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Abstract

Reward models are key to language model post-training and inference pipelines.1

Conveniently, recent work showed that every language model defines an implicit2

reward model (IM-RM), without requiring any architectural changes. However,3

such IM-RMs tend to generalize worse, especially out-of-distribution, compared to4

explicit reward models (EX-RMs) that apply a dedicated linear head over the hidden5

representations of a language model. The existence of a generalization gap is6

puzzling, as EX-RMs and IM-RMs are nearly identical. They can be trained using7

the same data, loss function, and language model, and differ only in how the reward8

is computed. Toward a fundamental understanding of the implicit biases underlying9

different reward model types, we investigate the root cause of this gap. Our main10

finding, backed by theory and experiments, is that IM-RMs rely more heavily on11

superficial token-level cues. Consequently, they often generalize worse than EX-12

RMs under token-level distribution shifts, as well as in-distribution. Furthermore,13

we provide evidence against alternative hypotheses for the generalization gap.14

Most notably, we challenge the intuitive claim that IM-RMs struggle in tasks where15

generation is harder than verification because they can operate both as a verifier16

and a generator. Taken together, our results highlight that seemingly minor design17

choices can substantially impact the generalization behavior of reward models.18

1 Introduction19

Language model post-training and inference pipelines often rely on reward models to assess the20

quality of generated responses [13, 1, 20, 71, 51, 67]. Yet, little is known about the relative advantages21

and disadvantages of different reward model types. Two prevalent, nearly identical types are explicit22

reward models (EX-RMs) [44] and implicit reward models (IM-RMs) [52]. EX-RMs and IM-RMs can23

be trained based on the same language model πθ, using the same data and loss function. They differ24

only in how the reward is computed: EX-RMs apply a linear head over the hidden representation that25

πθ produces for a prompt-response pair (x,y), while the reward of an IM-RM is implicitly defined26

by πθ through lnπθ(y|x) — see Figure 1.27

Despite the vast similarity of EX-RMs and IM-RMs, prior work [39, 35, 70] observed that IM-28

RMs tend to generalize worse, especially out-of-distribution, as measured by accuracy in ranking29

candidate responses. The existence of a generalization gap is puzzling. Why would a seemingly30

minor difference in how the reward is computed substantially affect the accuracy of a reward model?31

Toward a fundamental understanding of the implicit biases underlying different reward model types,32

we investigate the root cause for the generalization gap between EX-RMs and IM-RMs. Our main33

finding, established through theory and experiments, is that IM-RMs rely more heavily on superficial34

token-level cues. As a result, IM-RMs typically generalize worse than EX-RMs to token-level35

distribution shifts (i.e., to responses that are semantically similar to in-distribution responses, but36
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Figure 1: Explicit vs implicit reward models. To compute the reward for a prompt-response pair (x,y), an
EX-RM applies a linear head to the hidden representation that the language model πθ produces for (x,y). In
contrast, the reward of an IM-RM is implicitly defined by πθ through β ln πθ(y|x)

πref (y|x)
, where β ∈ R>0 is a fixed

coefficient and πref is a reference distribution (cf. [52]).
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Figure 2: IM-RMs are less robust than EX-RMs to token-level distribution shifts, but perform comparably
or better under domain shifts. We trained EX-RMs and IM-RMs on UltraFeedback [15], using the same initial
language models, and evaluated their accuracy in-distribution (UltraFeedback test set), under token-level shifts
(three UltraFeedback variants, in which responses were either paraphrased or translated to another language),
and under domain shifts (two math and one code datasets). Reported are the win-rates, i.e., the percentage of
evaluations in which either the EX-RM or IM-RM achieved a higher accuracy. If the accuracies were within
1% of each other, we considered it a tie. The experiment included three random seeds per configuration and six
language models: Gemma-2-2B-IT [71], Qwen-2.5-1.5B-Instruct, Qwen-2.5-3B-Instruct [51], Llama-3.2-1B-
Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct [20]. See Section 5.2 for additional details.

have different surface forms), as well as in-distribution. On the other hand, when subject to domain37

shifts, IM-RMs can perform comparably to or better than EX-RMs — see Figures 2 and 5.38

Before arriving at this conclusion, we first consider an alternative hypothesis for the generalization39

gap, alluded to in the literature (cf. [18, 65, 70]): IM-RMs are harder to learn in tasks with a40

generation-verification gap due to their dual role as a verifier and a generator (Section 3). Specifically,41

in tasks where responses can be categorized into correct and incorrect, an IM-RM is trained not only42

to assign a high reward to correct responses, but also to generate them via its underlying language43

model. If generating correct responses is harder than verifying their correctness, then the (verification)44

accuracy of IM-RMs should intuitively lag behind that of EX-RMs, which need only verify responses.45

However, we challenge this argument by proving that learning to verify with IM-RMs does not require46

learning to generate. Experiments on a Hamiltonian cycle verification task corroborate our theory.47

Then, to identify what drives the generalization gap between EX-RMs and IM-RMs, we theoretically48

characterize their learning dynamics, i.e., the evolution of rewards during gradient-based training49

(Section 4.1). Our analysis reveals that the learning dynamics of EX-RMs depends on responses50

primarily through their hidden representations, whereas IM-RMs are more sensitive to the specific51

tokens appearing in the responses. In particular, for IM-RMs, increasing the reward of a response may52

not affect, or even decrease, the reward of a semantically similar response that consists of different53

tokens. This indicates that IM-RMs often underperform EX-RMs since they rely more strongly on54

superficial token-level cues. We further substantiate this claim: (i) theoretically, by providing settings55

in which IM-RMs provably fail to generalize to unseen tokens, while EX-RMs generalize successfully56

when hidden representations are well-structured (Appendix A), and (ii) empirically across controlled57

and real-world settings (Section 5).58

Overall, our results highlight that seemingly minor design choices can have an outsized effect on59

how reward models generalize. We hope insights from this work will spur further research into the60

implicit biases of different reward model types and facilitate enhancing their robustness.61
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Related work. We discuss related work throughout and defer an extended account to Appendix C.62

2 Preliminaries63

Let V be a finite vocabulary of tokens and V∗ denote the set of all finite-length token sequences.64

Language models can be decomposed into two parts. First, a neural network backbone that intakes a65

sequence of tokens v ∈ V∗ and produces a hidden representation hv ∈ RD (e.g., a Transformer [75]).66

Second, an unembedding matrix U ∈ R|V|×D that converts the hidden representation into logits for67

the next-token distribution. Given a prompt x ∈ V∗, a language model πθ assigns probabilities to68

responses y ∈ V∗ autoregressively:69

πθ(y|x) =
∏|y|

k=1
πθ(yk|x,y<k) =

∏|y|

k=1
softmax

(
Uhx,y<k

)
yk

,

where θ stands for the language model’s parameters (i.e., it includes the parameters of the neural70

network backbone and the unembedding matrix), y<k and yk denote the first k − 1 tokens and kth71

token of y, respectively, and softmax(z)v := exp(zv)/
∑

v′∈V exp(zv′) for z ∈ R|V|.72

2.1 Reward Models73

Reward models are typically initialized from a preexisting language model πθ and trained to predict a74

scalar reward that indicates the quality of a response y to a prompt x. Two prevalent reward model75

types are explicit reward models (EX-RMs) [44] and implicit reward models (IM-RMs) [52]. As76

detailed below, EX-RMs and IM-RMs are almost identical. They are trained using the same data,77

loss function, and language model πθ, and differ only in how the reward is computed based on πθ.78

This work is devoted to understanding why, despite these vast similarities, EX-RMs and IM-RMs79

generalize differently (cf. [39, 35]).80

Explicit reward model (EX-RM). To compute the reward for a prompt-response pair (x,y), an81

EX-RM applies a linear head u ∈ RD over the hidden representation hx,y that πθ produces:82

rθEX
(x,y) := ⟨u,hx,y⟩ , (1)

where θEX stands for the trainable parameters of the EX-RM (i.e., it includes the parameters of the83

neural network backbone and the linear head).184

Implicit reward model (IM-RM). As shown in [52], every language model πθ defines an IM-RM85

through the log probabilities that it assigns to responses:86

rθIM(x,y) := β ln
πθIM(y|x)
πref(y|x)

, (2)

where θIM = θ denotes the trainable parameters of the IM-RM, β ∈ R>0 is a fixed coefficient, and the87

reference distribution πref is canonically the language model from which the IM-RM was initialized.88

Note that besides assigning rewards, an IM-RM can generate responses via πθIM . Moreover, increasing89

the reward of a response entails increasing its probability under πθIM .90

Training objective. Let DT be a training set containing preferences (x,y+,y−), where x is a91

prompt, y+ is a chosen response to x, and y− is a rejected response to x. EX-RMs and IM-RMs are92

usually trained by minimizing a Bradley-Terry log-likelihood loss [9]:93

L(r) := 1

|DT |
∑

(x,y+,y−)∈DT
− lnσ

(
r(x,y+)− r(x,y−)

)
, (3)

where r : V∗ × V∗ → R can be either rθEX or rθIM and σ : R → [0, 1] denotes the sigmoid function.94

Outcome vs process rewards. In certain domains, such as math and reasoning, reward models95

have been used for providing feedback on intermediate steps of a response [72, 38]. Both EX-RMs96

and IM-RMs can be adapted to evaluate partial responses, the former by applying the linear head97

over the hidden representation of each intermediate step and the latter by using the conditional log98

probabilities of these steps. For conciseness, we focus on settings where the reward is assigned to99

complete responses.100

1A nascent EX-RM variant, which we refer to as explicit generative reward model (EX-GRM) [88], directly
asks the language model πθ to verify whether y is a good response to x. Then, the probability assigned to the
token Yes is taken as the reward. For brevity, we focus on EX-RMs in the main text and defer an extension of
our theoretical and empirical analyses for EX-GRMs to Appendices D and F, respectively. Notably, we find that
the main conclusions stated for EX-RMs hold for EX-GRMs as well.
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2.2 Measuring Generalization via Accuracy101

In accordance with [39, 35, 89, 21, 41], we measure generalization via the accuracy of a reward102

model in ranking responses over preference data unseen in training.103

Definition 1. For a finite set S containing preferences (x,y+,y−), where x is a prompt, y+ is a104

chosen response, and y− is a rejected response, the accuracy of r : V∗ × V∗ → R over S is:105

accS(r) :=
1

|S|
∑

(x,y+,y−)∈S
1
[
r(x,y+) > r(x,y−)

]
+

1

2
· 1
[
r(x,y+) = r(x,y−)

]
,

where 1[·] is an indicator function. Note that the maximal accuracy is one and the minimal is zero.106

3 Are Implicit Reward Models Harder to Learn in Tasks With a107

Generation-Verification Gap?108

A potential explanation for why IM-RMs often underperform EX-RMs, alluded to in the literature109

(cf. [18, 65, 70]), is that IM-RMs are harder to learn in tasks with a generation-verification gap.110

Namely, in tasks where responses can be categorized into correct and incorrect, an IM-RM is trained111

not only to assign a high reward to correct responses, but also to generate them via its underlying112

language model. Thus, if generating correct responses is harder than verifying their correctness in a113

given task, then the accuracy of IM-RMs should intuitively fall below that of EX-RMs, which need114

only verify responses.115

We prove that this intuitive explanation is flawed — learning to verify with IM-RMs does not require116

learning to generate (Section 3.1). Experiments on a Hamiltonian cycle verification task, which117

is widely believed to exhibit a generation-verification gap [4], demonstrate that IM-RMs learn to118

accurately verify such cycles without being able to generate them (Section 3.2).119

3.1 Theory: Learning to Verify Does Not Require Learning to Generate120

Consider a task defined by a set of valid prompts X ⊆ V∗ and a function C that maps every prompt121

x ∈ X to a set of correct responses C(x) ⊆ V∗. Concretely, X can consist of math problems, with122

C(x) containing the correct solutions of a problem x. A prompt x can also describe the input to some123

algorithmic task. For example, if the task is to find Hamiltonian cycles in a graph, each x describes a124

graph and each response in C(x) encodes a Hamiltonian cycle (Section 3.2 presents experiments over125

this task). In this context, it is natural to say that a reward model is a verifier for the task (X , C) if it126

assigns non-negligibly higher rewards to correct responses relative to incorrect ones.127

Definition 2. A reward model r : V∗×V∗ → R is a verifier with margin δ ∈ R>0 for the task (X , C)128

if for all x ∈ X , y+ ∈ C(x), and y− ∈ V∗ \ C(x):129

r(x,y+) ≥ r(x,y−) + δ .

Note that if r is a verifier for (X , C), then it achieves perfect accuracy (Definition 1) over all evaluation130

sets that contain preferences (x,y+,y−), where x ∈ X , y+ ∈ C(x), and y− ∈ V∗ \ C(x).131

Theorem 1 below establishes that, for an IM-RM to be a verifier, the probability that its underlying132

language model assigns to correct responses needs to grow by at most a constant multiplicative factor133

relative to the initial reference distribution πref . In particular, if πref assigns low probability to correct134

responses, then an IM-RM can accurately verify correct responses even if it is unable to generate135

them. Thus, the hypothesis that IM-RMs struggle because they need to learn to generate, as opposed136

to just verify, does not explain the generalization gap between EX-RMs and IM-RMs.137

We further formalize this argument through the notion of an efficient generator (Definition 3). A138

distribution π is an efficient generator if the probability that it assigns to correct responses decays at139

most polynomially with the prompt length |x|. The rationale behind this definition is that obtaining a140

correct response from an efficient generator requires, with high probability, only a number of samples141

polynomial in |x|, which often corresponds to task complexity (e.g., the size of a graph in the task142

of finding Hamiltonian cycles). Corollary 1 shows that, if πref is not an efficient generator, then an143

IM-RM does not need to be an efficient generator in order to be a verifier.144

Theorem 1. Let rIM be the IM-RM induced by a distribution π over token sequences, i.e., rIM(x,y) =145

β(lnπ(y|x)− lnπref(y|x)) for x,y ∈ V∗, β ∈ R>0, and a reference distribution πref . Then, rIM146
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Figure 3: Learning to verify with IM-RMs does not require learning to generate. We trained EX-RMs
and IM-RMs to solve a Hamiltonian cycle verification task, based on the Pythia-1B language model. Each
prompt in the dataset describes an undirected graph and the chosen and rejected responses are permutations of
vertices. The chosen responses form Hamiltonian cycles in their respective graphs, while the rejected responses
do not (see Appendix G.1 for further details). In accordance with our theory (Section 3.1), although IM-RMs are
unable to generate even a single correct Hamiltonian cycle for graphs in the training or test sets, they accurately
distinguish between chosen and rejected responses, slightly outperforming EX-RMs. Values in the table are
means across three random seeds (standard deviation was under 0.008 in all cases).

can be a verifier with margin δ ∈ R>0 for the task (X , C) (Definition 2) even if for all prompts147

x ∈ X :148

π(C(x)|x) ≤ πref(C(x)|x) · exp(δ/β) .

That is, for all prompts, the probability of π generating a correct response is greater than that of πref149

by at most a constant multiplicative factor.150

Proof sketch (full proof in Appendix E.1). The proof is by construction. We define a distribution π151

such that the IM-RM it induces is a verifier for the task (X , C) with an exact margin of δ. Then, we152

directly upper bound the probability that π assigns to correct responses.153

Definition 3. We say that a distribution π over token sequences is an efficient generator for the task154

(X , C) if there exist k ∈ N and α ∈ R>0 such that π(C(x)|x) ≥ α−1|x|−k for all x ∈ X .155

Corollary 1. Under the notation of Theorem 1, suppose that πref is not an efficient generator for the156

task (X , C) (Definition 3). Then, for any δ ∈ R>0, the IM-RM rIM can be a verifier with margin δ157

for (X , C) (Definition 2) even if the underlying distribution π is not an efficient generator for (X , C).158

Proving Corollary 1 based on Theorem 1 is straightforward — see Appendix E.2.159

3.2 Experiments: Hamiltonian Cycle Verification160

We corroborate the analysis of Section 3.1 by empirically demonstrating that, in tasks where gen-161

eration is harder than verification, IM-RMs can learn to verify comparably or better than EX-RMs,162

without learning to generate. To avoid confounding factors, we focus on a synthetic Hamiltonian163

cycle verification task which, unless P=NP, exhibits a generation-verification gap.164

Setting. We created a preference dataset in which every prompt describes an undirected graph that165

contains at least one Hamiltonian cycle and the chosen and rejected responses are permutations of166

vertices. Chosen responses form Hamiltonian cycles in their respective graphs, whereas the rejected167

responses do not. We then trained EX-RMs and IM-RMs based on the Pythia-1B language model [8]168

and evaluated their accuracy. We also evaluated the ability of IM-RMs to generate Hamiltonian169

cycles. See Appendix G.1 for additional details.170

Results. Figure 3 illustrates the experimental setup and reports the results. Confirming our theory171

(Section 3.1), IM-RMs are able to accurately verify responses, i.e., achieve perfect accuracy on the172

training set and near-perfect on the test set, while being unable to generate even a single correct173

Hamiltonian cycle for graphs in the training or test sets. This showcases that the lower accuracy that174

IM-RMs often achieve compared to EX-RMs [39, 35, 70] does not stem from IM-RMs needing to175

learn to generate in order to verify.176
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4 Theory: Reliance on Token-Level Cues177

To identify what causes the generalization gap between EX-RMs and IM-RMs, we analyze their178

learning dynamics. Specifically, we characterize how the reward assigned to a prompt-response179

pair evolves during gradient-based training (Section 4.1). The characterization suggests that IM-180

RMs often generalize worse than EX-RMs since they rely more heavily on superficial token-level181

cues. We further support this claim: (i) theoretically, by providing a (simplified) setting in which182

IM-RMs provably fail to generalize to unseen tokens, whereas EX-RMs can generalize when hidden183

representations are well-structured (Appendix A), and (ii) empirically, by showing that IM-RMs are184

less robust to token-level shifts, but perform comparably or better under domain shifts (Section 5).185

4.1 Learning Dynamics186

We examine how performing a gradient update on the training example (x,y+,y−) ∈ DT influences187

the reward assigned to an unseen prompt-response pair (x̄, ȳ), i.e.:188

∆rθ(x̄, ȳ) := rθ−η∇ℓθ(x,y+,y−)(x̄, ȳ)− rθ(x̄, ȳ) ,

where η ∈ R>0 is a learning rate, ℓθ(x,y+,y−) := − lnσ(rθ(x,y
+)− rθ(x,y

−)) denotes the189

loss over (x,y+,y−), and θ stands for either θEX or θIM. We note that analogous approaches have190

been valuable for studying the effects of language model post-training [30, 58, 60]. By a Taylor191

approximation of rθ(x̄, ȳ) around θ, the change in reward can be expressed as:192

∆rθ(x̄, ȳ) = −η
〈
∇rθ(x̄, ȳ),∇ℓθ(x,y

+,y−)
〉
+O(η2) .

Thus, up to second order terms in the learning rate η, which is commonly small for reward model193

training [40, 42], the change in reward is determined by the inner product of the reward and loss194

gradients. Below, we characterize this inner product for EX-RMs and IM-RMs. Motivated by the fact195

that reward models have achieved competitive performance when fixing the backbone that produces196

hidden representations [76], we assume that hidden representations are not updated during training.197

Nonetheless, as Section 5 verifies empirically, the implications of our analysis apply also when all198

reward model parameters are learned (we do not fix the hidden representations in our experiments).199

Assumption 1. Hidden representations are fixed during training: only the linear head u for EX-RMs200

and unembedding matrix U for IM-RMs are updated (i.e., θEX = u and θIM = U).201

EX-RM dynamics. For EX-RMs, the change in reward is given by (derivation in Appendix E.3):202

∆rθEX(x̄, ȳ) =
〈
hx̄,ȳ,hx,y+ − hx,y−

〉
· ηg(θEX) , (4)

where g(θEX) := σ(rθEX
(x,y−)− rθEX

(x,y+)) > 0. As Equation (4) shows, rθEX
(x̄, ȳ) increases203

when hx̄,ȳ is more closely aligned with hx,y+ than with hx,y− . In particular, the change in reward204

depends on responses only through their hidden representations. Consequently, the extent to which205

an EX-RM generalizes to unseen prompt-response pairs is largely determined by the structure of206

the hidden representations, which are produced by a pretrained (and sometimes also post-trained)207

language model. Since these representations are known to encode semantics [92, 46], this suggests208

that EX-RMs can generalize to unseen responses even if they consist of entirely different tokens from209

responses in the training set.210

IM-RM dynamics. For IM-RMs, the change in reward is more complex and is given by (derivation211

in Appendix E.4; adapted from Theorem 7 of [58]):212

∆rθIM(x̄, ȳ) =

( |ȳ|∑
k=1

|y+|∑
l=1

ρk,l(y
+) ·

〈
hx̄,ȳ<k

,hx,y+
<l

〉
−

|ȳ|∑
k=1

|y−|∑
l=1

ρk,l(y
−) ·

〈
hx̄,ȳ<k

,hx,y−
<l

〉)
· ηg(θIM)β2 +O(η2) ,

(5)

where g(θIM) := σ(rθIM(x,y−)− rθIM(x,y+)) > 0 and the coefficient ρk,l(v) ∈ [−2, 2], for213

v ∈ {y+,y−}, is determined by the tokens ȳk, vl, and corresponding next-token distributions:214

ρk,l(v) := 1[ȳk = vl]− πθIM(ȳk|x,v<l)− πθIM(vl|x̄, ȳ<k) + ⟨πθIM(·|x̄, ȳ<k), πθIM(·|x,v<l)⟩ .

In contrast to EX-RMs, the change in reward for IM-RMs depends on the specific tokens that appear215

in ȳ, y+, and y−, as opposed to just their hidden representations. This dependence is introduced216
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Is the following statement something you would say? “<STATEMENT>”

Prompt

Evaluation: Paraphrased Responses

A truthful reply is yes My response would be certainly

Considering the statement, I say no

Training: Original Responses

I lean toward not really

Accuracy

Responses Prompts EX-RM IM-RM

Original Train 1 1

Test 1 1

Paraphrased Train 1 0.022

Test 1 0.019

Figure 4: IM-RMs fail to generalize to a simple token-level distribution shift, while EX-RMs generalize
perfectly. We trained EX-RMs and IM-RMs on prompts from the Persona dataset [48]. Chosen responses
expressed agreement with the prompts, whereas rejected responses expressed disagreement. During evaluation,
we included paraphrased versions of the original responses (figure includes exemplar responses). In line with our
analysis (Section 4), IM-RMs are extremely inaccurate over paraphrased responses, whereas EX-RMs achieve
perfect accuracy. The experiments were based on four language models: Pythia-1B, Qwen-2.5-1.5B-Instruct,
Llama-3.2-1B, and Llama-3.2-1B-Instruct. Values in the table are means across the models and three random
seeds (standard deviation was below 0.04 in all cases).

by the coefficients ρk,l(y+) and ρk,l(y
−). Specifically, if ȳk = y+

l then ρk,l(y
+) > 0. Thus, the217

corresponding term ρk,l(y
+)⟨hx̄,ȳ<k

,hx,y+
<l
⟩ has an effect analogous to ⟨hx̄,ȳ,hx,y+⟩ from the218

dynamics of EX-RMs (Equation (4)): it increases the reward of (x̄, ȳ) if its hidden representation is219

aligned with that of (x,y+). However, when ȳk ̸= y+
l the coefficient ρk,l(y+) can be negative. In220

this case the effect is opposite: the corresponding term decreases the reward of (x̄, ȳ) if its hidden221

representation is aligned with that of (x,y+). Notably, ρk,l(y+) is likely to be negative when y+
l222

and ȳk are tokens that appear in similar contexts, since then πθIM(ȳk|x,v<l) and πθIM(vl|x̄, ȳ<k)223

are likely to be high (they contribute negatively to ρk,l(y
+)). Analogous arguments hold for terms224

corresponding to ρk,l(y
−).225

Since hidden representations often encode semantics, the above implies that the learning dynamics226

of an IM-RM may inadvertently decrease the reward of responses that are semantically similar to227

chosen responses in the training set, and increase the reward of those similar to rejected responses,228

if their tokens have little overlap. This suggests that the generalization gap between EX-RMs and229

IM-RMs may stem from the latter being less robust to superficial token-level shifts. We support this230

prospect theoretically in Appendix A, by providing a concrete (simplified) setting in which IM-RMs231

provably generalize worse than EX-RMs, and empirically in Section 5.232

Relation to prior work. The learning dynamics of IM-RMs was previously analyzed in [58, 30], but233

for other purposes. Specifically, our work focuses on generalization to unseen responses, whereas234

[58] studied an optimization issue and [30] considered generalization across prompts when responses235

seen in training and evaluation are the same. See Appendix C for further details.236

5 Empirical Demonstration237

Our theory (Section 4) indicates that IM-RMs are more prone than EX-RMs to overfitting superficial238

token-level cues. In this section, we verify that this conclusion bears out in practice. Namely, in both239

controlled (Section 5.1) and real-world (Section 5.2) settings, we show that IM-RMs generalize worse240

than EX-RMs under token-level distribution shifts (e.g., paraphrasing), and often in-distribution, yet241

perform comparably or better under domain shifts. The experiments are based on language models of242

up to 8B scale from different families: Pythia [8], Gemma-2 [71], Qwen-2.5 [51], and Llama-3 [20].243

For brevity, we defer to Appendices F and G some experiments and implementation details.244

5.1 Controlled Experiments: Token-Level Shift245

Setting. For our controlled experiments, we considered prompts from the Persona dataset [48], which246

ask a language model whether it agrees or disagrees with a given statement. We manually wrote247

four chosen responses that express agreement and four rejected responses that express disagreement.248

We then trained EX-RMs and IM-RMs, using the same initial language models (Pythia-1B, Qwen-249

2.5-1.5B-Instruct, Llama-3.2-1B, and Llama-3.2-1B-Instruct), and evaluated their accuracy over the250

original responses and paraphrased versions of them, i.e., responses that are similar in meaning but251

consist of different tokens. See Appendix G.2 for further details.252
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Results: IM-RMs fail to generalize to paraphrased responses. Figure 4 illustrates the experimental253

setup and reports the results. As our theory suggests (Section 4), despite achieving perfect accuracy254

over the original responses, IM-RMs achieve near-zero accuracy over the paraphrased responses.255

This reveals that, for IM-RMs, maximizing reward difference between chosen and rejected responses256

can inadvertently have an opposite effect on paraphrased responses. In contrast, EX-RMs generalize257

perfectly to the paraphrased responses.258

5.2 Real-World Experiments: Token-Level and Domain Shifts259

5.2.1 Setting260

We compared the generalization of EX-RMs and IM-RMs in real-world settings by evaluating their261

accuracy in-distribution, under token-level shifts, and under domain shifts. We ran experiments262

in two settings — general chat and math — using six language models ranging in scale from 1B263

to 8B: Gemma-2-2B-IT, Qwen-2.5-1.5B-Instruct, Qwen-2.5-3B-Instruct, Llama-3.2-1B-Instruct,264

Llama-3.2-3B-Instruct, and Llama-3.1-8B-Instruct. As specified below, the two settings differ in265

which dataset was used for training and the categorization of evaluation datasets into in-distribution,266

token-level shift, and domain shift. See Appendix G.3 for further details.267

General chat. We trained EX-RMs and IM-RMs over UltraFeedback [15], based on each language268

model specified above. In-distribution evaluation was performed over the UltraFeedback test set. For269

evaluating robustness to token-level distribution shifts, we created three variants of the UltraFeedback270

test set by either paraphrasing, translating to French, or translating to Spanish all responses (via271

GPT-4.1). For domain shifts, we used the math and code subsets of RewardBench [35] and the272

RewardMATH dataset [33].273

Math. We used RewardMATH for training and evaluated in-distribution performance on a held-274

out test set. In this setting, the math subset of RewardBench poses a token-level shift while the275

UltraFeedback variants and code subset of RewardBench pose a domain shift.276

5.2.2 Results277

For the general chat and math settings, respectively, Figures 2 and 5 present the percentage of278

evaluations in which either the EX-RM or the IM-RM achieved a higher accuracy, where we only279

compare pairs of reward models that were trained from the same initial language model. Furthermore,280

Table 1 reports the accuracy and absolute reward margin of reward models for each evaluation281

category. See Tables 2, 3, 4, and 5 and Figures 9 and 10 in Appendix F for a per evaluation dataset282

and language model breakdown of the results.283

IM-RMs are less robust than EX-RMs to token-level distribution shifts. Recall, our theoretical284

analysis (Section 4) indicates that IM-RMs are more sensitive than EX-RMs to superficial token-level285

cues. If this is indeed the case, then one would expect IM-RMs to underperform EX-RMs when286

subject to token-level distribution shifts. On the other hand, EX-RMs should not enjoy a distinct287

advantage under domain shifts. The empirical results match these expectations. Moreover, the288

in-distribution accuracy of IM-RMs in the general chat setting is consistently lower than that of289

EX-RMs. We attribute this to in-distribution evaluation being closer to a token-level shift than to a290

domain shift. Namely, in-distribution test examples share semantic structure with training examples291

but take on different surface forms.292

EX-RMs induce a higher reward margin. Table 1 highlights an additional benefit of EX-RMs over293

IM-RMs: EX-RMs induce a higher absolute reward margin. This was recently shown to yield a better294

optimization landscape for reinforcement learning [57, 59].295

Evidence against alternative hypotheses. Finally, we provide evidence against two alternative296

candidate sources for the generalization gap between EX-RMs and IM-RMs, aside from the one ruled297

out in Section 3. First, the reward of an EX-RM is based on the hidden representation of the whole298

response, whereas IM-RMs depend also on the hidden representations of intermediate tokens in the299

response. Intuitively, the hidden representations of intermediate tokens may be misleading since they300

do not capture the full meaning of the response. Second, the reward of an IM-RM is shifted by the301

log probability of a reference distribution, which is not the case for EX-RMs. Figure 7 demonstrates302

that these differences do not explain the generalization gap by considering EX-RMs trained over the303

hidden representations of all intermediate tokens and IM-RMs without a reference distribution.304
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Training Data: 

RewardMATH

66.6%

Figure 5: IM-RMs are less robust than EX-RMs to token-level distribution shifts, but perform comparably
or better under domain shifts. This figure presents the results of an experiment identical to that of Figure 2,
except that the reward models were trained on the RewardMATH dataset instead of UltraFeedback. Accordingly,
the math subset of RewardBench poses a token-level shift while UltraFeedback variants and the code subset
of RewardBench pose a domain shift. Note that, in this setting, EX-RMs and IM-RMs perform similarly
in-distribution since both reach near-maximal accuracy (see Table 1).

Table 1: This table supplements Figures 2 and 5 by reporting the accuracy and absolute (normalized) reward
margin over the different evaluation categories. In each row, bold font marks the highest accuracy and absolute
reward margin (unless the values are within 0.01 of each other, after taking into account standard deviations).
For each reward model and evaluation dataset separately, the absolute reward margin is normalized by the
standard deviation of rewards to account for arbitrary differences in scale. Notice that EX-RMs consistently
induce a higher reward margin, which was shown in [59] to be beneficial for optimization via reinforcement
learning. Values in the table are means across the models (six in total) and evaluation datasets, with standard
deviation computed based on three random seeds. See Tables 3 and 5 in Appendix F for a per evaluation dataset
breakdown of the results.

Accuracy Absolute Reward Margin

Training Data Evaluation EX-RM IM-RM EX-RM IM-RM

UltraFeedback
In-Distribution 0.752 ± 0.009 0.646 ± 0.006 1.014 ± 0.023 0.813 ± 0.003

Token-Level Shift 0.665 ± 0.005 0.602 ± 0.003 0.976 ± 0.008 0.763 ± 0.003

Domain Shift 0.621 ± 0.012 0.720 ± 0.004 0.807 ± 0.006 0.726 ± 0.001

RewardMATH
In-Distribution 0.971 ± 0.003 0.972 ± 0.002 1.602 ± 0.011 1.377 ± 0.007

Token-Level Shift 0.988 ± 0.003 0.515 ± 0.007 1.667 ± 0.017 1.035 ± 0.011

Domain Shift 0.505 ± 0.012 0.517 ± 0.001 0.755 ± 0.008 0.604 ± 0.004

6 Conclusion305

Reward models are a key component in language model post-training and inference pipelines. Yet,306

the comparative advantages and disadvantages of different reward model types are poorly understood.307

In this work, we focused on two prevalent reward model types: explicit reward models (EX-RMs) and308

implicit reward models (IM-RMs). Through theory and experiments, we established that IM-RMs309

rely more strongly on superficial token-level cues. As a result, they typically generalize worse than310

EX-RMs under token-level distribution shifts, as well as in-distribution. This brittleness of IM-RMs311

reinforces existing empirical evidence on the relative benefits of EX-RMs [65, 39, 35, 70]. We312

also provided evidence against an alternative hypothesis, by which the generalization gap between313

EX-RMs and IM-RMs stems from IM-RMs needing to learn to generate responses, as opposed to314

just verifying their quality. Overall, our results highlight that seemingly minor design choices can315

substantially impact how reward models generalize.316

Limitations and future work. The theoretical analysis in Section 4 assumed that hidden represen-317

tations are fixed. Although Section 5 empirically demonstrated that the conclusions of our theory318

apply when all reward model parameters are trained, alleviating this restriction may yield further319

insights into how reward models generalize. Furthermore, our work covers three common reward320

model types: EX-RMs, IM-RMs, and a generative reward model variant (Appendix D; cf. [88]). As321

elaborated in Appendix B, we hope that it will encourage studying the implicit biases of additional322

reward model types toward enhancing their robustness.323
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A Generalization Gap Between Explicit and Implicit Reward Models568

The goal of this appendix is to provide a concrete setting in which IM-RMs provably generalize569

worse than EX-RMs, due to the stronger reliance on token-level cues (identified in Section 4.1).570

Alongside assuming that the hidden representations are fixed (Assumption 1), we consider the case571

where responses in the training set are of length one. Furthermore, to ensure a fair comparison572

between EX-RMs and IM-RMs, we require that both are able to perfectly fit the training set.573

Assumption 2. Responses in the training set DT are of length one.574

Assumption 3. There exist θEX and θIM such that the corresponding EX-RM and IM-RM achieve575

perfect accuracy over the training set DT , i.e., accDT

(
rθEX

)
= accDT (rθIM) = 1.576

Under these conditions, Theorem 2 establishes that an IM-RM trained via gradient descent does577

not generalize to unseen tokens — it achieves trivial accuracy over any evaluation set containing578

responses that did not appear in the training set DT . This inability to generalize occurs regardless of579

the structure of hidden representations or the initial unembedding matrix. By contrast, an EX-RM580

generalizes successfully to unseen tokens if the hidden representations are well-structured. Namely,581

let u∗ ∈ RD be the following max-margin separator over hidden representations in DT :582

u∗ = argminu∈RD∥u∥2 s.t. ∀ (x,y+,y−) ∈ DT :
〈
u,hx,y+ − hx,y−

〉
≥ 1 . (6)

The EX-RM will rank correctly any pair of responses that u∗ ranks correctly.583

Theorem 2. Suppose we train an EX-RM and an IM-RM via gradient descent over the training set DT584

with learning rate η < 2B−2 min{β−2, 1}, where B is the maximal hidden representation norm in585

DT , i.e., B := max(x,y+,y−)∈DT ,v∈{x,(x,y+),(x,y−)}∥hv∥. Denote by θ(t+1) := θ(t)−η∇L(rθ(t))586

the gradient descent iterates, for t = 0, 1, . . ., where θ stands for either θEX or θIM, the IM-RM587

reference distribution is πref = πθIM(0), and the loss L is defined in Equation (3). Then, under588

Assumptions 1, 2, and 3, for all initializations θEX(0), θIM(0) and finite evaluation sets DE that589

contain preferences (x,y+,y−), in which x ∈ V∗ and y+,y− ∈ V are responses that do not appear590

in DT , the following hold.591

• Both the EX-RM and IM-RM perfectly fit the training set: That is, limt→∞ L(rθEX(t)) =592

limt→∞ L(rθIM(t)) = 0 and limt→∞ accDT (rθEX(t)) = limt→∞ accDT (rθIM(t)) = 1.593

• The IM-RM fails to generalize to unseen tokens: accDE (rθIM(t)) = 0.5 for all t ≥ 0.594

• The EX-RM can generalize via hidden representations: Let u∗ be the max-margin separator595

defined in Equation (6). Then, there exists a time t0 ≥ 0 such that for all t ≥ t0:596

accDE (rθEX(t)) ≥
∣∣{(x,y+,y−) ∈ DE :

〈
u∗,hx,y+

〉
>
〈
u∗,hx,y−

〉}∣∣
|DE |

.

Proof sketch (full proof in Appendix E.6). With fixed hidden representations, the loss of an EX-RM597

and the loss of an IM-RM can be framed as logistic regression problems over different input spaces.598

Fitting of the training set thus follows by standard convex optimization results. We then specialize the599

learning dynamics of an IM-RM (Equation (5)) to the case of single-token responses and show that600

the difference between the rewards of two unseen tokens is constant through training. This implies601

that accDE (rθIM(t)) remains at its initial trivial value of 0.5. Lastly, by applying the seminal result of602

[68], we get that the linear head of the EX-RM converges in direction to u∗. This yields the guarantee603

on accDE (rθEX(t)).604

B Limitations and Future Work605

Theoretical analysis. Section 4 included a couple of simplifying assumptions. Namely, we assumed606

that hidden representations are fixed and Theorem 2 also required responses to be of length one.607

Although Section 5 empirically demonstrated that the conclusions of our theory apply when all reward608

model parameters are trained and responses are of arbitrary length, alleviating these restrictions may609

yield further insights into how reward models generalize.610

Factors influencing generalization. We highlighted one cause for the difference in generalization611

between EX-RMs and IM-RMs — a stronger reliance of IM-RMs on token-level cues. However,612
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there are likely additional factors that affect their generalization. In particular, while EX-RMs are613

more robust to token-level shifts, our experiments show that IM-RMs can generalize better under614

other types of distribution shifts. Investigating whether there are cases in which IM-RMs consistently615

outperform EX-RMs and why is left to future work.616

Beyond accuracy. As customary, we primarily measured reward model generalization via accuracy617

(cf. [39, 35]). While accuracy is an important measure, it is not the only quantity that determines the618

effectiveness of a reward model [10, 79, 59]. Exploring how different reward model types compare619

across a broader set of evaluation criteria remains a valuable direction for future work.620

Reward model types. Our work covers three common reward model types: EX-RMs, IM-RMs, and621

a generative reward model variant (Appendix D; cf. [88]). We hope that it will encourage studying622

the implicit biases introduced by additional types, e.g., reward models that provide rewards on623

intermediate steps of a response [72, 38].624

C Related Work625

Reward models for language model post-training and inference. In real-world applications, it is626

rarely feasible to evaluate the quality generated responses via rule-based rewards. As a result, reward627

models have been extensively used in the language model ecosystem for training via reinforcement628

learning [91, 44, 1, 20, 51, 71], labeling preferences in direct alignment algorithms [18, 43, 2],629

rejection sampling [25, 17], data filtering [20, 51, 3], and inference-time scaling [13, 82, 67].630

Analyses of reward models. Prior analyses mostly bounded the sample complexity for estimating a631

ground truth reward, under various technical conditions [45, 90, 77, 85, 32, 19, 84, 50, 16, 31, 63, 22,632

86, 81, 37, 29, 69]. An additional line of research considered properties of a reward model that benefit:633

robustness [78, 28], compatibility with a given inference procedure [12, 6], and the optimization634

landscape for reinforcement learning [57, 59]. However, the works mentioned above do not account635

for the difference between reward model types or the effect of their particular parameterizations on636

generalization, which is the goal of this study.637

Most relevant in our context are [30, 58, 64]. Similarly to Section 4.1, [30] and [58] analyzed638

the learning dynamics of IM-RMs, but for other purposes. Specifically, our work focuses on639

generalization, whereas [58] addressed an optimization issue that causes the reward assigned to640

chosen responses to decrease. Regarding [30], under conditions similar to those of Theorem 2, they641

proved that IM-RMs can generalize well to unseen prompts if the responses used for training and642

evaluation are the same. In contrast, Theorem 2 establishes that IM-RMs fail to generalize when643

the evaluation responses do not appear in the training set — a more realistic scenario. Lastly, [64]644

constructed a setting in which EX-RMs enjoy a better sample complexity than IM-RMs (Section 4645

therein). Though, their result requires nonstandard reward model parameterizations and a reward646

estimation method tailored to a specific ground truth reward. While our analysis also operates under647

simplifying assumptions, it identifies a cause for the generalization gap observed in practice between648

EX-RMs and IM-RMs, as we extensively verify empirically (Section 5).649

Learning dynamics of neural networks. In Section 4.1, we characterized how the reward assigned650

to prompt-response pairs changes due to a gradient update. Analogous approaches have been651

valuable both in theory, for studying the effect of language model post-training [30, 58, 60], and in652

practice, for identifying mislabeled examples [49] and developing data selection algorithms [83].653

More broadly, analyzing the trajectory of gradient-based training is a fundamental tool in the vast654

implicit bias literature. There, the focus is typically on understanding why overparameterized655

neural networks often generalize well, despite the existence of parameter assignments that do656

not [62, 26, 27, 68, 5, 23, 24, 36, 53, 54, 55, 7, 14, 61, 66, 56, 11, 87, 74]. We refer to [73] for a657

survey of the field.658

D Explicit Generative Reward Models659

A nascent reward model variant, proposed in [88], rewards responses by asking a language model πθ660

to assess their quality. We refer to this type of reward models as explicit generative reward models661

(EX-GRMs). Specifically, for a prompt-response pair (x,y), EX-GRMs receive as input I[x,y] ∈ V∗,662

16



which is some textual format that requests the model to verify whether y is a good response to x.2 For663

example, [88] concatenate to (x,y) the suffix “Is the answer correct (Yes/No)?”. Then, the reward for664

(x,y) is taken to be the probability that the underlying language model assigns to the token Yes, i.e.:665

rθG(x,y) = πθG(Yes|I[x,y]) ,

where θG = θ denotes the trainable parameters of the EX-GRM.666

Instead of the Bradley-Terry log-likelihood loss (Equation (3)), [88] suggested an alternative loss for667

EX-GRMs:3668

LG(rθG) :=
1

|DT |
∑

(x,y+,y−)∈DT
− lnπθG

(
Yes|I[x,y+]

)
− lnπθG

(
No|I[x,y−]

)
. (7)

In Appendix D.1, we extend the analysis of Section 4.1 to EX-GRMs. We show that, similarly to669

EX-RMs, the learning dynamics of EX-GRMs depends on responses primarily through their hidden670

representations. This suggests that EX-GRMs should also be more robust than IM-RMs to token-level671

distribution shifts. We corroborate this hypothesis empirically in Appendix F.672

D.1 Learning Dynamics673

We characterize how performing a gradient update on the training example (x,y+,y−) ∈ DT674

influences the reward that an EX-GRM assigns to an unseen prompt-response pair (x̄, ȳ), i.e.:675

∆rθG(x̄, ȳ) := rθG−η∇ℓGθG
(x,y+,y−)(x̄, ȳ)− rθG(x̄, ȳ) ,

where η ∈ R>0 is a learning rate and676

ℓGθG(x,y
+,y−) := − lnπθG

(
Yes|I[x,y+]

)
− lnπθG

(
No|I[x,y−]

)
denotes the EX-GRM loss over (x,y+,y−). By a Taylor approximation of rθG(x̄, ȳ) around θG, we677

may write the change in reward as:678

∆rθG(x̄, ȳ) = −η
〈
∇rθG(x̄, ȳ),∇ℓGθG(x,y

+,y−)
〉
+O(η2) .

As in Section 4.1, we assume that hidden representations are fixed during training (Assumption 1),679

in which case the trainable parameters of the EX-GRM are θG = U, where U is the unembedding680

matrix of πθG . Under this assumption, the change in reward for EX-GRMs is given by (derivation in681

Appendix E.5):682

∆rθG(x̄, ȳ) =πθG(Yes|I[x̄, ȳ])
(
γ(y+) ·

〈
hI[x̄,ȳ],hI[x,y+]

〉
+ γ(y−) ·

〈
hI[x̄,ȳ],hI[x,y−]

〉)
· η +O(η2) ,

(8)

where the coefficients γ(y+) ∈ [0, 2] and γ(y−) ∈ [−2, 1] are defined as:683

γ(y+) = 1− πθG(Yes|I[x̄, ȳ])− πθG(Yes|I[x,y+]) +
〈
πθG(·|I[x̄, ȳ]), πθG(·|I[x,y+])

〉
,

γ(y−) = −πθG(No|I[x̄, ȳ])− πθG(Yes|I[x,y−]) +
〈
πθG(·|I[x̄, ȳ]), πθG(·|I[x,y−])

〉
,

with πθG(·|z) denoting the vector of probabilities that πθG assigns to tokens conditioned on z.684

Similarly to EX-RMs (Equation (4)), and in contrast to IM-RMs (Equation (5)), the change in685

reward for EX-GRMs depends on ȳ, y+, and y− primarily through the hidden representations686

of the corresponding inputs (i.e., hI[x̄,ȳ], hI[x,y+], and hI[x,y−]). Notably, since γ(y+) ≥ 0, the687

contribution of ⟨hI[x̄,ȳ],hI[x,y+]⟩ mirrors that of ⟨hx̄,ȳ,hx,y+⟩ in the EX-RM dynamics: it increases688

the reward of (x̄, ȳ) when the hidden representations corresponding to (x̄, ȳ) and (x,y+) are aligned.689

The contribution of the term involving γ(y−) may differ from the analogous term in the EX-RM690

dynamics since γ(y−) can be positive. Nonetheless, EX-GRMs, like EX-RMs, are expected be691

more robust than IM-RMs to superficial token-level distribution shifts. Appendix F empirically692

demonstrates that this is indeed the case.693

2The input I[x,y] can optionally include chain-of-thought tokens.
3[88] include an additional −λ · lnπθG(y

+|x) loss term, with λ > 0, that encourages the model to retain
its response generation capabilities.
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E Deferred Proofs694

E.1 Proof of Theorem 1695

For a prompt x ∈ X , we define π(·|x) by:696

π(y|x) :=

{
1

Z(x)πref(y|x) · exp(δ/β) , y ∈ C(x)
1

Z(x)πref(y|x) , y ∈ V∗ \ C(x) ,

where697

Z(x) :=
∑

y+∈C(x)
πref(y

+|x) · exp(δ/β) +
∑

y−∈V∗\C(x)
πref(y

−|x)

is a normalization constant that ensures π(·|x) is a valid distribution. The probability that π assigns to698

any other sequence of tokens can be defined arbitrarily (as long as it is consistent with the probabilities699

defined above). Since rIM(x,y) = β(lnπ(y|x)− lnπref(y|x)) for all x ∈ X ,y ∈ V∗, where rIM700

is the IM-RM induced by π, we have that:701

rIM(x,y) =

{
δ − β lnZ(x) , y ∈ C(x)
−β lnZ(x) , y ∈ V∗ \ C(x) .

Clearly, rIM is a verifier with margin δ for (X , C) since rIM(x,y+) = rIM(x,y−)+ δ for all x ∈ X ,702

y+ ∈ C(x), and y− ∈ V∗ \ C(x).703

Now, notice that Z(x) > 1 since it is a sum over the probabilities πref(y|x), for y ∈ V∗, up to terms704

corresponding to y ∈ C(x) being multiplied by exp(δ/β) > 1. As a result, for any x ∈ X and705

y ∈ C(x) it holds that:706

π(y|x) = 1

Z(x)
πref(y|x) · exp(δ/β) ≤ πref(y|x) · exp(δ/β) .

Summing over responses in C(x), we conclude:707

π(C(x)|x) ≤ πref(C(x)|x) · exp(δ/β) .
708

E.2 Proof of Corollary 1709

By Theorem 1, there exist a distribution π and corresponding IM-RM rIM such that rIM is a verifier710

with margin δ ∈ R>0 for (X , C), although for all x ∈ X it holds that:711

exp(−δ/β) · π(C(x)|x) ≤ πref(C(x)|x) .
We show that, since πref is not an efficient generator for (X , C), the distribution π is not an efficient712

generator for (X , C) either. Assume by way of contradiction that this is not the case, i.e., that π is an713

efficient generator for (X , C). Let k ∈ N and α ∈ R>0 be such that π(C(x)|x) ≥ α−1|x|−k for all714

x ∈ X . Defining γ := α · exp(δ/β), it follows that for all x ∈ X :715

πref(C(x)|x) ≥ exp(−δ/β) · π(C(x)|x) ≥ exp(−δ/β) · α−1|x|−k
= γ−1|x|−k ,

i.e., πref is an efficient generator for (X , C) — a contradiction.716

E.3 Derivation of Explicit Reward Model Learning Dynamics (Equation (4))717

Under Assumption 1, the trainable parameters of the EX-RM are θEX = u. Thus, the loss gradient718

for (x,y+,y−) ∈ DT with respect to θEX is given by:719

∇ℓθEX
(x,y+,y−) = −g(θEX) ·

(
∇rθEX

(x,y+)−∇rθEX
(x,y−)

)
= −g(θEX) ·

(
hx,y+ − hx,y−

)
,

where g(rθEX) := −ℓ′θEX
(x,y+,y−) = σ(rθEX(x,y

−)− rθEX(x,y
+)) > 0. Equation (4) then720

follows by:721

∆rθEX(x̄, ȳ) = rθEX−η∇ℓθEX
(x,y+,y−)(x̄, ȳ)− rθEX(x̄, ȳ)

=
〈
u− η∇ℓθEX

(x,y+,y−),hx̄,ȳ

〉
− ⟨u,hx̄,ȳ⟩

=
〈
hx̄,ȳ,hx,y+ − hx,y−

〉
· ηg(θEX) .
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E.4 Derivation of Implicit Reward Model Learning Dynamics (Equation (5))722

Equation (5) follows by steps similar to those used for proving Theorem 7 in [58], where the difference723

stems from the hidden representations being fixed in our case (Assumption 1). In particular, under724

Assumption 1, the trainable parameters of the IM-RM are θIM = U. Thus, the loss gradient for725

(x,y+,y−) ∈ DT with respect to θIM is given by:726

∇ℓθIM(x,y+,y−) = −g(θIM) ·
(
∇rθIM(x,y+)−∇rθIM(x,y−)

)
= −g(θIM) ·

(
∇β ln

πθIM(y+|x)
πref(y+|x)

−∇β ln
πθIM(y−|x)
πref(y−|x)

)
= −g(θIM)β ·

(
∇ lnπθIM(y+|x)−∇ lnπθIM(y−|x)

)
,

where g(θIM) := −ℓ′θIM(x,y+,y−) = σ(rθIM(x,y−)− rθIM(x,y+)) > 0. Furthermore, the727

reward gradient for (x̄, ȳ) is:728

∇rθIM(x̄, ȳ) = ∇β ln
πθIM(ȳ|x̄)
πref(ȳ|x̄)

= β · ∇ lnπθIM(ȳ|x̄) .

Now, for any prompt x′ ∈ V∗ and response y′ ∈ V∗:729

∇ lnπθIM(y′|x′) =
∑|y′|

k=1
∇ lnπθIM(y′

k|x′,y′
<k)

=
∑|y′|

k=1
∇
(〈

Uy′
k
,hx′,y′

<k

〉
− ln

∑
v∈V

exp
(〈

Uv,hx′,y′
<k

〉))
=
∑|y′|

k=1

(
ey′

k
− πθIM(·|x′,y′

<k)
)
h⊤
x′,y′

<k
,

where ev ∈ R|V| denotes the standard basis vector corresponding to v ∈ V and πθIM(·|x′,y′
<k) is the730

vector of probabilities that πθIM assigns to tokens conditioned on (x′,y′
<k). Plugging this gradient731

expression into the expressions for ∇rθIM(x̄, ȳ) and ∇ℓθIM(x,y+,y−) yields:732 〈
∇rθIM(x̄, ȳ),−∇ℓθIM(x,y+,y−)

〉
=

〈 |ȳ|∑
k=1

(eȳk
− πθIM(·|x̄, ȳ<k))h

⊤
x̄,ȳ<k

,

|y+|∑
l=1

(
ey+

l
− πθIM(·|x,y+

<l)
)
h⊤
x,y+

<l

〉
g(θIM)β2

−

〈 |ȳ|∑
k=1

(eȳk
− πθIM(·|x̄, ȳ<k))h

⊤
x̄,ȳ<k

,

|y−|∑
l=1

(
ey−

l
− πθIM(·|x,y−

<l)
)
h⊤
x,y−

<l

〉
g(θIM)β2

=

( |ȳ|∑
k=1

|y+|∑
l=1

ρk,l(y
+) ·

〈
hx̄,ȳ<k

,hx,y+
<l

〉
−

|ȳ|∑
k=1

|y−|∑
l=1

ρk,l(y
−) ·

〈
hx̄,ȳ<k

,hx,y−
<l

〉)
g(θIM)β2 ,

where for all v ∈ {y+,y−}, k ∈ {1, . . . , |ȳ|}, and l ∈ {1, . . . , |v|}:733

ρk,l(v) := ⟨eȳk
− πθIM(·|x̄, ȳ<k), evl

− πθIM(·|x,v<l)⟩
= 1[ȳk = vl]− πθIM(ȳk|x,v<l)− πθIM(vl|x̄, ȳ<k) + ⟨πθIM(·|x̄, ȳ<k), πθIM(·|x,v<l)⟩ .

Equation (5) then follows by the above and the fact that:734

∆rθIM(x̄, ȳ) = −η
〈
∇rθIM(x̄, ȳ),∇ℓθIM(x,y+,y−)

〉
+O(η2) .

Lastly, to see that ρk,l(v) resides within [−2, 2] for all v ∈ V∗, k ∈ {1, . . . , |ȳ|}, and l ∈735

{1, . . . , |v|}, notice that:736 ∣∣ρk,l(v)∣∣ = ∣∣⟨eȳk
− πθIM(·|x̄, ȳ<k), evl

− πθIM(·|x,v<l)⟩
∣∣

≤
∥∥eȳk

− πθIM(·|x̄, ȳ<k)
∥∥
1
·
∥∥evl

− πθIM(·|x,v<l)
∥∥
∞

≤ 2 · 1
= 2 ,

where ∥·∥1 and ∥·∥∞ denote the ℓ1 and ℓ∞ norms, respectively.737
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E.5 Derivation of Explicit Generative Reward Model Learning Dynamics (Equation (8))738

Under Assumption 1, the trainable parameters of the EX-GRM are θG = U. Recall (Appendix D.1)739

that the EX-GRM loss over (x,y+,y−) ∈ DT is defined as:740

ℓGθG(x,y
+,y−) := − lnπθG(Yes|I[x,y+])− lnπθG(No|I[x,y−]) .

The loss gradient for (x,y+,y−) ∈ DT with respect to θG is therefore given by:741

∇ℓGθG(x,y
+,y−) = −∇ lnπθG(Yes|I[x,y+])−∇ lnπθG(No|I[x,y−])

= −
(
eYes − πθG(·|I[x,y+])

)
h⊤
I[x,y+] −

(
eNo − πθG(·|I[x,y−])

)
h⊤
I[x,y−] ,

where eYes ∈ R|V| and eNo ∈ R|V| are the standard basis vectors corresponding to the tokens Yes742

and No, respectively, and πθG(·|I[x,y+]) and πθG(·|I[x,y−]) are the vectors of probabilities that743

πθG assigns to tokens conditioned on I[x,y+] and I[x,y−], respectively.744

Furthermore, the reward gradient for (x̄, ȳ) is:745

∇rθG(x̄, ȳ) = ∇πθG(Yes|I[x̄, ȳ])
= πθG(Yes|I[x̄, ȳ]) · ∇ lnπθG(Yes|I[x̄, ȳ])
= πθG(Yes|I[x̄, ȳ]) · (eYes − πθG(·|I[x̄, ȳ]))h⊤

I[x̄,ȳ] .

Thus:746 〈
∇rθG(x̄, ȳ),−∇ℓGθG(x,y

+,y−)
〉

= πθG(Yes|I[x̄, ȳ]) ·
〈
(eYes − πθG(·|I[x̄, ȳ]))h⊤

I[x̄,ȳ],
(
eYes − πθG(·|I[x,y+])

)
h⊤
I[x,y+]

〉
+ πθG(Yes|I[x̄, ȳ]) ·

〈
(eYes − πθG(·|I[x̄, ȳ]))h⊤

I[x̄,ȳ],
(
eNo − πθG(·|I[x,y−])

)
h⊤
I[x,y−]

〉
= πθG(Yes|I[x̄, ȳ])

(
γ(y+) ·

〈
hI[x̄,ȳ],hI[x,y+]

〉
+ γ(y−) ·

〈
hI[x̄,ȳ],hI[x,y−]

〉)
,

where the coefficients γ(y+) and γ(y−) are given by:747

γ(y+) =
〈
eYes − πθG(·|I[x̄, ȳ]), eYes − πθG(·|I[x,y+])

〉
= 1− πθG(Yes|I[x̄, ȳ])− πθG(Yes|I[x,y+]) +

〈
πθG(·|I[x̄, ȳ]), πθG(·|I[x,y+])

〉
,

γ(y−) =
〈
eYes − πθG(·|I[x̄, ȳ]), eNo − πθG(·|I[x,y−])

〉
= −πθG(No|I[x̄, ȳ])− πθG(Yes|I[x,y−]) +

〈
πθG(·|I[x̄, ȳ]), πθG(·|I[x,y−])

〉
.

Equation (8) then follows by the above and the fact that:748

∆rθG(x̄, ȳ) = −η
〈
∇rθG(x̄, ȳ),∇ℓGθG(x,y

+,y−)
〉
+O(η2) .

Lastly, to see that γ(y+) ∈ [0, 2] and γ(y−) ∈ [−2, 1], notice that:749

γ(y+) =(1− πθG(Yes|I[x̄, ȳ]))
(
1− πθG(Yes|I[x,y+])

)
+
∑

v∈V\{Yes}
πθG(v|I[x̄, ȳ])πθG(v|I[x,y+]) .

Since (1− πθG(Yes|I[x̄, ȳ]))(1− πθG(Yes|I[x,y+])) ∈ [0, 1] and750

0 ≤
∑

v∈V\{Yes}
πθG(v|I[x̄, ȳ])πθG(v|I[x,y+]) ≤

∑
v∈V

πθG(v|I[x̄, ȳ]) = 1 ,

it follows that γ(y+) ∈ [0, 2]. Turning our attention to γ(y−), it can be written as:751

γ(y−) = −πθG(No|I[x̄, ȳ])− πθG(Yes|I[x,y−]) +
∑
v∈V

πθG(v|I[x̄, ȳ])πθG(v|I[x,y−]) .

Since the first two terms on the right-hand side are bounded within [−1, 0] and752

0 ≤
∑

v∈V
πθG(v|I[x̄, ȳ])πθG(v|I[x,y−]) ≤

∑
v∈V

πθG(v|I[x̄, ȳ]) = 1 ,

we get that γ(y−) ∈ [−2, 1].753
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E.6 Proof of Theorem 2754

We begin by expressing the loss L (Equation (3)) for rθEX
and rθIM as logistic regression problems755

over different input spaces. This is possible since only the linear head θEX = u and unembedding756

matrix θIM = U are trained (Assumption 1). Let ℓ(a) := − lnσ(a) = ln(1 + exp(−a)) be the757

logistic loss, for a ∈ R, and define for all (x,y+,y−) ∈ DT :758

ϕEX(x,y
+,y−) := hx,y+ − hx,y− ∈ RD ,

ϕIM(x,y+,y−) := β ·
(
ey+h⊤

x − ey−h⊤
x

)
∈ R|V|×D ,

(9)

where ey ∈ R|V| denotes the standard basis vector corresponding to y ∈ V . We can write the loss for759

an EX-RM as:760

L(rθEX
) =

1

|DT |
∑

(x,y+,y−)∈DT
ℓ
(
rθEX

(x,y+)− rθEX
(x,y−)

)
=

1

|DT |
∑

(x,y+,y−)∈DT
ℓ
(〈
u, ϕEX(x,y

+,y−)
〉)

.
(10)

This describes a logistic regression problem with respect to θEX = u and inputs ϕEX(x,y
+,y−),761

for (x,y+,y−) ∈ DT , whose labels are all positive. On the other hand, for an IM-RM we have:762

L(rθIM) =
1

|DT |
∑

(x,y+,y−)∈DT
ℓ
(
rθIM(x,y+)− rθIM(x,y−)

)
=

1

|DT |
∑

(x,y+,y−)∈DT
ℓ

(
β ln

πθIM(y+|x)
πref(y+|x)

− β ln
πθIM(y−|x)
πref(y−|x)

)
.

By Assumption 2, responses in the training set DT are of length one. Meaning, y+,y− ∈ V for all763

(x,y+,y−) ∈ DT . Notice that for any y ∈ V:764

lnπθIM(y|x) = ⟨Uy,hx⟩ − ln
∑

v∈V
exp(⟨Uv,hx⟩) ,

where Uv denotes the row of U corresponding to v. Along with πref = πθIM(0), this leads to:765

L(rθIM) =
1

|DT |
∑

(x,y+,y−)∈DT
ℓ
(
β
〈
Uy+ −Uy− ,hx

〉
− β

〈
Uy+(0)−Uy−(0),hx

〉)
=

1

|DT |
∑

(x,y+,y−)∈DT
ℓ
(〈
U, ϕIM(x,y+,y−)

〉
−
〈
U(0), ϕIM(x,y+,y−)

〉)
.

(11)

Up to constant bias terms, of the form −⟨U(0), ϕIM(x,y+,y−)⟩, this describes a logistic regression766

problem with respect to θIM = U and inputs ϕIM(x,y+,y−), for (x,y+,y−) ∈ DT , whose labels767

are all positive.768

With Equations (10) and (11) in place, Lemma 2 shows that both losses L(rθEX) and L(rθIM) are769

B2 max{β2, 1}-smooth. Furthermore, based on Assumption 3, Lemma 3 proves that the correspond-770

ing logistic regression problems are over linearly separable data. That is, there exist a linear head771

ū ∈ RD and unembedding matrix Ū ∈ R|V|×D such that for all (x,y+,y−) ∈ DT :772 〈
ū, ϕEX(x,y

+,y−)
〉
> 0 ,

〈
Ū, ϕIM(x,y+,y−)

〉
> 0 .

This implies that infθEX
L(rθEX

) = infθIM L(rθIM) = 0 as one can reduce the loss to be arbitrarily773

close to zero by scaling up the norms of the linear separators ū and Ū (notice that ℓ(a) ≥ 0 for all774

a ∈ R and ℓ(a) → 0 when a → ∞). Next, we rely on these observations to establish the three parts775

of Theorem 2.776

Both the EX-RM and IM-RM perfectly fit the training set. As shown above, L(rθEX) and777

L(rθIM) can be formulated as logistic regression problems over linearly separable data (Equation (10),778

Equation (11), and Lemma 3). Since the losses are convex and B2 max{β2, 1}-smooth (Lemma 2),779

standard arguments from the convex optimization literature imply that gradient descent with learning780

rate η < 2B−2 min{β−2, 1} minimizes them to their infimal value of zero (e.g., see Lemma 1 in781

[68]). That is, limt→∞ L(rθEX(t)) = limt→∞ L(rθIM(t)) = 0.782

The fact that the training loss converges to zero directly implies that the accuracy of the EX-RM and783

IM-RM over DT converges to one. To see it is so, notice that there exists a time t′ ≥ 0 such that for784
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all t ≥ t′ it holds that L(rθEX(t)) <
ln 2
|DT | and L(rθIM(t)) <

ln 2
|DT | . Hence, for any training example785

(x,y+,y−) ∈ DT :786

ℓ
(
rθEX(t)(x,y

+)− rθEX(t)(x,y
−)
)
< ln 2 ,

ℓ
(
rθIM(t)(x,y

+)− rθIM(t)(x,y
−)
)
< ln 2 .

This holds if and only if rθEX(t)(x,y
+) > rθEX(t)(x,y

−) and rθIM(t)(x,y
+) > rθIM(t)(x,y

−)787

for all (x,y+,y−) ∈ DT . Thus, accDT (rθEX(t)) = accDT (rθIM(t)) = 1 for all t ≥ t′, i.e.,788

limt→∞ accDT (rθEX(t)) = limt→∞ accDT (rθIM(t)) = 1.789

The IM-RM fails to generalize to unseen tokens. For any θIM = U, the gradient of L(rθIM) is790

given by:791

∇L(rθIM) =
1

|DT |
∑

(x,y+,y−)∈DT
ℓ′
(
rθIM(x,y+)− rθIM(x,y−)

)
· ϕIM(x,y+,y−)

=
1

|DT |
∑

(x,y+,y−)∈DT
βℓ′
(
rθIM(x,y+)− rθIM(x,y−)

)
·
(
ey+ − ey−

)
h⊤
x .

Notice that for any token y ∈ V that does not appear as a response in DT , the gradient with respect792

to Uy — the row corresponding to y in U — is zero. This implies that Uy(t) = Uy(0) for any such793

y ∈ V and all t ≥ 0. Hence, for all (x,y+,y−) ∈ DE and t ≥ 0, because the evaluation responses794

y+,y− ∈ V do not appear in DT , we have that:795

rθIM(t)(x,y
+)− rθIM(t)(x,y

−) = β ln
πθIM(t)(y

+|x)
πref(y+|x)

− β ln
πθIM(t)(y

−|x)
πref(y−|x)

= β
〈
Uy+(t)−Uy−(t),hx

〉
− β

〈
Uy+(0)−Uy−(0),hx

〉
= 0 ,

from which it follows that rθIM(t)(x,y
+) = rθIM(t)(x,y

−) and accDE (rθIM(t)) = 0.5.796

The EX-RM can generalize via hidden representations. By Theorem 3 of [68], in logistic797

regression problems with linearly separable data, gradient descent converges in direction to the798

max-margin separator. Invoking Theorem 3 of [68] for the EX-RM loss implies that u(t) converges799

in direction to u∗ defined in Equation (6), i.e., limt→∞ u(t)/∥u(t)∥ = u∗/∥u∗∥. Note that the800

requirements on the learning rate are satisfied: it needs to be smaller than 2/α, with α denoting the801

smoothness coefficient of the loss, which in our case is B2 max{β2, 1} (Lemma 2). Thus, for all802

(x,y+,y−) ∈ DE we get that:803

lim
t→∞

〈
u(t)

∥u(t)∥
,hx,y+ − hx,y−

〉
=

〈
u∗

∥u∗∥
,hx,y+ − hx,y−

〉
.

If
〈
u∗,hx,y+ − hx,y−

〉
> 0, then there exists a time t′ ≥ 0 such that for all t ≥ t′:804 〈

u(t)

∥u(t)∥
,hx,y+ − hx,y−

〉
> 0 ,

and so:805 〈
u(t),hx,y+ − hx,y−

〉
= rθEX(t)(x,y

+)− rθEX(t)(x,y
−) > 0 .

By defining t0 to be the maximal such t′ over all (x,y+,y−) ∈ DE for which806 〈
u∗,hx,y+ − hx,y−

〉
> 0 ,

we arrive at the desired conclusion (note that it is possible to take the maximum over such times t′807

since DE is finite). Namely, for all t ≥ t0 the EX-RM rθEX(t) accurately ranks at least the responses808

that u∗ ranks correctly, i.e.:809

accDE (rθEX(t)) ≥
∣∣{(x,y+,y−) ∈ DE :

〈
u∗,hx,y+

〉
>
〈
u∗,hx,y−

〉}∣∣
|DE |

.

810
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E.6.1 Auxiliary Lemmas811

Lemma 1. Let ℓ : R → R≥0 denote the logistic loss, i.e., ℓ(a) := − lnσ(a) for a ∈ R, where812

σ : R → [0, 1] is the sigmoid function. Then, for all a ∈ R:813

|ℓ′′(a)| ≤ 1

4
.

Proof. For all a ∈ R, the derivative of the sigmoid satisfies σ′(a) = σ(a)σ(−a). Thus, a straightfor-814

ward differentiation of ℓ gives ℓ′(a) = −σ(−a) and:815

ℓ′′(a) = σ(a)σ(−a) .

Noticing that σ(−a) = 1 − σ(a) and that the maximal value of p(1 − p) for p ∈ [0, 1] is 1/4, we816

conclude that |ℓ′′(a)| ≤ 1/4.817

Lemma 2. Under the setting of Theorem 2, both the loss L(rθEX
) with respect to θEX = u and the818

loss L(rθIM) with respect to θIM = U are B2 max{β2, 1}-smooth, i.e., the spectral norm of their819

Hessians is bounded by B2 max{β2, 1}.820

Proof. Starting with L(rθEX
), by Equation (10) and straightforward computations we can write its821

Hessian as:822

∇2L(rθEX) =
1

|DT |
∑

(x,y+,y−)∈DT

ℓ′′
(〈
u, ϕEX(x,y

+,y−)
〉)

· ϕEX(x,y
+,y−)ϕEX(x,y

+,y−)⊤ .

Since ϕEX(x,y
+,y−) = hx,y+ −hx,y− , by the triangle inequality ∥ϕEX(x,y

+,y−)∥ ≤ 2B for all823

(x,y+,y−) ∈ DT . Furthermore, by Lemma 1 we have that ℓ′′(⟨u, ϕEX(x,y
+,y−)⟩) ≤ 1/4. Thus:824 ∥∥∇2L(rθEX

)
∥∥
2
≤ 1

4|DT |
∑

(x,y+,y−)∈DT

∥∥ϕEX(x,y
+,y−)

∥∥2 ≤ B2 ,

where ∥·∥2 denotes the spectral norm and ∥·∥ denotes the Euclidean norm. Multiplying B2 by825

max{β2, 1} can only increase it. Thus, L(rθEX
) is B2 max{β2, 1}-smooth.826

For L(rθIM), an analogous derivation leads to:827 ∥∥∇2L(rθIM)
∥∥
2
≤ 1

4|DT |
∑

(x,y+,y−)∈DT

∥∥ϕIM(x,y+,y−)
∥∥2 .

Since ϕIM(x,y+,y−) = β ·
(
ey+h⊤

x − ey−h⊤
x

)
, by the triangle inequality ∥ϕIM(x,y+,y−)∥ ≤828

2Bβ for all (x,y+,y−) ∈ DT . We therefore have that L(rθIM) is B2 max{β2, 1}-smooth as well:829 ∥∥∇2L(rθIM)
∥∥
2
≤ B2β2 ≤ B2 max{β2, 1} .

830

Lemma 3. Under the setting of Theorem 2, there exist a linear head ū ∈ RD and unembedding831

matrix Ū ∈ R|V|×D such that for all (x,y+,y−) ∈ DT :832 〈
ū, ϕEX(x,y

+,y−)
〉
=
〈
ū,hx,y+ − hx,y−

〉
> 0 ,〈

Ū, ϕIM(x,y+,y−)
〉
= β

〈
Ūy+ − Ūy− ,hx

〉
> 0 ,

where ϕEX and ϕIM are defined in Equation (9) and Ūv denotes the row of Ū corresponding to v,833

for any token v ∈ V .834

Proof. Starting with the EX-RM, by Assumption 3 we know that there exists θEX = u ∈ RD such835

that for all (x,y+,y−) ∈ DT :836

0 < rθEX
(x,y+)− rθEX

(x,y−) =
〈
u,hx,y+ − hx,y−

〉
=
〈
u, ϕEX(x,y

+,y−)
〉

.

Thus, ū := u satisfies the requirement of the lemma.837
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For the IM-RM, by Assumption 3 we know that there exists θIM = U ∈ R|V|×D such that for all838

(x,y+,y−) ∈ DT :839

0 < rθIM(x,y+)− rθIM(x,y−) = β ln
πθIM(y+|x)
πref(y+|x)

− β ln
πθIM(y−|x)
πref(y−|x)

= β
〈
Uy+ −Uy− ,hx

〉
− β

〈
Uy+(0)−Uy−(0),hx

〉
=
〈
U−U(0), ϕIM(x,y+,y−)

〉
.

Thus, Ū := U−U(0) satisfies the requirement of the lemma.840

F Additional Experiments841

F.1 Hamiltonian Cycle Verification (Section 3.2)842

In the experiments of Figure 3, we used a learning rate of 1e-6 and set β to 0.01 for IM-RMs. We843

additionally considered lower and higher values for both hyperparameters (namely, learning rates844

5e-7 and 5e-6 and β coefficients 0.005, 0.05, and 0.1). The results were analogous. That is, both the845

EX-RMs and IM-RMs were able to accurately distinguish between valid and invalid Hamiltonian846

cycles, although the IM-RMs were unable to generate even a single Hamiltonian cycle.847

F.2 Controlled Experiments: Token-Level Shift (Section 5.1)848

In the experiments of Figure 4, we used a learning rate of 1e-6 and set β to 0.01 for IM-RMs. We849

additionally considered lower and higher values for both hyperparameters (namely, learning rates850

5e-7 and 5e-6 and β coefficients 0.005, 0.05, and 0.1). The results were analogous. That is, IM-RMs851

were extremely inaccurate over paraphrased responses, whereas EX-RMs achieved perfect accuracy852

(for both training and test prompts).853

Furthermore, we ran the same experiments with explicit generative reward models (EX-GRMs; see854

Appendix D) in place of EX-RMs. We found that EX-GRMs exhibit similar trends to EX-RMs (i.e.,855

generalize perfectly to paraphrased responses).856

F.3 Real-World Experiments: Token-Level and Domain Shifts (Section 5.2)857

EX-RMs vs IM-RMs. Listed below are additional results, omitted from Section 5.2, comparing the858

generalization of EX-RMs and IM-RMs.859

• Tables 2 and 4 provide a per evaluation dataset breakdown of the results in Figures 2 and 5,860

respectively.861

• Tables 3 and 5 provide a per evaluation dataset breakdown of the results in Table 1 for the862

general chat and math settings, respectively.863

• Figure 6 demonstrates that the results in Section 5.2 are robust to different learning rates and β864

coefficients for IM-RMs.865

• Figures 9 and 10 supplement Figures 2 and 5, respectively, by including the accuracy of reward866

models per initial language model and evaluation dataset.867

Evidence against alternative hypotheses. Recall, our analysis (Section 4) indicates that IM-RMs868

are more sensitive to superficial token-level cues, and thus often generalize worse than EX-RMs.869

We provide evidence against two alternative potential sources for the generalization gap between870

EX-RMs and IM-RMs. First, the reward of an EX-RM is based on the hidden representation of the871

whole response, while IM-RMs depend also on the hidden representations of intermediate tokens872

in the response. Intuitively, the hidden representations of intermediate tokens may be misleading873

since they do not capture the full meaning of the response. Second, the reward of an IM-RM is874

shifted by the log probability of a reference distribution, which is not the case for EX-RMs. Figure 7875

demonstrates that these differences do not explain the generalization gap, as the gap remains when876
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considering EX-RMs trained over the hidden representations of all intermediate tokens and IM-RMs877

without a reference distribution.4878

EX-GRMs vs IM-RMs. Listed below are additional experiments, omitted from Section 5.2, com-879

paring the generalization of explicit generative reward models (EX-GRMs; see Appendix D) and880

IM-RMs. Notably, we find that the results of EX-GRMs are analogous to those of EX-RMs: they are881

more robust to token-level shifts than IM-RMs, as anticipated by our analysis (Appendix D.1).882

• Figure 8 presents the results of an experiment identical to that of Figures 2 and 5, except that it883

compares EX-GRMs (instead of EX-RMs) to IM-RMs.884

• Table 6 supplements Figure 8 by reporting the accuracy and absolute (normalized) reward885

margin of EX-GRMs and IM-RMs over the different evaluation categories.886

• Tables 7 and 9 provide a per evaluation dataset breakdown of the results in Figure 8.887

• Tables 8 and 10 provide a per evaluation dataset breakdown of the results in Table 6 for the888

general chat and math settings, respectively.889

• Figures 9 and 10 supplement Figure 8 by including the accuracy, per initial language model and890

evaluation dataset, for the general chat and math settings of Section 5.2, respectively.891

G Additional Implementation Details892

In this appendix, we provide implementation details omitted from Section 3.2, Section 5, and893

Appendix F. Code for reproducing our results, based on the PyTorch [47] and Hugging Face [80]894

frameworks, will be made publicly available.895

In all experiments, for each prompt and response, we used the following chat template (unless the896

model already had a chat template, in which case we used the original chat template):897

[USER]{prompt}[ASSISTANT]{response}[EOS]

where [USER], [ASSISTANT], and [EOS] are defined as special tokens.898

G.1 Hamiltonian Cycle Verification (Section 3.2)899

Data. Each example in the dataset consisted of: (i) a prompt that describes an undirected graph900

with N ∈ N vertices, (ii) a chosen response, which describes a permutation of vertices that forms901

a Hamiltonian cycle in the graph, and (iii) a rejected response, which describes a permutation of902

vertices that does not form a Hamiltonian cycle in the graph. Below are examples for the prompt and903

response formats, where vertices are denoted by integers from 0 to N − 1, the token [sep] is used to904

separate vertices and edges, and the token [edge_sep] is used to separate the two vertices of an edge.905

The examples are for graphs with N = 10 vertices.906

Hamiltonian cycle preference dataset: prompt example

Vertices: [sep]0[sep]1[sep]2[sep]3[sep]4[sep]5[sep]6[sep]7[sep]8[sep]9\n
Edges: [sep]3[edge_sep]4[sep]0[edge_sep]2[sep]5[edge_sep]9[sep]2[edge_sep]7[sep]
1[edge_sep]2[sep]0[edge_sep]9[sep]4[edge_sep]6[sep]1[edge_sep]5[sep]1[edge_sep]3
[sep]5[edge_sep]7[sep]6[edge_sep]8[sep]1[edge_sep]8[sep]2[edge_sep]3[sep]3[edge_sep]6
[sep]1[edge_sep]7[sep]2[edge_sep]8

907

Hamiltonian cycle preference dataset: response example

0[sep]9[sep]5[sep]7[sep]1[sep]8[sep]6[sep]4[sep]3[sep]
908

4These results do not preclude the possibility that, in certain settings where the last token can completely
change the meaning of a response, the IM-RM’s reliance on hidden representations of intermediate tokens may
lead to worse generalization than EX-RMs.
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We randomly generated training and test sets with 1000 and 200 examples, respectively. To ensure909

that each graph has least one Hamiltonian cycle, we first added the necessary edges for a random910

permutation of vertices. Then, for each remaining possible edge independently, we added it to911

the graph with probability p ∈ [0, 1]. For the experiments of Figure 3, we created graphs with912

N = 10 vertices and chose p = 0.2. Experiments with additional configurations (e.g., N = 8, 12913

and p = 0.1, 0.3) led to similar outcomes.914

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer915

[34] for 15 epochs with learning rate 1e-6 and batch size 32 (emulated via two gradient accumulation916

steps of size 16). For IM-RMs, we set β to 0.01. As stated in Appendix F.1, experiments with both917

lower and higher learning rates and β coefficients led to similar results. Note that all parameters of a918

reward model were trained, including the neural network backbone and the linear head for EX-RMs919

or the unembedding matrix for IM-RMs.920

Generation. When evaluating the ability of IM-RMs to generate Hamiltonian cycles, we used a921

temperature of 1 and sampled one output for each prompt in the training and test sets.922

Hardware. Experiments ran on a single Nvidia H100 GPU with 80GB of memory.923

G.2 Controlled Experiments: Token-Level Shift (Section 5.1)924

Data. We took from the Persona dataset [48] prompts that match the “agreeableness” behavioral925

trait, of which there are 500, and created training and test splits by randomly sampling 80 and 40926

prompts, respectively. For the chosen and rejected responses, we randomly assigned to each prompt927

one of four manually written options (see below). Note that chosen responses express agreement with928

the prompt and rejected responses express disagreement. During evaluation, alongside the original929

responses, we measured the accuracy of the reward models over paraphrased versions of the original930

responses (see below).931

Original chosen responses

• A truthful reply is yes

• A truthful reply is sure

• In my view, the answer is yes

• In my view, the answer is sure
932

Original rejected responses

• Considering the statement, I say no

• Considering the statement, I say never

• My judgement: no

• My judgement: never
933

Paraphrased chosen responses

• My response would be certainly

• My response would be absolutely
934

Paraphrased rejected responses

• I lean toward not really

• I lean toward nope
935

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer936

for 50 epochs with learning rate 1e-6 and batch size 32 (emulated via four gradient accumulation937

steps of size 8). For IM-RMs, we set β to 0.01. As stated in Appendix F.2, experiments with both938
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lower and higher learning rates and β coefficients led to similar results. Note that all parameters of a939

reward model were trained, including the neural network backbone and the linear head for EX-RMs940

or the unembedding matrix for IM-RMs.941

EX-GRMs. In accordance with [88], we trained EX-GRMs by minimizing the loss in Equation (7),942

using the same hyperparameters as for EX-RMs. Inputs to EX-GRMs were formatted via the943

following template. For simplicity, we did not use chain-of-thought tokens.944

EX-GRM input format

Question: {prompt}\nAnswer: {response}\nVerification: Is the answer correct (Yes/No)?
945

Hardware. Experiments ran on a single Nvidia H100 GPU with 80GB of memory.946

G.3 Real-World Experiments: Token-Level and Domain Shifts (Section 5.2)947

Data. The experiments involved two training datasets — one for the general chat setting and another948

for the math setting — and seven evaluation test sets that were shared among the settings.949

Training sets.950

• UltraFeedback. For the general chat setting, we took the training set of the binarized Ultra-951

Feedback dataset5 [15] and filtered out examples in which either the prompt or one of the952

responses exceeded 512 tokens according to the Llama-3.2-1B tokenizer. We further removed953

examples in which the prompt contained the words “translate” or “translation”, which may954

lead to nonsensical examples when translating the responses to different languages (as done for955

creating evaluation sets with token-level shifts; see details below). Then, we randomly sampled956

2000 examples from the remaining examples.957

• RewardMATH. For the math setting, we used the pairwise preferences version of the Reward-958

MATH dataset6 [33]. As in the chat setting, we filtered out examples in which either the prompt959

or one of the responses exceeded 512 tokens according to the Llama-3.2-1B tokenizer. Then,960

we created a training set of 1000 randomly sampled examples (note that RewardMATH does961

not contain predefined training and test splits).962

Evaluation sets.963

• UltraFeedback. We processed the test set of UltraFeedback in the same way as the training set,964

and randomly sampled 200 examples.965

• UltraFeedback: Paraphrased. We took the UltraFeedback test set and paraphrased both the966

chosen and rejected responses via GPT-4.1 (version gpt-4.1-2025-04-14).967

Prompt to GPT-4.1 for paraphrasing UltraFeedback responses

I will provide a text. Please rewrite it so that the meaning remains the same, but the wording
overlaps with the original text as little as possible. Aim to minimize word and phrase overlap
while preserving all key information and nuance. Output only the rewritten text and nothing
else.\nHere is the original text:\n{response}\nRewritten version:\n

968

• UltraFeedback: French. We took the UltraFeedback test set and translated both the chosen and969

rejected responses to French via GPT-4.1 (version gpt-4.1-2025-04-14).970

Prompt to GPT-4.1 for translating UltraFeedback responses to French

I will provide a text in English. Please translate it to French while ensuring that the mean-
ing remains the same. Output only the translated text and nothing else.\nHere is the original
text:\n{response}\nTranslated version:\n

971

5https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
6https://huggingface.co/datasets/RewardMATH/RewardMATH_pairwise
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• UltraFeedback: Spanish. We took the UltraFeedback test set and translated both the chosen and972

rejected responses to Spanish via GPT-4.1 (version gpt-4.1-2025-04-14).973

Prompt to GPT-4.1 for translating UltraFeedback responses to Spanish

I will provide a text in English. Please translate it to Spanish while ensuring that the mean-
ing remains the same. Output only the translated text and nothing else.\nHere is the original
text:\n{response}\nTranslated version:\n

974

• RewardBench: Math. We randomly sampled 200 examples from the math subset of Reward-975

Bench7 [35] (i.e., examples whose subset field is “math-prm”), after filtering out examples976

in which either the prompt or one of the responses exceeded 512 tokens according to the977

Llama-3.2-1B tokenizer.978

• RewardBench: Code. We randomly sampled 200 examples from the code subset of Reward-979

Bench (i.e., examples whose subset field starts with “hep”), after filtering out examples in which980

either the prompt or one of the responses exceeded 512 tokens according to the Llama-3.2-1B981

tokenizer.982

• RewardMATH. When creating the RewardMATH training set, we also designated 200 randomly983

sampled examples as test examples.984

Training. We minimized the Bradley-Terry log-likelihood loss (Equation (3)) via the Adam optimizer985

for 5 epochs with learning rate 1e-6 and batch size 32 (emulated via eight gradient accumulation986

steps). For IM-RMs, we set β to 0.01. As demonstrated by Figure 6 in Appendix F.3, experiments987

with both lower and higher learning rates and β coefficients led to similar results. Note that all988

parameters of a reward model were trained, including the neural network backbone and the linear989

head for EX-RMs or the unembedding matrix for IM-RMs. To ensure a fair comparison between990

EX-RMs and IM-RMs, we verified that their training loss and accuracy were roughly the same.991

Specifically, their training loss was below 0.04 in the general chat setting and 0.005 in the math992

setting. The accuracy was above 0.993 in both settings (values are means across initial language993

models and random seeds).994

EX-GRMs. See EX-GRMs paragraph in Appendix G.2.995

Absolute reward margin computation. For each reward model r and evaluation set separately,996

to measure the absolute (normalized) reward margin, we first computed the standard deviation of997

rewards over all responses (chosen and rejected). Denoting this standard deviation by s, for each998

example (x,y+,y−) in the evaluation set, the absolute (normalized) reward margin is given by:999

1

s
·
∣∣r(x,y+)− r(x,y−)

∣∣ .
We report the mean of this quantity over the evaluation set. Note that the normalization is intended to1000

account for arbitrary differences in reward scale between reward models.1001

Hardware. Experiments based on Llama-3.2-1B-Instruct ran on a single Nvidia H100 GPU with1002

80GB of memory. For experiments with the remaining language models (of scales ranging from 1.5B1003

to 8B), we used four such GPUs per run.1004

7https://huggingface.co/datasets/allenai/reward-bench
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Table 2: Per evaluation dataset breakdown of the win-rates reported in Figure 2 (i.e., for the general chat setting
of Section 5.2). We abbreviate UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-RM Tie IM-RM

In-Distribution UF 100 0 0

Token-Level Shift
UF: Paraphrased 100 0 0

UF: French 72.2 16.7 11.1

UF: Spanish 88.9 11.1 0

Domain Shift
RB: Math 22.2 0 77.8

RewardMATH 38.9 22.2 38.9

RB: Code 0 27.8 72.2

Table 3: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 1, for the general chat setting of Section 5.2 (i.e., for the rows corresponding to UltraFeedback
training data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-RM IM-RM EX-RM IM-RM

In-Distribution UF 0.752 ± 0.009 0.646 ± 0.006 1.014 ± 0.023 0.813 ± 0.003

Token-Level Shift
UF: Paraphrased 0.687 ± 0.005 0.579 ± 0.002 0.954 ± 0.010 0.730 ± 0.008

UF: French 0.645 ± 0.004 0.616 ± 0.004 0.991 ± 0.008 0.785 ± 0.004

UF: Spanish 0.662 ± 0.010 0.612 ± 0.002 0.984 ± 0.007 0.774 ± 0.004

Domain Shift
RB: Math 0.513 ± 0.041 0.737 ± 0.008 1.092 ± 0.024 1.056 ± 0.002

RewardMATH 0.594 ± 0.022 0.593 ± 0.007 0.922 ± 0.021 0.802 ± 0.001

RB: Code 0.754 ± 0.014 0.830 ± 0.002 0.409 ± 0.003 0.319 ± 0.005

Table 4: Per evaluation dataset breakdown of the win-rates reported in Figure 5 (i.e., for the math setting of
Section 5.2). We abbreviate UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-RM Tie IM-RM

In-Distribution RewardMATH 16.7 66.6 16.7

Token-Level Shift RB: Math 100 0 0

Domain Shift

UF 38.9 11.1 50.0

UF: Paraphrased 55.5 16.7 27.8

UF: French 38.9 22.2 38.9

UF: Spanish 55.6 22.2 22.2

RB: Code 11.1 0 88.9
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Table 5: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 1, for the math setting of Section 5.2 (i.e., for the rows corresponding to RewardMATH training
data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-RM IM-RM EX-RM IM-RM

In-Distribution RewardMATH 0.971 ± 0.003 0.972 ± 0.002 1.602 ± 0.011 1.377 ± 0.007

Token-Level Shift RB: Math 0.988 ± 0.003 0.515 ± 0.007 1.667 ± 0.017 1.035 ± 0.011

Domain Shift

UF 0.487 ± 0.018 0.475 ± 0.005 0.881 ± 0.013 0.697 ± 0.003

UF: Paraphrased 0.467 ± 0.017 0.433 ± 0.002 0.872 ± 0.021 0.703 ± 0.003

UF: French 0.484 ± 0.018 0.475 ± 0.005 0.891 ± 0.002 0.698 ± 0.005

UF: Spanish 0.485 ± 0.004 0.462 ± 0.002 0.883 ± 0.006 0.693 ± 0.006

RB: Code 0.604 ± 0.008 0.740 ± 0.008 0.247 ± 0.003 0.228 ± 0.003

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Figure 6: The results of Section 5.2 are robust to different learning rates (top) and β coefficients for IM-RMs
(bottom). In the general chat setting of Section 5.2, we compare the accuracy of EX-RMs and IM-RMs trained
using additional learning rates and β coefficients (for IM-RMs). We consider both lower and higher values
than the default ones (as specified in Appendix G, the default learning rate is 1e-6 and default β coefficient is
0.01). All reward models were trained on UltraFeedback, starting from the Llama-3.1-8B-Instruct language
model. In the figure, we abbreviate UltraFeedback as UF and RewardBench as RB. Error bars mark standard
deviation across three random seeds. For the range of hyperparameters considered, the trends remain the same
as in Figure 2. Namely, IM-RMs are less robust to token-level shifts than EX-RMs, yet perform comparably or
better under domain shifts.

Table 6: This table supplements Figure 8 by reporting the accuracy and absolute (normalized) reward margin
over the different evaluation categories. In each row, bold font marks the highest accuracy and absolute reward
margin (unless the values are within 0.01 of each other, after taking into account standard deviations). For
each reward model and evaluation dataset separately, the absolute reward margin is normalized by the standard
deviation of rewards to account for arbitrary differences in scale. Values in the table are means across the models
(six in total) and evaluation datasets, with standard deviation computed based on three random seeds. See
Tables 8 and 10 for a per evaluation dataset breakdown of the results.

Accuracy Absolute Reward Margin

Training Data Evaluation EX-GRM IM-RM EX-GRM IM-RM

UltraFeedback
In-Distribution 0.714 ± 0.005 0.646 ± 0.006 1.075 ± 0.007 0.813 ± 0.003

Token-Level Shift 0.666 ± 0.002 0.602 ± 0.003 0.915 ± 0.012 0.763 ± 0.003

Domain Shift 0.616 ± 0.004 0.720 ± 0.004 0.707 ± 0.004 0.726 ± 0.001

RewardMATH
In-Distribution 0.979 ± 0.003 0.972 ± 0.002 1.724 ± 0.014 1.377 ± 0.007

Token-Level Shift 0.918 ± 0.006 0.515 ± 0.007 1.339 ± 0.032 1.035 ± 0.011

Domain Shift 0.563 ± 0.005 0.517 ± 0.001 0.251 ± 0.004 0.604 ± 0.004
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Token-Level Shift Domain Shift

Figure 7: Evidence against alternative hypotheses on the generalization gap between EX-RMs and IM-RMs.
In the general chat setting of Section 5.2, we compare the accuracy of four reward model types: (i) a standard
EX-RM, which applies a linear head to the last hidden representation of a prompt-response pair (x,y), i.e.,
to hx,y (Equation (1)), (ii) an EX-RM that applies a linear head to the mean of all hidden representations
of the response (“all repr”), i.e., to |y|−1 ∑|y|

k=1 hx,y≤k
, (iii) a standard IM-RM (Equation (2)), and (iv) an

IM-RM without a reference distribution (“no ref”), i.e., for a prompt-response pair (x,y) it assigns the reward
lnπθIM(y|x) instead of β(lnπθIM(y|x)− lnπref(y|x)). All reward models were trained on UltraFeedback,
starting from the Llama-3.1-8B-Instruct language model. In the figure, we abbreviate UltraFeedback as UF and
RewardBench as RB. Error bars mark standard deviation across three random seeds. Notice that the EX-RM
and IM-RM variants exhibit similar trends to the original ones. Namely, both IM-RMs are less robust to
token-level shifts than the EX-RMs, yet perform comparably or better under domain shifts. This suggests
that the generalization gap between EX-RMs and IM-RMs is not caused by the IM-RMs’ reliance on hidden
representations of intermediate tokens in a response or a reference distribution.

Training Data: 

UltraFeedback

Training Data: 

RewardMATH

11.2%

75.5%

Figure 8: IM-RMs are less robust than EX-GRMs (Appendix D) to token-level distribution shifts, but
perform comparably or better under domain shifts. This figure presents the results of an experiment identical
to that of Figures 2 and 5, except that it compares EX-GRMs (instead of EX-RMs) to IM-RMs.
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Table 7: Per evaluation dataset breakdown of the win-rates reported in Figure 8 for the general chat setting
of Section 5.2 (i.e., for the row corresponding to UltraFeedback training data in Figure 8). We abbreviate
UltraFeedback as UF and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-GRM Tie IM-RM

In-Distribution UF 100 0 0

Token-Level Shift
UF: Paraphrased 100 0 0

UF: French 72.2 27.8 0

UF: Spanish 88.9 11.1 0

Domain Shift
RB: Math 0 0 100

RewardMATH 33.3 11.1 55.6

RB: Code 11.1 22.2 66.7

Table 8: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 6, for the general chat setting of Section 5.2 (i.e., for the rows corresponding to UltraFeedback
training data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-GRM IM-RM EX-GRM IM-RM

In-Distribution UF 0.714 ± 0.005 0.646 ± 0.006 1.075 ± 0.007 0.813 ± 0.003

Token-Level Shift
UF: Paraphrased 0.667 ± 0.004 0.579 ± 0.002 0.923 ± 0.010 0.730 ± 0.008

UF: French 0.660 ± 0.004 0.616 ± 0.004 0.909 ± 0.006 0.785 ± 0.004

UF: Spanish 0.672 ± 0.001 0.612 ± 0.002 0.914 ± 0.019 0.774 ± 0.004

Domain Shift
RB: Math 0.497 ± 0.015 0.737 ± 0.008 0.844 ± 0.012 1.056 ± 0.002

RewardMATH 0.565 ± 0.004 0.593 ± 0.007 0.882 ± 0.010 0.802 ± 0.001

RB: Code 0.786 ± 0.008 0.830 ± 0.002 0.395 ± 0.003 0.319 ± 0.005

Table 9: Per evaluation dataset breakdown of the win-rates reported in Figure 8 for the math setting of Section 5.2
(i.e., for the row corresponding to RewardMATH training data in Figure 8). We abbreviate UltraFeedback as UF
and RewardBench as RB.

Win-Rate (%)

Evaluation Dataset EX-GRM Tie IM-RM

In-Distribution RewardMATH 44.4 44.4 11.2

Token-Level Shift RB: Math 100 0 0

Domain Shift

UF 83.3 5.6 11.1

UF: Paraphrased 83.3 16.7 0

UF: French 88.9 11.1 0

UF: Spanish 100 0 0

RB: Code 22.2 0 77.8

32



Table 10: Per evaluation dataset breakdown of the accuracy and absolute (normalized) reward margin values
reported in Table 6, for the math setting of Section 5.2 (i.e., for the rows corresponding to RewardMATH training
data). We abbreviate UltraFeedback as UF and RewardBench as RB.

Accuracy Absolute Reward Margin

Evaluation Dataset EX-GRM IM-RM EX-RM IM-RM

In-Distribution RewardMATH 0.979 ± 0.002 0.972 ± 0.002 1.724 ± 0.014 1.377 ± 0.007

Token-Level Shift RB: Math 0.918 ± 0.006 0.515 ± 0.007 1.339 ± 0.032 1.035 ± 0.011

Domain Shift

UF 0.540 ± 0.004 0.475 ± 0.005 0.325 ± 0.002 0.697 ± 0.003

UF: Paraphrased 0.530 ± 0.001 0.433 ± 0.002 0.315 ± 0.007 0.703 ± 0.003

UF: French 0.552 ± 0.003 0.475 ± 0.005 0.214 ± 0.006 0.698 ± 0.005

UF: Spanish 0.548 ± 0.001 0.462 ± 0.002 0.228 ± 0.007 0.693 ± 0.006

RB: Code 0.645 ± 0.018 0.740 ± 0.008 0.174 ± 0.008 0.228 ± 0.003
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Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Figure 9: This figure supplements Figures 2 and 8 by including the accuracy, per initial language model and
evaluation dataset, of the EX-RMs, IM-RMs, and EX-GRMs trained on UltraFeedback as part of the general
chat setting experiments of Section 5.2. In the figure, we abbreviate UltraFeedback as UF and RewardBench as
RB. Error bars mark standard deviation across three random seeds.
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Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Token-Level Shift Domain Shift

Figure 10: This figure supplements Figures 5 and 8 by including the accuracy, per initial language model and
evaluation dataset, of the EX-RMs, IM-RMs, and EX-GRMs trained on RewardMATH as part of the math
setting experiments of Section 5.2. In the figure, we abbreviate UltraFeedback as UF and RewardBench as RB.
Error bars mark standard deviation across three random seeds.
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