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Abstract

One of the reasons why it is difficult for the brain to perform backpropagation (BP)
is the weight transport problem, which argues forward and feedback neurons cannot
share the same synaptic weights during learning in biological neural networks.
Recently proposed algorithms address the weight transport problem while providing
good performance similar to BP in large-scale networks. However, they require
bidirectional connections between the forward and feedback neurons to train their
weights, which is observed to be rare in the biological brain. In this work, we
propose an Activation Sharing algorithm that removes the need for bidirectional
connections between the two types of neurons. In this algorithm, hidden layer
outputs (activations) are shared across multiple layers during weight updates. By
applying this learning rule to both forward and feedback networks, we solve
the weight transport problem without the constraint of bidirectional connections,
also achieving good performance even on deep convolutional neural networks for
various datasets. In addition, our algorithm could significantly reduce memory
access overhead when implemented in hardware.

1 Introdution

Backpropagation (BP) [1] is the representative approach to training various deep neural networks.
While BP exhibits excellent training performance, similar to or even better than that of humans, it has
been long argued that the structure of biological neural networks does not support the backpropagation
of errors [2, 3, 4, 5]. To resolve this issue, a wide range of studies have been conducted to develop an
algorithm that is feasible in biological neural networks. One important reason behind the biological
implausibility of BP is the weight transport problem [6]. BP requires identical forward and feedback
paths for reliable training; i.e., the two paths must have the same synaptic weights. While biological
neural networks may also implement two separate processing paths (forward and feedback paths), it is
impossible to explicitly pass the weights between the two paths, as it requires a very fast transmission
of information along the axon from each synapse output [7].

The Feedback Alignment (FA) algorithm [8] solves the weight transport problem by propagating
errors through the feedback path with random fixed weights. It was shown that the feedback weights
could be aligned with the forward weights in the course of training, and consequently, the network is
trained in a similar way to BP. Similarly, Direct Feedback Alignment (DFA) [9] directly propagates
errors from the top layer to lower layers using random fixed weights, and Direct Random Target
Projection [10] locally creates errors using targets rather than using backpropagated errors. Although
these algorithms demonstrate good training performance on simple networks, they exhibit large
performance degradation when applied to complex networks, especially deep convolutional neural
networks [11, 12].
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More recent works suggest training the feedback weights as well as the forward weights instead of
using random fixed weights in the feedback path. Training feedback weights through Reinforcement
Learning [13] or Spiking Neural Network [14] provides better accuracy in classification tasks than
the algorithms using random fixed weights. However, those approaches have been only evaluated in
shallow neural networks, and it is questionable whether they would be capable of training deeper
neural networks. The Sign-Symmetry algorithm [15] achieves good training performance in deep
neural networks by transporting only the signs of the forward weights to the feedback path during
training. However, since it still needs to transport the signs of the weights, it is difficult to say that the
weight transport problem has been solved entirely.

Recently, Weight Mirrors and modified Kolen-Pollack algorithms [16, 17], which align the feedback
weights with the forward weights without explicit weight transport, succeeded in training deep
convolutional neural networks on large datasets with outstanding performance close to BP. However,
these algorithms require a bidirectional connection: forward and feedback neurons explicitly exchange
information with each other through a pair of direct unidirectional paths. While this type of connection
is found in some biological neurons [18, 19, 20, 21], it is difficult to generalize them to a broader
range of biological neural networks that typically only have unidirectional paths between neurons,
where feedback must route through multiple neurons in order to reach their destination [22].

In this paper, we propose an Activation Sharing algorithm, which performs weight update of a layer us-
ing the output (activation) of a lower layer, not the output of the immediately previous layer. Applying
this learning method to both forward and feedback paths solves the weight transport problem without
using bidirectional paths and also successfully trains deep convolutional networks such as ResNet-34.
Furthermore, since activation is shared across multiple layers during training, the algorithm could
significantly reduce memory access and is suitable for efficient hardware implementation.

2 Related works

2.1 Backpropagation and weight transport problem

We consider typical training process of a deep neural network. The forward path propagates input
data through multiple layers, generating output activation of each layer:

hl+1 = φ(Wl+1 hl + bl+1) (1)
where hl is the output activation of the hidden layer l, Wl is the weight matrix, and bl is the bias
vector of layer l in the forward path. In the brain, h could be interpreted as neural firing rates,W as
synaptic weights between neurons, b as bias currents, and φ as nonlinearities in neurons [16]. To
train the model, synaptic weight changes ∆W are obtained by

∆Wl+1 = −η δl+1 h
T
l (2)

where δ and η denote the error signal that flows through the feedback path and the learning rate,
respectively. For calculating synaptic weight changes ∆W , the error δ should propagate from the
output layer to lower layers in the reverse direction. In backpropagation [1], errors that propagate
through the feedback path are represented as

δl = φ
′
(hl)W

T
l+1 δl+1 (3)

where φ
′

denotes the derivative of the activation function φ in equation (1). For this BP to occur
in the brain, the error must be propagated in the reverse direction of the forward path, which is not
feasible in biological neural networks that only have unidirectional paths. Even if there is a separate
feedback path, as shown in Fig. 1a, the synaptic weights W in equation (1) should be also used
to propagate the error in equation (3). In other words, the forward and feedback paths must have
identical synaptic weights. Neurons need to exchange their synaptic weights to realize this, but there
is no proof that this weight transport actually occurs in the brain (weight transport problem).

2.2 Training with random fixed feedback weights

The Feedback Alignment algorithm [8] was developed based on the idea that errors could be propa-
gated using random fixed weightsB rather than the forward weightsW in equation (1). As shown
in Fig. 1b, errors propagate through the feedback path following the equation below.

δl = φ
′
(hl)B

T
l+1 δl+1 (4)

2



(a) Backpropagation (b) Feedback Alignment

(c) Direct Feedback Alignment (d) Modified Kolen-Pollack

Figure 1: Backpropagation and biologically plausible algorithms.

Moreover, the Direct Feedback Alignment algorithm [9] showed that the neural network could be
trained if the error propagates directly from the output layer to each layer instead of flowing through
all hidden layers sequentially (Fig. 1c):

δl = φ
′
(hl)B

T
l+1 δL (5)

where L denotes the output layer of a deep neural network. These methods perfectly solve the
weight transport problem by using random fixed weights in the feedback path and demonstrate good
training performance in simple networks. However, they fail to train the model or incur significant
performance drop when applied to deep convolutional neural networks [11, 12, 15, 23].

2.3 Training with feedback weight update

Since using random fixed weights for error propagation causes poor performance for training deep and
complex neural networks, various methods that train the feedback weights simultaneously have been
recently proposed [13, 14, 24]. For example, the Weight Mirror (WM) and modified Kolen-Pollack
(KP) algorithms attain very competitive training performance on deep convolutional networks [16].
In WM, the feedback weights are updated by

∆Bl+1 = −η hl+1 h
T
l (6)

using output activations of layers l and l + 1 while the error propagates in the same way as FA
according to equation (4). This update rule makes ∆Bl+1 proportional to Wl+1, which aligns the
feedback weights with the forward weights during training as discussed in [16]. On the other hand,
the KP algorithm updates the feedback weights as below:

∆Bl+1 = ∆Wl+1 = −η δl+1 h
T
l (7)
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This method supports updating forward and feedback weights in the same direction, and those two
weights could also be aligned during training. These algorithms succeed in training deep convolutional
neural networks with similar performance to BP. Both WM and KP solve the weight transport problem
by avoiding explicitly exchanging information related to synaptic weights such as weight changes
∆W and ∆B between the two paths; instead, a forward neuron and its corresponding neuron in the
feedback path exchange activation h and error δ. For example, δl+1 of the feedback path is needed
to update the forward weightsWl+1 in equation (2), while hl+1 of the forward path is required to
update the feedback weightsBl+1 in equation (6) in WM. KP also needs hl+1 to update the feedback
weightsBl+2 in equation (7). However, exchanging information between two neurons constitutes
a bidirectional connection, which is not supported in general biological neural network structures
consisting of only unidirectional connections.

3 Activation Sharing to solve weight transport problem without
bidirectional connections

Prior studies to find biologically plausible algorithms have mainly focused on approximating the
forward path without modifying the forward path for training. However, the demand for correct
activations to update weights inevitably incurs bidirectional connections when training feedback
weights as depicted in Fig. 1d. Our study, on the other hand, develops a learning algorithm not
relying on accurate activations. In this section, we first review the Feedback Alignment algorithm,
which uses an approximate feedback path. Based on this, we show that the forward path could also be
approximated, and we present an Activation Sharing algorithm. Finally, we show that the algorithm
solves the weight transport problem without bidirectional connections in the network.

3.1 Approximate feedback path: Feedback Alignment

For the sake of simplicity, here we consider a linear network (i.e., we assume hl+1 = Wl+1 hl

neglecting φ). As shown in equation (2), we need the error δ and the activation h to update the
weights in the network. For backpropagation, we could calculate these values very accurately. We use
the activations obtained when the input propagates through layers and the errors that back-propagate
through the same layers in the reverse order. Since we assume a linear network, equation (3) is
simplified to δl+1 = W T

l+2 δl+2. Consequently, the learning process in backpropagation (Fig. 2a)
follows the equations below.

hl+1 = Wl+1 hl (8)

δl+2 = W T
l+3 δl+3 (9)

∆Wl+2 = −η δl+2 h
T
l+1 (10)

However, recent studies suggest that approximate errors could also be used for weight updates.
For instance, Feedback Alignment uses approximate errors δ̃ that propagate through random fixed
weights. The learning process is described in Fig. 2b and is expressed by

hl+1 = Wl+1 hl (11)

δ̃l+2 = BT
l+3 δ̃l+3 6= δl+2 (12)

∆Wl+2 = −η δ̃l+2 h
T
l+1 6= −η δl+2 h

T
l+1 (13)

where δ̃L = δL since the error at the output layer due to the loss function is the same for BP and FA.
This approximate feedback path successfully trains a neural network by aligning the forward weights
W with the random fixed weightsB.
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(a) Backpropagation (b) Feedback Alignment (c) Forward Alignment

Figure 2: Overview of weight update process in different algorithms.

3.2 Approximate forward path: Forward Alignment & Activation Sharing

The Feedback Alignment algorithm showed that approximate errors could be used to train the network.
Similarly, we hypothesize that the network could be trained even if we use approximate activations h̃
obtained by propagating the input through random fixed weights C instead of the exact forward path,
which we dub Forward Alignment. The flow of the Forward Alignment is described in Fig. 2c and is
expressed by the equations below.

h̃l+1 = Cl+1 h̃l 6= hl+1 (14)

δl+2 = W T
l+3 δl+3 (15)

∆Wl+2 = −η δl+2 h̃
T
l+1 6= −η δl+2 h

T
l+1 (16)

where h̃0 = h0 since the network input is identical in both cases. The Feedback Alignment algorithm
was proven to work in simple linear networks through Barbalat’s lemma that the loss of the network
converges to zero if certain conditions are satisfied [25]. Likewise, it can be shown that the loss
converges to zero by Forward Alignment in simple linear networks through Barbalat’s lemma.
Experimental results confirm that the Forward Alignment algorithm aligns the forward weights with
the random fixed weights during training (see Appendix A for details).

Extending this idea, we propose an Activation Sharing algorithm that updates the weights using the
activations of a lower layer based on two intuitions. First, since the Forward Alignment algorithm
works with any random fixed weights, the identity matrix I could also be used for generating
approximate activations when the adjacent layers have the same input dimension. Second, propagating
the inputh0 through more layers with random fixed weights to obtain approximate activations h̃would
incur more deviations from the forward activations h since h̃l = Cl h̃l−1 =

∏
Ck h0. On the other

hand, if we limit the propagation of input or activation through random fixed weights for approximate
activation generation within a block, which is defined as a set of multiple consecutive layers in the
network, this deviation would be significantly reduced, and the training process would more closely
follow the backpropagation. For instance, if each block consists of two layers, h̃l = ClCl−1 hl−2,
which would be closer to hl than h̃l =

∏
Ck h0. Combining these two intuitions, we propose the

Activation Sharing algorithm with a block size of 2 as follows:

h̃l+1 = Cl+1 h̃l = hl (17)

h̃l+2 = Cl+2 h̃l+1 = Cl+2Cl+1 h̃l = hl (18)

∆Wl+2 = −η δl+2 h̃
T
l+1 = −η δl+2 h

T
l (19)

∆Wl+3 = −η δl+3 h̃
T
l+2 = −η δl+3 h

T
l (20)
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By equations (19) and (20), the algorithm updates the weights of all the layers inside a block using
the same activation hl, which is the output activation of the previous block (equations (17) and (18)).
In other words, once the activations to be shared are determined, the weights are updated using the
designated activations instead of their own activations for k layers when the block size is k. Fig. 3a
depicts the Activation Sharing algorithm when k = 2. If k = L− 1, all layers except the first layer
share the output activations of the first layer to update the weights.

(a) Activation Sharing (k=2) (b) Activation Sharing with Asymmetric Paths (k=2)

Figure 3: Activation Sharing & Activation Sharing with Asymmetric Paths.

3.3 How does Activation Sharing solve weight transport problem without bidirectional
connections?

Kolen and Pollack [17] showed that when ∆W = ∆B whereW andB are the forward and feedback
weights, the network is trained similarly to a typical artificial neural network with symmetric forward
and feedback paths (W = B). For proof, the weight changes with weight decay [26] are written as

∆W (t) = R(t)− λW (t) (21)

∆B(t) = R(t)− λB(t) (22)
whereR(t) denotes the weight change obtained by the learning rule in equation (2), and λ denotes a
weight decay factor. Then,W andB converge to identical values becauseW (t+ 1)−B(t+ 1) =
(W (t) + ∆W (t)) − (B(t) + ∆B(t)) = (1 − λ)(W (t) −B(t)) = (1 − λ)t+1(W (0) −B(0))
goes to 0 when 0 < λ < 1 [16, 17].

This logic also applies to the Activation Sharing algorithm. As shown in Fig. 3a, the Activation
Sharing algorithm itself does not solve the weight transport problem because it still assumes symmetric
forward and feedback paths (W = B). However, the algorithm could be further modified to avoid
the weight transport problem by relaxing this constraint and only enforcing ∆W = ∆B in training.
Specifically, we assume asymmetric forward and feedback paths (i.e., W 6= B) and apply the
Activation Sharing algorithm to both paths using the same shared activations as shown in Fig. 3b.
Since the forward and feedback neurons share the same activations, we can guarantee the following:

∆Wl+2 = ∆Bl+2 = −η δl+2 h
T
l (23)

∆Wl+3 = ∆Bl+3 = −η δl+3 h
T
l (24)

Therefore, the forward and feedback weights converge to the same values as discussed above, which
enables the training of deep neural networks while solving the weight transport problem. Moreover,
by relaxing the constraints that each layer must use its own input activations to update the weights,
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bidirectional connections between forward and feedback neurons are not required anymore. We
name this algorithm Activation Sharing with Asymmetric Paths (ASAP) to distinguish it from the
Activation Sharing algorithm using symmetric paths discussed in Section 3.2. Code is available at:
https://github.com/WooSunghyeon/Activation-Sharing-with-Asymmetric-Paths.

4 Biological implementation of ASAP algorithm

In previous sections, we propose the ASAP algorithm based on the observation that an approximate
forward path allows for reliable neural network training. However, one question still remains: Is the
ASAP algorithm actually biologically plausible? In other words, how is this algorithm implemented
in biological neural networks? This section discusses the bio-plausibility of the ASAP algorithm in
detail.

4.1 Relaxing the constraints of bidirectional connections

Some prior biologically plausible learning algorithms require bidirectional connections between
forward and feedback neurons [16]. While one-to-one paring between the two neurons is observed
in some organisms [18, 19, 20, 21], there exist structural constraints derived from bidirectional
connections, as discussed in [18, 21]. Our ASAP algorithm could significantly relax these structural
constraints by removing strict dependency between forward and feedback neurons depicted in Fig. 1d.
ASAP also has dependency between forward and feedback neurons through multiple steps. However,
this multi-step dependency is more strongly supported by biological observations. Reciprocal con-
nections in the brain are formed not through direct bidirectional connections between two neurons,
but through multiple intra-inter laminar routes using one-way connections [27]. For example, in
the visual cortex, feedforward neurons of layer 4 cannot directly connect to feedback neurons of
layer 3A, but only with the feedback neurons of layer 6 [27]. In addition, reciprocal connections
are generally spatially asymmetrical. This is supported by the observation that feedforward con-
nections form concentrated terminal arborizations, whereas feedback connections exhibit dispersed
terminal arborizations [27, 28, 29]. Moreover, many unidirectional connections are observed in
the feedback direction. In area TEO, neurons receive input from areas 35 and 36, but they do not
project themselves into these perirhinal cortical regions [29, 30]. These observations show that our
spatially asymmetric ASAP algorithm makes more sense than previous algorithms using simple and
symmetrical bidirectional connections.

In summary, our ASAP algorithm mitigates the structural constraints of strict two-step dependencies
by removing the need for direct information exchange between forward and feedback neurons.
Furthermore, it can be implemented in biological neural networks using multiple one-way skip
connections, which are connections between non-adjacent layers and are frequently found in living
organisms [31, 32, 33, 34]. This suggests the ASAP algorithm is easier to implement biologically
compared to other algorithms relying on bidirectional connections.

4.2 Learning with neuron-specific signals

The learning rules for biological neural networks (e.g., Hebbian learning) typically use neuron-
specific signals; they use the information available in pre- or post-synaptic neurons for updating
weights. In ASAP, however, some synapses require other information not directly available in pre- or
post-synaptic neurons. For example, Fig. 3b shows that ∆Wl+2 does not use pre-synaptic neuron
activity hl+1 but uses the neuronal activity of a lower layer hl. The post-synaptic neurons may receive
these activities as they do for error signals δl+2 and use them for weight updates, but this necessitates
numerous connections at the post-synaptic neuron since each synapse requires a synapse-specific
signal (i.e., a different element of hl). This type of synapse-specific signal transport is difficult to
implement in biological neural networks. This issue could be mitigated by adopting the concept
of the mirror mode in the Weight Mirror algorithm [16]. The Weight Mirror algorithm divides the
learning process into two phases: engaged mode and mirror mode. In mirror mode, the feedback
neuron mimics the forward neuron to generate the same activations.

Our ASAP algorithm could be realized using only neuron-specific signals in a similar way. In Fig.
4a, ASAP uses the error signals available in pre-synaptic neurons (δl+2 and δl+3) and the signals
received by post-synaptic neurons (hl) for updating feedback weights (Bl+2 andBl+3). To update
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(a) Updating feedback weights (b) Updating forward weights with mimicking

Figure 4: ASAP implementation using neuron-specific signals.

forward weights (Wl+2 and Wl+3), forward neurons mimic the shared activation (hl). Then, the
pre-synaptic neuron activity (hl) and the signals received by post-synaptic neurons (δl+2 and δl+3)
are used for learning as shown in Fig. 4b. Consequently, both forward and feedback weights are
updated only using neuron-specific signals.

Furthermore, the forward and feedback weight updates can occur simultaneously in ASAP. In the
Weight Mirror algorithm, the feedback neurons generate error signals δl+1, and the forward neurons
receive them to update the forward weights Wl+1 in engaged mode. Contrarily, in mirror mode,
the feedback neurons mimic the forward neurons, and the feedback weights Bl+1 are updated by
equation (6). However, in our ASAP algorithm, the forward weights and feedback weights can be
updated simultaneously since the activity of the mimicking neurons (e.g., neurons in layers l + 1 and
l + 2 in Fig. 4b) is not used for updating feedback weights. In addition, our ASAP algorithm could
be modified to only use neuron-specific signals without introducing mimicry. See Appendix B for
more details.

5 Experiments

To verify the effectiveness of the proposed ASAP algorithm, we measured its training performance
for classification tasks on different datasets. We also implemented the backpropagation and other
biologically plausible algorithms with and without bidirectional connections for comparisons. Since
we aim at training deep convolutional networks using biologically plausible algorithms, we choose
AlexNet [35], ResNet-18, and ResNet-34 [36] for experiments. The target models are trained on
MNIST [37], SVHN [38], CIFAR-10, CIFAR-100 [39], and Tiny ImageNet [40] datasets for image
classification. In training, we used the stochastic gradient descent (SGD) with the momentum method
[41]. In addition, the weight decay method [26] was adopted, and the learning rate was adjusted
through cosine annealing [42].

In all experiments, the block size k was set to 2, but we also experimented with k = 4 for ResNet-34.
Since fully-connected layers can be trained sufficiently well with the Feedback Alignment, ASAP
was applied only in convolutional layers, while fully-connected layers are trained using Feedback
Alignment. In ASAP, we update the weights of the layers in a block using the shared activations.
However, when the channel size increases as it passes through a convolutional layer or the feature
map size decreases after a maxpool or convolutional layer, the shared activations cannot be used for
weight changes in later layers because of the difference in dimensions. In this case, we apply maxpool
to the shared activation when activation map sizes differ and concatenate along the channel dimension
when channel sizes vary, to match its dimension with that of the corresponding layer. The input
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activation of the first layer, which is the network’s input, has a much lower number of channels than
the following layers, so the input activation cannot be shared with later layers for training. Therefore,
we use random fixed weights in the first layer and apply ASAP to the remaining convolutional layers.
More details on the experiments are provided in Appendix C.

Table 1: Test accuracy of BP, KP, FA, DFA, and ASAP (k=2) in classification task

Dataset Model BP KP FA DFA ASAP
MNIST AlexNet 99.59 99.55 99.14 99.28 99.32

SVHN
AlexNet 94.64 93.3 82.21 87.42 88.04

ResNet-18 (nsc*) 96.14 95.84 84.91 85.64 93.17
ResNet-18 96.29 96.13 85.08 85.56 94.86

CIFAR-10

AlexNet 90.58 79.23 67.92 73.85 78.25
ResNet-18 (nsc*) 94.70 94.65 71.38 75.46 83.44

ResNet-18 94.93 94.76 72.47 76.0 92.19
ResNet-34 95.18 94.54 66.99 73.02 93.97

CIFAR-100

AlexNet 63.61 47.43 33.32 35.38 46.99
ResNet-18 (nsc*) 77.34 74.98 37.11 37.48 51.72

ResNet-18 77.74 74.51 38.15 38.51 68.86
ResNet-34 78.41 75.0 33.01 35.6 72.81

Tiny ImageNet ResNet-18 60.13 58.14 20.54 24.07 48.46
ResNet-34 62.63 59.45 16.86 21.1 52.25

*no shortcut

Good performance on deep convolutional networks Table 1 summarizes the performance of
training algorithms on different datasets and models. In summary, ASAP outperforms other biologi-
cally plausible algorithms without bidirectional connections (FA and DFA) in all cases, and shows
very competitive performance especially on deep convolutional networks. However, it exhibits some
performance degradation compared to KP that employs bidirectional connections. When training the
relatively simple AlexNet on the smallest MNIST dataset, FA, DFA, and ASAP all achieve good train-
ing performances and closely match BP. For more complex datasets such as CIFAR-10, CIFAR-100,
and Tiny ImageNet, ASAP shows significantly better test accuracy than the other algorithms without
bidirectional connections. When compared to BP, ASAP shows some performance degradation,
but interestingly, the performance gap between ASAP and BP is considerably smaller for deeper
convolutional networks such as ResNet-18 and ResNet-34. ASAP only shows a 1.43% accuracy drop
for ResNet-18 trained on SVHN, while FA and DFA show more than 10% performance degrada-
tion. This trend is confirmed more clearly with complex datasets: for CIFAR-10, ResNet-18 and
ResNet-34 trained with ASAP demonstrate over 90% test accuracy with less than 3% performance
drop compared to BP, whereas FA and DFA only show up to 76% accuracy. For CIFAR-100, ASAP
achieves 68.86% and 72.81% test accuracy for ResNet-18 and ResNet-34, respectively, translating to
less than 9% performance degradation over BP. Contrarily, FA and DFA exhibit a much lower test
accuracy in the range of 33-39%. For Tiny ImageNet, ASAP achieves a competitive performance
of 48.46% and 52.25% for ResNet-18 and ResNet-34, while FA and DFA exhibit only 16-24% test
accuracy. Generally, as a convolutional network gets deeper, its performance gradually improves [43].
Nevertheless, the test accuracy of FA and DFA rarely improved by using more convolutional layers
in the model. On the other hand, ASAP successfully exploits deep network structures and continues
to improve test accuracy when having more layers in the model. Through these experiments, we can
confirm that ASAP can train deep convolutional networks on complex datasets such as CIFAR-100
and Tiny ImageNet.

Effect of shortcut ResNet models employ shortcut connections to prevent vanishing and exploding
gradients, enabling reliable training on deep convolutional networks [36]. For this reason, when
training ResNet-18 through BP, KP, FA, and DFA, having shortcut connections generally increases
test accuracy in SVHN, CIFAR-10, and CIFAR-100. Interestingly, the performance gap appears
larger for ASAP in all datasets. This is because ASAP uses the activation of a lower layer to update
weights. In the absence of shortcuts, the activation of a lower layer is only used to update the weights
of ASAP and is not used at all in BP. However, if there is a shortcut, the activation of a lower layer is
added to the output activation of the previous layer for weight update in BP. Therefore, the direction
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of weight changes of ASAP and BP becomes more similar when there is a shortcut. See Appendix E
for more details.

(a) Test accuracy on CIFAR-10 (b) Test accuracy on CIFAR-100

Figure 5: Training performance comparisons for ResNet-34

Effect of block size ASAP removes bidirectional connections by sharing activations across the
layers in a block, so the block size itself does not determine biological plausibility. As the block
size increases, the number of layers updated using the same shared activations also increases. In
other words, the amount of activation required to perform weight updates in training decreases due to
data reuse. Therefore, if we perform Activation Sharing with a larger block size k, it is possible to
reduce memory access when implemented in hardware. We compare the test accuracy of ResNet-34
for k = 2 and k = 4 in Fig. 5. On CIFAR-10, there was no performance degradation when using
a larger block size (k = 4). The test accuracy is 93.97% when k = 2 and 93.9% when k = 4,
while BP shows 95.18% test accuracy. On CIFAR-100, the test accuracy is 71.93% when k = 4 and
72.81% when k = 2, which translates to 0.88% degradation due to increasing block size from 2 to 4.
However, using the block size of 4 considerably reduces memory access because only about 25% of
activations are used compared to BP and 50% compared to k = 2 for weight updates (see Appendix
F for details).

6 Discussion

It has been shown that our algorithm solves the weight transport problem without bidirectional
connections by updating forward and feedback weights using shared activation. While ASAP still
exhibits some performance degradation compared to BP and KP, it achieves competitive performance
in deep convolutional networks on complex datasets without using bidirectional connections. Of
course, our method is not completely biologically plausible. Unlike the brain, ASAP does not use
spikes to propagate signals. Also, our algorithm still requires a paired error pathway (i.e., each
forward neuron is paired with a corresponding feedback neuron), which has no biological evidence
yet.

Nevertheless, our study is meaningful in that it shows that it is possible to train deep neural networks
with approximate activation, while previous biological learning methods require accurate neuronal
activity. This approximate learning rule not only eliminates bidirectional connections from algorithms
that assume a paired error pathway, but could also be applied to algorithms assuming a single pathway
to alleviate the constraint of accurate neural activity, which will be investigated further in future work.

When implementing deep learning in hardware, a large number of MAC operations and external
memory access are the processing bottlenecks [44]. In backpropagation, activations calculated in the
forward path are required in the feedback path to update weights. For large models, it is impossible
to store all the activations on a chip; hence, it is inevitable to store the activations externally and load
them back to the chip later. Contrarily, in our algorithm, not all the activations are required for weight
updates due to the approximate forward path. Therefore, the ASAP algorithm is a good candidate for
efficient hardware implementation since it could greatly reduce memory access overheads.
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