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Abstract

Reward models are key to language model post-training and inference pipelines.
Conveniently, recent work showed that every language model defines an implicit
reward model (IM-RM), without requiring any architectural changes. However,
such IM-RMs tend to generalize worse, especially out-of-distribution, compared to
explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden
representations of a language model. The existence of a generalization gap is
puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using
the same data, loss function, and language model, and differ only in how the reward
is computed. Toward a fundamental understanding of the implicit biases underlying
different reward model types, we investigate the root cause of this gap. Our main
finding, backed by theory and experiments, is that IM-RMs rely more heavily on
superficial token-level cues. Consequently, they often generalize worse than EX-
RMs under token-level distribution shifts, as well as in-distribution. Furthermore,
we provide evidence against alternative hypotheses for the generalization gap.
Most notably, we challenge the intuitive claim that IM-RMs struggle in tasks where
generation is harder than verification because they can operate both as a verifier
and a generator. Taken together, our results highlight that seemingly minor design
choices can substantially impact the generalization behavior of reward models.

1 Introduction

Language model post-training and inference pipelines often rely on reward models to assess the
quality of generated responses [13, 1, 20, 71, 51, 67]. Yet, little is known about the relative advantages
and disadvantages of different reward model types. Two prevalent, nearly identical types are explicit
reward models (EX-RMs) [44] and implicit reward models (IM-RMs) [52]. EX-RMs and IM-RMs can
be trained based on the same language model 7y, using the same data and loss function. They differ
only in how the reward is computed: EX-RMs apply a linear head over the hidden representation that
mg produces for a prompt-response pair (x,y), while the reward of an IM-RM is implicitly defined
by 7y through ln 7y (y|x) — see Figure 1.

Despite the vast similarity of EX-RMs and IM-RMs, prior work [39, 35, 70] observed that IM-
RMs tend to generalize worse, especially out-of-distribution, as measured by accuracy in ranking
candidate responses. The existence of a generalization gap is puzzling. Why would a seemingly
minor difference in how the reward is computed substantially affect the accuracy of a reward model?

Toward a fundamental understanding of the implicit biases underlying different reward model types,
we investigate the root cause for the generalization gap between EX-RMs and IM-RMs. Our main
finding, established through theory and experiments, is that IM-RMs rely more heavily on superficial
token-level cues. As a result, IM-RMs typically generalize worse than EX-RMs to token-level
distribution shifts (i.e., to responses that are semantically similar to in-distribution responses, but
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Figure 1: Explicit vs implicit reward models. To compute the reward for a prompt-response pair (x,y), an
EX-RM applies a linear head to the hidden representation that the language model 7y produces for (x,y). In
contrast, the reward of an IM-RM is implicitly defined by 7 through S In %, where 5 € Ry is a fixed
coefficient and 7yt is a reference distribution (cf. [52]). ¢
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Figure 2: IM-RMs are less robust than EX-RMs to token-level distribution shifts, but perform comparably
or better under domain shifts. We trained EX-RMs and IM-RMs on UltraFeedback [15], using the same initial
language models, and evaluated their accuracy in-distribution (UltraFeedback test set), under token-level shifts
(three UltraFeedback variants, in which responses were either paraphrased or translated to another language),
and under domain shifts (two math and one code datasets). Reported are the win-rates, i.e., the percentage of
evaluations in which either the EX-RM or IM-RM achieved a higher accuracy. If the accuracies were within
1% of each other, we considered it a tie. The experiment included three random seeds per configuration and six
language models: Gemma-2-2B-IT [71], Qwen-2.5-1.5B-Instruct, Qwen-2.5-3B-Instruct [51], Llama-3.2-1B-
Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct [20]. See Section 5.2 for additional details.

have different surface forms), as well as in-distribution. On the other hand, when subject to domain
shifts, IM-RMs can perform comparably to or better than EX-RMs — see Figures 2 and 5.

Before arriving at this conclusion, we first consider an alternative hypothesis for the generalization
gap, alluded to in the literature (cf. [18, 65, 70]): IM-RMs are harder to learn in tasks with a
generation-verification gap due to their dual role as a verifier and a generator (Section 3). Specifically,
in tasks where responses can be categorized into correct and incorrect, an IM-RM is trained not only
to assign a high reward to correct responses, but also to generate them via its underlying language
model. If generating correct responses is harder than verifying their correctness, then the (verification)
accuracy of IM-RMs should intuitively lag behind that of EX-RMs, which need only verify responses.
However, we challenge this argument by proving that learning to verify with IM-RMs does not require
learning to generate. Experiments on a Hamiltonian cycle verification task corroborate our theory.

Then, to identify what drives the generalization gap between EX-RMs and IM-RMs, we theoretically
characterize their learning dynamics, i.e., the evolution of rewards during gradient-based training
(Section 4.1). Our analysis reveals that the learning dynamics of EX-RMs depends on responses
primarily through their hidden representations, whereas IM-RMs are more sensitive to the specific
tokens appearing in the responses. In particular, for IM-RMs, increasing the reward of a response may
not affect, or even decrease, the reward of a semantically similar response that consists of different
tokens. This indicates that IM-RMs often underperform EX-RMs since they rely more strongly on
superficial token-level cues. We further substantiate this claim: (i) theoretically, by providing settings
in which IM-RMs provably fail to generalize to unseen tokens, while EX-RMs generalize successfully
when hidden representations are well-structured (Appendix A), and (ii) empirically across controlled
and real-world settings (Section 5).

Overall, our results highlight that seemingly minor design choices can have an outsized effect on
how reward models generalize. We hope insights from this work will spur further research into the
implicit biases of different reward model types and facilitate enhancing their robustness.
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Related work. We discuss related work throughout and defer an extended account to Appendix C.

2 Preliminaries

Let V be a finite vocabulary of tokens and V* denote the set of all finite-length token sequences.

Language models can be decomposed into two parts. First, a neural network backbone that intakes a

sequence of tokens v € V* and produces a hidden representation h,, € RP (e.g., a Transformer [75]).

Second, an unembedding matrix U € RIVI*P that converts the hidden representation into logits for

the next-token distribution. Given a prompt x € V*, a language model my assigns probabilities to
responses y € V* autoregressively:

lyl lyl

mo(ylx) =] molyelx.y<r) =]],_ i

where 6 stands for the language model’s parameters (i.e., it includes the parameters of the neural

network backbone and the unembedding matrix), y < and yj, denote the first £ — 1 tokens and kth

token of y, respectively, and softmax(z), := exp(z,)/ D,y €Xp(2z,) for z € RIVI,

. softmax (Uhyx y _, )

2.1 Reward Models

Reward models are typically initialized from a preexisting language model 7y and trained to predict a
scalar reward that indicates the quality of a response y to a prompt x. Two prevalent reward model
types are explicit reward models (EX-RMs) [44] and implicit reward models (IM-RMs) [52]. As
detailed below, EX-RMs and IM-RMs are almost identical. They are trained using the same data,
loss function, and language model 7y, and differ only in how the reward is computed based on 7y.
This work is devoted to understanding why, despite these vast similarities, EX-RMs and IM-RMs
generalize differently (cf. [39, 35]).

Explicit reward model (EX-RM). To compute the reward for a prompt-response pair (x,y), an
EX-RM applies a linear head u € R” over the hidden representation hy y that 7y produces:

TGEX (X, y) = <u7 hx,y> ’ (1)
where 6gx stands for the trainable parameters of the EX-RM (i.e., it includes the parameters of the
neural network backbone and the linear head).!

Implicit reward model (IM-RM). As shown in [52], every language model 7y defines an IM-RM
through the log probabilities that it assigns to responses:

L TOrm (y |X)

Ton (X,¥) := B1n et (Y1) 2)
where fp\; = 6 denotes the trainable parameters of the IM-RM, 3 € R+ is a fixed coefficient, and the
reference distribution 7¢¢ is canonically the language model from which the IM-RM was initialized.
Note that besides assigning rewards, an IM-RM can generate responses via 7g,,,. Moreover, increasing
the reward of a response entails increasing its probability under mg,,,.

Training objective. Let Dy be a training set containing preferences (x,y ™,y ™), where x is a
prompt, y T is a chosen response to x, and y ~ is a rejected response to x. EX-RMs and IM-RMs are
usually trained by minimizing a Bradley-Terry log-likelihood loss [9]:

1 -
L) = 1502 eyt ymyepy ~ RO (r0ey™) —rlxy7). 3)

where 7 : V* x V* — R can be either rg,,, or rg,,, and o : R — [0, 1] denotes the sigmoid function.

Outcome vs process rewards. In certain domains, such as math and reasoning, reward models
have been used for providing feedback on intermediate steps of a response [72, 38]. Both EX-RMs
and IM-RMs can be adapted to evaluate partial responses, the former by applying the linear head
over the hidden representation of each intermediate step and the latter by using the conditional log
probabilities of these steps. For conciseness, we focus on settings where the reward is assigned to
complete responses.

'A nascent EX-RM variant, which we refer to as explicit generative reward model (EX-GRM) [88], directly
asks the language model 7y to verify whether y is a good response to x. Then, the probability assigned to the
token Yes is taken as the reward. For brevity, we focus on EX-RMs in the main text and defer an extension of
our theoretical and empirical analyses for EX-GRMs to Appendices D and F, respectively. Notably, we find that
the main conclusions stated for EX-RMs hold for EX-GRMs as well.
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2.2 Measuring Generalization via Accuracy

In accordance with [39, 35, 89, 21, 41], we measure generalization via the accuracy of a reward
model in ranking responses over preference data unseen in training.

Definition 1. For a finite set S containing preferences (x,y ™,y ™), where x is a prompt, y " is a
chosen response, and y~ is a rejected response, the accuracy of r : V* x V* — R over S is:

1
accs(r) = El‘ Z(x,y*,y*)és ]l[r(x,y+) > r(x,y_)] + 3 1 [r(x, yh) = r(x,y_)] ,

where 1[-] is an indicator function. Note that the maximal accuracy is one and the minimal is zero.

3 Are Implicit Reward Models Harder to Learn in Tasks With a
Generation-Verification Gap?

A potential explanation for why IM-RMs often underperform EX-RMs, alluded to in the literature
(cf. [18, 65, 70]), is that IM-RMs are harder to learn in tasks with a generation-verification gap.
Namely, in tasks where responses can be categorized into correct and incorrect, an IM-RM is trained
not only to assign a high reward to correct responses, but also to generate them via its underlying
language model. Thus, if generating correct responses is harder than verifying their correctness in a
given task, then the accuracy of IM-RMs should intuitively fall below that of EX-RMs, which need
only verify responses.

We prove that this intuitive explanation is flawed — learning to verify with IM-RMs does not require
learning to generate (Section 3.1). Experiments on a Hamiltonian cycle verification task, which
is widely believed to exhibit a generation-verification gap [4], demonstrate that IM-RMs learn to
accurately verify such cycles without being able to generate them (Section 3.2).

3.1 Theory: Learning to Verify Does Not Require Learning to Generate

Consider a task defined by a set of valid prompts & C V* and a function C that maps every prompt
x € X to a set of correct responses C(x) C V*. Concretely, X' can consist of math problems, with
C(x) containing the correct solutions of a problem x. A prompt x can also describe the input to some
algorithmic task. For example, if the task is to find Hamiltonian cycles in a graph, each x describes a
graph and each response in C(x) encodes a Hamiltonian cycle (Section 3.2 presents experiments over
this task). In this context, it is natural to say that a reward model is a verifier for the task (X, C) if it
assigns non-negligibly higher rewards to correct responses relative to incorrect ones.

Definition 2. A reward model r : V* x V* — R is a verifier with margin § € R~ for the task (X, C)
ifforallx € X, y" € C(x),and y~ € V*\ C(x):

r(x,yt) > r(xy)+46.

Note that if r is a verifier for (X', C), then it achieves perfect accuracy (Definition 1) over all evaluation
sets that contain preferences (x,y ",y ), where x € X,y € C(x),andy~ € V*\ C(x).

Theorem 1 below establishes that, for an IM-RM to be a verifier, the probability that its underlying
language model assigns to correct responses needs to grow by at most a constant multiplicative factor
relative to the initial reference distribution m..¢. In particular, if m..¢ assigns low probability to correct
responses, then an IM-RM can accurately verify correct responses even if it is unable to generate
them. Thus, the hypothesis that IM-RMs struggle because they need to learn to generate, as opposed
to just verify, does not explain the generalization gap between EX-RMs and IM-RMs.

We further formalize this argument through the notion of an efficient generator (Definition 3). A
distribution 7 is an efficient generator if the probability that it assigns to correct responses decays at
most polynomially with the prompt length |x|. The rationale behind this definition is that obtaining a
correct response from an efficient generator requires, with high probability, only a number of samples
polynomial in |x|, which often corresponds to task complexity (e.g., the size of a graph in the task
of finding Hamiltonian cycles). Corollary 1 shows that, if m..¢ is not an efficient generator, then an
IM-RM does not need to be an efficient generator in order to be a verifier.

Theorem 1. Let iy be the IM-RM induced by a distribution  over token sequences, i.e., riv (X, y) =
B(lnw(y|x) — Inmet(y|x)) for x,y € V*, 5 € Rxq, and a reference distribution Tyet. Then, riy
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Figure 3: Learning to verify with IM-RMs does not require learning to generate. We trained EX-RMs
and IM-RMs to solve a Hamiltonian cycle verification task, based on the Pythia-1B language model. Each
prompt in the dataset describes an undirected graph and the chosen and rejected responses are permutations of
vertices. The chosen responses form Hamiltonian cycles in their respective graphs, while the rejected responses
do not (see Appendix G.1 for further details). In accordance with our theory (Section 3.1), although IM-RMs are
unable to generate even a single correct Hamiltonian cycle for graphs in the training or test sets, they accurately
distinguish between chosen and rejected responses, slightly outperforming EX-RMs. Values in the table are
means across three random seeds (standard deviation was under 0.008 in all cases).

can be a verifier with margin 6 € Rs for the task (X,C) (Definition 2) even if for all prompts
x € X:

T(C(x)[x) < mrer(C(x)[x) - exp(6/5).

That is, for all prompts, the probability of w generating a correct response is greater than that of et
by at most a constant multiplicative factor.

Proof sketch (full proof in Appendix E.I). The proof is by construction. We define a distribution 7
such that the IM-RM it induces is a verifier for the task (X', C) with an exact margin of . Then, we
directly upper bound the probability that 7 assigns to correct responses. O

Definition 3. We say that a distribution 7 over token sequences is an efficient generator for the task
(X,C) if there exist k € N and o € R such that 7(C(x)|x) > a~!|z| ¥ forall x € X.

Corollary 1. Under the notation of Theorem I, suppose that m..¢ is not an efficient generator for the
task (X, C) (Definition 3). Then, for any 6 € R~, the IM-RM ry\ can be a verifier with margin 0
for (X, C) (Definition 2) even if the underlying distribution 7 is not an efficient generator for (X,C).

Proving Corollary 1 based on Theorem 1 is straightforward — see Appendix E.2.

3.2 Experiments: Hamiltonian Cycle Verification

We corroborate the analysis of Section 3.1 by empirically demonstrating that, in tasks where gen-
eration is harder than verification, IM-RMs can learn to verify comparably or better than EX-RMs,
without learning to generate. To avoid confounding factors, we focus on a synthetic Hamiltonian
cycle verification task which, unless P =NP, exhibits a generation-verification gap.

Setting. We created a preference dataset in which every prompt describes an undirected graph that
contains at least one Hamiltonian cycle and the chosen and rejected responses are permutations of
vertices. Chosen responses form Hamiltonian cycles in their respective graphs, whereas the rejected
responses do not. We then trained EX-RMs and IM-RMs based on the Pythia-1B language model [8]
and evaluated their accuracy. We also evaluated the ability of IM-RMs to generate Hamiltonian
cycles. See Appendix G.1 for additional details.

Results. Figure 3 illustrates the experimental setup and reports the results. Confirming our theory
(Section 3.1), IM-RMs are able to accurately verify responses, i.e., achieve perfect accuracy on the
training set and near-perfect on the test set, while being unable to generate even a single correct
Hamiltonian cycle for graphs in the training or test sets. This showcases that the lower accuracy that
IM-RMs often achieve compared to EX-RMs [39, 35, 70] does not stem from IM-RMs needing to
learn to generate in order to verify.
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4 Theory: Reliance on Token-Level Cues

To identify what causes the generalization gap between EX-RMs and IM-RMs, we analyze their
learning dynamics. Specifically, we characterize how the reward assigned to a prompt-response
pair evolves during gradient-based training (Section 4.1). The characterization suggests that IM-
RMs often generalize worse than EX-RMs since they rely more heavily on superficial token-level
cues. We further support this claim: (i) theoretically, by providing a (simplified) setting in which
IM-RMs provably fail to generalize to unseen tokens, whereas EX-RMs can generalize when hidden
representations are well-structured (Appendix A), and (ii) empirically, by showing that IM-RMs are
less robust to token-level shifts, but perform comparably or better under domain shifts (Section 5).

4.1 Learning Dynamics

We examine how performing a gradient update on the training example (x,y",y~) € D7 influences
the reward assigned to an unseen prompt-response pair (X, y), i.e.:

Are (iv y) =Te—nViey (x,y*,y*)(iv y) — T (iv y) s

where 7 € Ry is a learning rate, {p(x,y ",y ) := —Ilno(re(x,y™) — r9(x,y ")) denotes the
loss over (x,y™,y ™), and @ stands for either Ogx or O\ We note that analogous approaches have
been valuable for studying the effects of language model post-training [30, 58, 60]. By a Taylor
approximation of ry(X,y) around 6, the change in reward can be expressed as:

A’I"g(f{, y) =0 <VT9(5(, 5’)7 V&g(x, y+7 y7)> + 0(772) .

Thus, up to second order terms in the learning rate 7, which is commonly small for reward model
training [40, 42], the change in reward is determined by the inner product of the reward and loss
gradients. Below, we characterize this inner product for EX-RMs and IM-RMs. Motivated by the fact
that reward models have achieved competitive performance when fixing the backbone that produces
hidden representations [76], we assume that hidden representations are not updated during training.
Nonetheless, as Section 5 verifies empirically, the implications of our analysis apply also when all
reward model parameters are learned (we do not fix the hidden representations in our experiments).

Assumption 1. Hidden representations are fixed during training: only the linear head u for EX-RMs
and unembedding matrix U for IM-RMs are updated (i.e., fgx = u and 6y = U).

EX-RM dynamics. For EX-RMs, the change in reward is given by (derivation in Appendix E.3):
ATQEX (5(7 y) = <h5()7 }lx,y+ - hx.y*> : 7].(1(H]‘:X) > (4)

where g(0rx) 1= 0(Touy (X, ¥ ) — Topx (X, ¥)) > 0. As Equation (4) shows, g, (X, ¥) increases
when hy 3 is more closely aligned with hy y+ than with hy . In particular, the change in reward
depends on responses only through their hidden representations. Consequently, the extent to which
an EX-RM generalizes to unseen prompt-response pairs is largely determined by the structure of
the hidden representations, which are produced by a pretrained (and sometimes also post-trained)
language model. Since these representations are known to encode semantics [92, 46], this suggests
that EX-RMs can generalize to unseen responses even if they consist of entirely different tokens from
responses in the training set.

IM-RM dynamics. For IM-RMs, the change in reward is more complex and is given by (derivation
in Appendix E.4; adapted from Theorem 7 of [58]):

ylly'l ylly
Aty (X,¥) = (Z Z /)/,g/(er) ’ <hx«y4 k> hx.y’, >7 Z Z pra(y”) <hx~y ko hx.y’] >> (5)

k=1 =1 k=1 1=1
. r/g(ﬁn\[),fiz + (”)(7/2) ,

where g(6iv) == (e (X, ¥ 7) — 7o (X, ¥ 7)) > 0 and the coefficient p, ;(v) € [-2,2], for
v E {y*, vy~ }, is determined by the tokens ¥, v;, and corresponding next-token distributions:

Pri(V) = Il[yk = Vl] — Toim (yk|X,V<l) — Tom (Vl‘)_(v S’<k> + <7791M(")_(7 S’<k>77791M('|XaV<l)> .

In contrast to EX-RMs, the change in reward for IM-RMs depends on the specific tokens that appear
iny, y", and y~, as opposed to just their hidden representations. This dependence is introduced
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Figure 4: IM-RMs fail to generalize to a simple token-level distribution shift, while EX-RMs generalize
perfectly. We trained EX-RMs and IM-RMs on prompts from the Persona dataset [48]. Chosen responses
expressed agreement with the prompts, whereas rejected responses expressed disagreement. During evaluation,
we included paraphrased versions of the original responses (figure includes exemplar responses). In line with our
analysis (Section 4), IM-RMs are extremely inaccurate over paraphrased responses, whereas EX-RMs achieve
perfect accuracy. The experiments were based on four language models: Pythia-1B, Qwen-2.5-1.5B-Instruct,
Llama-3.2-1B, and Llama-3.2-1B-Instruct. Values in the table are means across the models and three random
seeds (standard deviation was below 0.04 in all cases).

by the coefficients py ;(y 1) and pi;(y ). Specifically, if y; = yf then py;(y*) > 0. Thus, the
corresponding term pr,(y")(hxy_,,h,  + ) has an effect analogous to (hx gy, hy y+) from the
dynamics of EX-RMs (Equation (4)): it incréases the reward of (x,¥) if its hidden representation is
aligned with that of (x,y ™). However, when §;, # y;" the coefficient py;(y ) can be negative. In
this case the effect is opposite: the corresponding term decreases the reward of (X,¥) if its hidden
representation is aligned with that of (x,y*). Notably, py;(y™") is likely to be negative when y;"
and y}, are tokens that appear in similar contexts, since then 7g,,, (¥ |X, v<;) and 7a,,, (Vi|X, ¥ <&)
are likely to be high (they contribute negatively to pj ;(y*)). Analogous arguments hold for terms
corresponding to pg ;(y ™).

Since hidden representations often encode semantics, the above implies that the learning dynamics
of an IM-RM may inadvertently decrease the reward of responses that are semantically similar to
chosen responses in the training set, and increase the reward of those similar to rejected responses,
if their tokens have little overlap. This suggests that the generalization gap between EX-RMs and
IM-RMs may stem from the latter being less robust to superficial token-level shifts. We support this
prospect theoretically in Appendix A, by providing a concrete (simplified) setting in which IM-RMs
provably generalize worse than EX-RMs, and empirically in Section 5.

Relation to prior work. The learning dynamics of IM-RMs was previously analyzed in [58, 30], but
for other purposes. Specifically, our work focuses on generalization to unseen responses, whereas
[58] studied an optimization issue and [30] considered generalization across prompts when responses
seen in training and evaluation are the same. See Appendix C for further details.

5 Empirical Demonstration

Our theory (Section 4) indicates that IM-RMs are more prone than EX-RMs to overfitting superficial
token-level cues. In this section, we verify that this conclusion bears out in practice. Namely, in both
controlled (Section 5.1) and real-world (Section 5.2) settings, we show that IM-RMs generalize worse
than EX-RMs under token-level distribution shifts (e.g., paraphrasing), and often in-distribution, yet
perform comparably or better under domain shifts. The experiments are based on language models of
up to 8B scale from different families: Pythia [8], Gemma-2 [71], Qwen-2.5 [51], and Llama-3 [20].
For brevity, we defer to Appendices F and G some experiments and implementation details.

5.1 Controlled Experiments: Token-Level Shift

Setting. For our controlled experiments, we considered prompts from the Persona dataset [48], which
ask a language model whether it agrees or disagrees with a given statement. We manually wrote
four chosen responses that express agreement and four rejected responses that express disagreement.
We then trained EX-RMs and IM-RMs, using the same initial language models (Pythia-1B, Qwen-
2.5-1.5B-Instruct, Llama-3.2-1B, and Llama-3.2-1B-Instruct), and evaluated their accuracy over the
original responses and paraphrased versions of them, i.e., responses that are similar in meaning but
consist of different tokens. See Appendix G.2 for further details.
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Results: IM-RMs fail to generalize to paraphrased responses. Figure 4 illustrates the experimental
setup and reports the results. As our theory suggests (Section 4), despite achieving perfect accuracy
over the original responses, IM-RMs achieve near-zero accuracy over the paraphrased responses.
This reveals that, for IM-RMs, maximizing reward difference between chosen and rejected responses
can inadvertently have an opposite effect on paraphrased responses. In contrast, EX-RMs generalize
perfectly to the paraphrased responses.

5.2 Real-World Experiments: Token-Level and Domain Shifts
5.2.1 Setting

We compared the generalization of EX-RMs and IM-RMs in real-world settings by evaluating their
accuracy in-distribution, under token-level shifts, and under domain shifts. We ran experiments
in two settings — general chat and math — using six language models ranging in scale from 1B
to 8B: Gemma-2-2B-IT, Qwen-2.5-1.5B-Instruct, Qwen-2.5-3B-Instruct, Llama-3.2-1B-Instruct,
Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct. As specified below, the two settings differ in
which dataset was used for training and the categorization of evaluation datasets into in-distribution,
token-level shift, and domain shift. See Appendix G.3 for further details.

General chat. We trained EX-RMs and IM-RMs over UltraFeedback [15], based on each language
model specified above. In-distribution evaluation was performed over the UltraFeedback test set. For
evaluating robustness to token-level distribution shifts, we created three variants of the UltraFeedback
test set by either paraphrasing, translating to French, or translating to Spanish all responses (via
GPT-4.1). For domain shifts, we used the math and code subsets of RewardBench [35] and the
RewardMATH dataset [33].

Math. We used RewardMATH for training and evaluated in-distribution performance on a held-
out test set. In this setting, the math subset of RewardBench poses a token-level shift while the
UltraFeedback variants and code subset of RewardBench pose a domain shift.

5.2.2 Results

For the general chat and math settings, respectively, Figures 2 and 5 present the percentage of
evaluations in which either the EX-RM or the IM-RM achieved a higher accuracy, where we only
compare pairs of reward models that were trained from the same initial language model. Furthermore,
Table 1 reports the accuracy and absolute reward margin of reward models for each evaluation
category. See Tables 2, 3, 4, and 5 and Figures 9 and 10 in Appendix F for a per evaluation dataset
and language model breakdown of the results.

IM-RMs are less robust than EX-RMs to token-level distribution shifts. Recall, our theoretical
analysis (Section 4) indicates that IM-RMs are more sensitive than EX-RMs to superficial token-level
cues. If this is indeed the case, then one would expect IM-RMs to underperform EX-RMs when
subject to token-level distribution shifts. On the other hand, EX-RMs should not enjoy a distinct
advantage under domain shifts. The empirical results match these expectations. Moreover, the
in-distribution accuracy of IM-RMs in the general chat setting is consistently lower than that of
EX-RMs. We attribute this to in-distribution evaluation being closer to a token-level shift than to a
domain shift. Namely, in-distribution test examples share semantic structure with training examples
but take on different surface forms.

EX-RMs induce a higher reward margin. Table | highlights an additional benefit of EX-RMs over
IM-RMs: EX-RMs induce a higher absolute reward margin. This was recently shown to yield a better
optimization landscape for reinforcement learning [57, 59].

Evidence against alternative hypotheses. Finally, we provide evidence against two alternative
candidate sources for the generalization gap between EX-RMs and IM-RMs, aside from the one ruled
out in Section 3. First, the reward of an EX-RM is based on the hidden representation of the whole
response, whereas IM-RMs depend also on the hidden representations of intermediate tokens in the
response. Intuitively, the hidden representations of intermediate tokens may be misleading since they
do not capture the full meaning of the response. Second, the reward of an IM-RM is shifted by the
log probability of a reference distribution, which is not the case for EX-RMs. Figure 7 demonstrates
that these differences do not explain the generalization gap by considering EX-RMs trained over the
hidden representations of all intermediate tokens and IM-RMs without a reference distribution.
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Figure 5: IM-RMs are less robust than EX-RMs to token-level distribution shifts, but perform comparably
or better under domain shifts. This figure presents the results of an experiment identical to that of Figure 2,
except that the reward models were trained on the RewardMATH dataset instead of UltraFeedback. Accordingly,
the math subset of RewardBench poses a token-level shift while UltraFeedback variants and the code subset
of RewardBench pose a domain shift. Note that, in this setting, EX-RMs and IM-RMs perform similarly
in-distribution since both reach near-maximal accuracy (see Table 1).

Table 1: This table supplements Figures 2 and 5 by reporting the accuracy and absolute (normalized) reward
margin over the different evaluation categories. In each row, bold font marks the highest accuracy and absolute
reward margin (unless the values are within 0.01 of each other, after taking into account standard deviations).
For each reward model and evaluation dataset separately, the absolute reward margin is normalized by the
standard deviation of rewards to account for arbitrary differences in scale. Notice that EX-RMs consistently
induce a higher reward margin, which was shown in [59] to be beneficial for optimization via reinforcement
learning. Values in the table are means across the models (six in total) and evaluation datasets, with standard
deviation computed based on three random seeds. See Tables 3 and 5 in Appendix F for a per evaluation dataset
breakdown of the results.

Accuracy Absolute Reward Margin

Training Data ~ Evaluation EX-RM IM-RM EX-RM IM-RM
In-Distribution 0.752 £ 0.009 0.646 4+ 0.006 1.014 +£0.023 0.813 £0.003
UltraFeedback  Token-Level Shift 0.665 £0.005  0.602 £0.003  0.976 £0.008 0.763 £0.003
Domain Shift 0.621 £0.012  0.720 £0.004 0.807 +£0.006 0.726 +0.001
In-Distribution 0.971 +0.003 0.972 £0.002  1.602 +0.011  1.377 +£0.007
RewardMATH  Token-Level Shift 0.988 £0.003  0.515+0.007 1.667 £0.017 1.035 £0.011
Domain Shift 0.505 +0.012 0.517 +0.001 0.755 £0.008 0.604 4 0.004

6 Conclusion

Reward models are a key component in language model post-training and inference pipelines. Yet,
the comparative advantages and disadvantages of different reward model types are poorly understood.
In this work, we focused on two prevalent reward model types: explicit reward models (EX-RMs) and
implicit reward models (IM-RMs). Through theory and experiments, we established that IM-RMs
rely more strongly on superficial token-level cues. As a result, they typically generalize worse than
EX-RMs under token-level distribution shifts, as well as in-distribution. This brittleness of IM-RMs
reinforces existing empirical evidence on the relative benefits of EX-RMs [65, 39, 35, 70]. We
also provided evidence against an alternative hypothesis, by which the generalization gap between
EX-RMs and IM-RMs stems from IM-RMs needing to learn to generate responses, as opposed to
just verifying their quality. Overall, our results highlight that seemingly minor design choices can
substantially impact how reward models generalize.

Limitations and future work. The theoretical analysis in Section 4 assumed that hidden represen-
tations are fixed. Although Section 5 empirically demonstrated that the conclusions of our theory
apply when all reward model parameters are trained, alleviating this restriction may yield further
insights into how reward models generalize. Furthermore, our work covers three common reward
model types: EX-RMs, IM-RMs, and a generative reward model variant (Appendix D; cf. [88]). As
elaborated in Appendix B, we hope that it will encourage studying the implicit biases of additional
reward model types toward enhancing their robustness.
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A Generalization Gap Between Explicit and Implicit Reward Models

The goal of this appendix is to provide a concrete setting in which IM-RMs provably generalize
worse than EX-RMs, due to the stronger reliance on token-level cues (identified in Section 4.1).
Alongside assuming that the hidden representations are fixed (Assumption 1), we consider the case
where responses in the training set are of length one. Furthermore, to ensure a fair comparison
between EX-RMs and IM-RMs, we require that both are able to perfectly fit the training set.

Assumption 2. Responses in the training set D are of length one.

Assumption 3. There exist fgx and 0y such that the corresponding EX-RM and IM-RM achieve
perfect accuracy over the training set D, i.e., accp, (rgEx) = accp, (Toyy) = 1.

Under these conditions, Theorem 2 establishes that an IM-RM trained via gradient descent does
not generalize to unseen tokens — it achieves trivial accuracy over any evaluation set containing
responses that did not appear in the training set Dy This inability to generalize occurs regardless of
the structure of hidden representations or the initial unembedding matrix. By contrast, an EX-RM
generalizes successfully to unseen tokens if the hidden representations are well-structured. Namely,
let u* € RP be the following max-margin separator over hidden representations in D

u” = argming,go [ul®s.t. V(x,yt,y") € Dy : (u,hy y+ —hyy-) > 1. (6)

The EX-RM will rank correctly any pair of responses that u* ranks correctly.

Theorem 2. Suppose we train an EX-RM and an IM-RM via gradient descent over the training set D
with learning rate n < 2B~? min{8~2, 1}, where B is the maximal hidden representation norm in
Dr,ie, B = maxX(x y+ y-)eDr velx, (xyt) (xy—)} 1yl Denote by 0(t+1) := 0(t)—nV L(rg(1))
the gradient descent iterates, for t = 0,1, ..., where 0 stands for either Ogx or Oy, the IM-RM
reference distribution is Tt = gy, (0), and the loss L is defined in Equation (3). Then, under
Assumptions 1, 2, and 3, for all initializations 0rx(0), 01 (0) and finite evaluation sets Dg that
contain preferences (x,y*,y™), inwhichx € V* and y*,y~ € V are responses that do not appear
in D, the following hold.

* Both the EX-RM and IM-RM perfectly fit the training set: That is, lim;_, . L(7g,y (1)) =
limy s oo ﬁ(rgm(t)) = 0and limy_, c accp, (Touy (1)) = limy 00 achT(rgIM(t)) =1

* The IM-RM fails to generalize to unseen tokens: accp, (7, +)) = 0.5 for all t > 0.

e The EX-RM can generalize via hidden representations: Let u* be the max-margin separator
defined in Equation (6). Then, there exists a time to > 0 such that for all t > tg:

{x oyt y ) €De i (u by ys) > (u by ) |
|De| '

acep, (Togy (1)) =

Proof sketch (full proof in Appendix E.6). With fixed hidden representations, the loss of an EX-RM
and the loss of an IM-RM can be framed as logistic regression problems over different input spaces.
Fitting of the training set thus follows by standard convex optimization results. We then specialize the
learning dynamics of an IM-RM (Equation (5)) to the case of single-token responses and show that
the difference between the rewards of two unseen tokens is constant through training. This implies
that accp, (7g,,, (+)) Temains at its initial trivial value of 0.5. Lastly, by applying the seminal result of
[68], we get that the linear head of the EX-RM converges in direction to u*. This yields the guarantee
on accp, (Togx (1)) O

B Limitations and Future Work

Theoretical analysis. Section 4 included a couple of simplifying assumptions. Namely, we assumed
that hidden representations are fixed and Theorem 2 also required responses to be of length one.
Although Section 5 empirically demonstrated that the conclusions of our theory apply when all reward
model parameters are trained and responses are of arbitrary length, alleviating these restrictions may
yield further insights into how reward models generalize.

Factors influencing generalization. We highlighted one cause for the difference in generalization
between EX-RMs and IM-RMs — a stronger reliance of IM-RMs on token-level cues. However,
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there are likely additional factors that affect their generalization. In particular, while EX-RMs are
more robust to token-level shifts, our experiments show that IM-RMs can generalize better under
other types of distribution shifts. Investigating whether there are cases in which IM-RMs consistently
outperform EX-RMs and why is left to future work.

Beyond accuracy. As customary, we primarily measured reward model generalization via accuracy
(cf. [39, 35]). While accuracy is an important measure, it is not the only quantity that determines the
effectiveness of a reward model [10, 79, 59]. Exploring how different reward model types compare
across a broader set of evaluation criteria remains a valuable direction for future work.

Reward model types. Our work covers three common reward model types: EX-RMs, IM-RMs, and
a generative reward model variant (Appendix D; cf. [88]). We hope that it will encourage studying
the implicit biases introduced by additional types, e.g., reward models that provide rewards on
intermediate steps of a response [72, 38].

C Related Work

Reward models for language model post-training and inference. In real-world applications, it is
rarely feasible to evaluate the quality generated responses via rule-based rewards. As a result, reward
models have been extensively used in the language model ecosystem for training via reinforcement
learning [91, 44, 1, 20, 51, 71], labeling preferences in direct alignment algorithms [18, 43, 2],
rejection sampling [25, 17], data filtering [20, 51, 3], and inference-time scaling [13, 82, 67].

Analyses of reward models. Prior analyses mostly bounded the sample complexity for estimating a
ground truth reward, under various technical conditions [45, 90, 77, 85, 32, 19, 84, 50, 16, 31, 63, 22,
86, 81, 37,29, 69]. An additional line of research considered properties of a reward model that benefit:
robustness [78, 28], compatibility with a given inference procedure [12, 6], and the optimization
landscape for reinforcement learning [57, 59]. However, the works mentioned above do not account
for the difference between reward model types or the effect of their particular parameterizations on
generalization, which is the goal of this study.

Most relevant in our context are [30, 58, 64]. Similarly to Section 4.1, [30] and [58] analyzed
the learning dynamics of IM-RMs, but for other purposes. Specifically, our work focuses on
generalization, whereas [58] addressed an optimization issue that causes the reward assigned to
chosen responses to decrease. Regarding [30], under conditions similar to those of Theorem 2, they
proved that IM-RMs can generalize well to unseen prompts if the responses used for training and
evaluation are the same. In contrast, Theorem 2 establishes that IM-RMs fail to generalize when
the evaluation responses do not appear in the training set — a more realistic scenario. Lastly, [64]
constructed a setting in which EX-RMs enjoy a better sample complexity than IM-RMs (Section 4
therein). Though, their result requires nonstandard reward model parameterizations and a reward
estimation method tailored to a specific ground truth reward. While our analysis also operates under
simplifying assumptions, it identifies a cause for the generalization gap observed in practice between
EX-RMs and IM-RMs, as we extensively verify empirically (Section 5).

Learning dynamics of neural networks. In Section 4.1, we characterized how the reward assigned
to prompt-response pairs changes due to a gradient update. Analogous approaches have been
valuable both in theory, for studying the effect of language model post-training [30, 58, 60], and in
practice, for identifying mislabeled examples [49] and developing data selection algorithms [83].
More broadly, analyzing the trajectory of gradient-based training is a fundamental tool in the vast
implicit bias literature. There, the focus is typically on understanding why overparameterized
neural networks often generalize well, despite the existence of parameter assignments that do
not [62, 26, 27, 68, 5, 23, 24, 36, 53, 54, 55, 7, 14, 61, 66, 56, 11, 87, 74]. We refer to [73] for a
survey of the field.

D Explicit Generative Reward Models

A nascent reward model variant, proposed in [88], rewards responses by asking a language model g
to assess their quality. We refer to this type of reward models as explicit generative reward models
(EX-GRM:s). Specifically, for a prompt-response pair (x,y ), EX-GRMs receive as input I[x,y] € V*,
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which is some textual format that requests the model to verify whether y is a good response to x.> For
example, [88] concatenate to (x,y) the suffix “Is the answer correct (Yes/No)?”. Then, the reward for
(x,y) is taken to be the probability that the underlying language model assigns to the token Yes, i.e.:

T0c (X7 Y) = Toe (Yesu[xa Y]) >
where 6 = 6 denotes the trainable parameters of the EX-GRM.
Instead of the Bradley-Terry log-likelihood loss (Equation (3)), [88] suggested an alternative loss for
EX-GRMs:?

L (rg) == \DT\ Z(xw —In o, (Yes|I[x,y"]) — Inmp, (No|I[x,y7]).  (7)

In Appendix D.1, we extend the analysis of Section 4.1 to EX-GRMs. We show that, similarly to
EX-RM:s, the learning dynamics of EX-GRMs depends on responses primarily through their hidden
representations. This suggests that EX-GRM:s should also be more robust than IM-RMs to token-level
distribution shifts. We corroborate this hypothesis empirically in Appendix F.

D.1 Learning Dynamics

We characterize how performing a gradient update on the training example (x,y 7y’) E Dy
influences the reward that an EX-GRM assigns to an unseen prompt-response pair (X,y), i.

ATQG (Xa y) = TB@*?]V[EG (x,yt,y—) (ia y) —Toc (Xa y) P
where € R+ is a learning rate and
E(G}G (x,y",y7) == —Inmg, (Yes|I[x,y"]) — Inmg, (No|I[x,y])

denotes the EX-GRM loss over (x,y™,y ™). By a Taylor approximation of 7¢, (X,y) around 0, we
may write the change in reward as:

Arg, (%,5) = —1{Vre (X,¥), VLG, (x,y T,y 7)) + O(n?).

As in Section 4.1, we assume that hidden representations are fixed during training (Assumption 1),
in which case the trainable parameters of the EX-GRM are g = U, where U is the unembedding
matrix of 7y, . Under this assumption, the change in reward for EX-GRMs is given by (derivation in
Appendix E.5):

Aroq (%,3) = mac (Yes 1%, 3)) (") - (hrisg)s Briey) +707) - (Brgegt Bry-1))
-+ 0(),
where the coefficients y(y ™) € [0,2] and v(y ) € [—2, 1] are defined as:
A(y*) = 1 — g (Yes|I[x, §1) — mo (Yes|I[x, 1) + (o (-111%, 91), maq (111, ¥ 1) .
Y(y™) = ~oc (NOlT[%, 9]) — maq (Yes|Z[x, y 1) + (g (-1[%,51), 7o (111x, y 7)) .
with 7y, (-|z) denoting the vector of probabilities that 7y, assigns to tokens conditioned on z.

Similarly to EX-RMs (Equation (4)), and in contrast to IM-RMs (Equation (5)), the change in
reward for EX-GRMs depends on ¥, y*, and y~ primarily through the hidden representations
of the corresponding inputs (i.e., h Ix.3)s hjx y+], and hyp, ). Notably, since v(y*) > 0, the
contribution of (hy(x g}, hy[x y+]) mirrors that of (hy g, hx7y+> in the EX-RM dynamics: it increases
the reward of (X, y) when the hidden representations corresponding to (X,y) and (x,y ™) are aligned.
The contribution of the term involving v(y ™) may differ from the analogous term in the EX-RM
dynamics since y(y ) can be positive. Nonetheless, EX-GRMs, like EX-RMs, are expected be
more robust than IM-RMs to superficial token-level distribution shifts. Appendix F empirically
demonstrates that this is indeed the case.

®)

The input I[x, y] can optionally include chain-of-thought tokens.
3188] include an additional — ) - In Tog (y+ |x) loss term, with A > 0, that encourages the model to retain
its response generation capabilities.
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E Deferred Proofs

E.1 Proof of Theorem 1
For a prompt x € X, we define 7 (-|x) by:

m(y|x) = 76 et (Y[X) - exp(6/8) ¥ € C(x)
. ﬁﬂ'ref‘(yb() ,y c V* \C(X) )
where

— + . -
Z(X) i Zy*EC(x) Wrcf(y |X) exp(d/ﬂ) + Zy*eV*\C(x) Wrcf(y |X)

is a normalization constant that ensures 7 (-|x) is a valid distribution. The probability that 7 assigns to
any other sequence of tokens can be defined arbitrarily (as long as it is consistent with the probabilities
defined above). Since v (x,y) = f(ln7(y|x) — Inmee(y|x)) forall x € X,y € V*, where rny
is the IM-RM induced by 7, we have that:
_[6—PBInZ(x) ,yel(x)
rv(x,y) = {_51nz(x) LY EVI\C(x)

Clearly, 71y is a verifier with margin 6 for (X, C) since v (x,y ") = riv(x,y ) + 0 forall x € X,
yT €C(x),andy~ € V*\ C(x).

Now, notice that Z(x) > 1 since it is a sum over the probabilities . (y|x), for y € V*, up to terms
corresponding to y € C(x) being multiplied by exp(6/8) > 1. As a result, for any x € X and
y € C(x) it holds that:

1

m(ylx) = ﬁﬂref(Y‘X) exp(6/8) < met(y|x) - exp(6/3) .

Summing over responses in C(x), we conclude:

T(C(x)[x) < mrer(C(x)[x) - exp(5/) -

E.2 Proof of Corollary 1

By Theorem 1, there exist a distribution 7 and corresponding IM-RM 71y such that ry is a verifier
with margin § € R+ for (X, C), although for all x € X’ it holds that:

exp(=6/p) - m(C(x)[x) < mrer (C(x)[x) -

We show that, since 7, is not an efficient generator for (X, C), the distribution 7 is not an efficient
generator for (X, C) either. Assume by way of contradiction that this is not the case, i.e., that 7 is an

efficient generator for (X,C). Let k € N and o € R+ be such that 7(C(x)[x) > a~![x| " for all
x € X. Defining v := « - exp(d/3), it follows that for all x € X

Tret (C(x)x) = exp(—5/8) - m(C(x)|x) = exp(=8/8) -a~ x| ™" =7 Hx| 7",

i.e., Tyt is an efficient generator for (X, C) — a contradiction. O

E.3 Derivation of Explicit Reward Model Learning Dynamics (Equation (4))

Under Assumption 1, the trainable parameters of the EX-RM are fgx = u. Thus, the loss gradient
for (x,y ™,y ™) € D7 with respect to fgx is given by:

ngEX (X7 y+’ y_) = _g(eEX) ’ (vr9Ex (X7 y+) - VT‘GEX (X7 y_))
= —g(0x) - (hyy+ —hyy-),

where g(rguy) == —ly (X, ¥, y7) = 0(Topx (X, ¥ 7) — Topx (X, ¥ 7)) > 0. Equation (4) then

follows by: fex
ATpey (X, Y) = Topx—nVee,  (xy+y-) (X ¥) = Toux (X,¥)
= (u— Vil (X, ",y ), hxy) — (u,hgy)
= <h,—(,y, hy ,+ — hx7y7> -ng(0px) .
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E.4 Derivation of Implicit Reward Model Learning Dynamics (Equation (5))

Equation (5) follows by steps similar to those used for proving Theorem 7 in [58], where the difference
stems from the hidden representations being fixed in our case (Assumption 1). In particular, under
Assumption 1, the trainable parameters of the IM-RM are 0;\; = U. Thus, the loss gradient for
(x,y",y ™) € Dy with respect to 61y is given by:

Vg, (X, y+v yi) = _Q(GIM) : (VTQIM (X7 y+) — Vroy, (X’ yi))

_ . T o (y+|X) . T 01 (y7 |X))
= —g(fm) (Vﬂ In 77rref(y+ %) Vi 1n 771}610(}’_ %)

= _g(GIM)ﬁ : (v In T (y+|X) —Vin T (y_‘X)) >

where g(0mv) = —fp, (X,yT,y7) = 0(ron (X, ¥7) — 7o (x,y7)) > 0. Furthermore, the
reward gradient for (X,y) is:

TOrm (y|i) —
————= =p(-Vinmy, (¥X).
et (71%) e (Y1%)
Now, for any prompt x’ € V* and response y’ € V*:
ly']
Vinmg,, (y/|X/) = Zk:l V Inmg,y, (y;c |X/7 yl<k>

= ZLy:/‘l V(<Uy;,hxr7y/<k> —In Zvev eXp(<UU7 hx,’y,<k>))

ly'| ;o
_ E _ . T
- h—1 (ey;c 7TQIM( |X ay<k))hx’,y’<k >

where e, € RIVI denotes the standard basis vector corresponding to v € V and g, (-|x/, y’ ) is the
vector of probabilities that 7g,,, assigns to tokens conditioned on (x',y’_; ). Plugging this gradient
expression into the expressions for Vrg,,, (X,y) and Vi, (x,y 1,y ™) yields:

<VT91M (ia y)ﬂ 7V€91M (Xa y+a y7)>

¥l ly ™|
= <Z(eyk — T (~‘i7 y<k))h;cr,y<k,7 Z (eyfr — T ('|X7 yzz)) h;yZl > g(aIM)B2

v”,911\/1 (i, y) = VB In

k=1 =1
|yl Iy~
- < (o5, = T, (1%, <) By s D (@ = o (I, y<l>)h;y<1>g<em>ﬁ2
k=1 =1
I3l ly*| Iyl Iy~ |
= ( pea(y™)- <hx,y<kvhx,yzl> = praly) <hx,y<kahx,y<l>> g9(0na)8°,
k=11=1 k=11=1

where forallv e {y*t,y~}, ke {1,...,|y|},andl € {1,...,|v|}:
Pea(V) = (ey, — Mo (X, Y <i), €v, — Torn (%, vi<r))
= 1[yr = vi] = Tor, (Frl%, var) = Top, (ViR T <) + (Mo (1%, ¥ <), o (%, V<)) -
Equation (5) then follows by the above and the fact that:
A (%,5) = =1 (Vo0 (%, 5), Vo, (%, 5, 57)) + O(?).

Lastly, to see that py (v) resides within [-2,2] for all v. € V*, k € {1,...,|y|}, and [ €
{1,...,|v|}, notice that:
|pk,l(v)’ = |<e9k - WHIM("Xv y<k‘)7evl - 7r91M('|X7 V<l)>|
< ||e§’k - 7r911»1('|ivy<k)||1 . Hevz - 77911\4('|X;V<1)H00
<2-1
=2

where ||-||; and ||-|| ., denote the £; and /. norms, respectively.
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E.5 Derivation of Explicit Generative Reward Model Learning Dynamics (Equation (8))

Under Assumption 1, the trainable parameters of the EX-GRM are 6 = U. Recall (Appendix D.1)
that the EX-GRM loss over (x,y T,y ™) € Dy is defined as:

€(§}G (x,y",y7) == —Inmg, (Yes|I[x,y"]) — Inmg, (No|I[x,y ]).
The loss gradient for (x,y ™,y ™) € D7 with respect to g is therefore given by:
VE(,G (x,y",y7) = —Vinmg, (Yes|I[x,y"]) — VInms, (No|I[x,y])
~(eves — mo6 (-171%, ")) By = (eN0 = o6 (1%, 7)) By -

where eves € RIVI and ey, € RV are the standard basis vectors corresponding to the tokens Yes
and No, respectively, and 7y, (+|I[x,y"]) and ma., (-|I[x,y ~]) are the vectors of probabilities that
o, assigns to tokens conditioned on I[x, y™] and I[x, y ™|, respectively.

Furthermore, the reward gradient for (X,y) is:

V7o (%,¥) = Vs (Yes|I[x,¥])
= 7o (Yes|I[x, y]) - VInmo, (Yes|I[X, y])

= 7o, (Yes|I[X,¥]) - (eves — ng('|I[>’<,y]))h;—[i’y] .
Thus:
<VT0G (5{7 y)v _veg;(; (Xv y+’ y7)>
= Toq (Yesu[iv yD ’ <(eYes — Thg ('|I[5{’ y]))hIT[i,S']7 (eYeS — T ('|I[X’ y+]))h;r[x’y+]>
o+ g (Yes|T[%, 71) - ((@ves = 7o (%, ¥1)B 5,57 (en0 = To (1T, ¥ "))y

= myq (Yes|I[X,¥]) (V(Yﬂ (g hrpy) 7y 7) <hI[X,y]7hI[x,y*]>) ,
where the coefficients y(y ™) and v(y ) are given by:
) = (eves — o6 (1%, 7)), eves — mo (| I[x,y7]))
=1 ms (Yes|I[%,5]) — moq (Yes|I[x,y"]) + (mo (1%, §]), moq (1L [x,¥7]))
Yy ™) = (eves — o (11[%, ¥]), exo — 7o, (11[x, ¥ 1))
= —mge (NolI[%,¥]) — moe (Yes|I[x,y7]) + (moc (|1[%, ¥]), moc (| I[x,y7])) -
Equation (8) then follows by the above and the fact that:
Arge (%,5) = =1 (Vroe (%,9), Vi, (x,y",y7)) + O() .
Lastly, to see that y(y™) € [0,2] and y(y ™) € [—2, 1], notice that:
Yy ™) =(1 — 7o (Yes|I[%, 51)) (1 — moq (Yes|I[x,y™]))
£ ey T (TR, )0 (0176, ).

Since (1 — g, (Yes|I[x,¥]))(1 — mo., (Yes|I[x,yT])) € [O 1] and
—ZUGV\{YS} oo (VI[X, ¥]) o (v|1[x,y7] Z , o6 (W%, y]) =1,
it follows that y(y™*) € [0, 2]. Turning our attention to v(y ~), it can be written as:

Y(y ™) = —7oe (No|T[%,3]) — moq (Yes|T[x,y 7)) + > maq (v|I[%, 7))o (v|T[x,y 7)) -
veV

Yy

Since the first two terms on the right-hand side are bounded within [—1, 0] and
0< > oo (W%, 5o (I y ) <D moe (vlTx.5]) = 1.

we get that y(y ™) € [-2,1].
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E.6 Proof of Theorem 2

We begin by expressing the loss £ (Equation (3)) for rg,, and rg,,, as logistic regression problems
over different input spaces. This is possible since only the linear head fgx = u and unembedding
matrix Oy = U are trained (Assumption 1). Let £(a) := —Ino(a) = In(1 + exp(—a)) be the
logistic loss, for a € R, and define for all (x,y ™,y ™) € Dr:

¢EX(X7y+7y7) = hx,y+ - hx,y* € RD >
¢IM(X7Y+,Y_) = B ' (eerhI _eyfh;(r) € RlV‘XD,

where e, € RIVI denotes the standard basis vector corresponding to y € V. We can write the loss for
an EX-RM as:

©))

_ 1 + -
‘C(TPEX) - ﬁ Z()@y‘*’,y‘)&D’r K(TOEX (va ) — Topx (va )) (10)

1 p—
D7l Z(X»yﬂy*)eDT O((u,dpx(x,y"y7)))

This describes a logistic regression problem with respect to fgx = u and inputs ¢gx (X, ¥,y ),
for (x,y ™,y ™) € D7, whose labels are all positive. On the other hand, for an IM-RM we have:

1 . _
£(TGIM) = ﬁ Z(x,y+7y—)€D7— g(relM (X»y ) — Tom (Xa y ))

1 o (Y 71%) Tonn (¥~ [%)
- - ¢ In 20 _ Blp 20w )
|Dr| Z(x7y+7y*)eDT (6 Tret (Y 1|%) p Tret (Y7 |X)
By Assumption 2, responses in the training set D7 are of length one. Meaning, y*,y~ € V for all

(x,y",y~) € Dr. Notice that for any y € V:

1n7T91M(Y|X) Uyah lnz eXp Uvah >)

where U, denotes the row of U corresponding to v. Along W1th Tref = 013 (0)> this leads to:

L(ron,) = ((B{Uy+ — Uy, hy) — B(Uy+(0) — Uy—(0), hy))

BT 2ty yoyen
|Dr| (x,yt,y~)EDT an

= ﬁ Z(x,y*,y*)G'DT£(<U7¢IM(X,y+,Y7)> —(U(0), oru(x,5",57))) -

Up to constant bias terms, of the form — (U(0), ¢ (x, y ™1, y ™)), this describes a logistic regression
problem with respect to 1y = U and inputs ¢ (x,y ™,y ), for (x,y",y ) € D7, whose labels
are all positive.

With Equations (10) and (11) in place, Lemma 2 shows that both losses £(rg,y ) and L(rg,,,) are
B? max{3?, 1}-smooth. Furthermore, based on Assumption 3, Lemma 3 proves that the correspond-
ing logistic regression problems are over linearly separable data. That is, there exist a linear head
a € R” and unembedding matrix U € RIVIXP such that for all (x,y*+,y~) € D7

<ﬁ7¢EX(Xay+ay7)> >0 ) <ﬁa¢IM(X7y+7y7)> >0.

This implies that infg,, £(ro,y) = infe,,, L£(rg,,) = 0 as one can reduce the loss to be arbitrarily
close to zero by scaling up the norms of the linear separators @ and U (notice that £(a) > 0 for all
a € Rand ¢(a) — 0 when a — 00). Next, we rely on these observations to establish the three parts
of Theorem 2.

Both the EX-RM and IM-RM perfectly fit the training set. As shown above, L(rg,, ) and
L(rg;,,) can be formulated as logistic regression problems over linearly separable data (Equation (10),
Equation (11), and Lemma 3). Since the losses are convex and B? max{3?, 1}-smooth (Lemma 2),
standard arguments from the convex optimization literature imply that gradient descent with learning
rate 7 < 2B~?min{3~2, 1} minimizes them to their infimal value of zero (e.g., see Lemma 1 in
[68]). That is, lim;_, o, ﬁ(TgEX(t)) = lim;_, E(T@IM(t)) =0.

The fact that the training loss converges to zero directly implies that the accuracy of the EX-RM and
IM-RM over D7 converges to one. To see it is so, notice that there exists a time ¢’ > 0 such that for
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all t > t' it holds that L(rg,, 1)) < ‘lg—fl and L(rg,, 1)) < ﬁ;‘—j‘. Hence, for any training example
(x,y*,y7) € Dr:

Z(rgEx(t)(X, yt) - Toux (t) (X, y*)) <In2,
C(Ton ) (% YT) = Ty (%,y7)) <In2.
This holds if and only if 7,y (1) (%, ¥7) > Topy()(X,¥7) and 79, (1) (X, ¥7) > 7o) (X, ¥7)

for all (x,y*,y~) € Dy. Thus, accp, (Tgu (1)) = accp, (ron ) = 1 forallt > t/, ie.,
limy 00 acCD, (Topy (1)) = liMy 00 accn, (7o (1)) = 1.

The IM-RM fails to generalize to unseen tokens. For any 61y = U, the gradient of L(rg,,,) is
given by:

1 _ _
VE(TQIM) = ﬁ Z(x,er,y*)eDT E/ (TQIM (X; y+) — T (Xa y )) . ¢IM(X7 y+7y )

1
N ﬁ Z(X-,Yﬂy*)eDT pe (TGIM (x,y") - "0 (X7y_)) . (ey+ — eyf)hl .

Notice that for any token y € V that does not appear as a response in D, the gradient with respect
to U,, — the row corresponding to y in U — is zero. This implies that Uy, (¢) = Uy,(0) for any such
y € Vand all £ > 0. Hence, for all (x,y*,y ™) € D¢ and ¢ > 0, because the evaluation responses
yT,y~ € V do not appear in D7, we have that:

_ Toma(t) (Y T1x%) Tona(t) (¥~ [%)
Tora(t) (% ¥) = Top(ny (%, ¥7) = f1n freit()w - Al mﬁ
= 6 <]Jy+ (t> - Uy* (t),hx> - 6 <]Jy+ (0) - Uy* (O)’ hX>

= 0 N
from which it follows that 7, (1) (X, y ) = 7, (1) (X, ¥ ~) and accp, (7g,,,(1)) = 0.5.
The EX-RM can generalize via hidden representations. By Theorem 3 of [68], in logistic
regression problems with linearly separable data, gradient descent converges in direction to the
max-margin separator. Invoking Theorem 3 of [68] for the EX-RM loss implies that u(¢) converges
in direction to u* defined in Equation (6), i.e., lim; o u(t)/||u(t)|| = u*/|ju*||. Note that the
requirements on the learning rate are satisfied: it needs to be smaller than 2/, with « denoting the

smoothness coefficient of the loss, which in our case is B? max{3?, 1} (Lemma 2). Thus, for all
(x,yT,y ") € Dg we get that:

) u(t) u*
lim <,hx +—hx >:<,hx_ +—hx >
t=o0 \ u(t)|” Y [ Y

If <u>“7 hy, y+ — hx7y7> > 0, then there exists a time ¢’ > 0 such that for all ¢ > ¢:
u(t) >
,hx’ + *hx) -)>0,
< a())” Y

<11(t), hx,y+ - hx,y* > = Topx(t) (X7 y+) — Topx(t) (X7 yi) >0.
By defining ¢ to be the maximal such ¢’ over all (x,y™*,y™~) € D¢ for which

<u*, hx,y+ — hx1y7> >0,

and so:

we arrive at the desired conclusion (note that it is possible to take the maximum over such times ¢’
since Dg is finite). Namely, for all £ > to the EX-RM 7, (+) accurately ranks at least the responses
that u* ranks correctly, i.e.:

|{<X5y+7y_) € D5 : <U*7hx7y+> > <u*,hx7y7>}‘
|De| '

V

accpe (Topy () =
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E.6.1 Auxiliary Lemmas

Lemma 1. Let £ : R — Rx( denote the logistic loss, i.e., {(a) := —Ino(a) for a € R, where
o : R — [0, 1] is the sigmoid function. Then, for all a € R:
1
g// < = .
@) < §
Proof. For all a € R, the derivative of the sigmoid satisfies ¢’ (a) = o(a)o(—a). Thus, a straightfor-

ward differentiation of ¢ gives ¢'(a) = —o(—a) and:
"(a) = o(a)o(—a).

Noticing that 0(—a) = 1 — o(a) and that the maximal value of p(1 — p) for p € [0,1] is 1/4, we
conclude that |[¢”(a)| < 1/4. O

Lemma 2. Under the setting of Theorem 2, both the loss L(rg, ) with respect to gx = u and the
loss L(rgy, ) with respect to Oryy = U are B2 max{ 3%, 1}-smooth, i.e., the spectral norm of their
Hessians is bounded by B? max{/3%,1}.

Proof. Starting with £(79, ), by Equation (10) and straightforward computations we can write its
Hessian as:

1 _ _ _
v2£(T9EX) = |D7‘| § : e//(<u’ ¢EX(X7y+ay >>) ’ ¢EX<X5y+7y )¢EX(X7y+ay )T .
(xyT,y")EDT

Since ¢px (x,y T,y ") = hy y+ —hy ,—, by the triangle inequality || ppx (x,y ™,y )| < 2B for all
(x,y*,y~) € Dy. Furthermore, by Lemma 1 we have that £’ ({u, ¢ppx (x,y T,y ~))) < 1/4. Thus:

1 )
HVQE(T’(;EX)HQ < mZ(x’y+’y7)€DT||¢Ex(x,y+,y )H < B2,

where ||-||, denotes the spectral norm and ||-|| denotes the Euclidean norm. Multiplying B? by
max{3?, 1} can only increase it. Thus, £(rg,, ) is B max{/3?, 1}-smooth.

For L(rg,,, ), an analogous derivation leads to:
192200l < 57 ey re ey
Since ¢rv(x,y T,y ") = B (ey+hy —e,-h)), by the triangle inequality ||¢n(x,y T,y )| <
2Bf forall (x,y ",y ™) € Dy. We therefore have that £(rg,,,) is B> max{/3?, 1}-smooth as well:
|V2L(ron,)||, < B*8* < B* max{*,1}.
O

Lemma 3. Under the setting of Theorem 2, there exist a linear head u € RP and unembedding
matrix U € RIVI*P such that for all (x,y*,y~) € Dy

<ﬁv¢EX(Xa y+vy_)> = <ﬁ7hx7yJr - hx7y7> > O’
<ﬁa¢IM(X7y+7y7)> = B <fIyJr - fJy*ahx> >0,

where ¢rx and ¢y are defined in Equation (9) and U, denotes the row of U corresponding to v,
for any token v € V.

Proof. Starting with the EX-RM, by Assumption 3 we know that there exists fgx = u € R” such
that for all (x,y*,y~) € Dy:

0< Topx (X7 y+) — Topx (X, yi) = <11, hx,yJr - hx,y*> = <u7 ¢EX(xa y+a y7)> .

Thus, u := u satisfies the requirement of the lemma.
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For the IM-RM, by Assumption 3 we know that there exists Oy = U € RIVI*P such that for all
(x,y*,y~) € D7:

_ Top (Y1 |X) Ton (Y~ [%)
0< ; +\ _ , — 1 1M _ 1 1M
T (X y ) Torm (X y ) BIn Wref(y+|x) B1n Wref(y_|x)

=B (Uy+ — Uy, hy) — B(Uy+(0) — Uy (0), hy)
= <U - U(O)a d)IM(Xv y+7y7)> .

Thus, U := U — U(0) satisfies the requirement of the lemma. O

F Additional Experiments

F.1 Hamiltonian Cycle Verification (Section 3.2)

In the experiments of Figure 3, we used a learning rate of le-6 and set 3 to 0.01 for IM-RMs. We
additionally considered lower and higher values for both hyperparameters (namely, learning rates
5e-7 and 5e-6 and S coefficients 0.005, 0.05, and 0.1). The results were analogous. That is, both the
EX-RMs and IM-RMs were able to accurately distinguish between valid and invalid Hamiltonian
cycles, although the IM-RMs were unable to generate even a single Hamiltonian cycle.

F.2 Controlled Experiments: Token-Level Shift (Section 5.1)

In the experiments of Figure 4, we used a learning rate of le-6 and set 3 to 0.01 for IM-RMs. We
additionally considered lower and higher values for both hyperparameters (namely, learning rates
Se-7 and Se-6 and £ coefficients 0.005, 0.05, and 0.1). The results were analogous. That is, IM-RMs
were extremely inaccurate over paraphrased responses, whereas EX-RMs achieved perfect accuracy
(for both training and test prompts).

Furthermore, we ran the same experiments with explicit generative reward models (EX-GRMs; see
Appendix D) in place of EX-RMs. We found that EX-GRMs exhibit similar trends to EX-RMs (i.e.,
generalize perfectly to paraphrased responses).

F.3 Real-World Experiments: Token-Level and Domain Shifts (Section 5.2)

EX-RMs vs IM-RMs. Listed below are additional results, omitted from Section 5.2, comparing the
generalization of EX-RMs and IM-RMs.

 Tables 2 and 4 provide a per evaluation dataset breakdown of the results in Figures 2 and 5,
respectively.

* Tables 3 and 5 provide a per evaluation dataset breakdown of the results in Table 1 for the
general chat and math settings, respectively.

* Figure 6 demonstrates that the results in Section 5.2 are robust to different learning rates and 3
coefficients for IM-RMs.

* Figures 9 and 10 supplement Figures 2 and 5, respectively, by including the accuracy of reward
models per initial language model and evaluation dataset.

Evidence against alternative hypotheses. Recall, our analysis (Section 4) indicates that IM-RMs
are more sensitive to superficial token-level cues, and thus often generalize worse than EX-RMs.
We provide evidence against two alternative potential sources for the generalization gap between
EX-RMs and IM-RMs. First, the reward of an EX-RM is based on the hidden representation of the
whole response, while IM-RMs depend also on the hidden representations of intermediate tokens
in the response. Intuitively, the hidden representations of intermediate tokens may be misleading
since they do not capture the full meaning of the response. Second, the reward of an IM-RM is
shifted by the log probability of a reference distribution, which is not the case for EX-RMs. Figure 7
demonstrates that these differences do not explain the generalization gap, as the gap remains when
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considering EX-RMs trained over the hidden representations of all intermediate tokens and IM-RMs
without a reference distribution.*

EX-GRMs vs IM-RMs. Listed below are additional experiments, omitted from Section 5.2, com-
paring the generalization of explicit generative reward models (EX-GRMs; see Appendix D) and
IM-RMs. Notably, we find that the results of EX-GRMs are analogous to those of EX-RMs: they are
more robust to token-level shifts than IM-RMs, as anticipated by our analysis (Appendix D.1).

* Figure 8 presents the results of an experiment identical to that of Figures 2 and 5, except that it
compares EX-GRMs (instead of EX-RMs) to IM-RMs.

» Table 6 supplements Figure 8 by reporting the accuracy and absolute (normalized) reward
margin of EX-GRMs and IM-RMs over the different evaluation categories.

Tables 7 and 9 provide a per evaluation dataset breakdown of the results in Figure 8.

Tables 8 and 10 provide a per evaluation dataset breakdown of the results in Table 6 for the
general chat and math settings, respectively.

* Figures 9 and 10 supplement Figure 8 by including the accuracy, per initial language model and
evaluation dataset, for the general chat and math settings of Section 5.2, respectively.

G Additional Implementation Details

In this appendix, we provide implementation details omitted from Section 3.2, Section 5, and
Appendix F. Code for reproducing our results, based on the PyTorch [47] and Hugging Face [80]
frameworks, will be made publicly available.

In all experiments, for each prompt and response, we used the following chat template (unless the
model already had a chat template, in which case we used the original chat template):

[USER]{prompt}[ ASSISTANT|{response}[EOS]
where [USER], [ASSISTANT], and [EOS] are defined as special tokens.

G.1 Hamiltonian Cycle Verification (Section 3.2)

Data. Each example in the dataset consisted of: (i) a prompt that describes an undirected graph
with N € N vertices, (ii) a chosen response, which describes a permutation of vertices that forms
a Hamiltonian cycle in the graph, and (iii) a rejected response, which describes a permutation of
vertices that does not form a Hamiltonian cycle in the graph. Below are examples for the prompt and
response formats, where vertices are denoted by integers from 0 to N — 1, the token [sep] is used to
separate vertices and edges, and the token [edge_sep] is used to separate the two vertices of an edge.
The examples are for graphs with N = 10 vertices.

Hamiltonian cycle preference dataset: prompt example

Vertices: [sep]O[sep]1[sep]2[sep]3[sepl4[sepl5[sepl6[sep]7[sepl8[sep]9\n

Edges: [sep]3[edge_sep]4[seplOledge_sepl2[sep]lS[edge_sep]9[sepl2[edge_sep]7[sep]
1[edge_sep]2[sep]O[edge_sep]9[sepl4[edge_sepl6[sep]l[edge_seplS[sep]lledge_sepl3
[sep]S[edge_sepl7[sepl6ledge_sepl8[sep]lledge_sepl8[sep]2[edge_sep]3[sepl3[edge_sep]6
[sep]l[edge_sep]7[sep]2[edge_sep]8

Hamiltonian cycle preference dataset: response example

O[sep]9[sepl5[sepl7[sepll[sepl8[sepl6[sepl4[sepl3[sep]

J

“These results do not preclude the possibility that, in certain settings where the last token can completely
change the meaning of a response, the IM-RM’s reliance on hidden representations of intermediate tokens may
lead to worse generalization than EX-RMs.
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We randomly generated training and test sets with 1000 and 200 examples, respectively. To ensure
that each graph has least one Hamiltonian cycle, we first added the necessary edges for a random
permutation of vertices. Then, for each remaining possible edge independently, we added it to
the graph with probability p € [0, 1]. For the experiments of Figure 3, we created graphs with
N = 10 vertices and chose p = 0.2. Experiments with additional configurations (e.g., N = 8,12
and p = 0.1, 0.3) led to similar outcomes.

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer
[34] for 15 epochs with learning rate 1e-6 and batch size 32 (emulated via two gradient accumulation
steps of size 16). For IM-RMs, we set 3 to 0.01. As stated in Appendix F.1, experiments with both
lower and higher learning rates and § coefficients led to similar results. Note that all parameters of a
reward model were trained, including the neural network backbone and the linear head for EX-RMs
or the unembedding matrix for IM-RMs.

Generation. When evaluating the ability of IM-RMs to generate Hamiltonian cycles, we used a
temperature of 1 and sampled one output for each prompt in the training and test sets.

Hardware. Experiments ran on a single Nvidia HI00 GPU with 80GB of memory.

G.2 Controlled Experiments: Token-Level Shift (Section 5.1)

Data. We took from the Persona dataset [48] prompts that match the “agreeableness” behavioral
trait, of which there are 500, and created training and test splits by randomly sampling 80 and 40
prompts, respectively. For the chosen and rejected responses, we randomly assigned to each prompt
one of four manually written options (see below). Note that chosen responses express agreement with
the prompt and rejected responses express disagreement. During evaluation, alongside the original
responses, we measured the accuracy of the reward models over paraphrased versions of the original
responses (see below).

Original chosen responses

A truthful reply is yes
* A truthful reply is sure
* In my view, the answer is yes

¢ In my view, the answer is sure

,
\

Original rejected responses

» Considering the statement, I say no
* Considering the statement, I say never

* My judgement: no

* My judgement: never

\ J

Paraphrased chosen responses

* My response would be certainly

* My response would be absolutely

\ J

Paraphrased rejected responses

¢ [ lean toward not really

* I lean toward nope

\ J

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer
for 50 epochs with learning rate le-6 and batch size 32 (emulated via four gradient accumulation
steps of size 8). For IM-RMs, we set 3 to 0.01. As stated in Appendix F.2, experiments with both
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lower and higher learning rates and J coefficients led to similar results. Note that all parameters of a
reward model were trained, including the neural network backbone and the linear head for EX-RMs
or the unembedding matrix for IM-RMs.

EX-GRMs. In accordance with [88], we trained EX-GRMSs by minimizing the loss in Equation (7),
using the same hyperparameters as for EX-RMs. Inputs to EX-GRMs were formatted via the
following template. For simplicity, we did not use chain-of-thought tokens.

EX-GRM input format

Question: {prompt}\nAnswer: {response}\nVerification: Is the answer correct (Yes/No)?

Hardware. Experiments ran on a single Nvidia HI00 GPU with 80GB of memory.

G.3 Real-World Experiments: Token-Level and Domain Shifts (Section 5.2)

Data. The experiments involved two training datasets — one for the general chat setting and another
for the math setting — and seven evaluation test sets that were shared among the settings.

Training sets.

» UltraFeedback. For the general chat setting, we took the training set of the binarized Ultra-
Feedback dataset® [15] and filtered out examples in which either the prompt or one of the
responses exceeded 512 tokens according to the Llama-3.2-1B tokenizer. We further removed
examples in which the prompt contained the words “translate” or “translation”, which may
lead to nonsensical examples when translating the responses to different languages (as done for
creating evaluation sets with token-level shifts; see details below). Then, we randomly sampled
2000 examples from the remaining examples.

» RewardMATH. For the math setting, we used the pairwise preferences version of the Reward-
MATH dataset® [33]. As in the chat setting, we filtered out examples in which either the prompt
or one of the responses exceeded 512 tokens according to the Llama-3.2-1B tokenizer. Then,
we created a training set of 1000 randomly sampled examples (note that RewardMATH does
not contain predefined training and test splits).

Evaluation sets.

» UltraFeedback. We processed the test set of UltraFeedback in the same way as the training set,
and randomly sampled 200 examples.

 UltraFeedback: Paraphrased. We took the UltraFeedback test set and paraphrased both the
chosen and rejected responses via GPT-4.1 (version gpt-4.1-2025-04-14).

Prompt to GPT-4.1 for paraphrasing UltraFeedback responses

I will provide a text. Please rewrite it so that the meaning remains the same, but the wording
overlaps with the original text as little as possible. Aim to minimize word and phrase overlap
while preserving all key information and nuance. Output only the rewritten text and nothing
else.\nHere is the original text:\n{response}\nRewritten version:\n

e UltraFeedback: French. We took the UltraFeedback test set and translated both the chosen and
rejected responses to French via GPT-4.1 (version gpt-4.1-2025-04-14).

Prompt to GPT-4.1 for translating UltraFeedback responses to French

I will provide a text in English. Please translate it to French while ensuring that the mean-
ing remains the same. Output only the translated text and nothing else.\nHere is the original
text:\n{response}\nTranslated version:\n

5https ://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

6https ://huggingface.co/datasets/RewardMATH/RewardMATH pairwise
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 UltraFeedback: Spanish. We took the UltraFeedback test set and translated both the chosen and
rejected responses to Spanish via GPT-4.1 (version gpt-4.1-2025-04-14).

Prompt to GPT-4.1 for translating UltraFeedback responses to Spanish

I will provide a text in English. Please translate it to Spanish while ensuring that the mean-
ing remains the same. Output only the translated text and nothing else.\nHere is the original
text:\n{response}\nTranslated version:\n

» RewardBench: Math. We randomly sampled 200 examples from the math subset of Reward-
Bench’ [35] (i.e., examples whose subset field is “math-prm”), after filtering out examples
in which either the prompt or one of the responses exceeded 512 tokens according to the
Llama-3.2-1B tokenizer.

» RewardBench: Code. We randomly sampled 200 examples from the code subset of Reward-
Bench (i.e., examples whose subset field starts with “hep”), after filtering out examples in which
either the prompt or one of the responses exceeded 512 tokens according to the Llama-3.2-1B
tokenizer.

» RewardMATH. When creating the RewardMATH training set, we also designated 200 randomly
sampled examples as test examples.

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer
for 5 epochs with learning rate 1e-6 and batch size 32 (emulated via eight gradient accumulation
steps). For IM-RMs, we set 3 to 0.01. As demonstrated by Figure 6 in Appendix F.3, experiments
with both lower and higher learning rates and S coefficients led to similar results. Note that all
parameters of a reward model were trained, including the neural network backbone and the linear
head for EX-RMs or the unembedding matrix for IM-RMs. To ensure a fair comparison between
EX-RMs and IM-RMs, we verified that their training loss and accuracy were roughly the same.
Specifically, their training loss was below 0.04 in the general chat setting and 0.005 in the math
setting. The accuracy was above 0.993 in both settings (values are means across initial language
models and random seeds).

EX-GRMs. See EX-GRMs paragraph in Appendix G.2.

Absolute reward margin computation. For each reward model r and evaluation set separately,
to measure the absolute (normalized) reward margin, we first computed the standard deviation of
rewards over all responses (chosen and rejected). Denoting this standard deviation by s, for each
example (x,y",y ™) in the evaluation set, the absolute (normalized) reward margin is given by:

~ Py ) ey ).

We report the mean of this quantity over the evaluation set. Note that the normalization is intended to
account for arbitrary differences in reward scale between reward models.

Hardware. Experiments based on Llama-3.2-1B-Instruct ran on a single Nvidia H100 GPU with
80GB of memory. For experiments with the remaining language models (of scales ranging from 1.5B
to 8B), we used four such GPUs per run.

7https://huggingface.co/datasets/allenai/reward—bench
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Table 2: Per evaluation dataset breakdown of the win-rates reported in Figure 2 (i.e., for the general chat setting
of Section 5.2). We abbreviate UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-RM Tie IM-RM
In-Distribution UF 100 0 0
UF: Paraphrased 100 0 0
Token-Level Shift  UF: French 72.2 16.7 11.1
UF: Spanish 88.9 11.1 0
RB: Math 22.2 0 77.8
Domain Shift RewardMATH 38.9 22.2 38.9
RB: Code 0 27.8 72.2

Table 3: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 1, for the general chat setting of Section 5.2 (i.e., for the rows corresponding to UltraFeedback
training data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-RM IM-RM EX-RM IM-RM
In-Distribution UF 0.752 +0.009 0.646 4 0.006 1.014 +0.023 0.813 £0.003
UF: Paraphrased  0.687 4+ 0.005 0.579 +0.002 0.954 +0.010 0.730 +0.008
Token-Level Shift  UF: French 0.645 £0.004 0.616 £0.004 0.991 £0.008 0.785 = 0.004
UF: Spanish 0.662 +0.010 0.612 4 0.002 0.984 +£0.007 0.774 £ 0.004
RB: Math 0.513 £0.041 0.737 £0.008 1.092 £0.024 1.056 £0.002
Domain Shift RewardMATH 0.594 4 0.022 0.593 £0.007  0.922 £0.021  0.802 £0.001
RB: Code 0.754 +£0.014  0.830 £0.002 0.409 +£0.003 0.319 +0.005

Table 4: Per evaluation dataset breakdown of the win-rates reported in Figure 5 (i.e., for the math setting of
Section 5.2). We abbreviate UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-RM  Tie IM-RM
In-Distribution RewardMATH 16.7 66.6 16.7
Token-Level Shift RB: Math 100 0 0
UF 38.9 11.1 50.0
) ) UF: Paraphrased 55.5 16.7 27.8
Domain Shift UF: French 389 222 389
UF: Spanish 55.6 22.2 22.2
RB: Code 11.1 0 88.9
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Table 5: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 1, for the math setting of Section 5.2 (i.e., for the rows corresponding to RewardMATH training
data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-RM IM-RM EX-RM IM-RM
In-Distribution RewardMATH 0.971 £0.003 0.972 £ 0.002 1.602 +0.011  1.377 +£0.007
Token-Level Shift RB: Math 0.988 +0.003 0.515 +0.007 1.667 +£0.017 1.035 £0.011
UF 0.487 £0.018 0.475 4+ 0.005 0.881 +0.013 0.697 +0.003
] ) UF: Paraphrased  0.467 +£0.017  0.433 £0.002  0.872 +£0.021  0.703 £0.003
Domain Shift UF: French 0.484 £0.018  0.475+0.005 0.891 +£0.002  0.698 +0.005
UF: Spanish 0.485 £0.004  0.462 £0.002  0.883 £0.006 0.693 £ 0.006
RB: Code 0.604 +0.008 0.740 £0.008 0.247 +£0.003 0.228 +0.003
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Figure 6: The results of Section 5.2 are robust to different learning rates (top) and 3 coefficients for IM-RMs
(bottom). In the general chat setting of Section 5.2, we compare the accuracy of EX-RMs and IM-RMs trained
using additional learning rates and /3 coefficients (for IM-RMs). We consider both lower and higher values
than the default ones (as specified in Appendix G, the default learning rate is le-6 and default /3 coefficient is
0.01). All reward models were trained on UltraFeedback, starting from the Llama-3.1-8B-Instruct language
model. In the figure, we abbreviate UltraFeedback as UF and RewardBench as RB. Error bars mark standard
deviation across three random seeds. For the range of hyperparameters considered, the trends remain the same
as in Figure 2. Namely, IM-RMs are less robust to token-level shifts than EX-RMs, yet perform comparably or
better under domain shifts.

Table 6: This table supplements Figure 8 by reporting the accuracy and absolute (normalized) reward margin
over the different evaluation categories. In each row, bold font marks the highest accuracy and absolute reward
margin (unless the values are within 0.01 of each other, after taking into account standard deviations). For
each reward model and evaluation dataset separately, the absolute reward margin is normalized by the standard
deviation of rewards to account for arbitrary differences in scale. Values in the table are means across the models
(six in total) and evaluation datasets, with standard deviation computed based on three random seeds. See
Tables 8 and 10 for a per evaluation dataset breakdown of the results.

Accuracy Absolute Reward Margin
Training Data ~ Evaluation EX-GRM IM-RM EX-GRM IM-RM
In-Distribution 0.714 £+ 0.005 0.646 4+ 0.006 1.075 +0.007 0.813 +0.003
UltraFeedback  Token-Level Shift 0.666 £0.002  0.602 +£0.003  0.915 +£0.012  0.763 £0.003
Domain Shift 0.616 4+ 0.004 0.720 +£0.004 0.707 +0.004 0.726 +0.001
In-Distribution 0.979 4+0.003 0.972 +0.002 1.724 +0.014 1.377 £0.007
RewardMATH  Token-Level Shift 0.918 £0.006  0.515+0.007 1.3394+0.032  1.035 +£0.011
Domain Shift 0.563 £ 0.005 0.517 £ 0.001 0.251 +0.004 0.604 +0.004
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Figure 7: Evidence against alternative hypotheses on the generalization gap between EX-RMs and IM-RMs.
In the general chat setting of Section 5.2, we compare the accuracy of four reward model types: (i) a standard
EX-RM, which applies a linear head to the last hidden representation of a prompt-response pair (x,y), i.e.,
to hy,y (Equation (1)), (ii) an EX-RM that applies a linear head to the mean of all hidden representations
of the response (“all repr”), i.e., to |y|_1 Lﬂl hy y_,, (iii) a standard IM-RM (Equation (2)), and (iv) an
IM-RM without a reference distribution (“no ref”), i.e., for a prompt-response pair (x, y) it assigns the reward
In 7y, (y|x) instead of S(In g, (y]x) — Inmrer(y]x)). All reward models were trained on UltraFeedback,
starting from the Llama-3.1-8B-Instruct language model. In the figure, we abbreviate UltraFeedback as UF and
RewardBench as RB. Error bars mark standard deviation across three random seeds. Notice that the EX-RM
and IM-RM variants exhibit similar trends to the original ones. Namely, both IM-RMs are less robust to
token-level shifts than the EX-RMs, yet perform comparably or better under domain shifts. This suggests
that the generalization gap between EX-RMs and IM-RMs is not caused by the IM-RMs’ reliance on hidden
representations of intermediate tokens in a response or a reference distribution.
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Figure 8: IM-RMs are less robust than EX-GRMs (Appendix D) to token-level distribution shifts, but
perform comparably or better under domain shifts. This figure presents the results of an experiment identical
to that of Figures 2 and 5, except that it compares EX-GRMs (instead of EX-RMs) to IM-RMs.
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Table 7: Per evaluation dataset breakdown of the win-rates reported in Figure 8 for the general chat setting
of Section 5.2 (i.e., for the row corresponding to UltraFeedback training data in Figure 8). We abbreviate
UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-GRM Tie IM-RM
In-Distribution UF 100 0 0
UF: Paraphrased 100 0 0
Token-Level Shift  UF: French 72.2 27.8 0
UF: Spanish 88.9 11.1 0
RB: Math 0 0 100
Domain Shift RewardMATH 33.3 11.1 55.6
RB: Code 11.1 22.2 66.7

Table 8: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 6, for the general chat setting of Section 5.2 (i.e., for the rows corresponding to UltraFeedback
training data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-GRM IM-RM EX-GRM IM-RM
In-Distribution UF 0.714 +0.005 0.646 4 0.006 1.075 +0.007 0.813 +0.003
UF: Paraphrased 0.667 +0.004  0.579 +0.002 0.923 +0.010 0.730 +0.008
Token-Level Shift  UF: French 0.660 £0.004 0.616 £0.004 0.909 £0.006  0.785 = 0.004
UF: Spanish 0.672 +£0.001  0.6124+0.002 0.914 +£0.019  0.774 £0.004
RB: Math 0.497 £0.015 0.737 +0.008 0.844 +0.012 1.056 4+ 0.002
Domain Shift RewardMATH 0.565 +0.004  0.593 £0.007 0.882 +0.010  0.802 +0.001
RB: Code 0.786 +£0.008  0.830 £0.002 0.395 +0.003  0.319 +0.005

Table 9: Per evaluation dataset breakdown of the win-rates reported in Figure 8 for the math setting of Section 5.2
(i.e., for the row corresponding to RewardMATH training data in Figure 8). We abbreviate UltraFeedback as UF

and RewardBench as RB.
Win-Rate (%)
Evaluation Dataset EX-GRM Tie IM-RM
In-Distribution RewardMATH 44.4 44.4 11.2
Token-Level Shift RB: Math 100 0 0
UF 83.3 5.6 11.1
) ] UF: Paraphrased 83.3 16.7 0
Domain Shift UF: French 88.9 11.1 0
UF: Spanish 100 0 0
RB: Code 22.2 0 77.8
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Table 10: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 6, for the math setting of Section 5.2 (i.e., for the rows corresponding to RewardMATH training
data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-GRM IM-RM EX-RM IM-RM
In-Distribution RewardMATH 0.979 4+ 0.002 0.972 +0.002 1.724 +0.014 1.377 £0.007
Token-Level Shift RB: Math 0.918 +0.006 0.515 £ 0.007 1.339 +0.032 1.035 +£0.011
UF 0.540 +0.004 0.475 +0.005 0.325 £+ 0.002 0.697 +0.003
) ) UF: Paraphrased 0.530 +0.001 0.433 £0.002 0.315 £0.007  0.703 +0.003
Domain Shift UF: French 0.552 £0.003  0.475 £0.005  0.214 £0.006  0.698 + 0.005
UF: Spanish 0.548 +0.001 0.462 4-0.002 0.228 +0.007 0.693 +0.006
RB: Code 0.645 +0.018 0.740 £+ 0.008 0.174 4 0.008 0.228 +0.003
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Figure 9: This figure supplements Figures 2 and 8 by including the accuracy, per initial language model and
evaluation dataset, of the EX-RMs, IM-RMs, and EX-GRMs trained on UltraFeedback as part of the general
chat setting experiments of Section 5.2. In the figure, we abbreviate UltraFeedback as UF and RewardBench as
RB. Error bars mark standard deviation across three random seeds.
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Figure 10: This figure supplements Figures 5 and 8 by including the accuracy, per initial language model and
evaluation dataset, of the EX-RMs, IM-RMs, and EX-GRMs trained on RewardMATH as part of the math
setting experiments of Section 5.2. In the figure, we abbreviate UltraFeedback as UF and RewardBench as RB.
Error bars mark standard deviation across three random seeds.
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