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Abstract

The emergence of large language models001
(LLMs) has significantly advanced the devel-002
opment of natural language processing (NLP),003
especially in text generation tasks like ques-004
tion answering. However, model hallucinations005
remain a major challenge in natural language006
generation (NLG) tasks due to their complex007
causes. We systematically expand on the causes008
of factual hallucinations from the perspective009
of knowledge shortcuts, analyzing hallucina-010
tions arising from correct and defect-free data011
and demonstrating that knowledge-shortcut hal-012
lucinations are prevalent in generative models.013
To mitigate this issue, we propose a high sim-014
ilarity pruning algorithm at the data prepro-015
cessing level to reduce spurious correlations016
in the data. Additionally, we design a spe-017
cific detection method for knowledge-shortcut018
hallucinations to evaluate the effectiveness of019
our mitigation strategy. Experimental results020
show that our approach effectively reduces021
knowledge-shortcut hallucinations, particularly022
in fine-tuning tasks, without negatively impact-023
ing model performance in question answering.024
This work introduces a new paradigm for mit-025
igating specific hallucination issues in gener-026
ative models, enhancing their robustness and027
reliability in real-world applications.028

1 Introduction029

The emergence of large language models (LLMs)030

has brought a paradigm shift to natural language031

processing (NLP), especially in generative tasks032

such as question-answering (Rangapur and Ranga-033

pur, 2024; Michail et al., 2023; Qin et al., 2023)034

However, this revolution has also caused a growing035

concern, known as model hallucinations. Huang et036

al.(Huang et al., 2024) building on the definition037

of hallucinations proposed by Ji et al.(Dziri et al.,038

2021; Ji et al., 2023), expanded the applicability039

and scope of the term, classifying model halluci-040

nations into two types: factual hallucinations and041
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Context:

Other organs involved in digestion include the liver, gall bladder, and pancreas. They are called 

accessory organs because food does not pass through them. Instead, they secrete or store 

substances needed for digestion.

Question:

Organs involved in digestion that do not have food pass through them are called?

Answer1: an accessory organ 

Answer2:  gall bladder 

Answer3: adrenal and pancreatic gland 

Answer4:  compartment

Correct Answer:  accessory organ
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Figure 1: An example of what is the knowledge-shortcut
hallucinations in CQA tasks

faithfulness hallucinations. This expanded classifi- 042

cation provides a new paradigm for understanding 043

model hallucinations. 044

We focus on factual hallucinations, and have ob- 045

served a critical fact: training data has played a 046

significant role in causing factual hallucinations. 047

One notable example is the “floating-point com- 048

parison hallucination”1, When the prompt "9.11 or 049

9.9, which number is larger?" is given to LLMs, 050

many existing commercial LLMs provide incorrect 051

answers, as illustrated in Appendix A, Table 6. 052

A major cause of the aforementioned halluci- 053

nations is knowledge-shortcut(Ju et al., 2024;Li 054

et al., 2022). The training data often contains a 055

significant amount of information such as com- 056

puter system version numbers and book indexes. 057

LLMs have learned the comparative features of this 058

data and erroneously applied these features to the 059

comparison of regular numbers, leading to hallu- 060

cinations. In the classification proposed by Li(Li 061

et al., 2022), this cause is referred to as a "Knowl- 062

edge Shortcut". Building on this concept, we define 063

hallucinations caused by knowledge shortcuts as 064

knowledge-shortcut hallucinations. 065

1https://x.com/goodside/status/
1812977352085020680
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Index C-Q Correct-Answer Generate-Answer Jaccard-sim TF_IDF-sim AI-sim

before 1 <|user|>Other... accessory organs liver 0.00000 0.00000 0.39682
before 2 <|user|>Other... accessory organs assistant organ 0.00000 0.00000 0.54355
before 3 <|user|>Other... accessory organs adrenal and pancreatic gland 0.00000 0.00000 0.30573
before 4 <|user|>Other... accessory organs compartment 0.00000 0.00000 0.46903
after 1 <|user|>Other... accessory organs an accessory organ 1.00000 0.70930 0.90820
after 2 <|user|>Other... accessory organs liver 0.00000 0.00000 0.39682
after 3 <|user|>Other... accessory organs accessory organ 1.00000 1.00000 0.94474
after 4 <|user|>Other... accessory organs attached organ 0.33333 0.33610 0.74186

Table 1: Examples of CQA tasks before and after mitigation. Green : Correct words that appear in the C-Q text.
Yellow : Incorrect words that appear in the C-Q text but are not the correct answer. Orange : Incorrect words that

do not appear in the C-Q text, representing other hallucinations. Red : Words appearing in the high-frequency and
high-value groups, indicating knowledge-shortcut hallucinations. See Appendix A for detailed information

Knowledge shortcut arises because language066

models typically do not genuinely understand the067

intricate and complex factual knowledge but rather068

rely on shortcuts. They tend to over-rely on seman-069

tically proximate positions in the pre-training data,070

shared high-frequency words, and the quantity of071

related documents (Kandpal et al., 2023).This can072

introduce spurious correlation biases, causing the073

model to produce hallucinations even when work-074

ing with correct and defect-free data sources.075

We focus on factual hallucinations and introduce076

a Context-Question-Answer (CQA) task to ana-077

lyze hallucinations caused by knowledge shortcuts,078

termed knowledge-shortcut hallucinations. In a079

CQA task, the correct answer typically resides in080

the context, and answers from large models that de-081

viate from the correct answer are considered factual082

hallucinations. However, not all factual hallucina-083

tions are knowledge-shortcut hallucinations. When084

the model’s answer is not in the context but is found085

in the high-similarity group of the CQ (shown in086

red in Figure 1), it is considered a knowledge-087

shortcut hallucination. In contrast, answers found088

in the context (like Answer2(yellow)) or outside089

both the context and high-similarity group (like090

Answer4(orange)) are called other hallucinations.091

A common approach for mitigating data-related092

hallucinations is data filtering, including strictly093

controlling data source(Gao et al., 2020; (Gu-094

nasekar et al., 2023)) and deduplication. Dedu-095

plication which is divided into exact and near du-096

plicates faces challenges. Exact duplicate detection097

is inefficient for large datasets (Manber and Myers,098

1993), while near duplicate method like hash-based099

algorithm MinHash (Broder, 1997) prioritize speed100

but miss hidden information. Semantic duplicate101

recognition using pre-trained models (Abbas et al.,102

2023) is slower and impractical for large datasets. 103

Thus, balancing granularity in duplicate detection 104

and processing speed, while effectively reducing 105

knowledge-shortcut hallucinations, remains a chal- 106

lenge. 107

This paper focuses on analyzing knowledge- 108

shortcut hallucinations triggered by high-similarity 109

texts from correct, defect-free data. We propose a 110

High Similarity Pruning Algorithm that mitigates 111

knowledge-shortcut hallucinations from a data per- 112

spective by leveraging semantic similarity, shared 113

high-frequency words. Furthermore, based on 114

these characteristics and incorporating model un- 115

certainty(Xiao and Wang, 2021; Miao et al., 2023), 116

we design a hybrid detection method tailored for 117

CQA tasks to identify knowledge-shortcut halluci- 118

nations effectively. Our mitigation strategy demon- 119

strates promising results across multiple LLMs and 120

parameter scales. Notably, in the fine-tuning of 121

nanoGPT-large, it successfully reduces knowledge- 122

shortcut hallucinations by 6.5%. 123

Table 1 shows the same color-coding as in Figure 124

1. We present a real CQA example and compare 125

responses before and after mitigation. Detailed re- 126

sults in appendix A show significant improvement 127

across similarity metrics, a reduction in knowledge- 128

shortcut hallucinations, and overall higher response 129

quality. 130

Overall, the contributions of our paper can be 131

summarized as follows: 132

• We investigate the mechanisms and patterns 133

underlying knowledge-shortcut hallucinations 134

driven by accurate and defect-free data. We 135

identify their general characteristics and re- 136

veal their widespread presence in LLMs. 137

• We propose a novel detection method that 138
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combines semantic similarity and the uncer-139

tainty of LLM-generated outputs in CQA140

tasks. This method enables the quantita-141

tive evaluation of knowledge-shortcut hallu-142

cinations across different LLMs and training143

strategies (e.g., fine-tuning vs. training from144

scratch).145

• To mitigate knowledge-shortcut hallucina-146

tions, we introduce a Data High Similarity147

Pruning Algorithm based on the identified148

generation mechanisms of such hallucinations.149

Quantitative evaluations demonstrate that this150

algorithm significantly improves the genera-151

tion quality of LLMs and excels in suppress-152

ing hallucinations. The source code for our153

approach is available at github.154

2 Methodology155

2.1 Overview156

The CQA task, characterized by simple answers157

and clear facts, is particularly well-suited for158

the study of knowledge-shortcut hallucinations.159

Through prior analysis, we found that such hallu-160

cinations arise from the misleading effect of high-161

frequency co-occurring and highly similar words162

in the training data (e.g., “9.11” being interpreted163

as a computer version number or directory, which164

is larger than “9.9”). The essence of our mitigation165

strategy is to filter high-frequency co-occurring and166

highly similar terms in the training data based on167

specific metrics (reducing or balancing the occur-168

rences of "9.11" as a version number or directory).169

The focus of knowledge-shortcut hallucinations de-170

tection is to determine whether a factual error is171

caused by the misdirection of high-frequency and172

highly similar co-occurring entries in the training173

data, based on the background and the question174

(e.g., whether a comparison of computer version175

numbers or directories, like "9.11 is larger than176

9.8," exists in the training data).177

Building on these insights, we have refined our178

knowledge-shortcut mitigation strategy (Section179

2.2) and hallucination detection approach (Section180

2.3), with the overall framework shown in Figure181

2.182

We carefully selected three metrics for measur-183

ing text similarity: Jaccard similarity, TF-IDF sim-184

ilarity, and pre-trained model similarity. Through185

extensive engineering optimization, we ensured186

that our text similarity metrics not only maintain187

fine granularity but also enhance runtime efficiency,188

as detailed in Appendix B.1. Experimental results 189

(Section 3, Appendix C) confirm that our mitiga- 190

tion strategy is simple to implement and highly 191

effective, demonstrating the robustness of the strat- 192

egy and validating its performance in knowledge- 193

shortcut hallucination detection. 194

2.2 Data High Similarity Pruning 195

We define high-frequency co-occurring words and 196

highly similar words as the high similarity group, 197

with the specific concept outlined in Appendix B.2. 198

Based on the definition of the high-similarity group, 199

we designed the High Similarity Pruning Algorithm 200

shown in Figure 2, which helps generative models 201

reduce the occurrence of knowledge-shortcut hallu- 202

cinations. 203

Given a batch of fine-tuning or training data from 204

n different categories (data1, data2, ..., datan), 205

we define the following steps for data1: with hy- 206

perparameters (K1,K2, α1, α2), we compute the 207

set R1,j∈n for deletion: 208

1) For each row in data1, compute the top K1 209

Jaccard and TF-IDF similarity values with the re- 210

maining (n−1) datasets. Record the corresponding 211

indices and values. 2) Calculate the top K2 most 212

frequent indices (High-Frequency group, GHF ) 213

and the top K2 largest values (High-Value group, 214

GHV ). 3) Combine the four groups (HF and HV 215

for both Jaccard and TF-IDF similarities), remove 216

duplicates, and identify rows in dataj∈n to delete, 217

denoted as R1,j∈n(Equation 1): 218

R1,j∈n = Set(α1GHF + α2GHV ) (1) 219

4) Iterate over all n datasets to compute the final set 220

Rall for deletion across all datasets with Equation 221

2: 222

Rall = Set(

n∑
i=1

n∑
j ̸=i

Ri,j) (2) 223

2.3 Detection of Knowledge-Shortcut 224

Hallucination 225

Detecting knowledge-shortcut hallucinations re- 226

quires distinguishing them from other hallucina- 227

tions. We focus on fact-based question-answering 228

tasks with a CQA structure, where the correct 229

answer is embedded in the context. To detect 230

knowledge-shortcut hallucinations, we propose a 231

method combining similarity features and self- 232

check uncertainty measurement(Miao et al., 2023). 233

The pseudocode is in Appendix B.3. 234

1) For a given context-question pair (CQ), we 235

compute the most similar entry CQAij from the 236

3



Jaccard-

similarity 

TF-IDF-

similarity

Top K

Data 1

Data n

. . .

. . .

High Similarity Pruning

⚫ 1, 2, 3, 4…

⚫ a, b, 3, d…

⚫ ……

⚫ A, B, 3, D…

Data 2

……
Data n

Datasets

Data 1

. . .

Data n*

Calc_F&V

HF group

HV group

LLM

Model

Generate

Answer

Relevant Test DataTrain Fine-tune

Self-check

Model

Calc_Union

Context:

Other organs involved in digestion ……

Question:

Organs involved in digestion that do not 

have food pass through them are called?

If words in C-Q

If other words 

in groups? Data 3 index 17,18,49 found 
{'gland’}

{'adrenal', 'gland’}
{'gland'}

Knowledge Shortcut

hallucination

Figure 2: Overview of detection and mitigation.

datasets (data1, ..., datan), where i denotes the237

dataset and j the row index. 2) We calculate the238

Jaccard and TF-IDF similarity scores between this239

entry and others from datak ̸=i, identifying the240

high-frequency group (GHF ) and high-value group241

(GHV ). 3) In the self-check module, the model242

generates an answer Ao. We then regenerate m243

responses (A1, . . . , Am) from the same input. If244

Ao significantly differs from (A1, . . . , Am), the re-245

sponse is flagged as a potential hallucination. The246

variation is quantified by Equation 3, where m = 5247

and α3 = 0.2.248 ∑m
l=1 1− Sim(Ao, Al)

m
≤ α3 (3)249

4) We compute the difference set So between Ao250

and CQ (Equation 4). If So is non-empty, the251

process continues:252

So = Set(Ao)− Set(CQ) (4)253

5) Finally, we calculate the intersection between254

So and the high-frequency (GHF ) and high-value255

(GHV ) groups from CQA (Equation 5). If non-256

empty, we conclude that Ao is a knowledge-257

shortcut hallucination.258

Set(Ao) ∩ Set(CQAGHF ,GHV
) (5)259

2.4 Metrics of Effectiveness Evaluation260

To evaluate the mitigation method, we design met-261

rics that measure performance differences of the262

same model under identical parameter configura- 263

tions, both before and after applying the method. 264

Coarse-grained metrics: 1) Number of Non- 265

Zero and Non-Empty Similarity Rows: Count the 266

rows where the similarity between generated and 267

correct answers is non-zero and non-empty, before 268

and after mitigation. 2) Average Similarity: Calcu- 269

late the average similarity across the test set. These 270

metrics offer a macroscopic view of the method’s 271

overall impact. 272

Fine-grained metrics: The fine-grained ap- 273

proach directly counts the number of knowledge- 274

shortcut hallucinations in the test set. By compar- 275

ing the numbers before and after applying the miti- 276

gation method, this metric offers a straightforward 277

and clear evaluation of the method’s effectiveness. 278

3 Experiments 279

3.1 Experiments Setting 280

3.1.1 Datasets 281

We selected four datasets with a CQA struc- 282

ture from the generative text datasets on Hug- 283

ging Face as training or fine-tuning datasets 284

(data1, data2, data3, data4), along with a halluci- 285

nation test dataset as the ablation test dataset. The 286

four CQA datasets belong to different domains, 287

forming a diverse training or fine-tuning datasets. 288

In terms of data quantity selection, not all data from 289

the four datasets were used. The large discrepan- 290
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Dataset Category Number of rows
sciq science 11679
financial-qa-10K finance 7000
trivia-cqa miscellaneous 14000
QASports Basketball 14453

Table 2: General description of the CQA datasets

cies in the total volume of data across different291

datasets could make it difficult for the model to292

learn long-tail knowledge(Kandpal et al., 2023),293

thus negatively impacting the experimental results.294

Therefore, we selected portions of data from trivia-295

cqa2 and QASports3 that closely matches the sam-296

ple sizes of sciq4 and financial-qa-10K5. Details of297

this data selection can be found in Table 2.298

For the test sets, we selected 600 samples from299

the sciq test dataset, a natural sciences dataset fo-300

cused on objective facts, as the related test set. Ad-301

ditionally, we selected 513 samples from the llm302

hallucination6 test dataset as an unrelated test set to303

evaluate the method’s performance under different304

conditions.305

3.1.2 Model Selection306

We conducted our experiments on two generative307

models which is distributed under the MIT License.308

We used the model according to the terms spec-309

ified in the license: nanoGPT7 and TinyLlama8.310

For nanoGPT, we selected three parameter scales:311

gpt2-large (774M), gpt2-medium (350M), and gpt2312

(124M), to perform fine-tuning and training experi-313

ments. For TinyLlama(Zhang et al., 2024), we con-314

ducted fine-tuning experiments using the LoRA(Hu315

et al., 2021) (Low-Rank Adaptation) method at the316

1.1B parameter scale.317

3.1.3 Implementation Details318

Our experiments consist of three phases: assess-319

ment, mitigation, and detection.320

Assessment: We used the sciq dataset (data1)321

and progressively combined it with three addi-322

tional datasets to form four training datasets. We323

2https://huggingface.co/datasets/tilyupo/
trivia_cqa

3https://huggingface.co/datasets/PedroCJardim/
QASports

4https://huggingface.co/datasets/allenai/sciq
5https://huggingface.co/datasets/virattt/

financial-qa-10K
6https://huggingface.co/datasets/C0uchP0tat0/

llm_hallucinations
7https://github.com/karpathy/nanoGPT
8https://github.com/jzhang38/TinyLlama

Dataset Number of rows Reduction magnitude
sciq 11679 0%
financial-qa-10K 6962 0.542%
trivia-cqa 13926 0.529%
QASports 14376 0.533%

Table 3: For sciq test, after mitigation

trained three nanoGPT models (gpt2-large, gpt2- 324

medium, gpt2) using both training and fine-tuning 325

approaches, while the TinyLlama model was fine- 326

tuned only. All models were evaluated on the sciq 327

test using the CQA task. The results from the mod- 328

els trained on sciq(data1) alone served as the base- 329

line for the related test set. We assessed the sim- 330

ilarity changes when additional datasets were in- 331

corporated, analyzing both increases and decreases. 332

Since there is no baseline for the unrelated test set, 333

similarity changes are not evaluated for it. 334

Mitigation: We compared the performance of 335

the models before and after applying the mitiga- 336

tion method, using consistent test sets. The miti- 337

gation parameters were set as: (K1,K2, α1, α2) = 338

(50, lens× 0.006, 0.4, 0.1). K1 = 50 corresponds 339

to the Top-K parameter in nanoGPT, a key factor in 340

hallucination generation. K2 is related to dataset 341

length, with a value of 0.006 to avoid excessive 342

data removal. The value of 0.4 prioritizes high- 343

frequency overlapping data in pruning. We chose 344

α1 + α2 = 0.5 to balance the influence of High- 345

Frequency (HF) and High-Value (HV) groups. The 346

High Similarity Pruning increases data source in- 347

dependence, reducing semantic overlap between 348

unrelated categories. 349

For instance, applying the data high similarity 350

pruning algorithm to the sciq test yields the up- 351

dated data quantities, as shown in Table 3. 352

Detection: We performed detection and metric 353

evaluations for all models before and after mitiga- 354

tion on both test sets. To ensure result stability, we 355

repeated experiments with different random seeds. 356

The experiments were conducted on two NVIDIA 357

3090 GPUs (24 GB each). The source code is 358

available on GitHub. 359

3.2 Experiment 1: Evaluation—-The 360

Prevalence of Knowledge-Shortcut 361

Hallucinations 362

We trained models on the four datasets described 363

in Table 1 and conducted CQA tasks on a related 364

test set comprising 600 samples. Using the results 365

from training on sciq(data1) as the baseline, we 366

evaluated the accuracy changes in model answers to 367
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Figure 3: Evaluation of nanoGPT models under the fine-tuning method across three parameter scales: normal,
medium and large(from left to right). Each x-axis represents a different similarity metric: Jaccard similarity, TF-IDF
similarity, and Pre-trained model-based similarity, respectively.

Figure 4: Evaluation of nanoGPT models under the training method across three parameter scales: normal, medium
and large(from left to right). Each x-axis represents a different similarity metric: Jaccard similarity, TF-IDF
similarity, and Pre-trained model-based similarity, respectively.

the same questions after mixing additional datasets368

into the training data.369

Models trained on a single category of data and370

tested on the corresponding category’s test set can371

fully demonstrate the model’s performance. By pro-372

gressively mixing other datasets into the training373

data and repeating the testing process, we revealed374

the widespread presence of knowledge-shortcut hal-375

lucinations from a macro perspective.376

As shown in Figure 3, for models fine-tuned with377

different parameter scales, the similarity between378

generated answers and correct answers, measured379

by all three similarity metrics (Jaccard similarity,380

TF-IDF similarity, and pre-trained model similar-381

ity), decreased to varying extents as more datasets382

were mixed in. Compared to the baseline, mod-383

els trained with multiple mixed datasets showed384

a higher proportion of "less" labels than "more"385

labels in their responses (The model trained on the386

sciq dataset serves as the baseline. If the responses387

generated by models trained with additional mixed388

datasets show an increase in any of the three sim-389

ilarity metrics, they are labeled as "more"; if the390

similarity decreases, they are labeled as "less").391

Similar trends were observed in models trained392

using the full training method, as illustrated in Fig-393

ure 4. The evaluation results and analysis after394

applying the mitigation strategy can be found in 395

Appendix C.1. 396

This phenomenon is also observed in the fine- 397

tuning of the TinyLlama 1.1B model, with the cor- 398

responding results presented in Appendix C.2. 399

Our evaluations demonstrate that knowledge- 400

shortcut hallucinations are widespread across vari- 401

ous datasets and models. This trend is consistently 402

observed across different model architectures, pa- 403

rameter scales, and training methods, highlighting 404

the significant impact of dataset composition on 405

the accuracy and reliability of generative models. 406

3.3 Experiment 2: Mitigation–Effectiveness 407

Before and After Applying the High 408

Similarity Pruning Algorithm 409

Using the same training methods and parameters, 410

we conducted CQA tasks on the models before 411

and after applying the mitigation strategy. We first 412

evaluate whether the 0.4% reduction in training 413

data induced by the mitigation strategy would ad- 414

versely affect model training performance. While 415

the primary objective of this mitigation strategy is 416

to reduce knowledge shortcut-induced model hallu- 417

cinations, we aim to ensure that its implementation 418

does not compromise model performance on CQA 419

tasks. We employ two coarse-grained evaluation 420
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Figure 5: The number of Knowledge-Shortcut hallucination in CQA tasks before and after mitigation

Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

fine-tune

large 1649 1656 2400 1646 1652 2400
0.62541 0.61355 0.79622 0.62188 0.61136 0.76381

medium 1388 1399 2400 1368 1380 2400
0.51048 0.50020 0.69581 0.50859 0.49707 0.69392

normal 956 979 2400 952 975 2400
0.32638 0.32113 0.56459 0.32576 0.31948 0.56337

train

large 1852 1861 2400 1838 1849 2400
0.71533 0.70426 0.83314 0.71288 0.69956 0.82451

medium 1737 1745 2400 1699 1709 2400
0.66219 0.65106 0.79507 0.64394 0.63185 0.78482

normal 1341 1352 2400 1373 1385 2400
0.49678 0.48617 0.68270 0.50845 0.49828 0.68748

Table 4: Results with related test, mitigation and before mitigation for various nanoGPT parameters. The integer
above each row represents the number of non-zero and non-empty result rows (out of a total of 2400), while the
decimal below indicates the overall average similarity. Values in bold denote significant results.

metrics: the count of non-zero non-empty similar-421

ity rows and average similarity score. The strategy422

is considered effective if these metrics demonstrate423

comparable or slightly improved performance post-424

implementation.425

As shown in Table 4, across nearly all training426

configurations and model scales of nanoGPT, the427

mitigation strategy generally yields marginal im-428

provements in both metrics. An exceptional per-429

formance decline observed in the GPT-2 (124M)430

model under one specific training configuration431

will be analyzed in the section 6.432

The reduction in training data directly leads to a433

decrease in training time, improving the efficiency434

of generative model training or fine-tuning. The435

reduced data did not impact testing on the related436

test set. In the other experiments presented in Ta-437

ble 5, we also explored the impact on the unre-438

lated test set, where the fluctuations in both met- 439

rics remained minimal within the proportion of 440

data reduction (For the unrelated test set, the train 441

method is not meaningful, so we focus only on 442

the fine-tune method). Furthermore, after applying 443

the mitigation strategy, models trained on mixed 444

datasets showed a decreasing trend in the propor- 445

tion of "less" labels when compared to before miti- 446

gation in appendix C.1. 447

3.4 Experiment 3: Detection–Reduction of 448

Knowledge-Shortcut hallucinations 449

To evaluate the effectiveness of the mitigation strat- 450

egy from a finer-grained perspective, we employed 451

the knowledge-shortcut hallucination fusion detec- 452

tion method. Specifically, we directly counted the 453

number of knowledge-shortcut hallucinations in 454

the test set generated by models of different param- 455

7



Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

fine-tune

large 1090 1126 2056 1118 1160 2056
0.41782 0.37675 0.64697 0.42160 0.37675 0.64240

medium 976 1023 2056 956 1006 2056
0.36990 0.33733 0.60472 0.37286 0.33688 0.60864

normal 632 675 2056 601 648 2056
0.22673 0.20910 0.49422 0.21640 0.19913 0.48892

Table 5: Results with unrelated test, before and after mitigation. The integer above each row represents the number
of non-zero and non-empty result rows (out of a total of 2056), while the decimal below indicates the overall average
similarity. Values in bold denote significant results.

eter scales and training methods before and after456

applying the mitigation strategy. This straightfor-457

ward approach provides a clear demonstration of458

the mitigation strategy’s effectiveness.459

Our detections show that in large-parameter fine-460

tuning models, the mitigation strategy performs ex-461

ceptionally well in suppressing knowledge-shortcut462

hallucinations. Even for the training method, the463

strategy proved effective in reducing hallucina-464

tions, validating the method’s efficacy in mitigat-465

ing knowledge-shortcut hallucinations in genera-466

tive models. The results are presented in Figure467

5.468

We provide a reproducible set of repeated exper-469

imental results in Appendix C.3. The training and470

generation code has been open-sourced on GitHub.471

The results from this set of experiments align well472

with those presented in the main text, indirectly473

validating the robustness of our method.474

4 Related Works475

Significant progress has been made in the study476

of hallucinations in LLMs. Xu(Xu et al., 2024)477

argue that eliminating hallucinations in LLMs is478

impossible. Numerous techniques have emerged479

to mitigate LLM hallucinations, with notable ap-480

proaches including Retrieval-Augmented Gener-481

ation (RAG)(Lewis et al., 2020), knowledge re-482

trieval(Varshney et al., 2023), CoNLI(Lei et al.,483

2023), and CoVe(Dhuliawala et al., 2023). Our aim484

is to clarify the underlying causes of knowledge-485

shortcut hallucinations and minimize such halluci-486

nations as much as possible.487

Shortcut learning is a critical area of research488

in LLM hallucinations, with knowledge shortcuts489

representing the manifestation of shortcut learning490

at the data level. Geirhos(Geirhos et al., 2020) and491

Du(Du et al., 2023) suggest that dataset bias is the 492

starting point of shortcut learning, and many ex- 493

cellent works have focused on alleviating shortcut 494

learning from the data perspective, such as identify- 495

ing biased sentencesLei(Lei et al., 2022), data short- 496

cuts(Friedman et al., 2022), or replacing datasets 497

with more balanced ones(Tang et al., 2023). Tang’s 498

research(Tang et al., 2021) indicates that fine-tuned 499

language models can learn and even amplify biases 500

present in the training datasets, leading to poor per- 501

formance in downstream tasks, which aligns with 502

our experimental findings. Despite these advance- 503

ments, existing works have yet to fully explore all 504

the ways in which dataset bias can manifest. Our 505

goal is to conduct an in-depth study of one type 506

of hallucination triggered by correct, defect-free 507

data sources in large models and propose a fea- 508

sible method for mitigating and predicting such 509

illusions. 510

5 Conclusion 511

In conclusion, we have conducted a finer-grained 512

study of a specific type of hallucination origi- 513

nating from the data perspective and proposed 514

a novel method for mitigating this hallucina- 515

tion, along with a fusion detection method for 516

such hallucinations. Our approach demonstrates 517

through experiments that, when handling specific 518

question-answering tasks, it can significantly re- 519

duce knowledge-shortcut hallucinations in the fine- 520

tuning process while maintaining the performance 521

of generative models and stabilizing answer simi- 522

larity. This provides a new paradigm for addressing 523

hallucinations in generative models. 524

8



6 Limitations525

Normal parameter scale results. In the experi-526

ment shown in Figure 5, the mitigation effect on527

the nanoGPT (124M) model was relatively poor.528

This phenomenon persisted in repeated experi-529

ments (Figure 11), suggesting a potential explana-530

tion. Given the small parameter scale and limited531

training data, the model may struggle to learn the532

patterns of knowledge shortcuts effectively. As a re-533

sult, applying the mitigation strategy does not yield534

significant improvements. This observation indi-535

cates that our mitigation approach is better suited536

for larger-scale models, aligning with the experi-537

mental results observed in large parameter models.538

Runtime and applicable tasks. Our mitigation539

strategy demonstrated outstanding performance in540

fine-tuning tasks, with a stable and significant re-541

duction in knowledge-shortcut hallucinations. This542

suggests that the strategy is more suitable for fine-543

tuning rather than pretraining tasks. From a data544

scale perspective, pretraining datasets are typically545

vast, whereas fine-tuning datasets are relatively546

smaller. As a result, the computational overhead547

introduced by our mitigation strategy is entirely548

acceptable in fine-tuning scenarios.549

Detection method applicability. Unlike the550

general mitigation strategies at the data prepro-551

cessing level, our knowledge shortcut hallucina-552

tion detection method is specifically designed for553

CQA tasks and is data-dependent. As such, we did554

not assess the superiority of this method; rather, it555

serves as an evaluation technique for the number of556

knowledge shortcut hallucinations before and after557

applying our mitigation strategy. Due to its data de-558

pendency, this detection method is also applicable559

to fine-tuning tasks.560

Chain-of-Thought technology. We have also561

tested floating-point comparison issues on the lat-562

est commercial large models utilizing "chain-of-563

thought" (CoT) reasoning, such as ChatGPT o1564

and DeepSeek R1. Although they ultimately pro-565

vided the correct answers, doubts arose during the566

reasoning process. ChatGPT o1, for instance, ini-567

tially gave an incorrect answer but corrected itself568

in the subsequent reasoning steps. Therefore, CoT569

technology represents a potential approach for mit-570

igating all factual hallucinations. However, the571

phenomenon of knowledge shortcuts may not di-572

rectly affect the final outcome, yet it still misleads573

the model’s reasoning process.574

7 Ethics Statement 575

This research does not involve human subjects, 576

private data, or personally identifiable informa- 577

tion. All datasets used in our experiments are pub- 578

licly available and were collected from open-access 579

sources such as HuggingFace. Our mitigation and 580

detection techniques target hallucinations in large 581

language models caused by spurious correlations 582

in the data, aiming to improve model reliability 583

and reduce potential harms due to misinformation. 584

We foresee no significant ethical risks associated 585

with this work. Nevertheless, we acknowledge that 586

detecting hallucinations is an ongoing challenge, 587

and further work is needed to ensure fairness and 588

robustness in broader real-world deployments. 589
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In Table 1, the word marked in red in Answer3 is 731

identified because it repeatedly appears in the high 732

10



Model Name Answer
Chatgpt-4 ×
Chatgpt-4o ×
Gemini Advanced ×
Claude ×
Kimi ×
Cici ×
ERNIE Bot ✓

Table 6: Large Model Floating Point Comparison

similarity group between the test input (CQ) and733

other datasets. This is further detailed in Table 9.734

The first three rows of the table indicate that, in735

the top 50 rows with the highest Jaccard similarity736

to this CQ from the trivia(data3) dataset, words737

{gland}, {adrenal, gland}, and {gland} were found738

in rows 17, 18, and 49 (with indices 1326, 11791,739

and 1303 in the data3 dataset, respectively). There-740

fore, we define the incorrect answer containing the741

red-marked word as a knowledge-shortcut halluci-742

nation.743

B Methodology744

B.1 Metrics of Text Similarity745

This paper aims to develop a framework for de-746

tecting and mitigating knowledge-shortcut hallu-747

cinations and to validate the effectiveness of the748

proposed method. From the perspective of data, the749

root cause of knowledge-shortcut hallucinations is750

intuitively reflected in the presence of high tex-751

tual similarity within the training data. To quantify752

textual similarity, we employ three mathematical753

approaches:754

Jaccard similarity. Jaccard similarity is the755

most straightforward measure of the overlap be-756

tween two sets. It calculates the ratio of the inter-757

section to the union of the sets, providing a naive758

yet effective way to assess similarity. The numer-759

ator denotes the intersection of sets A and B, and760

the denominator denotes the union of sets A and B.761

Jaccardsim =
|A

⋂
B|

|A
⋃
B|

(6)762

TF-IDF similarity. TF-IDF(Term Frequency-763

Inverse Document Frequency) similarity leverages764

statistical measures of word importance across doc-765

uments, enabling a more nuanced comparison that766

considers term frequency and discriminative power.767

The t in the formula denotes the word and d denotes768

the document. So we can get TF − IDFsim 769

TF − IDFsim(t, d) = TF (t, d) · IDF (t) (7) 770

771

TF (t, d) =
count(t, d)∑
k∈d count(k, d)

(8) 772

773

IDF (t) = log
N

1 +DF (t)
(9) 774

Pre-trained model-based similarity. A Pre- 775

trained model-based similarity measure uses pre- 776

trained language models to compute semantic simi- 777

larity between text pairs. This method captures con- 778

textual and latent relationships in text, providing 779

a more sophisticated and accurate measure com- 780

pared to traditional approaches. Finally, we choose 781

the paraphrase-miniLM-v12-v29 of the sentence- 782

transformers library, because it performs fast, accu- 783

rate sentence similarity evaluation. 784

We utilize the above three metrics to measure 785

the similarity between the generated responses and 786

the correct answers, leveraging their respective ad- 787

vantages. Jaccard similarity provides a simple and 788

intuitive method for quickly assessing the magni- 789

tude of similarity between two texts. TF-IDF simi- 790

larity incorporates the influence of term frequency, 791

reducing the impact of high-frequency words on 792

sentence similarity. Pre-trained model-based simi- 793

larity evaluates the similarity from a semantic per- 794

spective, offering fine-grained corrections for dis- 795

crepancies, such as those between "4" and "four." 796

By combining these three metrics, we achieve a 797

multidimensional evaluation of sentence similarity. 798

We also performed several engineering optimiza- 799

tions in the code. Given that the generated re- 800

sponses in the CQA task are relatively short, vari- 801

ations in singular and plural forms of nouns, verb 802

conjugations, and adjective-adverb transformations 803

could significantly impact Jaccard similarity and 804

TF-IDF similarity. To address this, we utilized 805

the nltk10 library to implement a lemmatization 806

method, improving the accuracy of Jaccard and 807

TF-IDF similarity measurements. This refinement 808

enhances the granularity of overall text similarity 809

evaluation metrics. 810

B.2 The Defination of High Similarity Group 811

Datasets used in pretraining or fine-tuning often 812

consist of multiple semantically distinct sources, 813

9https://huggingface.co/sentence-transformers/
paraphrase-MiniLM-L12-v2

10https://www.nltk.org/
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Figure 6: An example of data high similarity

such as mathematics, art, and agriculture. Our fo-814

cus is on subsets of high textual similarity within815

these sources. As shown in Figure 6, for example,816

high similarity between data1 and subsets of data2,817

data3, and data4 forms what we call High Simi-818

larity Group (HS group), represented as HS group819

1&2, HS group 1&3, and HS group 1&4. These820

high similarity texts can convey different meanings,821

misleading generative models during training or822

fine-tuning. This increases the risk of knowledge-823

shortcut hallucinations when queries are input.824

B.3 Pseudocode of Mitigation and Detection825

Algorithm 1 Mitigation: High Similarity Pruning
Algorithm

Input: (data1, ..., datan); K1,K2, α1, α2

Output: Mitigation strategy
1: for k = 1 to n do
2: for i = 0 to row(datak) do
3: for j ̸= k to n do

Ti,j(CQAGHF ,GHV
)← K1, dataj ;

Gj,HF , Gj,HV ← Ti,j(CQAGHF ,GHV
);

4: end for
Rk,j ← Set(α1Gj,HF + α2Gj,HV );

5: end for
Rall ← Set(Rk,j),K2;

6: end for
(data1, ...datan)

′ ← (data1, datan) −
Rall;

Algorithm 2 Knowledge Shortcut Hallucination
Detection
Input: Context-question pair (CQ); Similarity

threshold α3; m = 5
Output: Detection of knowledge-shortcut halluci-

nation
1: for j = 0 to len(CQ) do
2: T (CQAij)← (data1, ...datan);
3: GHF , GHV ← CQAij ;
4: for l = 1 to m do
5: Generate response Al;
6: if

∑m
l=1 1−Sim(Ao,Al)

m > α3 then
So = Set(Ao)− Set(CQ);

7: if So is not empty then
8: flag ← Set(Ao)

∩Set(CQAGHF ,GHV
);

9: if flag ̸= ∅ then
10: Return True;
11: else Return False;
12: end if
13: else Return False;
14: end if
15: else Return False;
16: end if
17: end for
18: end for

C Results of the Experiment 826

C.1 Evaluation after applying mitigation 827

strategies 828

Here, we show the evaluation results of different 829

parameter-scale models and training methods on 830

the same test set after applying the mitigation strat- 831

egy. Figures 7 and 8 show the evaluation results af- 832

ter applying the mitigation strategy, corresponding 833

to Figures 3 and 4. A comparison reveals that the 834

proportion of less labels has generally decreased, 835

while the proportion of more labels has increased, 836

leading to a more balanced and coordinated dis- 837

tribution. These findings indicate that our strat- 838

egy effectively reduces the influence of unrelated 839

datasets on the model’s generated answers, thereby 840

improving output quality. 841

It is worth noting that the normal parameter scale 842

of nanoGPT is only 124M, resulting in greater fluc- 843

tuations in the experiments. Compared to larger 844

parameter models, this introduces some instability, 845

leading to deviations in certain results. 846
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Figure 7: After mitigation, fine-tuning: nanoGPT large, medium, normal

Figure 8: After mitigation, train : nanoGPT large, medium, normal

C.2 Experiment Results of Tinyllama847

To further investigate the generalization effective-848

ness of our proposed method, we conducted the849

same evaluation, mitigation, and prediction experi-850

ments using the TinyLlama model, employing only851

the fine-tuning approach. The results and trends re-852

mained consistent with those observed in nanoGPT,853

demonstrating the robustness and applicability of854

our method across different model architectures.855

Figure 10 presents the evaluation results of856

TinyLlama before and after applying the mitigation857

strategy, while Table 7 summarizes the macro-level858

performance metrics of TinyLlama’s generated re-859

sponses under both conditions. Furthermore, in860

TinyLlama’s response generation process, we set861

the sampling parameter Top-k to 5. To ensure con-862

sistency, we maintained the hallucination detection863

parameter K1 equal to Top-k and conducted an864

ablation study to explore the impact of different865

K1 values on the detection of knowledge-shortcut866

hallucinations. As shown in Figure 9, after apply-867

ing the mitigation strategy, the number of detected868

knowledge-shortcut hallucinations remained con-869

sistently lower than before across all K1 values,870

with minimal variation in detection differences.871

C.3 Reproducibility of Experimental Results872

To minimize the impact of randomness on our ex-873

perimental results, we conducted multiple repeated874

experiments and have open-sourced all code and875

results. The full reproducible experiments can be876

Figure 9: Effectiveness of Different K1 Values on Tinyl-
lama Knowledge-Shortcut Hallucination Detection

accessed and executed to obtain the exact experi- 877

mental outcomes. 878

For these repeated experiments, we primarily 879

focused on nanoGPT. We retrained, generated re- 880

sponses, and conducted testing to obtain a com- 881

prehensive set of experimental results, which are 882

presented below. 883
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(a) Evaluation of Tinyllama, before mitigation (b) Evaluation of Tinyllama, after mitigation

Figure 10: (a) Before mitigation, (b) After mitigation. Illustration of the evaluation results with mitigation strategies.

Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

fine-tune 1.1b 1273 1321 2400 1243 1280 2400
0.39285 0.39105 0.68855 0.38596 0.38347 0.68374

Table 7: Results with mitigation and before mitigation for Tinyllama. Values in bold denote significant results.

Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

fine-tune

large 1638 1647 2400 1612 1618 2400
0.61965 0.60919 0.76633 0.61193 0.60121 0.76393

medium 1380 1390 2400 1388 1399 2400
0.50376 0.49043 0.69370 0.51097 0.50020 0.69581

normal 949 967 2400 995 1012 2400
0.32107 0.31457 0.55900 0.34018 0.33170 0.57477

train

large 1858 1870 2400 1844 1853 2398
0.71944 0.70863 0.83367 0.71422 0.70078 0.82887

medium 1742 1755 2400 1716 1725 2400
0.66459 0.65435 0.79688 0.65474 0.64318 0.79082

normal 1370 1382 2400 1331 1346 2400
0.50535 0.49617 0.68918 0.49451 0.48467 0.67837

Table 8: Results with mitigation and before mitigation for various nanoGPT parameters. Values in bold denote
significant results.

14



Figure 11: The number of Knowledge-Shortcut hallucination in CQA tasks before and after mitigation in new
experiments

Figure 12: Reproduce experiments, before mitigation, fine-tuning: nanoGPT large, medium, normal

Figure 13: Reproduce experiments, before mitigation, train: nanoGPT large, medium, normal

Figure 14: Reproduce experiments, after mitigation, fine-tuning: nanoGPT large, medium, normal
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Figure 15: Reproduce experiments, after mitigation, train: nanoGPT large, medium, normal

Type HS Index Dataset Row Index Context

Jaccard 17 3 1326 Insulin is a hormone made up of a small polypeptide
protein that is secreted by the pancreas, which acts as
both an endocrine and exocrine gland . Endocrine

glands are the system of glands that secrete hor-

mones to regulate body functions. Exocrine glands
aid in digestion.

Jaccard 18 3 11791 Epinephrine (ep-uh-nef-rin, -reen) is also known as
adrenaline. It is a hormone that is secreted by the
adrenal glands .

Jaccard 49 3 1303 The thyroid gland is one of the body’s most impor-
tant endocrine organs......

TF-IDF 45 3 11235 Pinnipeds have streamlined, spindle-shaped bod-
ies with reduced or non-existent external ear flaps,
rounded heads, flexible necks, limbs modified into
flippers, and small tails...... The mammary glands
and genitals of pinnipeds can retract into the body.

Table 9: Examples of high-frequency co-occurring words found in the high similarity group
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