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Memory Never Fades: Boosting Long Context Processing with
Global Memory-Enhanced Retrieval Augmentation

Anonymous Author(s)
∗

Abstract

Processing long contexts presents a significant challenge for large

language models (LLMs). While recent advancements allow LLMs

to handle much longer contexts than before (e.g., 32K or 128K to-

kens), it is computationally expensive and can still be insufficient

for many applications. Retrieval-Augmented Generation (RAG) is

considered as a promising strategy to address this problem. How-

ever, conventional RAG methods face inherent limitations because

of two underlying requirements: 1) explicitly-stated queries, and

2) well-structured knowledge. These conditions, however, do not

hold in general long-context processing tasks.

In this work, we propose HawkRAG
1
, a novel RAG framework

empowered by global memory-augmented retrieval. HawkRAG

features a dual-system architecture. First, it employs a light but
long-range system to create a global memory of the long context.

Once a task is presented, it generates draft answers, providing useful

clues for the retrieval tools to locate relevant information within

the long context. Second, it leverages an expensive but expressive
system, which generates the final answer based on the retrieved

information. Building upon this fundamental framework, we realize

the memory module in the form of KV compression, and reinforce

its memorization and cluing capacity from the Generation quality’s

Feedback (a.k.a. RLGF). In our experiments, HawkRAG achieves

superior performances across a variety of long-context evaluation

tasks, not only complex scenarios where traditional RAG methods

struggle, but also simpler ones where RAG is typically applied. Our

source code is available at this anonymous repository.
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Figure 1: Comparison of HawkRAG with Standard RAG and

human cognition of a long document. Figure (a) shows stan-

dard RAG, where retrieval and generation take place in a

sequential pipeline. Figure (b) illustrates how human tackle

a task about the document: 1. going-through the document

and forming the memory, 2. thinking about the clues to the

presented task (i.e., recalling), checking the document for

needed details (i.e., retrieving), 3. making response to the task

based on the memory-enhanced retrieval result. Inspired by

human cognition process, Figure (c) demonstratesHawkRAG,

which creates a global memory of the long-context, recalling

useful clues based on memory, retrieving needed informa-

tion based on the clues to generate a high-quality response.

1 Introduction

Large language models (LLMs) need to process long contexts in

many real-world scenarios, such as long-document QA and summa-

rization [4, 55]. While some recent LLMs can handle much longer

contexts than before (e.g., Mistral-32K, Phi-128K) [1, 23], they can

still be insufficient for certain applications. Meanwhile, it’s com-

putationally expensive to process long contexts directly due to the

considerable costs on inference time and GPU memory [11].

Retrieval-Augmented Generation (RAG) is widely regarded as

a promising strategy for addressing long-context processing chal-

lenges [16, 22]. RAG allows LLMs to complete tasks more cost-

effectively by focusing only on the relevant parts retrieved from the

long input context [51, 56]. However, traditional RAG methods face

inherent limitations when applied to general long-context tasks,

due to two key constraints. First, the search intent must be explic-

itly expressed (or easily clarified through query rewriting) [6, 56].

Second, the external dataset must be well-structured for effective

encoding and indexing (e.g., Wikipedia passages) [35, 36]. Unfor-

tunately, neither of these conditions are typically met in general

long-context tasks. On one hand, there may be no clear search in-

tent (e.g., summarizing the main characters in a book, or clarifying

the relationships between characters) [13, 40]. On the other hand,

1
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the input context is often unstructured (e.g., a 100-page text file, or

multi-year financial reports), making it difficult to partition, encode,

and index in a straightforward manner [39, 41, 56].

Human cognition of a long document, unlike standard RAG, is

significantly more effective (as shown in Figure 1). When a person is

presented with a long document, they first skim through it to form

a global memory of its high-level information. When tasked with a

document understanding question—such as “What are the mutual

relationships between themain characters?”—the person recalls use-

ful clues from their memory and uses these clues to locate specific

details within the document. Based on the retrieved information,

they can then generate a high-quality response to the task [2].

Inspired by human cognitive process, we propose HawkRAG,

a novel framework for long-context processing on top of global-

memory enhanced retrieval augmentation. HawkRAG features a

dual-system architecture: a light but long-range system to realize

the memory module and a heavy but expressive system to generate

the final answer. For each presented task, HawkRAG prompts its

memory module to generate retrieval clues. These clues are es-

sentially drafted answers based on the compact memory. While

these clues may contain some inaccuracies or lack details, they

effectively reveal the underlying information needs of the task and

can be directly linked to the source information. By using these

clues as queries, HawkRAG can effectively retrieve the necessary

knowledge from the external knowledge base.

The memory module is core of HawkRAG. It is expected to be 1)

length-scalable: handling long-contexts in a cost-effective way, 2)

retentive: memorizing the crucial information within long-contexts,

and 3) instructive: generating useful clues for the presented task.

Therefore, we introduce the following techniques to optimize its

performance. First, we realize the the memory module in the form

of a KV-compressible LLM with configurable compression rates.

This structure is able to flexibly support a wide range of context

lengths and can be optimized in an end-to-end manner. Second, we

design a novel algorithm which learns to reinforce the memory

module’s memorization and cluing capacity from the generation

quality’s feedback (a.k.a. RLGF). That is, 1) the generated clues are

positively rewarded if it can support the generation of high-quality

answer, and 2) the memory module is reinforced to generate the

positively rewarded clues.

We perform comprehensive experimental studies to evaluate

HawkRAG. In our experiment, we leverage a variety of datasets

from two popular long-context benchmarks: LongBench [4] and

InfiniteBench [55]. The two benchmarks contain both QA-style

tasks, e.g., HotPotQA, NarrativeQA, which are well-suited for tra-

ditional RAG methods, and non-QA tasks, like government report

summarization, which are unfavorable to traditional RAG meth-

ods. We also curate a general long-document understanding bench-

mark, containing general tasks related to long documents from

20 diverse domains, such as law, finance, physics, and program-

ming etc. Our experiment results lead to a series of critical in-

sights. Firstly, HawkRAG not only achieves notable advantages in

both non-QA tasks where traditional RAG methods struggle, but

also QA-style tasks where traditional RAG methods are usually

applied. Secondly, HawkRAG outperforms advanced retrieval and

RAG methods which are proposed recently, such as HyDE [15],

RQ-RAG [6], and GraphRAG [13]. Thirdly, HawkRAG even outper-

forms the direct-applied long LLMs and some context-extended

methods, which can fully cover the input contexts [1, 24]. Finally,

HawkRAG exhibits competitive efficiency in terms of inference

speed and memory cost. To summarize, the contributions of our

work are highlighted by the following points.

• We propose HawkRAG for long-context processing tasks

based on global-memory enhanced retrieval augmentation.

• We design a suite of architecture and optimization algo-

rithm, enabling the memory module to be length-scalable,

retentive, and instructive for long-context tasks.

• We empirically demonstrate that HawkRAG generalizes be-

yond traditional QA tasks to effectively handle both non-QA

tasks and complex QA tasks, expanding RAG’s applicability

to a broader range of scenarios.

2 Method

In this section, we begin by introducing task background and pre-

senting the overall framework of HawkRAG, followed by a detailed

exploration of HawkRAG’s technical designs.

2.1 Background

The generation process of a LLMΘ(·) can be succinctly represented
as 𝑌 = Θ(𝑞 | 𝜃 ), where 𝑞 denotes the input query, 𝑌 is the gen-

erated response, and 𝜃 represents the model’s parameters, which

store the knowledge learned from the training corpus. Since the

training corpus typically consists of publicly available web data up

to a certain cutoff point, LLMs face challenges when handling tasks

that require up-to-date or domain-specific information. A common

and effective solution to this problem is to incorporate an exter-

nal knowledge base 𝐶 into the input, which can be formulated as

𝑌 = Θ(𝑞,𝐶 | 𝜃 ), allowing for more accurate responses. In practice,

the external knowledge base 𝐶 can be substantially large, often

exceeding the LLM’s context size, leading to the long-context issue,
as shown in the top of Figure 2(a). In the following, we refer to the

external knowledge base 𝐶 as the long input context.

A straightforward idea to address the long-context issue is to em-

ploy LLMs with long-context processing ability. However, despite

recent advancements in increasing context lengths, handling very

long contexts remains infeasible for most LLMs, often resulting

in incomplete answers as the context is truncated. Besides, RAG

has emerged as a widely adopted solution to enable LLMs to effec-

tively handle the long-context issue. RAG allows LLMs to retrieve

and leverage only relevant information from the long context. A

standard RAG system typically consists of two components: a gen-

eration model, Θ(·), and a retrieval model, Γ(·). Given an input

query 𝑞, the retrieval model Γ first identifies the relevant evidence

𝐸 from the long context 𝐶 . This retrieved evidence is then passed

to the generation model Θ, which utilizes it to produce the final

response 𝑌 . Formally, this process can be described as:

𝑌 = Θ(𝑞, 𝐸 | 𝜃 ), 𝐸 = Γ(𝑞,𝐶) . (1)

In an ideal retrieval setting, the query 𝑞 serves as a piece of

text that is representative of the expected evidence [34], allowing

the retriever to easily locate the relevant evidence 𝐸. However, as

shown in the bottom of Figure 2(a), in many practical scenarios,

2
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Figure 2: Illustration of (a) task background, (b) framework comparison, and (c) application scenarios. When processing long

inputs like the entire Harry Potter series, most LLMs struggle with million-token contexts. Standard RAG methods also face

challenges with queries unsuitable for direct searching. HawkRAG overcomes these limitations by constructing a globalmemory

that generates clues, guiding the retrieval of relevant evidence and enabling more accurate and comprehensive answers.

the input query 𝑞 often carries implicit information-seeking intents

that are not semantically aligned with the expected text evidence.

As a result, standard retrievers, which typically rely on lexical or

semantic matching, may struggle to accurately retrieve the expected

evidence, leading to performance degradation in RAG systems. This

issue underscores the need for an advanced RAG framework to

bridge the semantic gap frequently encountered in such situations.

2.2 HawkRAG

In this paper, we propose HawkRAG, which leverages a memory

model Θmem (·) to learn and store the long context 𝐶 , forming a

global memory denoted as 𝜃mem. When a query or task instruction

𝑞 is presented, HawkRAG prompts the memory model to generate

draft answers 𝑦, which serve as a set of answer clues. These clues

guide the retrieval of accurate and comprehensive evidence 𝐸 from

the long context 𝐶 . Subsequently, the final answer 𝑌 is generated

using the retrieved evidence text 𝐸. This process is defined as:

𝑌 = Θ(𝑞, 𝐸 | 𝜃 ), 𝐸 = Γ(𝑦,𝐶), 𝑦 = Θmem (𝑞 | 𝜃mem). (2)

HawkRAG is illustrated in the middle of Figure 2(b).

To facilitate understanding, we illustrate HawkRAG framework

with pseudo-code in Algorithm 1.

Specifically, in line 1 , HawkRAG begins by receiving a long in-

put context𝐶 , which is combined with auxiliary text (e.g., prompts),

referred to as the input sequence X. HawkRAG’s memory model

then processes X to form a global memory representation, denoted

as 𝜃mem in line 2 (see Section 2.3 for details on the memorymodel).

This memory representation, 𝜃mem, encapsulates the high-level se-

mantics of the entire long context from a global perspective. In

practice, the memory can be offloaded for efficient reuse in future

tasks. In line 6 , when a query 𝑞 is presented, the global memory

𝜃mem is used to generate task-specific clues, denoted as 𝑦. These

clues serve to outline the expected answer 𝑌 , effectively bridging

Algorithm 1 HawkRAG Framework

1: Input: long context𝐶 , memory model Θmem ( ·)
2: Memory Formation: Generate global memory 𝜃mem = Θmem (X) ,
X = 𝐶 + auxiliary text

3: Input: queries {𝑞1, . . . , 𝑞𝑛 }, generator Θ( ·) , retriever Γ ( ·)
4: Initialize: answer set Y ← {}
5: for each query 𝑞𝑖 ∈ {𝑞1, . . . , 𝑞𝑛 } do
6: 𝑦𝑖 = Θmem (𝑞𝑖 | 𝜃mem ) # Generate draft answer clues for 𝑞𝑖
7: 𝐸𝑖 = Γ (𝑦𝑖 ,𝐶 ) # Retrieve relevant evidence based on the clues

8: 𝑌𝑖 = Θ(𝑞𝑖 , 𝐸𝑖 | 𝜃 ) # Generate the final answer for 𝑞𝑖
9: Y ← Y ∪ {𝑌𝑖 } # Add final answer to the answer set

10: end for

11: Optional - Memory Offload: Save global memory 𝜃mem to disk for

future reuse

12: Return: answer set Y

the gap between the raw input context and the ground-truth answer.

Based on these memory-generated clues, HawkRAG’s retriever is

employed to locate precise evidence text 𝐸 within the long input

context, as shown in line 7 . Using the retrieved evidence text 𝐸

along with the input query 𝑞, HawkRAG’s generator produces the

final response 𝑌 , shown in line 8 . By default, HawkRAG utilizes

the memory model’s underlying LLM as the generator to ensure

parameter efficiency.

Application Scenario. HawkRAG can adapt to a variety of ap-

plication scenarios and determine how to generate appropriate

clues based on the specific type of long-context task presented.

In Figure 2(c), we illustrate three scenarios that are particularly

challenging for standard RAG but well-suited for HawkRAG. First,

in a question-answering task where the query requires gathering

distributed information, HawkRAG generates answer clues 𝑦 that

include intermediary reasoning steps, such as creating more ex-

plicit surrogate queries and retrieving relevant evidence from the

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

long context to support the final answer. Second, in query-focused

summarization tasks, the queries are inherently unsearchable, as

the target information must be aggregated from the entire context

rather than isolated segments. Since HawkRAG has already compre-

hended the entire long context, it can recall multiple query-related

evidence clues, enabling more effective information retrieval and

synthesis. Third, for tasks without explicit queries, such as text sum-

marization, the draft answer may consist of key points or concepts

extracted from the context, which are essential for constructing a

coherent and accurate summary.

2.3 Memory Module

As discussed in Section 1, HawkRAG’s memory module is designed

to achieve three key objectives: 1) length scalability, enabling effi-

cient handling of long contexts; 2) retentiveness, ensuring the reten-

tion of crucial information from these contexts; and 3) instructive-

ness, providing useful clues that facilitate comprehensive retrieval.

The first two objectives are met through specialized model designs,

while the third is achieved via multi-stage, data-driven training.

Memory Model Design: The inference workflow in LLMs con-

sists of two stages: (i) the prefill stage, where the input sequence is

processed to generate key-value (KV) cache for each transformer

layer; and (ii) the decoding stage, where the model sequentially

generates tokens by utilizing and updating the KV cache.

In the prefill stage, let the input tensorX ∈ R𝑛×𝑑 = {𝑥1, · · · , 𝑥𝑛}
consist of 𝑛 token embeddings, where 𝑑 is the model’s hidden size.

The input X is processed by a transformer-based model Θ(·), and
the key-value cache [K,V] are generated as follows:

K = X𝑾K , V = X𝑾V , (3)

where𝑾K and𝑾V are the weight matrices for the key and value

projections, respectively. This attention mechanism is applied inde-

pendently at each layer and for each attention head. For simplicity,

we omit the layer and head indices in the equations.

In the decoding stage, let t ∈ R𝑡×𝑑
represent the new input tensor,

where 𝑡 is the length of the newly input tokens. We compute the

new key and value as:

Kt = t𝑾K , Vt = t𝑾V . (4)

The KV cache is then updated by concatenating the new key-value

pairs with the previous ones:

K ← Concat(K,Kt), V ← Concat(V,Vt) . (5)

Finally, the attention output is computed as:

Qt = t𝑾Q , 𝑨(Q,K,V) = softmax

(
QtK𝑇

√
𝑑

)
V, (6)

where𝑾Q is the weight matrix for the query projection, and 𝑨(·)
represents the attention function. For simplicity, we ignore other

parts of the inference process.

Light Global Memory. The key-value cache computed during the

prefill stage can be efficiently reused in the decoding stage. Thus,

the key-value cache [K,V] serves as the simplest form of global

memory, denoted as 𝜃mem = [K,V]. However, maintaining a full

key-value cache for long contexts is computationally expensive

and time-consuming. In this place, we first introduce a kind of

baseline solution called light global memory, which directly takes

advantage of recent light long-context techniques, e.g., MInfer-

ence [24] and SelfExtend [27]. Formally, they can be defined as

𝜃
mem_lite

= 𝜐 (Θ(X | 𝜃 )), where 𝜐 (·) represents the optimization

techniques applied to the model.

While light global memory is easy to implement, empirical anal-

ysis in Section 3.4 demonstrates that it is inferior to the compact

global memory introduced below. This is due to several factors: (1)

it is constrained by the native context size of LLMs, limiting its

adaptability to extremely long contexts; and (3) the use of sparse

attention compromises semantic completeness. Besides, although

light memory reduces parameters, it still consumes substantial GPU

memory by maintaining the full length of the key-value cache

Compact Global Memory. We propose a flexible model architec-

ture designed to facilitate efficient memory formation. The memory

model progressively compresses the raw input tokens into a signifi-

cantly smaller set of memory tokens in KV space, while preserving

essential semantic information, resulting in compact global mem-

ory. Specifically, we introduce memory tokens 𝑥𝑚 to serve as the

information carriers of global memory in LLMs. Suppose the LLM

Θ(·) has a working context window length of 𝑙 . After each context

window, we insert 𝑘 memory tokens, such that:

X = {𝑥1, · · · , 𝑥𝑙 , 𝑥𝑚1 , · · · , 𝑥𝑚
𝑘
, 𝑥𝑙+1, · · · }, 𝑘 ≪ 𝑙 . (7)

For the memory tokens, we initialize a separate set of weight matri-

ces, denoted as𝑾Q𝑚 ,𝑾K𝑚 , and𝑾V𝑚 , specifically for the purpose

of memory formation. Let the memory tokens be denoted by X𝑚 ,

and we compute the corresponding query, key, and value as follows:

Q𝑚 = X𝑚𝑾Q𝑚 , K𝑚 = X𝑚𝑾K𝑚 , V𝑚 = X𝑚𝑾V𝑚 , (8)

𝑨(Q,K,V) = softmax

(
[Q;Q𝑚] ˜K𝑇

√
𝑑

)
˜V, (9)

˜K = [K𝑚
cache

;K ;K𝑚], ˜V = [V𝑚
cache

;V;V𝑚], (10)

where Q𝑚 , K𝑚
, and V𝑚

are the query, key, and value for the

memory tokens X𝑚 . The terms K𝑚
cache

and V𝑚
cache

represent the

KV cache for previously computed memory tokens.

In the prefill stage, after processing each context window, we gen-

erate new KV cache for the memory tokens, denoted as [K𝑚,V𝑚].
We update the previous memory token cache as follows:

K𝑚
cache

← Concat(K𝑚
cache

,K𝑚), (11)

V𝑚
cache

← Concat(V𝑚
cache

,V𝑚) . (12)

Meanwhile, the KV cache [K,V] for the regular tokens are dis-
carded to reduce memory consumption. For compact global mem-

ory, we have 𝜃mem = [V𝑚
cache

,K𝑚
cache
]. In our experiments, we

typically select a compression ratio 𝛽 = 𝑙/𝑘 ∈ [4, 8, 16, 32, 64], re-
sulting in an approximate 𝛽× reduction in GPU memory usage.

Furthermore, since the number of memory tokens is much smaller

than the number of raw tokens, LLMs can handle significantly

longer contexts than their native context window would typically

allow. For example, a 128K context LLM can process up to an 8M

token context when a compression ratio of 𝛽 = 64 is applied.

Memory Model Training: Since the memory model initializes

a new set of parameters, we begin by training the memory model

through pre-training. Following this, we perform supervised fine-

tuning (SFT) using task-specific SFT data. Finally, we apply a small
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set of SFT data labeled with preferences to perform preference

alignment for the memory model.

Pre-Training. During the pre-training stage, the optimization

goal is to enable the memory model to generate a global memory

representation from raw input contexts.We only optimize the newly

initialized weight matrices,𝑾Q𝑚 ,𝑾K𝑚 , and𝑾V𝑚 , while keeping

the underlying LLM’s parameters frozen. The model’s objective is

to predict the next token using the memory tokens and the current

context. This can be expressed using a cross-entropy loss:

Lpre = −
𝑇∑︁
𝑡=1

logP(𝑥𝑡 | 𝒙𝑚
cache

, 𝑥1:𝑡−1), (13)

where 𝒙𝑚
cache

represents the previously accumulated memory to-

kens, and 𝑥 represents the raw tokens. This loss encourages the

model to maximize the probability of generating the correct next

token based on the previous memory and the current raw context.

Supervised Fine-Tuning. In the SFT stage, the loss function is de-

signed to help HawkRAG generate task-specific clues that can later

guide the retrieval of relevant evidence. Here, the model is trained

to minimize the difference between the generated output and the

ground-truth outputs provided by the SFT dataset. The loss function

is also a cross-entropy loss, but applied to task-specific data:

LSFT = −
𝑇∑︁
𝑡=1

logP(𝑦𝑡 | 𝒙𝑚
cache

, 𝑞), (14)

where 𝑦 represents the ground-truth task-specific output and 𝑞 is

the query or task instruction. This loss ensures that HawkRAG

learns to produce accurate clues based on the global memory. The

SFT data is initially generated using strong LLMs and subsequently

reviewed and refined by human annotators (see Appendix C for

details). While the SFT data labels capture both LLM and human

preferences regarding the answer clues, they do not directly reflect

the quality of the final generated answers. To address this, we

further optimize the memory module using a tailored optimization

method which is introduced below.

RLGF (Reinforcement Learning with Generation Feedback). To
further optimize the memory module for generating truly useful

answer clues, the memory model is trained to align its outputs with

preferred answer clues, selected based on their contributions to the

overall end-to-end performance. The loss function is derived from

a preference-based ranking loss, which encourages the model to

prioritize outputs that lead to better evidence retrieval and final

answer generation. This is defined as:

LRLGF =
∑︁
(𝑦+, 𝑦−)max

(
0, 1 − 𝑅(𝑦+) + 𝑅(𝑦−)

)
, (15)

where 𝑅(𝑦+) and 𝑅(𝑦−) represent the rewards assigned to the pre-

ferred and non-preferred outputs, respectively. This loss function

drives the model to generate outputs that align more closely with

the preferred answers, ensuring that the generated clues are both

relevant and lead to improved evidence retrieval. As a result, the

overall answer quality is enhanced. See Appendix C for details on

the data construction for RLGF.

3 Experiment

In this section, we investigate the following research questions (RQ):

RQ1: How does HawkRAG’s performance compare to that of stan-
dard RAG systems, advanced RAG systems and long-context LLMs?

RQ2: Can HawkRAG effectively generalize beyond straightforward
QA tasks to handle non-QA tasks and complex QA tasks involving
long contexts and diverse domains?

RQ3: Are HawkRAG’s model designs and optimization strategies
well-justified and appropriately selected?

RQ4: How do HawkRAG’s inference time efficiency and GPU mem-
ory usage compare to baseline methods?

3.1 Dataset

To explore RQ1 and RQ2, we evaluate HawkRAG and baselines

using LongBench and InfiniteBench, two widely recognized bench-

marks for long-context tasks [4, 55], which include the following

tasks: (1) Single-Doc QA: NarrativeQA [29], Qasper [9], and Mul-

tiFieldQA [4]. (2) Multi-Doc QA: HotpotQA [53], 2WikiMQA [19],

and MuSiQue [47]. (3) Non-QA tasks: GovReport [20], En.SUM [55]

and MultiNews [14]. (4) Long-book QA: En.QA [55]. For summa-

rization tasks, we use the task instruct as a fake query.

To further address RQ2, we evaluate HawkRAG across a broader

range of real-world scenarios by introducing the UltraDomain

benchmark, which consists of 20 datasets featuring long contexts

and high-level queries across various specialized domains. Many of

these tasks require a deep understanding of the entire context and

the ability to synthesize multiple pieces of information to generate

accurate answers. Additional details about UltraDomain can be

found in Appendix D. More information on the training datasets

and statistic information of all datasets can be found in Appendix C.

3.2 Baselines

We compare HawkRAG against three types of baselines: (1) Using
Full Context: In this setting, we feed the full context into long

LLMs, referred to as Full. For the main experiments, we utilize

LLMs with a 128K context length, allowing to process all evaluation

data samples without truncation. In addition to directly processing

the full context, we explore two recent techniques that optimize

context pre-filling for comparison:MInference [24], which applies

strategic sparse attention to accelerate the pre-filling process, and

SelfExtend [27], which constructs bi-level hierarchical attention

to expand the original LLM’s context length. (2) Standard RAG
with Alternative Retrieval Methods: BGE-M3 [7]: A widely used

retrieval model that has proven effective across many applications.

Stella-en-1.5B-v5[12]: A state-of-the-art retrieval method that

ranks in the top 3 on the MTEB leaderboard at the time of writing

this paper. Jina-emb-v3 [45]: A newly released frontier multi-

lingual retrieval model, which claims to perform well in various

scenarios, particularly in RAG tasks. (3) Advanced RAG Methods:
RQ-RAG [6]: RQ-RAG prompts LLMs to refine the input query into

several sub-queries that are more effective for retrieval by explicit

rewriting, decomposition, and disambiguation. The supporting pas-

sages are retrieved using both the original and refined queries.

HyDE [15]: Directly prompts LLMs to generate hypothetical docu-

ments based solely on the query, and then retrieves relevant pas-

sages using these documents. The final answer is generated based
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Table 1: Main experiment results. Best results are in bold, second-best are underlined, and “†” indicates performance surpasses

all baselines in a t-test at 𝑝 < 0.05. Evaluation metrics for all datasets are in Appendix C.

Dataset nar qas mul mus 2wiki hot news gov en.sum en.qa fin legal misc ave.

LongBench InfBench UltraDomain

Full 21.4 39.4 51.5 28.2 38.1 48.1 24.9 32.6 13.0 15.2 47.8 46.5 48.7 35.0

Mnference 20.7 39.0 50.8 27.4 35.9 46.2 24.8 32.2 13.3 12.1 44.7 39.8 46.3 33.3

SelfExtend 19.6 37.8 47.4 22.7 37.2 42.0 21.4 29.1 11.1 9.3 41.2 37.9 34.1 30.1

BGE-M3 20.3 33.0 44.3 21.1 35.4 42.1 17.7 19.8 9.6 16.3 41.7 41.2 43.7 29.7

Stella-v5 13.7 32.4 43.5 21.0 35.6 40.6 20.3 18.2 10.0 19.5 42.8 35.1 43.9 29.0

Jina-emb-v3 15.9 34.7 42.8 17.8 33.1 41.8 21.9 25.2 11.3 18.7 41.8 37.1 43.8 29.7

GraphRAG 16.2 36.3 45.4 19.3 37.5 38.0 18.4 25.6 10.8 13.5 39.9 39.6 41.7 29.4

RQ-RAG 19.6 34.1 46.5 21.9 36.1 41.7 20.1 18.6 10.4 16.1 41.8 40.9 43.2 30.1

HyDE 18.7 36.0 47.5 20.5 36.8 42.7 - - - 19.6 43.1 41.6 44.2 -

HawkRAG 27.5
†

43.9
†

52.2
†

33.9
†

54.1
†

54.8
†

26.3
†

32.9
†

15.7
†

22.9
†

51.5
†

51.0
†

55.6
†

40.2

domain_experiment_results

Domain Full BGE-M3 Stella-v5 HyDE HawkRAG Ave(|gC|) (K)

Mix 42.1 41.1 42.1 43.9 53.6 20.3

Legal 35.8 42.0 34.9 35.1 51.2 51.4

Financial 36.5 40.5 40.9 42.8 48.0 40.6

Average (In-domain) 38.1 41.2 39.3 40.6 50.9 37.4

Computer 36.5 35.9 32.9 35.5 40.5 215.9

Physics 36.4 38.1 37.3 38.2 38.8 105.8

Religion 36.7 35.2 34.1 34.7 37.8 131.4

Psychology 34.3 33.6 31.9 33.0 37.6 150.1

Health 34.8 33.2 32.9 31.9 37.4 134.9

Technology 33.9 32.5 31.1 31.8 37.4 144.0

Agriculture 34.9 34.0 33.2 32.8 36.7 151.0

Art 32.5 33.7 33.1 33.0 36.6 129.0

Mathematics 34.5 35.0 33.8 35.4 36.4 198.0

Philosophy 33.0 32.5 31.8 32.2 36.2 135.7

Biology 34.1 32.2 32.1 31.5 35.7 125.2

History 33.3 31.9 32.3 31.1 35.6 195.2

Cooking 34.1 33.1 31.0 32.9 35.6 156.1

Biography 32.4 31.1 29.8 30.3 35.3 163.5

Politics 33.0 32.5 30.2 32.1 35.2 139.6

Music 33.9 33.5 31.5 32.9 35.1 168.7

Literature 30.5 29.6 28.8 29.2 34.4 129.4

Fiction 29.0 27.6 26.5 27.1 31.3 137.7

Average (Out-of-domain) 33.8 33.0 31.9 32.5 36.2 150.6
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Figure 3: Experiment results on the UltraDomain benchmark. These datasets feature contexts of up to one million tokens,

covering a wide range of subjects. See more details about the benchmark in Appendix D.

on the retrieved passages. GraphRAG [13]: A graph-based RAG

framework that transforms unstructured data into graph structures,

enabling the system to perform more complex question-answering

tasks based on graph-based information retrieval.

In themain experiments, thememorymodel is trained onMistral-

7B-Instruct-v0.2-32K. By default, HawkRAG uses the underlying

LLM of memory model as the generator. But Mistral’s 32K con-

text window is insufficient for most evaluation dataset contexts.

To avoid context truncation, we use Phi-3-mini-128K-instruct [1]

as the generator for HawkRAG and all baseline methods except

for SelfExtend, which is specifically designed to enable LLMs to

process contexts much longer than their native window. SelfEx-

tend utilizes Phi-3-mini-4K-instruct as the generator and adjusts

its effective context window according to the maximum context

length required by different tasks. For GraphRAG, we utilize the

OpenAI’s GPT-4o API for all requests during both the indexing and

searching processes. The results from GraphRAG’s global search

setting are extracted and used as the grounding evidence for answer

generation
2
. See Appendix A for more implementation details.

3.3 Main Experiments

To address RQ1 and RQ2, we compare HawkRAG against all base-

line models across three benchmarks, as presented in Table 1. The

2
https://microsoft.github.io/graphrag/posts/query/0-global_search/

experimental results demonstrate that HawkRAG consistently out-

performs all baselines across the evaluated datasets:

First, while RAG is a promising solution for long-context tasks,

using long LLMs that handle the full context length often yields bet-

ter performance (Full vs. other baselines). In contrast, HawkRAG sig-

nificantly surpasses the performance of long LLMs, highlighting its

superior ability to process long-context tasks. Second, for straight-

forward QA tasks from LongBench and InfiniteBench, HawkRAG

outperforms all baselines, showing its effectiveness in standard RAG

scenarios with explicit information needs. Its memory-generated

clues allow for more accurate evidence retrieval from long con-

texts. In complex QA tasks (e.g., financial and legal), HawkRAG

achieves notable improvements, demonstrating its capability to

handle complex, long-context challenges. Third, while traditional

RAG methods often struggle with non-QA tasks that lack explicit

queries—such as summarization tasks (e.g., MultiNews, GovReport,

and En.SUM)—HawkRAG excels. It efficiently extracts key points

from the input context and retrieves additional details to generate

comprehensive summaries.

To further addressRQ2, we evaluateHawkRAGon the remaining

18 diverse datasets from UltraDomain, where most input contexts

exceed the generator’s context limit (e.g., 128K tokens). The results,

presented in Figure 3, lead to the following conclusions: First,

HawkRAG consistently outperforms all baselines across all datasets,

6
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Long Book QA Summ. Multi-Doc QA Single-Doc QA Complex Tasks
RAG 12.2 21.3 25.0 31.0 37.8
Zero 12.3 20.0 27.4 32.8 41.1
Light 11.9 19.6 26.1 33.0 42.1
Pretrain 13.1 20.2 26.6 32.5 44.1
SFT 15.4 25.5 33.4 34.8 50.9
RLGF 15.8 25.9 34.1 36.0 52.5
RAG 12.2 21.3 25.0 31.0 36.5
Full 12.3 18.6 25.7 32.1 38.1
Zero 12.4 20.6 27.2 33.4 39.8
Light 11.2 19.4 28.1 31.2 43.1
Pretrain 14.5 20.7 27.0 32.2 45.5
SFT 17.6 25.1 36.5 34.8 49.9
RLGF 18.3 26.5 38.1 36.1 51.1
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Figure 4: Ablation study. Figure (a) and (b) show the performance of different LLMs and optimization strategies. The Pretrain,
SFT, andRLGF settings refer to the training stages. The Light setting uses the light memorymodel, introduced in Section 2.3. The

Zero setting uses native LLMs without prior training. Figure (c) shows the outcomes of using different models as the generator.
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Figure 5: Analysis on the model efficiency (left) and the im-

pact of the choice of the compression ratio 𝛽 (right).

demonstrating strong domain generalization capabilities. Second,

directly inputting the full context into LLMs generally yields better

performance compared to standard RAG methods, revealing that

RAG systems struggle with high-level queries and locating relevant

evidence. Third, HawkRAG surpasses the performance of directly

using the full context, illustrating its ability to effectively process

super-long contexts and address complex tasks.

In summary, HawkRAG consistently outperforms standard

and advanced RAG systems, as well as long LLMs. It generalizes

well beyond straightforward QA tasks, effectively handling non-

QA tasks and complex QA tasks. Its advantages, driven by global

memory-enhanced retrieval, are especially evident in scenarios

where standard RAG systems face challenges.

3.4 Ablation Study

To address RQ3, we conduct comprehensive ablation studies:

1) Model design and optimization strategy: We first compare

twomemorymodel design options: light memory and compact mem-
ory (see Section 2.3). Additionally, we evaluate the performance of

the HawkRAG pipeline using memory models at various stages of

training. This includes a zero-shot evaluation, where the foundation

model is directly applied to HawkRAG, as well as evaluations follow-

ing pretraining, supervised fine-tuning (SFT), and reinforcement

learning with generation feedback (RLGF). The results, shown in

Figure 4 (a) and (b), indicate that each technical design contributes

uniquely to HawkRAG’s overall effectiveness. Removing any of

these designs results in performance degradation, validating the

necessity and impact of HawkRAG’s technical components.

2) Foundation model choice: To assess the impact of the foun-

dation model, we replace the underlying LLM of HawkRAG’s mem-

ory model with Qwen2-7B-instruct, which has a native context win-

dow of 128K tokens [52]. By comparing Figure 4 (a) and (b), we ob-

serve that utilizing either model as the foundation for HawkRAG’s

memory module results in consistent performance improvements.

This demonstrates that HawkRAG’s memory model design is robust

and adaptable across a wide range of LLMs.

3) Alternative generators: We evaluate HawkRAG’s effec-

tiveness with three different generators: Llama3.1-8B-inst-128K,

Mistral-7B-inst-v0.2-32K, and Phi-3-mini-128K. As shown in Fig-

ure 4 (c), HawkRAG consistently outperforms the direct use of

long LLMs, with the performance gap widening as the task con-

text exceeds the LLM’s native context length. This indicates that

HawkRAG can significantly enhance task performance when inte-

grated with various LLMs as generators.

4) Impact of compression rate: As discussed in Section 2.3, the

compression rate 𝛽 during compact memory formation affects both

efficiency and effectiveness. A smaller 𝛽 retains richer semantics but

requires more KV cache, while a larger 𝛽 improves efficiency but re-

duces semantic richness.We experimented with 𝛽 ∈ [4, 8, 16, 32, 64],
and the results, shown in Figure 5 (b), indicate that as 𝛽 increases,

performance declines but stabilizes at 𝛽 = 32. Despite higher com-

pression, HawkRAG consistently captures key information and

outperforms the standard RAG pipeline across all values of 𝛽 .

In summary, the ablation studies confirm the effectiveness of

HawkRAG’s technical designs and model choices, demonstrating

that its architecture is well-motivated and robustly designed.

3.5 Efficiency Analysis

To address RQ4, Figure 5(a) compares model efficiency
3
. Key ob-

servations include: (1) Indexing latency analysis (top): Standard

RAG quickly indexes long inputs due to its simpler process, while

HawkRAG is slower due to the global memory formation. However,

it remains more efficient than long LLMs’ pre-filling, thanks to its

optimized memory model. GraphRAG is the slowest, heavily reliant

on GPT-4 APIs. (2) Retrieval latency analysis (middle): Standard

RAG retrieves efficiently using vector databases (e.g., FAISS [28]),

3
We randomly selected 5 samples with 128K context lengths from the UltraDomain

benchmark, truncating the context into shorter segments to test various methods

under the same configuration.
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Table 2: Case study on the Legal dataset. Predicted answers that overlap with the ground-truth answers are marked in teal.

Query: What is the significance of the Outside Date mentioned in the agreement? Context: A Legal Contract (56.4K tokens)

Ground-truth target: The Outside Date is the deadline by which the Plan must become effective, or else the Agreement will terminate automatically. It is

set as October 5, 2020, at 11:59 p.m. Eastern Time.

Standard RAG: The Outside Date is significant as it is a date where both parties have agreed in advance that if the merger or acquisition has not yet

completed either side. It is set as October 5, 2020. (F1-Score: 0.36)

Clues #1: Definition of the “Outside Date” in the agreement Clues #2: “Outside Date” means October 5, 2020 at 11:59 p.m. Eastern Time.

HawkRAG: The Outside Date mentioned in the agreement is October 5, 2020, at 11:59 p.m. Eastern Time. It is a significant date in the context of the

agreement because it is the deadline for the Plan to become effective. If the Plan has not become effective by this date, certain parties may have the right to

terminate the agreement. (F1-Score: 0.83)

while HawkRAG is slower as it generates retrieval clues but still

outperforms GraphRAG. (3) GPU memory consumption anal-

ysis (bottom): Both HawkRAG and standard RAG process 128K

contexts with under 60 GiB of GPU memory, whereas long LLMs

require substantially more due to the large key-value cache. In sum-

mary, HawkRAGmaintains a balanced time and memory efficiency.

While it is slower than standard RAG, it outperforms advanced RAG

methods and long LLMs in both time and memory efficiency.

3.6 Case Study

In Table 2, we present an example processed by HawkRAG. The

input query pertains to the high-level understanding of the term

“Outside Date” within the input context, a legal contract consisting

of 56.6K tokens. The standard RAG system searches for evidence

solely based on the input query, in which the semantics of “sig-

nificance of the Outside Date” is not explicitly present. Therefore,

direct semantic connections with the expected supporting evidence

are difficult to establish. As a result, the standard RAG system gener-

ates answers that provide a general definition of the term “Outside

Date” rather than its “significance” regarding this legal contract.

Our HawkRAG, on the other hand, benefits from the global per-

ception of the entire input context. It can evoke several clues that

bridge the semantic gap between the expected supporting evidence

and the input query. By leveraging these clue texts, we can more

accurately locate the relevant evidence passages, leading to a more

comprehensive and precise response.

4 Related Work

Long Context: Handling long contexts is a fundamental issue for

LLMs. The most straightforward approach is to train LLMs on long

text sequences, giving them a native ability to handle extended

contexts [1, 5, 10, 38]. However, this is very expensive, as computa-

tional costs increase exponentially with longer contexts. As a result,

researchers focus on improving attention efficiency [3, 8, 10, 23].

Additionally, Liu et al. [33] highlight that LLM performance may

degrade when the target answer is located in the middle of the

context. To address this, various works explore data augmentation,

attention reweighting, and data re-organization [17, 32, 33, 50].

Another approach involves compressing the input through strate-

gies like sliding windows, context compression, and summariza-

tion [25, 30, 42, 51, 54]. With the rapid development of long-context

processing, context windows for LLMs have expanded significantly,

from 4K tokens (e.g., Llama-2)[46] to 128K tokens (e.g., Phi-3, GPT-

4)[1, 38]. Recent advancements even allow LLMs to extend their

context window to 1 million tokens [17]. Additionally, RAG has

become a common solution for long-context challenges, using re-

trieval to find precise evidence within large inputs [51].

RAG: Retrieval-augmented generation (RAG) was initially in-

troduced by Lewis et al. [31], defining a retrieval process that

assists language models in handling knowledge-intensive tasks.

Subsequent RAG research has focused on two areas: improving

retrieval quality, which sets the upper bound for final generation

quality [16, 37, 48, 49], and enhancing the use of retrieved passages

for increased relevance and flexible access [21, 26, 39].

With recent advancements in LLMs, incorporating RAG into

LLM-based systems has become popular, inspiring numerous ap-

plications [43]. As a result, there has been a growing call for more

general-purpose RAG systems [56]. However, the standard RAG

pipeline faces inherent limitations and struggles to generalize effec-

tively in complex tasks involving implicit information needs [16].

To expand RAG’s applicability, recent works have proposed mod-

ifying the RAG pipeline with tailored approaches. For instance,

HyDE generates a hypothetical document from the query, which

is used to retrieve relevant evidence [15], while RQ-RAG rewrites

the query into simpler forms to improve retrieval [6]. However,

both rely solely on the model’s internal knowledge, limiting their

effectiveness for domain-specific tasks. GraphRAG [13] constructs a

knowledge graph to assist retrieval, but its static graph construction

is difficult to optimize. Other methods [6, 18, 40] also fail to achieve

a comprehensive understanding of the input context, leading to

incomplete semantic comprehension.

5 Conclusion

In this paper, we tackle long-context processing using globalmemory-

enhanced retrieval by introducing HawkRAG, a framework that

builds a global memory from the entire context. When presented

with a task, HawkRAG generates draft answers that, although lack-

ing in detail, effectively guide the retrieval of relevant evidence

for more accurate final response generation. By leveraging these

clues, HawkRAG identifies precise information within the long con-

text, improving overall answer quality. Extensive experiments on

two long-context benchmarks and various real-world applications

demonstrate that HawkRAG significantly outperforms standard

RAG systems, advanced RAG systems and long LLMs. HawkRAG

excels in tasks requiring high-level information aggregation, while

also offering notable advantages in traditional tasks commonly

handled by previous RAG systems, expanding the potential and

applicability of RAG to a broader range of scenarios.
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A Implementation Details

For pre-training the memory model, we sample text spans from the

RedPajama [44] dataset to create a training set of 2 billion tokens.

The memory context window size is set to 2048, and during training,

we randomly select a compression ratio 𝛽 ∈ [4, 8, 16, 32, 64] for each
context window. The model is trained for 1 epoch with a batch size

of 8 and a learning rate of 5e-5.

For supervised fine-tuning (SFT), we build an SFT dataset con-

sisting of 17,116 samples. In this stage, the model is trained for 2

epochs with a batch size of 8 and a learning rate of 1e-5. The lengths

of the SFT samples range from 4K to 64K tokens.

During RLGF optimization, we sample 2,000 instances from the

SFT training dataset and rank the generated clue answers, categoriz-

ing them into preferred and rejected based on their contributions to

the overall end-to-end performance. The data construction process

can refer to Appendix C.

During the memory module training, we keep the underlying

model’s parameters frozen and train only the newly initialized pa-

rameters of the memory model, avoiding the resource-intensive
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process of full parameter fine-tuning. The size of the newly ini-

tialized parameters varies depending on the underlying LLM. For

instance, with Qwen2-7B-instruct, the newly initialized parameters

are approximately 1.1 billion.

For the light global memory setting, we utilize SelfExtend [27] to

extend the LLMs’ context window to the maximum length required

for each specific task. Additionally, we apply MInference [24] to

accelerate the prefill process.

For the main experiments, we set the compression ratio to 𝛽 = 4.

For HawkRAG, RQ-RAG and HyDE, we use BGE-M3 [7] as the re-

triever and set the hit number to 3.We use the semantic-text-splitter

tool to chunk the long context with a maximum length of 512. For

HawkRAG and all baselines, we use the same task prompts provided

by the official repositories of the corresponding benchmarks
4
. We

also use the same generation hyper-parameters (varying by task)

for HawkRAG and all baseline models.

All training and evaluation were conducted using 8 NVIDIA

A800-80G GPUs.

B Prompts

For memory formation, we use the prompt in Table 3. For the mem-

ory clue generation, we use the prompt in Table 4 for QA tasks and

we use the prompt in Table 5 for summary tasks. For the evalua-

tion tasks, we use the provided task prompts in the corresponding

GitHub repositories.

C More details of Dataset Construction

To construct the SFT training set, we first collect long contexts from

novels, academic papers, news, financial reports, and legal contracts.

The collection of novels, academic papers, and news comes from

the training datasets of NarrativeQA, Qasper, and HotpotQA. The

legal contracts are sourced from this repository, and the financial

reports are from this repository. We then sample long contexts

of up to 80K tokens and use strong LLMs (e.g., GPT-4 128K) to

generate high-level, insightful question-answer pairs. After quality

review, we selected 20,000 samples and prompted the same LLMs

to generate answer clues that bridge the gap between the query

and the long context. During this process, the LLMs were provided

with the query, the long context, and the answer, enabling them to

utilize both priori and posteriori knowledge to generate the answer

clues more effectively. These clues were then inspected for quality

through human review, resulting in 17,116 SFT training samples. Six

graduate students participated in the inspection, with each sample

reviewed by at least three students. Samples tagged as discard more

than twice were excluded from the final dataset.

For the RLGF training set, we selected 2,000 samples from the

SFT dataset, filtering for those with more than five answer clues. For

each clue, we retrieved the top-3 evidence. We then greedily evalu-

ated the performance of all combinations of three or more clues and

identified the best-performing combination as the preferred answer

and the worst-performing combination as the rejected answer.

4
LongBench: https://github.com/THUDM/LongBench, InfiniteBench: https://github.

com/OpenBMB/InfiniteBench

D More details of UltraDomain

We begin constructing the UltraDomain benchmark by leveraging

contexts from datasets representing specific areas of knowledge,

focusing on two specialized datasets. The first is the Fin dataset,

derived from financial reports, which tests HawkRAG’s ability to

process and interpret complex financial data, ensuring it can man-

age the intricacies of financial language and reporting. The second

is the Leg dataset, composed of legal contracts, which challenges

HawkRAG to comprehend and navigate the precise, nuanced lan-

guage of legal documents.

In addition to these specialized datasets, we collected a diverse

set of 428 college textbooks covering 18 distinct domains, including

natural sciences, humanities, and social sciences
5
. These textbooks

are used to evaluate HawkRAG’s versatility and adaptability across

a broad range of topics, including those unrelated to finance and law.

By assessing HawkRAG on these varied contexts, we gain insights

into its potential for broader applications beyond specific domains.

We also created aMisc dataset, comprising mixed contexts from the

specialized datasets. This dataset is designed to assess HawkRAG’s

ability to generalize across different types of contexts.

Specifically, we sampled text spans up to 128K tokens in length

and fed them into GPT-4, prompting it to generate high-level question-

answer pairs that require a comprehensive understanding of the full

context. Six graduate students manually reviewed the generated QA

pairs by: (1) selecting questions that are not directly searchable, and

(2) evaluating the quality of the generated answers. This process

yielded a total of 3,240 evaluation samples.

Statistical details of the UltraDomain benchmark are provided in

Table 7 and Table 8. Together, these datasets form a rigorous bench-

mark for evaluating HawkRAG’s effectiveness in both domain-

specific tasks and broader, cross-disciplinary applications. Example

cases from UltraDomain are shown in Table 9. A guidebook for

constructing UltraDomain will be released upon publication.

5
https://huggingface.co/datasets/P1ayer-1/books-3-textbooks
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Table 3: Prompt for Global Memory Formation.

You are provided with a long article. Read the article carefully. After reading, you will be asked

to perform specific tasks based on the content of the article.

### Article Content:

- {context}

### Instructions:

- The article ends here.

- Follow the instructions provided to complete the tasks.

Table 4: Prompt for Generating Answer Clues for QA Tasks.

You are given a question related to the article. To answer it effectively, you need to recall specific details from the article.

Your task is to extract specific clue texts from the article, or generate clues questions that are relevant to the question.

### Question: {question}

### Instructions:

1. You have a general understanding of the article. Your task is to generate one or more specific clue text spans or clue

questions that will help in searching for supporting evidence within the article.

2. The clue text are in the form of text spans that will assist in answering the question.

3. The clues questions are in the form of precise surrogate questions that clarify the original question.

4. Only output the clues. If there are multiple clues, separate them with a newline.

Table 5: Prompt for Summarization Task.

Your task is to create a concise summary of the long article by listing its key points. Each key

point should be listed on a new line and numbered sequentially.

### Requirements:

- The key points should be brief and focus on the main ideas or events.

- Ensure that each key point captures the most critical and relevant information from the article.

- Maintain clarity and coherence, making sure the summary effectively conveys the essence of the article.

Table 6: Experiment results on UltraDomain. The evaluation metric is the F1-score, with the best results highlighted in bold

and the second-best results underlined. The upward arrow ↑ indicates the improvement over the second-best results. ave( |C|)
refers to the average context length, counted in thousands of tokens (K).

UltraDomain Full BGE-M3 Stella-v5 HyDE HawkRAG ave( | C | ) (K)

Biology 34.1 32.2 32.1 31.5 35.7 ↑1.6 125.2

Religion 36.7 35.2 34.1 34.7 37.8 ↑1.1 131.4

Computer 36.5 35.9 32.9 35.5 40.5 ↑4.0 215.9

Fiction 29.0 27.6 26.5 27.1 31.3 ↑2.3 137.7

Literature 30.5 29.6 28.8 29.2 34.4 ↑3.9 129.4

History 33.3 31.9 32.3 31.1 35.6 ↑2.3 195.2

Biography 32.4 31.1 29.8 30.3 35.3 ↑2.9 163.5

Physics 36.4 38.1 37.3 38.2 38.8 ↑0.6 105.8

Music 33.9 33.5 31.5 32.9 35.1 ↑1.2 168.7

Art 32.5 33.7 33.1 33.0 36.6 ↑2.9 129.0

Mathematics 34.5 35.0 33.8 35.4 36.4 ↑1.0 198.0

Health 34.8 33.2 32.9 31.9 37.4 ↑2.6 134.9

Psychology 34.3 33.6 31.9 33.0 37.6 ↑3.3 150.1

Technology 33.9 32.5 31.1 31.8 37.4 ↑3.5 144.0

Politics 33.0 32.5 30.2 32.1 35.2 ↑2.2 139.6

Cooking 34.1 33.1 31.0 32.9 35.6 ↑1.5 156.1

Agriculture 34.9 34.0 33.2 32.8 36.7 ↑1.8 151.0

Philosophy 33.0 32.5 31.8 32.2 36.2 ↑3.2 135.7

Average 33.8 33.0 31.9 32.5 36.2 ↑2.4 150.6
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Table 7: Statistical information of the datasets utilized in this paper.

Dataset Narrative Qasper MultiField Hotpot MuSiQue 2Wiki

Num of Samples 200 200 150 200 200 200

Ave. Length 18,409 3,619 4,559 9,151 11,214 4,887

Metric F1 F1 F1 F1 F1 F1

Dataset GovReport MultiNews En.Sum En.QA Fin Legal

Num of Samples 200 200 103 351 345 438

Ave. Length 8,734 2,113 171,500 192,600 40,625 51,413

Metric Rouge-L Rouge-L F1 Rouge-L F1 F1

Table 8: Statistical information of the out-of-domain evaluation datasets utilized in this paper.

Dataset Num max( | C | ) min( | C | ) ave( | C | ) ave( | Q | ) ave( |A | )

Technology 240 306,073 44,549 144029.7 14.4 40.2

Biology 220 257,644 39,218 125284.9 16.8 49.1

Religion 220 1,071,342 34,257 131424.8 17.4 54.2

Fiction 220 564,980 44,057 137689.7 16.2 43.6

Psychology 200 571,725 37,988 150119.5 16.7 46.5

Music 200 381,043 51,517 168672.9 17.5 49.7

Art 200 305,001 32,793 128961.2 17.8 52.2

Philosophy 200 678,553 38,729 135682.7 17.2 51.0

Health 180 289,258 50,600 135902.0 16.2 48.2

History 180 688,074 53,277 195265.0 17.9 51.0

Literature 180 534,836 33,043 129363.7 16.9 47.0

Biography 180 408,969 45,052 163522.3 18.0 52.0

Politics 180 387,157 49,853 139624.3 17.9 54.9

Mathematics 160 726,144 60,936 197924.6 16.7 47.6

Physics 160 226,811 36,717 105805.6 14.8 54.2

Cooking 120 466,885 58,360 156139.2 16.5 46.6

Agriculture 100 385,915 76,581 150969.6 15.6 45.9

Computer 100 437,070 51,704 215929.5 14.3 39.8

Total 3,240 1,071,342 32,793 150684.0 16.6 48.5
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Table 9: Data cases of the domain data in UltraDomain

Domain Book Length Query Answer

mathematics Lie Groups 726K What is Schur Orthogo-

nality and why is it im-

portant in the represen-

tation theory of com-

pact groups?

Schur Orthogonality states that if (𝜋1,𝑉1) and (𝜋2,𝑉2)
are irreducible representations of a compact group G,

then every matrix coefficient of 𝜋1 is orthogonal in

𝐿2 (𝐺) to every matrix coefficient of 𝜋2, unless the rep-

resentations are isomorphic. This is crucial as it provides

an orthonormal basis for L2(G) in terms of the matrix

coefficients of ireducible representations.

biology Butterflies 189K How does the book

"Butterflies" utilize

color photography

and reproduction

techniques?

The book "Butterflies" utilizes the latest methods of

color photography and reproduction to portray the

plants and animals in the full beauty of their natural col-

ors, enhancing the visual appeal and educational value

of the content.

history Exemplary Women

of Early China

251K How does the _Lienü

zhuan_ reflect the his-

torical context of the

Former Han dynasty?

The _Lienü zhuan_ reflects the historical context of the

Former Han dynasty by addressing the resurgence of

consort power at court, which provided an incentive

for Confucian thinkers to focus on shaping women’s

morals and their impact on dynastic health through

didactic materials and moral education.

fiction Hangsaman 103K What is the central

theme of "Hangsaman"?

The central theme of "Hangsaman" is the exploration of

consciousness and the development of an adult identity,

particularly through the experiences of the protagonist,

Natalie Waite, as she navigates the complexities of fam-

ily dynamics, college life, and her own psychological

struggles.

physics Gravity 37K How does the Unified

Field Theory attempt

to reconcile gravity

with other fundamental

forces?

The Unified Field Theory, pursued by Einstein, aims to

find a single, comprehensive framework that describes

both gravity and electromagnetic forces (and potentially

other fundamental forces) in a unified manner, suggest-

ing that these forces may have a common underlying

basis or origin.
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