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Abstract

The emergence of large language models
(LLMs) has significantly advanced the devel-
opment of natural language processing (NLP),
especially in text generation tasks like ques-
tion answering. However, model hallucinations
remain a major challenge in natural language
generation (NLG) tasks due to their complex
causes. We systematically expand on the causes
of factual hallucinations from the perspective
of knowledge shortcuts, analyzing hallucina-
tions arising from correct and defect-free data
and demonstrating that knowledge-shortcut hal-
lucinations are prevalent in generative models.
To mitigate this issue, we propose a high sim-
ilarity pruning algorithm at the data prepro-
cessing level to reduce spurious correlations
in the data. Additionally, we design a spe-
cific detection method for knowledge-shortcut
hallucinations to evaluate the effectiveness of
our mitigation strategy. Experimental results
show that our approach effectively reduces
knowledge-shortcut hallucinations, particularly
in fine-tuning tasks, without negatively impact-
ing model performance in question answering.
This work introduces a new paradigm for mit-
igating specific hallucination issues in gener-
ative models, enhancing their robustness and
reliability in real-world applications.

1 Introduction

The emergence of large language models (LLMs)
has brought a paradigm shift to natural language
processing (NLP), especially in generative tasks
such as question-answering (Rangapur and Ranga-
pur, 2024; Michail et al., 2023; Qin et al., 2023)
However, this revolution has also caused a growing
concern, known as model hallucinations. Huang et
al.(Huang et al., 2024) building on the definition
of hallucinations proposed by Ji et al.(Dziri et al.,
2021; Ji et al., 2023), expanded the applicability
and scope of the term, classifying model halluci-
nations into two types: factual hallucinations and

Al User
Context:
Other organs involved in digestion include the liver, , and pancreas. They are called
| accessory organs because food does not pass through them. Instead, they secrete or store
substances needed for digestion.
Question:
\Organs involved in digestion that do not have food pass through them are called?

OCorrecl Answer: accessory organ .m.

Answerl: an accessory organ :other hallucinations

Answer2: :knowledge shortcut
Answer3: adrenal and pancreatic gland }

Is factual hallucination

Related to Data 1, index k

Answer4: compartment

J
7 N IR haan )
i 1 If in? - - B3 M,
Ls @ @ @ H : i, Data I, Index k's Top K baaz |
ce. H | 1
! ' 1 e HFgroup |11,
| Datal Data2  Datan {'adrenal’, 'gland’} 1~ High similarity !

H 1 1

1

X <

group in other iy
datasets HV group II'/ !

H .
1 Training Datasets ,: mpartment

Figure 1: An example of what is the knowledge-shortcut
hallucinations in CQA tasks

faithfulness hallucinations. This expanded classifi-
cation provides a new paradigm for understanding
model hallucinations.

‘We focus on factual hallucinations, and have ob-
served a critical fact: training data has played a
significant role in causing factual hallucinations.
One notable example is the “floating-point com-
parison hallucination”!, When the prompt "9.11 or
9.9, which number is larger?" is given to LLMs,
many existing commercial LLMs provide incorrect
answers, as illustrated in Appendix A, Table 6.

A major cause of the aforementioned halluci-
nations is knowledge-shortcut(Ju et al., 2024;Li
et al., 2022). The training data often contains a
significant amount of information such as com-
puter system version numbers and book indexes.
LLMs have learned the comparative features of this
data and erroneously applied these features to the
comparison of regular numbers, leading to hallu-
cinations. In the classification proposed by Li(Li
et al., 2022), this cause is referred to as a "Knowl-
edge Shortcut". Building on this concept, we define
hallucinations caused by knowledge shortcuts as
knowledge-shortcut hallucinations.

1https: //x.com/goodside/status/
1812977352085020680
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Index C-Q Correct-Answer Generate-Answer Jaccard-sim TF_IDF-sim Al-sim
before 1  <luser/>Other... accessory organs  liver 0.00000 0.00000 0.39682
before 2 <luser/>Other... accessory organs  assistant [Organ 0.00000 0.00000 0.54355
before 3  <luser/>Other... accessory organs - and | pancreatic - 0.00000 0.00000 0.30573
before 4 <luserl>Other... accessory organs | compartment 0.00000 0.00000 0.46903
after 1 <luser/>Other... accessory organs an [accessory organ 1.00000 0.70930 0.90820
after 2 <luser/>Other... accessory organs  liver 0.00000 0.00000 0.39682
after 3 <luserl>Other... accessory organs [aCCessory organ 1.00000 1.00000 0.94474
after 4 <luser/>Other... accessory organs |attached |organ 0.33333 0.33610 0.74186

Table 1: Examples of CQA tasks before and after mitigation. |Green : Correct words that appear in the C-Q text.

Yellow : Incorrect words that appear in the C-Q text but are not the correct answer. [Orange : Incorrect words that

do not appear in the C-Q text, representing other hallucinations. -: Words appearing in the high-frequency and
high-value groups, indicating knowledge-shortcut hallucinations. See Appendix A for detailed information

Knowledge shortcut arises because language
models typically do not genuinely understand the
intricate and complex factual knowledge but rather
rely on shortcuts. They tend to over-rely on seman-
tically proximate positions in the pre-training data,
shared high-frequency words, and the quantity of
related documents (Kandpal et al., 2023).This can
introduce spurious correlation biases, causing the
model to produce hallucinations even when work-
ing with correct and defect-free data sources.

We focus on factual hallucinations and introduce
a Context-Question-Answer (CQA) task to ana-
lyze hallucinations caused by knowledge shortcuts,
termed knowledge-shortcut hallucinations. In a
CQA task, the correct answer typically resides in
the context, and answers from large models that de-
viate from the correct answer are considered factual
hallucinations. However, not all factual hallucina-
tions are knowledge-shortcut hallucinations. When
the model’s answer is not in the context but is found
in the high-similarity group of the CQ (shown in
red in Figure 1), it is considered a knowledge-
shortcut hallucination. In contrast, answers found
in the context (like Answer2(yellow)) or outside
both the context and high-similarity group (like
Answerd(orange)) are called other hallucinations.

A common approach for mitigating data-related
hallucinations is data filtering, including strictly
controlling data source(Gao et al., 2020; (Gu-
nasekar et al., 2023)) and deduplication. Dedu-
plication which is divided into exact and near du-
plicates faces challenges. Exact duplicate detection
is inefficient for large datasets (Manber and Myers,
1993), while near duplicate method like hash-based
algorithm MinHash (Broder, 1997) prioritize speed
but miss hidden information. Semantic duplicate
recognition using pre-trained models (Abbas et al.,

2023) is slower and impractical for large datasets.
Thus, balancing granularity in duplicate detection
and processing speed, while effectively reducing
knowledge-shortcut hallucinations, remains a chal-
lenge.

This paper focuses on analyzing knowledge-
shortcut hallucinations triggered by high-similarity
texts from correct, defect-free data. We propose a
High Similarity Pruning Algorithm that mitigates
knowledge-shortcut hallucinations from a data per-
spective by leveraging semantic similarity, shared
high-frequency words. Furthermore, based on
these characteristics and incorporating model un-
certainty(Xiao and Wang, 2021; Miao et al., 2023),
we design a hybrid detection method tailored for
CQA tasks to identify knowledge-shortcut halluci-
nations effectively. Our mitigation strategy demon-
strates promising results across multiple LLMs and
parameter scales. Notably, in the fine-tuning of
nanoGPT-large, it successfully reduces knowledge-
shortcut hallucinations by 6.5%.

Table 1 shows the same color-coding as in Figure
1. We present a real CQA example and compare
responses before and after mitigation. Detailed re-
sults in appendix A show significant improvement
across similarity metrics, a reduction in knowledge-
shortcut hallucinations, and overall higher response
quality.

Overall, the contributions of our paper can be
summarized as follows:

* We investigate the mechanisms and patterns
underlying knowledge-shortcut hallucinations
driven by accurate and defect-free data. We
identify their general characteristics and re-
veal their widespread presence in LLMs.

* We propose a novel detection method that



combines semantic similarity and the uncer-
tainty of LLM-generated outputs in CQA
tasks. This method enables the quantita-
tive evaluation of knowledge-shortcut hallu-
cinations across different LLMs and training
strategies (e.g., fine-tuning vs. training from
scratch).

* To mitigate knowledge-shortcut hallucina-
tions, we introduce a Data High Similarity
Pruning Algorithm based on the identified
generation mechanisms of such hallucinations.
Quantitative evaluations demonstrate that this
algorithm significantly improves the genera-
tion quality of LLMs and excels in suppress-
ing hallucinations. The source code for our
approach is available at github.

2 Methodology

2.1 Overview

The CQA task, characterized by simple answers
and clear facts, is particularly well-suited for
the study of knowledge-shortcut hallucinations.
Through prior analysis, we found that such hallu-
cinations arise from the misleading effect of high-
frequency co-occurring and highly similar words
in the training data (e.g., “9.11” being interpreted
as a computer version number or directory, which
is larger than “9.9”). The essence of our mitigation
strategy is to filter high-frequency co-occurring and
highly similar terms in the training data based on
specific metrics (reducing or balancing the occur-
rences of "9.11" as a version number or directory).
The focus of knowledge-shortcut hallucinations de-
tection is to determine whether a factual error is
caused by the misdirection of high-frequency and
highly similar co-occurring entries in the training
data, based on the background and the question
(e.g., whether a comparison of computer version
numbers or directories, like "9.11 is larger than
9.8," exists in the training data).

Building on these insights, we have refined our
knowledge-shortcut mitigation strategy (Section
2.2) and hallucination detection approach (Section
2.3), with the overall framework shown in Figure
2.

We carefully selected three metrics for measur-
ing text similarity: Jaccard similarity, TF-IDF sim-
ilarity, and pre-trained model similarity. Through
extensive engineering optimization, we ensured
that our text similarity metrics not only maintain
fine granularity but also enhance runtime efficiency,

as detailed in Appendix B.1. Experimental results
(Section 3, Appendix C) confirm that our mitiga-
tion strategy is simple to implement and highly
effective, demonstrating the robustness of the strat-
egy and validating its performance in knowledge-
shortcut hallucination detection.

2.2 Data High Similarity Pruning

We define high-frequency co-occurring words and
highly similar words as the high similarity group,
with the specific concept outlined in Appendix B.2.
Based on the definition of the high-similarity group,
we designed the High Similarity Pruning Algorithm
shown in Figure 2, which helps generative models
reduce the occurrence of knowledge-shortcut hallu-
cinations.

Given a batch of fine-tuning or training data from
n different categories (datai,datas, ..., datay,),
we define the following steps for datal: with hy-
perparameters (K1, Ko, a1, az), we compute the
set I?1 jep for deletion:

1) For each row in data;, compute the top K;
Jaccard and TF-IDF similarity values with the re-
maining (n—1) datasets. Record the corresponding
indices and values. 2) Calculate the top /Ky most
frequent indices (High-Frequency group, Gr)
and the top K largest values (High-Value group,
Grv). 3) Combine the four groups (HF and HV
for both Jaccard and TF-IDF similarities), remove
duplicates, and identify rows in data e, to delete,
denoted as 1?1 jcn(Equation 1):

Ry jen = Set(a1Gup + axGpy) (1)

4) Iterate over all n datasets to compute the final set
R,y for deletion across all datasets with Equation

2: 0 on
Ran = Set(y ) Rij) @
i=1 j#i
2.3 Detection of Knowledge-Shortcut

Hallucination

Detecting knowledge-shortcut hallucinations re-
quires distinguishing them from other hallucina-
tions. We focus on fact-based question-answering
tasks with a CQA structure, where the correct
answer is embedded in the context. To detect
knowledge-shortcut hallucinations, we propose a
method combining similarity features and self-
check uncertainty measurement(Miao et al., 2023).
The pseudocode is in Appendix B.3.

1) For a given context-question pair (C(Q)), we
compute the most similar entry CQA;; from the
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Figure 2: Overview of detection and mitigation.

datasets (datay, ..., datay,), where i denotes the
dataset and j the row index. 2) We calculate the
Jaccard and TF-IDF similarity scores between this
entry and others from datay;, identifying the
high-frequency group (G ) and high-value group
(Ggv). 3) In the self-check module, the model
generates an answer A,. We then regenerate m
responses (A, ..., A,,) from the same input. If
A, significantly differs from (A1, ..., A;,), the re-
sponse is flagged as a potential hallucination. The
variation is quantified by Equation 3, where m = 5
and o3 = 0.2.

Yot 1— Sim(A,, Ay) < o

3)

m

4) We compute the difference set .S, between A,
and CQ (Equation 4). If S, is non-empty, the
process continues:

S, = Set(A,) — Set(CQ) €]

5) Finally, we calculate the intersection between
S, and the high-frequency (G r) and high-value
(Gpgy) groups from CQA (Equation 5). If non-
empty, we conclude that A, is a knowledge-
shortcut hallucination.

Set(Ay) N Set(CQAG, ».Guy ) 5)
24

To evaluate the mitigation method, we design met-
rics that measure performance differences of the

Metrics of Effectiveness Evaluation

same model under identical parameter configura-
tions, both before and after applying the method.

Coarse-grained metrics: 1) Number of Non-
Zero and Non-Empty Similarity Rows: Count the
rows where the similarity between generated and
correct answers is non-zero and non-empty, before
and after mitigation. 2) Average Similarity: Calcu-
late the average similarity across the test set. These
metrics offer a macroscopic view of the method’s
overall impact.

Fine-grained metrics: The fine-grained ap-
proach directly counts the number of knowledge-
shortcut hallucinations in the test set. By compar-
ing the numbers before and after applying the miti-
gation method, this metric offers a straightforward
and clear evaluation of the method’s effectiveness.

3 Experiments

3.1 Experiments Setting

3.1.1 Datasets

We selected four datasets with a CQA struc-
ture from the generative text datasets on Hug-
ging Face as training or fine-tuning datasets
(datay, datag, datas, datay), along with a halluci-
nation test dataset as the ablation test dataset. The
four CQA datasets belong to different domains,
forming a diverse training or fine-tuning datasets.
In terms of data quantity selection, not all data from
the four datasets were used. The large discrepan-



Dataset Category Number of rows
sciq science 11679
financial-qa-10K finance 7000
trivia-cqa miscellaneous 14000
QASports Basketball 14453

Table 2: General description of the CQA datasets

cies in the total volume of data across different
datasets could make it difficult for the model to
learn long-tail knowledge(Kandpal et al., 2023),
thus negatively impacting the experimental results.
Therefore, we selected portions of data from trivia-
cqa® and QASports® that closely matches the sam-
ple sizes of scig* and financial-qa-10K>. Details of
this data selection can be found in Table 2.

For the test sets, we selected 600 samples from
the scig test dataset, a natural sciences dataset fo-
cused on objective facts, as the related test set. Ad-
ditionally, we selected 513 samples from the /im
hallucination® test dataset as an unrelated test set to
evaluate the method’s performance under different
conditions.

3.1.2 Model Selection

We conducted our experiments on two generative
models which is distributed under the MIT License.
We used the model according to the terms spec-
ified in the license: nanoGPT’ and TinyLlama®.
For nanoGPT, we selected three parameter scales:
gpt2-large (774M), gpt2-medium (350M), and gpt2
(124M), to perform fine-tuning and training experi-
ments. For TinyLlama(Zhang et al., 2024), we con-
ducted fine-tuning experiments using the LoRA(Hu
et al., 2021) (Low-Rank Adaptation) method at the
1.1B parameter scale.

3.1.3 Implementation Details

Our experiments consist of three phases: assess-
ment, mitigation, and detection.

Assessment: We used the scig dataset (dataq)
and progressively combined it with three addi-
tional datasets to form four training datasets. We

2https://huggingface.co/datasets/tilyupo/
trivia_cqga
Shttps://huggingface.co/datasets/PedroCJardim/
QASports
4https://huggingface.co/datasets/allenai/sciq
Shttps://huggingface.co/datasets/virattt/
financial-ga-10K
6https://huggingface.co/datasets/COuchP@tat@/
11m_hallucinations
"https://github.com/karpathy/nanoGPT
8https://github.com/jzhang38/TinyLlama

Dataset Number of rows Reduction magnitude

sciq 11679 0%

financial-qa-10K 6962 0.542%
trivia-cqa 13926 0.529%
QASports 14376 0.533%

Table 3: For sciq test, after mitigation

trained three nanoGPT models (gpt2-large, gpt2-
medium, gpt2) using both training and fine-tuning
approaches, while the TinyLlama model was fine-
tuned only. All models were evaluated on the scig
test using the CQA task. The results from the mod-
els trained on scig(datay ) alone served as the base-
line for the related test set. We assessed the sim-
ilarity changes when additional datasets were in-
corporated, analyzing both increases and decreases.
Since there is no baseline for the unrelated test set,
similarity changes are not evaluated for it.

Mitigation: We compared the performance of
the models before and after applying the mitiga-
tion method, using consistent test sets. The miti-
gation parameters were set as: (K1, Ko, a1, an) =
(50, lens x 0.006,0.4,0.1). K; = 50 corresponds
to the Top-K parameter in nanoGPT, a key factor in
hallucination generation. K5 is related to dataset
length, with a value of 0.006 to avoid excessive
data removal. The value of 0.4 prioritizes high-
frequency overlapping data in pruning. We chose
a1 + ag = 0.5 to balance the influence of High-
Frequency (HF) and High-Value (HV) groups. The
High Similarity Pruning increases data source in-
dependence, reducing semantic overlap between
unrelated categories.

For instance, applying the data high similarity
pruning algorithm to the sciq test yields the up-
dated data quantities, as shown in Table 3.

Detection: We performed detection and metric
evaluations for all models before and after mitiga-
tion on both test sets. To ensure result stability, we
repeated experiments with different random seeds.
The experiments were conducted on two NVIDIA
3090 GPUs (24 GB each). The source code is
available on GitHub.

3.2 Experiment 1: Evaluation—-The
Prevalence of Knowledge-Shortcut
Hallucinations

We trained models on the four datasets described
in Table 1 and conducted CQA tasks on a related
test set comprising 600 samples. Using the results
from training on sciq(data;) as the baseline, we
evaluated the accuracy changes in model answers to
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Figure 3: Evaluation of nanoGPT models under the fine-tuning method across three parameter scales:

normal,

medium and large(from left to right). Each x-axis represents a different similarity metric: Jaccard similarity, TF-IDF
similarity, and Pre-trained model-based similarity, respectively.
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Figure 4: Evaluation of nanoGPT models under the training method across three parameter scales: normal, medium
and large(from left to right). Each x-axis represents a different similarity metric: Jaccard similarity, TF-IDF
similarity, and Pre-trained model-based similarity, respectively.

the same questions after mixing additional datasets
into the training data.

Models trained on a single category of data and
tested on the corresponding category’s test set can
fully demonstrate the model’s performance. By pro-
gressively mixing other datasets into the training
data and repeating the testing process, we revealed
the widespread presence of knowledge-shortcut hal-
lucinations from a macro perspective.

As shown in Figure 3, for models fine-tuned with
different parameter scales, the similarity between
generated answers and correct answers, measured
by all three similarity metrics (Jaccard similarity,
TF-IDF similarity, and pre-trained model similar-
ity), decreased to varying extents as more datasets
were mixed in. Compared to the baseline, mod-
els trained with multiple mixed datasets showed
a higher proportion of "less" labels than "more"
labels in their responses (The model trained on the
scig dataset serves as the baseline. If the responses
generated by models trained with additional mixed
datasets show an increase in any of the three sim-
ilarity metrics, they are labeled as "more"; if the
similarity decreases, they are labeled as "less").
Similar trends were observed in models trained
using the full training method, as illustrated in Fig-
ure 4. The evaluation results and analysis after

applying the mitigation strategy can be found in
Appendix C.1.

This phenomenon is also observed in the fine-
tuning of the TinyLlama 1.1B model, with the cor-
responding results presented in Appendix C.2.

Our evaluations demonstrate that knowledge-
shortcut hallucinations are widespread across vari-
ous datasets and models. This trend is consistently
observed across different model architectures, pa-
rameter scales, and training methods, highlighting
the significant impact of dataset composition on
the accuracy and reliability of generative models.

3.3 Experiment 2: Mitigation—Effectiveness
Before and After Applying the High
Similarity Pruning Algorithm

Using the same training methods and parameters,
we conducted CQA tasks on the models before
and after applying the mitigation strategy. We first
evaluate whether the 0.4% reduction in training
data induced by the mitigation strategy would ad-
versely affect model training performance. While
the primary objective of this mitigation strategy is
to reduce knowledge shortcut-induced model hallu-
cinations, we aim to ensure that its implementation
does not compromise model performance on CQA
tasks. We employ two coarse-grained evaluation
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Figure 5: The number of Knowledge-Shortcut hallucination in CQA tasks before and after mitigation

Type Parameter After mitigation Before mitigation
Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train
large 1649 1656 2400 1646 1652 2400
0.62541 0.61355 0.79622 0.62188 0.61136  0.76381
fine-tune medium 1388 1399 2400 1368 1380 2400
0.51048 0.50020 0.69581 0.50859 0.49707 0.69392
normal 956 979 2400 952 975 2400
0.32638 0.32113  0.56459 0.32576 0.31948  0.56337
large 1852 1861 2400 1838 1849 2400
0.71533 0.70426 0.83314 0.71288 0.69956  0.82451
train medium 1737 1745 2400 1699 1709 2400
0.66219 0.65106 0.79507 0.64394 0.63185  (.78482
normal 1341 1352 2400 1373 1385 2400
0.49678 0.48617 0.68270  0.50845 0.49828 0.68748

Table 4: Results with related test, mitigation and before mitigation for various nanoGPT parameters. The integer
above each row represents the number of non-zero and non-empty result rows (out of a total of 2400), while the
decimal below indicates the overall average similarity. Values in bold denote significant results.

metrics: the count of non-zero non-empty similar-
ity rows and average similarity score. The strategy
is considered effective if these metrics demonstrate
comparable or slightly improved performance post-
implementation.

As shown in Table 4, across nearly all training
configurations and model scales of nanoGPT, the
mitigation strategy generally yields marginal im-
provements in both metrics. An exceptional per-
formance decline observed in the GPT-2 (124M)
model under one specific training configuration
will be analyzed in the section 6.

The reduction in training data directly leads to a
decrease in training time, improving the efficiency
of generative model training or fine-tuning. The
reduced data did not impact testing on the related
test set. In the other experiments presented in Ta-
ble 5, we also explored the impact on the unre-

lated test set, where the fluctuations in both met-
rics remained minimal within the proportion of
data reduction (For the unrelated test set, the train
method is not meaningful, so we focus only on
the fine-tune method). Furthermore, after applying
the mitigation strategy, models trained on mixed
datasets showed a decreasing trend in the propor-
tion of "less" labels when compared to before miti-
gation in appendix C.1.

3.4 Experiment 3: Detection—Reduction of
Knowledge-Shortcut hallucinations

To evaluate the effectiveness of the mitigation strat-
egy from a finer-grained perspective, we employed
the knowledge-shortcut hallucination fusion detec-
tion method. Specifically, we directly counted the
number of knowledge-shortcut hallucinations in
the test set generated by models of different param-



Type Parameter After mitigation Before mitigation
Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train
large 1090 1126 2056 1118 1160 2056
0.41782 0.37675 0.64697 0.42160 0.37675 0.64240
fine-tune medium 976 1023 2056 956 1006 2056
0.36990 0.33733 0.60472 0.37286 0.33688  0.60864
normal 632 675 2056 601 648 2056
0.22673 0.20910 0.49422 0.21640 0.19913  0.48892

Table 5: Results with unrelated test, before and after mitigation. The integer above each row represents the number
of non-zero and non-empty result rows (out of a total of 2056), while the decimal below indicates the overall average

similarity. Values in bold denote significant results.

eter scales and training methods before and after
applying the mitigation strategy. This straightfor-
ward approach provides a clear demonstration of
the mitigation strategy’s effectiveness.

Our detections show that in large-parameter fine-
tuning models, the mitigation strategy performs ex-
ceptionally well in suppressing knowledge-shortcut
hallucinations. Even for the training method, the
strategy proved effective in reducing hallucina-
tions, validating the method’s efficacy in mitigat-
ing knowledge-shortcut hallucinations in genera-
tive models. The results are presented in Figure
5.

We provide a reproducible set of repeated exper-
imental results in Appendix C.3. The training and
generation code has been open-sourced on GitHub.
The results from this set of experiments align well
with those presented in the main text, indirectly
validating the robustness of our method.

4 Related Works

Significant progress has been made in the study
of hallucinations in LLMs. Xu(Xu et al., 2024)
argue that eliminating hallucinations in LLMs is
impossible. Numerous techniques have emerged
to mitigate LLLM hallucinations, with notable ap-
proaches including Retrieval-Augmented Gener-
ation (RAG)(Lewis et al., 2020), knowledge re-
trieval(Varshney et al., 2023), CoNLI(Lei et al.,
2023), and CoVe(Dhuliawala et al., 2023). Our aim
is to clarify the underlying causes of knowledge-
shortcut hallucinations and minimize such halluci-
nations as much as possible.

Shortcut learning is a critical area of research
in LL.M hallucinations, with knowledge shortcuts
representing the manifestation of shortcut learning
at the data level. Geirhos(Geirhos et al., 2020) and

Du(Du et al., 2023) suggest that dataset bias is the
starting point of shortcut learning, and many ex-
cellent works have focused on alleviating shortcut
learning from the data perspective, such as identify-
ing biased sentencesLei(Lei et al., 2022), data short-
cuts(Friedman et al., 2022), or replacing datasets
with more balanced ones(Tang et al., 2023). Tang’s
research(Tang et al., 2021) indicates that fine-tuned
language models can learn and even amplify biases
present in the training datasets, leading to poor per-
formance in downstream tasks, which aligns with
our experimental findings. Despite these advance-
ments, existing works have yet to fully explore all
the ways in which dataset bias can manifest. Our
goal is to conduct an in-depth study of one type
of hallucination triggered by correct, defect-free
data sources in large models and propose a fea-
sible method for mitigating and predicting such
illusions.

5 Conclusion

In conclusion, we have conducted a finer-grained
study of a specific type of hallucination origi-
nating from the data perspective and proposed
a novel method for mitigating this hallucina-
tion, along with a fusion detection method for
such hallucinations. Our approach demonstrates
through experiments that, when handling specific
question-answering tasks, it can significantly re-
duce knowledge-shortcut hallucinations in the fine-
tuning process while maintaining the performance
of generative models and stabilizing answer simi-
larity. This provides a new paradigm for addressing
hallucinations in generative models.



6 Limitations

Normal parameter scale results. In the experi-
ment shown in Figure 5, the mitigation effect on
the nanoGPT (124M) model was relatively poor.
This phenomenon persisted in repeated experi-
ments (Figure 11), suggesting a potential explana-
tion. Given the small parameter scale and limited
training data, the model may struggle to learn the
patterns of knowledge shortcuts effectively. As a re-
sult, applying the mitigation strategy does not yield
significant improvements. This observation indi-
cates that our mitigation approach is better suited
for larger-scale models, aligning with the experi-
mental results observed in large parameter models.

Runtime and applicable tasks. Our mitigation
strategy demonstrated outstanding performance in
fine-tuning tasks, with a stable and significant re-
duction in knowledge-shortcut hallucinations. This
suggests that the strategy is more suitable for fine-
tuning rather than pretraining tasks. From a data
scale perspective, pretraining datasets are typically
vast, whereas fine-tuning datasets are relatively
smaller. As a result, the computational overhead
introduced by our mitigation strategy is entirely
acceptable in fine-tuning scenarios.

Detection method applicability. Unlike the
general mitigation strategies at the data prepro-
cessing level, our knowledge shortcut hallucina-
tion detection method is specifically designed for
CQA tasks and is data-dependent. As such, we did
not assess the superiority of this method; rather, it
serves as an evaluation technique for the number of
knowledge shortcut hallucinations before and after
applying our mitigation strategy. Due to its data de-
pendency, this detection method is also applicable
to fine-tuning tasks.

Chain-of-Thought technology. We have also
tested floating-point comparison issues on the lat-
est commercial large models utilizing "chain-of-
thought" (CoT) reasoning, such as ChatGPT ol
and DeepSeek R1. Although they ultimately pro-
vided the correct answers, doubts arose during the
reasoning process. ChatGPT ol, for instance, ini-
tially gave an incorrect answer but corrected itself
in the subsequent reasoning steps. Therefore, CoT
technology represents a potential approach for mit-
igating all factual hallucinations. However, the
phenomenon of knowledge shortcuts may not di-
rectly affect the final outcome, yet it still misleads
the model’s reasoning process.

7 Ethics Statement

This research does not involve human subjects,
private data, or personally identifiable informa-
tion. All datasets used in our experiments are pub-
licly available and were collected from open-access
sources such as HuggingFace. Our mitigation and
detection techniques target hallucinations in large
language models caused by spurious correlations
in the data, aiming to improve model reliability
and reduce potential harms due to misinformation.
We foresee no significant ethical risks associated
with this work. Nevertheless, we acknowledge that
detecting hallucinations is an ongoing challenge,
and further work is needed to ensure fairness and
robustness in broader real-world deployments.
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A Example

In Table 1, the word marked in red in Answer3 is
identified because it repeatedly appears in the high



Model Name
Chatgpt-4
Chatgpt-4o0
Gemini Advanced
Claude

Kimi

Cici

ERNIE Bot

Answer
X

N X X X X X

Table 6: Large Model Floating Point Comparison

similarity group between the test input (CQ) and
other datasets. This is further detailed in Table 9.
The first three rows of the table indicate that, in
the top 50 rows with the highest Jaccard similarity
to this CQ from the trivia(data3) dataset, words
{gland)}, {adrenal, gland}, and {gland} were found
in rows 17, 18, and 49 (with indices 1326, 11791,
and 1303 in the data3 dataset, respectively). There-
fore, we define the incorrect answer containing the
red-marked word as a knowledge-shortcut halluci-
nation.

B Methodology

B.1 Metrics of Text Similarity

This paper aims to develop a framework for de-
tecting and mitigating knowledge-shortcut hallu-
cinations and to validate the effectiveness of the
proposed method. From the perspective of data, the
root cause of knowledge-shortcut hallucinations is
intuitively reflected in the presence of high tex-
tual similarity within the training data. To quantify
textual similarity, we employ three mathematical
approaches:

Jaccard similarity. Jaccard similarity is the
most straightforward measure of the overlap be-
tween two sets. It calculates the ratio of the inter-
section to the union of the sets, providing a naive
yet effective way to assess similarity. The numer-
ator denotes the intersection of sets A and B, and
the denominator denotes the union of sets A and B.

AN B
Jaccardgiy, = ———
AU B|

(6)
TF-IDF similarity. TF-IDF(Term Frequency-
Inverse Document Frequency) similarity leverages
statistical measures of word importance across doc-
uments, enabling a more nuanced comparison that
considers term frequency and discriminative power.
The ¢ in the formula denotes the word and d denotes
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the document. So we can get T'F' — [ D Fg;y

TF — IDFym(t,d) = TF(t,d) - IDF(t) (7)

count(t,d)
TF(t,d) = 8
(t,d) > keq count(k, d) ®
IDF(t) =log————
(t) 91 L DFQ) )
Pre-trained model-based similarity. A Pre-

trained model-based similarity measure uses pre-
trained language models to compute semantic simi-
larity between text pairs. This method captures con-
textual and latent relationships in text, providing
a more sophisticated and accurate measure com-
pared to traditional approaches. Finally, we choose
the paraphrase-miniLM-v12-v2° of the sentence-
transformers library, because it performs fast, accu-
rate sentence similarity evaluation.

We utilize the above three metrics to measure
the similarity between the generated responses and
the correct answers, leveraging their respective ad-
vantages. Jaccard similarity provides a simple and
intuitive method for quickly assessing the magni-
tude of similarity between two texts. TF-IDF simi-
larity incorporates the influence of term frequency,
reducing the impact of high-frequency words on
sentence similarity. Pre-trained model-based simi-
larity evaluates the similarity from a semantic per-
spective, offering fine-grained corrections for dis-
crepancies, such as those between "4" and "four."”
By combining these three metrics, we achieve a
multidimensional evaluation of sentence similarity.

We also performed several engineering optimiza-
tions in the code. Given that the generated re-
sponses in the CQA task are relatively short, vari-
ations in singular and plural forms of nouns, verb
conjugations, and adjective-adverb transformations
could significantly impact Jaccard similarity and
TF-IDF similarity. To address this, we utilized
the nitk'® library to implement a lemmatization
method, improving the accuracy of Jaccard and
TF-IDF similarity measurements. This refinement
enhances the granularity of overall text similarity
evaluation metrics.

B.2 The Defination of High Similarity Group

Datasets used in pretraining or fine-tuning often
consist of multiple semantically distinct sources,

*https://huggingface.co/sentence-transformers/
paraphrase-MinilM-L12-v2
10https://www.nltk.org/
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Figure 6: An example of data high similarity

dataset2

such as mathematics, art, and agriculture. Our fo-
cus is on subsets of high textual similarity within
these sources. As shown in Figure 6, for example,
high similarity between datal and subsets of data2,
data3, and data4 forms what we call High Simi-
larity Group (HS group), represented as HS group
1&2, HS group 1&3, and HS group 1&4. These
high similarity texts can convey different meanings,
misleading generative models during training or
fine-tuning. This increases the risk of knowledge-
shortcut hallucinations when queries are input.

B.3 Pseudocode of Mitigation and Detection

Algorithm 1 Mitigation: High Similarity Pruning
Algorithm

Input: (datay,...,datay,); K1, Ko, a1, a2
Output: Mitigation strategy
1: fork=1tondo

2: for : = 0 to row(data;) do
3: for j # kton do
Tiyj(CQAGHFaGHV) < Kl, dataj;
Gjur,Gjnv < T ;(CQAG r,Guyv )
4: end for
Ry j < Set(anGjup + a2Gjnv);
5: end for
Rall < Set(RkJ), KQ;
6: end for

(datay, ...datay,) < (datay,data,) —
Rau;
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Algorithm 2 Knowledge Shortcut Hallucination
Detection

Input: Context-question pair (C'Q); Similarity
threshold a3; m =5

Output: Detection of knowledge-shortcut halluci-

nation

for j = 0tolen(CQ) do

1:

2 T(CQA;j) < (datay, ...datay);

3 Gur,Guv < CQA;j;

4: for [ = 1tomdo

5: Generate response Aj;

6 if 221 Pfim(A"’Al) > a3 then
So = Set(A,) — Set(CQ);

7: if S, is not empty then

8 flag < Set(A,)

mset(CQAGHFGHv );

9: if flag # () then

10: Return True;

11: else Return False;

12: end if

13: else Return False;

14: end if

15: else Return False;

16: end if

17: end for

18: end for

C Results of the Experiment

C.1 Evaluation after applying mitigation
strategies

Here, we show the evaluation results of different
parameter-scale models and training methods on
the same test set after applying the mitigation strat-
egy. Figures 7 and 8 show the evaluation results af-
ter applying the mitigation strategy, corresponding
to Figures 3 and 4. A comparison reveals that the
proportion of less labels has generally decreased,
while the proportion of more labels has increased,
leading to a more balanced and coordinated dis-
tribution. These findings indicate that our strat-
egy effectively reduces the influence of unrelated
datasets on the model’s generated answers, thereby
improving output quality.

It is worth noting that the normal parameter scale
of nanoGPT is only 124M, resulting in greater fluc-
tuations in the experiments. Compared to larger
parameter models, this introduces some instability,
leading to deviations in certain results.
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C.2 Experiment Results of Tinyllama

To further investigate the generalization effective-
ness of our proposed method, we conducted the
same evaluation, mitigation, and prediction experi-
ments using the TinyLlama model, employing only
the fine-tuning approach. The results and trends re-
mained consistent with those observed in nanoGPT,
demonstrating the robustness and applicability of
our method across different model architectures.
Figure 10 presents the evaluation results of
TinyLlama before and after applying the mitigation
strategy, while Table 7 summarizes the macro-level
performance metrics of TinyLlama’s generated re-
sponses under both conditions. Furthermore, in
TinyLlama’s response generation process, we set
the sampling parameter Top-k to 5. To ensure con-
sistency, we maintained the hallucination detection
parameter K equal to Top-k and conducted an
ablation study to explore the impact of different
K values on the detection of knowledge-shortcut
hallucinations. As shown in Figure 9, after apply-
ing the mitigation strategy, the number of detected
knowledge-shortcut hallucinations remained con-
sistently lower than before across all K; values,
with minimal variation in detection differences.

C.3 Reproducibility of Experimental Results

To minimize the impact of randomness on our ex-
perimental results, we conducted multiple repeated
experiments and have open-sourced all code and
results. The full reproducible experiments can be
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Hallucinations Before And After The Mitigation Strategy
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Figure 9: Effectiveness of Different &; Values on Tinyl-
lama Knowledge-Shortcut Hallucination Detection

accessed and executed to obtain the exact experi-
mental outcomes.

For these repeated experiments, we primarily
focused on nanoGPT. We retrained, generated re-
sponses, and conducted testing to obtain a com-
prehensive set of experimental results, which are
presented below.
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Figure 10: (a) Before mitigation, (b) After mitigation. Illustration of the evaluation results with mitigation strategies.

Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

fine-tune 1.1b 1273 1321 2400 1243 1280 2400
0.39285 0.39105 0.68855  0.38596 0.38347  0.68374

Table 7: Results with mitigation and before mitigation for Tinyllama. Values in bold denote significant results.

Type Parameter After mitigation Before mitigation

Jaccard TF-IDF Pre-train Jaccard TF-IDF Pre-train

large 1638 1647 2400 1612 1618 2400
0.61965 0.60919 0.76633 0.61193 0.60121  0.76393

fine-tune medium 1380 1390 2400 1388 1399 2400
0.50376  0.49043  0.69370  0.51097 0.50020 0.69581

normal 949 967 2400 995 1012 2400
0.32107 0.31457  0.55900 0.34018 0.33170  0.57477

large 1858 1870 2400 1844 1853 2398
0.71944 0.70863 0.83367 0.71422 0.70078  0.82887

train medium 1742 1755 2400 1716 1725 2400
0.66459 0.65435 0.79688 0.65474 0.64318  0.79082

normal 1370 1382 2400 1331 1346 2400

0.50535 0.49617 0.68918 0.49451 0.48467 0.67837

Table 8: Results with mitigation and before mitigation for various nanoGPT parameters. Values in bold denote
significant results.
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Figure 11: The number of Knowledge-Shortcut hallucination in CQA tasks before and after mitigation in new
experiments
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Figure 13: Reproduce experiments, before mitigation, train: nanoGPT large, medium, normal
Compare the accuracy of responses trained on multiple Compare the accuracy of responses trained on multiple
. i . o c the / of responses trai ipl
mixed datasets with a single dataset mixed datasets with a single dataset Compare the accuracy of responses trained on multiple
oo oo mixed datasets with a single dataset
" o )% o ) 2% Y " 0, 0, 0, 9
8.2% 90%] o] s2ufooel 1 [B2R[s8%] o, 10.3%(11.3%| 12.79%)14.0%| 11.5%/13.3%| 1o0% Similarity Trend
: ——3.3% [ ez 1 hay| - 155168 - milarity Trom
o — — o ol - . = Lessibn
— — | s { P77 — =
s e ~ 3 More than
3 3 S -
5 o P S - —
z 180.8%77.2%60.8%)  [16-8%(74.8%(58.0%(  179,204[76.8%(60.8% £ [75.7%(72.7%(50.0%|  [69.7%(67.3%7.0%|  [T1.8%§68.5%47.2%| 3
2 8 S| eedenduod e losdomped
2 am 5 0% 5 % e
2 & g p——
— - — Second - 1. im
20% 20% T — 20% Third - pretrain_sim
21.3% R4.7% [ P3.2%) 1 P6.7% 28.7% 28.7%| Braw || B32% Tird -
o138 | [150%(162% 12.7%(14.3% 14.0%(16.0% e B 16.7%418.2% 12.5%{12.7% 13.294{14.0% 14.3%]
o o o
Weight parameters trained Weight parameters tra ght parameters trained Weight parameters trained Weight parameters trained Weight parameters trained Weight parameters trained Weight parameters trained
by mixing two datasets by mixing three dat s by mixing two datasets by mixing three datasets by mixing four datasets by miing two daasets by mixing thres dtasets

Figure 14: Reproduce experiments, after mitigation, fine-tuning: nanoGPT large, medium, normal
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Figure 15: Reproduce experiments, after mitigation, train: nanoGPT large, medium, normal

Type HS Index Dataset Row Index

Context

1326

11791

1303

Insulin is a hormone made up of a small polypeptide
protein that is secreted by the pancreas, which acts as
both an endocrine and exocrine . Endocrine

- are the system of - that secrete hor-

mones to regulate body functions. Exocrine -
aid in digestion.

Epinephrine (ep-uh-nef-rin, -reen) is also known as
adrenaline. It is a hormone that is secreted by the

The thyroid is one of the body’s most impor-
tant endocrine organs......

Jaccard 17 3
Jaccard 18 3
Jaccard 49 3
TF-IDF 45 3

11235

Pinnipeds have streamlined, spindle-shaped bod-
ies with reduced or non-existent external ear flaps,
rounded heads, flexible necks, limbs modified into
flippers, and small tails...... The mammary

and genitals of pinnipeds can retract into the body.

Table 9: Examples of high-frequency co-occurring words found in the high similarity group
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