AMOS22[65] CT, MRI 3D https://amos22.grand-challenge.org/
ATM22[66] CT 3D https://atm22.grand-challenge.org/
Atria
Segmentation[67]

MRI 3D https://www.cardiacatlas.org/
atriaseg2018-challenge/atria-seg-data/

AutoLaparo[68] Colonoscopy 2D https://autolaparo.github.io/
BAGLS[69] Endoscopy 2D https://www.kaggle.com/datasets/gomezp/

benchmark-for-automatic-glottis-segmentation
BraimMRI[70] MRI 3D https://www.kaggle.com/datasets/masoudnickparvar/

brain-tumor-mri-dataset
BrainPTM[71][72] MRI 3D https://brainptm-2021.grand-challenge.org/
BraTS2020[73][74]

[75] MRI 3D https://service.tib.eu/ldmservice/dataset/
brats2020

BUSI[76] US 2D https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
CAD-PE[77] CT 3D https://ieee-dataport.org/open-access/cad-pe
CAMUS[78] US 2D https://www.creatis.insa-lyon.fr/Challenge/camus/
Cause07[79] MRI 3D https://cause07.grand-challenge.org/
CBCT3D[80][81] CBCT 3D https://toothfairy.grand-challenge.org/
Chestimage[82] X-Ray 2D https://tianchi.aliyun.com/dataset/83075
CMRxMotions[83] MRI 3D https://www.synapse.org/Synapse:syn28503327/
COVID-19[84] CT 3D https://medicalsegmentation.com/covid19/
COVID19CTscans[85] CT 3D https://zenodo.org/records/3757476
COVID-19-20[86] CT 3D https://covid-segmentation.grand-challenge.org/
Covid19cxr[87] X-ray 2D https://github.com/ieee8023/

covid-chestxray-dataset
Cranium[88] CT 3D https://tianchi.aliyun.com/dataset/82967
CT-ORG[89] CT 3D https://www.cancerimagingarchive.net/collection/

ct-org/
CTSpine1K[90] CT 3D https://github.com/MIRACLE-Center/CTSpine1K
CVC-ClinicDB[91] Colonoscopy 2D https://polyp.grand-challenge.org/CVCClinicDB/
DRISHTI-GS[92] Fundus 2D https://www.kaggle.com/datasets/lokeshsaipureddi/

drishtigs-retina-dataset-for-onh-segmentation
EMIDEC[93] MRI 3D https://emidec.com/dataset
EndoTect2020[94] Colonoscopy 2D https://osf.io/mh9sj/
EndoVis15[95] Colonoscopy 2D https://endovis.grand-challenge.org/
EndoVis2017[96] Colonoscopy 2D https://endovissub2017-roboticinstrumentsegmentation.

grand-challenge.org/
GAMMA[97][98][99] Fundus 2D https://gamma.grand-challenge.org/Home/
HaN-Seg[100] CT, MRI 3D https://zenodo.org/records/7442914
Hvsmr2016[101] MRI 3D http://segchd.csail.mit.edu/data.html
I2CVB[102] MRI 3D https://i2cvb.github.io/
InSTANCE2022[103][104]CT 3D https://instance.grand-challenge.org/
iseg2017[105] MRI 3D https://iseg2017.web.unc.edu/download/
ISIC2018[106][107] Dermoscopy 2D https://challenge.isic-archive.com/data/#2018
ISLES-
ATLAS[108]

MRI 3D https://atlas.grand-challenge.org/

ISLES-MM[108] MRI 3D https://isles22.grand-challenge.org/
JSRT[109] X-ray 2D http://imgcom.jsrt.or.jp/minijsrtdb/
KvasirInstrument[110] Colonoscopy 2D https://datasets.simula.no/kvasir-instrument/
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LMSLS[111] MRI 3D https://smart-stats-tools.org/
lesion-challenge-2015

LUNA16[112] CT 3D https://luna16.grand-challenge.org/Download/

MMWHS[113][114]
[115][116]

CT, MRI 3D https://www.ub.edu/mnms/

MRSpineSeg[117][118]MRI 3D https://mosmed.ai/datasets/covid19_1110
MSD02[119] MRI 3D http://medicaldecathlon.com/
MSD04[120] MRI 3D http://medicaldecathlon.com/
MSD05[120] MRI 3D http://medicaldecathlon.com/

MyoPS2020[113][114]
[116]

MRI 3D https://zmiclab.github.io/zxh/0/myops20/

NCI-
ISBI2013[121]

MRI 3D https://www.cancerimagingarchive.net/
analysis-result/isbi-mr-prostate-2013/

PadChest[122] X-ray 2D https://bimcv.cipf.es/bimcv-projects/padchest/
PALM[123] Fundus 2D https://ieee-dataport.org/documents/

palm-pathologic-myopia-challenge
Parse2022[124] CT 3D https://parse2022.grand-challenge.org/Dataset/
PCXA[125][126] X-ray 2D https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.

html
PDDCA[127] CT 3D https://www.imagenglab.com/newsite/pddca/
Pelvic1K[128] CT 3D https://zenodo.org/record/4588403
Promise09[129] MRI 3D https://www.na-mic.org/wiki/Training_Data_

Prostate_Segmentation_Challenge_MICCAI09
PROMISE12[130] MRI 3D https://zenodo.org/records/8026660
QaTa-COV19[131]
[132][133][134][135] X-ray 2D https://www.kaggle.com/datasets/aysendegerli/

qatacov19-dataset
QUBIQ2020[136] CT 2D https://qubiq.grand-challenge.org/
REFUGE[99][137] Fundus 2D https://refuge.grand-challenge.org/
RIGA+[138] Fundus 2D https://zenodo.org/records/6325549
RIM_ONE[139] Fundus 2D https://github.com/miag-ull/rim-one-dl
SegRap2023[140] CT 2D https://segrap2023.grand-challenge.org/dataset/
SegTHOR[141] CT 3D https://competitions.codalab.org/competitions/

21145
SIIM-ACR[142] X-ray 2D https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
SKI10[143] MRI 3D https://ski10.grand-challenge.org/
SLAWT[144] MRI 3D http://stacom.cardiacatlas.org/
TBAD[145] CTA 3D https://www.kaggle.com/datasets/

xiaoweixumedicalai/imagetbad
TN-SCUI[146] US 2D https://tn-scui2020.grand-challenge.org/
VESSEL12[147] CT 3D https://vessel12.grand-challenge.org/
VINDR-
Mammo[148]

X-ray 2D https://www.physionet.org/content/vindr-mammo/1.0.
0/

Verse19[149][150] CT 3D https://github.com/anjany/verse
WMH[151] MRI 3D https://dataverse.nl/dataset.xhtml?persistentId=

doi:10.34894/AECRSD
WORD[152] CT 3D https://github.com/HiLab-git/WORD
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B Template for Instruction Data Generation

Template for Instruction Data Generation

Task1
"Please examine these two images and provide the coordinates of the area where they differ."
"Compare both images closely and share the coordinates of the discrepancy."
"Look at these two images and tell me the coordinates of the difference between them."
"Carefully analyze these images and provide the coordinates of their difference."
"Examine the two images and give me the coordinates of the region where they differ."
"Can you find the differences between these two images and give me the coordinates?"
"Please inspect these two images and indicate the coordinates of their difference."
"Compare the two images and identify the coordinates of the difference."
"Look closely at the two images and provide the coordinates where they differ."
"Analyze both images and provide the coordinates of the difference between them."
Task2
"Compare these two images carefully and give me the coordinates of their real difference in the second
image. Find it and locate it in the second image."
"Please examine both images and identify the real difference that appears in the second one. Provide
the coordinates of that difference."
"Carefully analyze the two images. What is the actual visual change in the second image? Mark its
coordinates precisely."
"Spot the true difference in the second image when compared with the first. Return the bounding box of
that change."
"Look at the two images side by side. What is the meaningful change introduced in the second image?
Output its location."
"Your task is to detect the actual difference in the second image compared to the first and report its
position in coordinates."
"Inspect the two images and tell me where the real change is in the second one. Output the coordinates
of the difference."
"Between the two images, find the true variation that exists in the second image. Return its location in
bounding box format."
"Compare the pair of images. Where is the real and only difference in the second image? Provide the
coordinates."
"Analyze the difference between these images. Identify and locate the actual modified region in the
second image only."
Task3
"The object marked with a red bounding box in the first image (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>) is shared by these two images. Locate and identify it in the num image."
"In the first image, the object highlighted with a red bounding box (<|box_start|> (x_min, y_min),
(x_max, y_max) <|box_end|>) is common to both images. Please recognize and locate it in the num
image."
"The object outlined by a red bounding box in the first image (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>) appears in both images. Can you identify and find its position in the num image?"
"The object with a red bounding box in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>) is shared between these two images. Locate and recognize it in the num image."
"The object marked in red in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>) is common across both images. Find and identify it in the num image."
"The object highlighted by the red box in the first image (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>) is shared with the second image. Locate it in the num image and provide its
position."
"Both images contain a common object marked with a red bounding box in the first image (<|box_start|>
(x_min, y_min), (x_max, y_max) <|box_end|>). Find and identify this object in the num image."
"In the first image, the object marked by the red bounding box (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>) appears in both. Can you locate it in the num image?"
"The object in the first image, marked by a red bounding box (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>), is also in the second image. Identify and locate it in the num image."
"In the first image, the object enclosed by the red bounding box (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>) is the same as in the second image. Locate it in the num image and identify its
position."
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Template for Instruction Data Generation

Task4
"In the first image, a red bounding box marks a specific object (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>). Your task is to identify and localize the same object in the num image."
"The object enclosed in red in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>) also appears in the num image. Detect and locate it accordingly."
"Focus on the object highlighted by the red box in the first image (<|box_start|> (x_min, y_min),
(x_max, y_max) <|box_end|>). Find and mark this same object in the num image."
"Observe the red-boxed object in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>). Identify where it appears in the num image."
"The first image contains an object inside a red bounding box (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>). Detect this same object in the num image."
"An object is annotated with a red box in the first image (<|box_start|> (x_min, y_min), (x_max,
y_max) <|box_end|>). Determine where the same object appears in the num image."
"Use the red-bounded object in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>) as a reference. Identify its location in the num image."
"Locate in the num image the object that corresponds to the red-marked region in the first image
(<|box_start|> (x_min, y_min), (x_max, y_max) <|box_end|>)."
"The first image includes an object shown with a red bounding box (<|box_start|> (x_min, y_min),
(x_max, y_max) <|box_end|>). Recognize and localize this same object in the num image."
"Refer to the red-outlined region in the first image (<|box_start|> (x_min, y_min), (x_max, y_max)
<|box_end|>). Locate the corresponding object in the num image."
Task5
"Given image-1 and image-2, identify and localize the object from image-1 within image-2."
"Based on the object shown in image-1, determine its corresponding location in image-2."
"Observe the object in image-1. Where does it appear in image-2? Mark the location."
"Find the region in image-2 that corresponds to the object highlighted in image-1."
"Refer to image-1 and locate the same object in image-2."
"Your task is to recognize the object from image-1 and indicate where it is in image-2."
"Using image-1 as a reference, identify the location of the same object in image-2."
"Locate the counterpart of the object shown in image-1 within image-2."
"Match the object in image-1 to its corresponding region in image-2 and provide its location."
"Analyze the object in image-1 and find its equivalent presence in image-2 by marking its location."
Task6
"You are given a source image and several cropped regions. Identify where the num region belongs in
the source image."
"Observe the original image and its cropped parts. Locate the num region in the source image."
"Given one complete image and multiple region crops, find where the num one fits in the original
image."
"You are shown a source image and some regional cutouts. Point out where the num region comes
from."
"Refer to the original image and determine the location of the num region shown afterward."
"Analyze the full image and match the num region image to its location within it."
"Based on the source image, indicate where the num region patch belongs."
"Here is a source image followed by cropped regions. Find the position of the num region in the
source."
"You are given a full image and several region patches. Locate the num patch within the source image."

32



Template for Instruction Data Generation

Task7
"You are given total images. Based on the red bounding box in the first image, locate the corresponding
region in the num image that shares a similar function or meaning."
"Among the total provided images, examine the red-highlighted area in the first image and identify the
region in the num image that matches it semantically or functionally."
"You are given total images. Consider the red-marked region in the first image. In the num image, find
the area that best aligns with it in terms of purpose or meaning."
"From the total images below, determine which region in the num image corresponds to the red-boxed
area in the first image."
"You are given total images. Study the red region in the first image. Then, in the num image, identify
the location that serves a similar role or conveys a similar idea."
"You are given total images. Take a close look at the red-bounded area in the first image. Locate the
corresponding region in the num image that reflects the same concept."
"You are given total images. Focus on the red box in the first image. Your task is to find the equivalent
region in the num image that shares its function or meaning."
"You are given total images. Analyze the highlighted region in the first image. In the num image, point
out the area that represents the same functional or semantic content."
"Given total images, compare the red-boxed area in the first image with the num image and find the
corresponding part."
"You are given total images. Observe the first image where a red region is marked. Identify the most
similar region in the num image in terms of functionality or semantics."
Task8
"Identify the bounding box of the region described by the following expression: <|object_ref_start|>
object name <|object_ref_end|>."
"Locate the region corresponding to the following structure and provide its bounding
box:<|object_ref_start|> object name <|object_ref_end|>."
"What is the bounding box for the region denoted by <|object_ref_start|> object name <|ob-
ject_ref_end|>?"
"Provide the bounding box for the following entity mentioned in the image: <|object_ref_start|> object
name <|object_ref_end|>."
"Identify and annotate the bounding box of <|object_ref_start|> object name <|object_ref_end|>."
"Indicate the bounding box of the area that corresponds to <|object_ref_start|> object name <|ob-
ject_ref_end|>."
"Determine the coordinates of the bounding box for the target structure: <|object_ref_start|> object
name <|object_ref_end|>."
"What is the bounding box for the region denoted by <|object_ref_start|> object name1 <|ob-
ject_ref_end|> and <|object_ref_start|> object name2 <|object_ref_end|>?"
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C Data statistics of MedSG-188K

Figure 6: Proportions of image sequence length (left), data distribution across tasks (right) in
MedSG-188K.

D Evaluation Metric

We evaluate model performance using two standard metrics: Intersection over Union (IoU) and Accuracy at IoU
threshold 0.5 (Acc@0.5). These metrics are widely adopted in visual grounding to measure localization quality.

IoU quantifies the overlap between the predicted bounding box Bpred and the ground-truth bounding box Bgt,
and is defined as:

IoU =
Area(Bpred ∩Bgt)

Area(Bpred ∪Bgt)
(1)

Acc@0.5 measures the proportion of predictions whose IoU with the ground truth exceeds 0.5. It is defined as:

Acc@0.5 =
1

N

N∑
i=1

I(IoUi ≥ 0.5) (2)

Here, N is the total number of samples, and I(·) is the indicator function that returns 1 if the condition is true,
and 0 otherwise.

E Additional Analysis

E.1 More Results

We benchmarked more MLLMs on MedSG-Bench, the results are summarized in Table 5. We grouped the
targets by their bounding box area ratio into small (0–1%), medium (1–10%), and large (>10%), and evaluated
model performance within each group, the results are summarized in Table 7.

E.2 The potential bias of question generations

To examine whether the use of a single large language model (LLM) introduces bias in our question generation
process, we conducted an additional comparative experiment across multiple LLMs, including GPT-4[10],
Claude[45], and DeepSeek[46]. All generated questions were manually reviewed to ensure that they accurately
preserved the original intent and complied with the standardized instruction format.

We then re-evaluated benchmarked models using questions generated by each LLM individually. The results,
summarized in Table 6, report the average performance measured by IoU and acc@0.5. Despite minor variations
among the three prompting settings, the observed differences remained within a narrow and acceptable range,
suggesting that the core conclusions reported in the Main Results section are stable and robust to the choice of
question generator.
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Table 5: Performance of other MLLMs on MedSG-Bench. IDG: Image Difference Grounding; ICG:
Image Consistency Grounding; RDG: Registered Difference Grounding; NRDG: Non-registered
Difference Grounding; MV: Multi-view Grounding; OT: Object Tracking; VCG: Visual Concept
Grounding; VPG: Visual Patch Grounding; CMG: Cross-modal Grounding; RG: Referring Ground-
ing; Avg.: Average; IoU and acc@0.5 for all results are shown, all numbers are in percentages.

Model Size
IDG ICG

Avg.
RDG NRDG MV OT VCG VPG CMG RG

General-purpose MLLMs

InternVL2[58] 8B 0.18
0.00

0.38
0.00

17.34
7.03

26.45
21.20

5.56
0.80

10.36
0.70

6.23
1.00

15.73
7.69

10.24
4.59

InternVL2[58] 76B 0.15
0.00

0.15
0.00

10.00
3.90

15.56
11.80

3.39
0.40

6.64
1.10

2.83
0.75

15.69
9.92

6.88
3.53

InternVL2.5[59] 8B 0.26
0.00

0.38
0.00

13.52
3.56

20.82
13.80

1.96
0.00

5.25
0.00

4.70
0.85

9.56
3.44

7.04
2.56

InternVL2.5[59] 78B 0.24
0.10

0.32
0.10

9.16
2.08

16.18
10.00

4.32
0.50

11.86
2.30

5.48
1.25

10.67
4.52

7.29
2.55

Medical-domain specialized MLLMs

LLaVA-Med v1.5[60] 7B 0.32
0.00

0.46
0.00

6.45
2.86

11.49
5.61

8.41
0.70

12.74
4.21

6.58
4.35

7.44
1.78

6.29
1.64

BiMediX2[61] 8B 0.24
0.01

0.28
0.00

4.11
1.48

8.66
4.95

7.42
1.12

10.67
3.66

4.38
2.71

7.62
2.02

4.83
1.29

Table 6: Bias Analysis in Question Generation. IoU and acc@0.5 for all results are shown, all
numbers are in percentages.

Model Size Avg(GPT-4) Avg(DeepSeek) Avg(Claude) Avg(Ori)

Qwen2.5-VL[11] 3B 10.51
3.86

10.60
3.85

10.31
9.02

10.94
4.20

Qwen2.5-VL[11] 7B 11.25
15.29

10.87
4.13

11.19
4.41

12.31
4.90

Qwen2.5-VL[11] 72B 13.45
6.37

13.35
6.29

13.39
6.41

13.35
6.12

MiniCPM-V-2_6[49] 8B 12.72
4.59

13.33
5.13

12.61
4.30

13.24
5.27

MiniCPM-O-2_6[50] 8B 10.68
3.85

10.34
3.51

10.27
3.32

10.12
3.23

mPLUG-Owl3[51] 7B 10.92
2.86

10.71
2.69

11.04
2.92

13.22
3.19

Mantis-Idefics2[52] 8B 10.33
4.35

10.02
4.07

10.06
3.91

9.90
3.91

LLaVA-OneVision[53] 7B 13.55
5.51

11.59
3.44

12.46
3.47

12.39
3.47

InternVL2.5[59] 8B 7.46
2.78

7.83
2.72

7.13
2.64

7.04
2.56

Migician[28] 7B 20.31
11.39

20.53
11.91

20.43
11.46

20.29
11.39

HuatuoGPT-Vision[12] 7B 9.08
2.71

9.20
2.59

9.18
2.41

8.97
2.36

MedSeq-Grounder (Ours) 7B 72.68
79.98

71.67
78.76

72.86
80.18

72.55
79.71
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Table 7: Fine-grained performance of different MLLMs on MedSG-Bench. IoU and acc@0.5 for all
results are shown, all numbers are in percentages.

Model Size Avg_small Avg_medium Avg_large

General-purpose MLLMs

Qwen2.5-VL[11] 3B 2.27
1.28

9.53
4.66

24.73
7.47

Qwen2.5-VL[11] 7B 1.69
0.48

8.31
3.74

20.13
7.91

Qwen2.5-VL[11] 32B 3.42
1.21

12.01
5.41

26.46
12.78

Qwen2.5-VL[11] 72B 3.82
1.18

11.96
5.31

25.92
13.25

MiniCPM-V-2_6[49] 8B 2.93
0.55

15.35
6.40

24.93
10.36

MiniCPM-O-2_6[50] 8B 2.60
0.38

10.93
3.25

19.82
7.36

mPLUG-Owl3[51] 7B 2.41
0.00

14.57
22.75

26.86
8.54

Mantis-Idefics2[52] 8B 2.92
1.10

14.47
6.72

12.74
3.51

LLaVA-OneVision[53] 7B 1.19
0.00

15.33
4.28

23.51
7.23

LLaVA-OneVision[53] 72B 3.27
0.55

14.68
3.99

25.38
13.87

InternVL2[58] 8B 2.24
1.01

12.64
6.09

18.09
7.40

InternVL2[58] 76B 1.12
0.32

7.46
3.49

14.39
8.29

InternVL2.5[59] 8B 2.06
0.55

10.24
4.41

9.17
2.54

InternVL2.5[59] 78B 1.33
0.38

8.64
2.86

13.85
5.25

InternVL3[54] 8B 1.81
0.32

9.06
2.49

20.49
8.50

InternVL3[54] 14B 2.23
0.52

12.76
5.12

19.09
8.97

InternVL3[54] 38B 2.47
0.61

11.12
4.70

20.71
9.65

InternVL3[54] 78B 1.26
0.38

6.80
2.57

13.46
7.11

Migician[28] 7B 11.24
4.72

22.05
11.89

30.69
20.36

Medical-domain specialized MLLMs

HuatuoGPT-Vision[12] 7B 2.55
0.35

11.55
3.88

14.20
2.83

HuatuoGPT-Vision[12] 34B 2.90
0.43

11.02
3.38

12.93
2.41

MedSeq-Grounder (Ours) 7B 68.37
75.83

69.32
75.26

83.88
92.55

E.3 Effect of clinical windowing on model performance

To investigate whether different window settings influence model performance, we conducted additional ex-
periments under two settings: (1) applying only min–max normalization, and (2) applying clinical windowing
followed by min–max normalization.
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These experiments are conducted on CT datasets, including AbdomenCT1K, LUNA16, and COVID-19-20,
where window settings are clinically significant and can substantially affect the visibility of anatomical structures.
Specifically, we adopted organ-specific window ranges as follows: Lung: [-600, 1500]; Liver: [60, 150]; Spleen:
[60, 150]; Kidney: [40, 400]. The results, summarized in Table 8, report the IoU and acc@0.5 on Registered
Difference Grounding, Visual Concept Grounding, and Visual Patch Grounding tasks.

From the results, we observed that clinical windowing led to perfomance gains for models with strong visual
perception capabilities (e.g., Migician) or prior exposure to medical data (e.g., HuatuoGPT-Vision), with our
proposed MedSeq-Grounder achieving the most significant improvement. We also find that most general-
purpose MLLMs typically suffered performance drops under the same setting. This pattern suggests that clinical
windowing introduces distribution shifts that challenge general models, while models equipped with robust
perceptual abilities and domain-specific knowledge can leverage enhanced contrast and localized visual cues
more effectively.

Table 8: Evaluation Results with clinical windowing and min-max normalization on CT datasets.
RDG: Registered Difference Grounding; VCG: Visual Concept Grounding; VPG: Visual Patch
Grounding; Avg.: Average; IoU and acc@0.5 for all results are shown, all numbers are in percentages.

Model Size
RDG VCG VPG Avg

ori window ori window ori window ori window

Qwen2.5-VL[11] 3B 0.31
0.00

0.29
0.00

11.81
1.00

8.87
0.25

28.23
2.93

26.17
1.95

11.67
1.13

10.23
0.64

Qwen2.5-VL[11] 7B 1.15
0.17

0.59
0.00

9.73
1.00

5.98
1.00

26.37
3.41

29.21
4.63

10.90
1.34

10.42
1.63

Qwen2.5-VL[11] 72B 3.31
2.32

3.08
1.33

13.59
4.50

10.11
2.50

28.08
6.34

27.54
6.10

13.41
4.10

12.17
3.04

MiniCPM-V-2_6[49] 8B 1.25
0.00

1.33
0.00

14.18
2.25

12.64
3.25

29.46
13.90

29.97
12.93

13.09
4.67

12.84
4.67

MiniCPM-O-2_6[50] 8B 1.55
0.00

1.64
0.00

12.26
1.50

13.34
1.50

25.27
11.46

23.60
10.00

11.46
3.75

11.35
3.33

Mantis-Idefics2[52] 8B 0.08
0.00

0.09
0.00

10.24
0.75

9.01
0.25

11.03
0.49

9.73
0.73

6.13
0.35

5.41
0.28

LLaVA-OneVision[53] 7B 1.32
0.00

1.02
0.00

13.45
1.00

15.28
1.25

21.96
6.34

20.98
3.17

10.74
2.12

10.85
1.27

InternVL2.5[59] 8B 0.14
0.00

0.15
0.00

1.67
0.00

1.06
0.00

5.01
0.00

4.44
0.00

1.99
0.00

1.65
0.00

Migician[28] 7B 10.06
5.31

16.97
8.29

16.87
6.75

12.65
5.25

21.73
6.10

25.94
11.22

15.37
5.94

18.35
8.28

HuatuoGPT-Vision[12] 7B 1.24
0.17

1.41
0.00

6.85
0.00

7.95
0.50

12.89
0.73

14.80
1.95

6.21
0.28

7.15
0.71

MedSeq-Grounder (Ours) 7B 82.56
92.04

86.84
96.68

65.54
70.75

89.23
94.50

80.54
94.39

88.01
100.00

77.15
86.69

87.86
97.03

E.4 Failure case study

We conducted a detailed failure analysis to better understand model behavior. Our initial observations show that
the most models are able to correctly follow instructions and output coordinates in the required format.

However, as the visual context becomes more complex, model performance drops significantly. For example,
Qwen2.5-VL frequently produces bounding boxes that span nearly the entire image ([0, 0, x_max, y_max]), and
InternVL3 often outputs predictions that are spatially misaligned with the target region, as illustrated in Fig. 7.

F Potential negative societal impacts

While the proposed benchmark includes eight tasks spanning medical image sequences, the resulting performance
is intended for reference purposes only. High scores achieved by MLLMs on MedSG-Bench do not necessarily
indicate clinical readiness or real-world applicability. Any deployment in clinical settings requires thorough
validation and oversight from qualified medical professionals to ensure safety and reliability.
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Figure 7: Visualization of samples in MedSG-Bench.
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