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Abstract

Using the simple fact described in the title, we prove the existence of a computational problem
with implications to Machine Learning, Quantum Mechanics and Complexity Theory. We also
prove PI=NP (the solution can be verified in time polynomial in the number of bits of the input
and output (NP) but the problem cannot be solved in time polynomial in the number of bits of
the input and output (P)), but this claim still needs to be reviewed by experts in Complexity
Theory.

1. Introduction

In this article we will be using the words “real” as in R, “real-world” and “random” to avoid
misunderstandings in contexts where we could (and perhaps should) just use the word “real” instead
of “real-world” and the word “non-deterministic” (in the Physics sense, not in the Complexity

Theory sense) instead of “random”.

We can always select events with some feature without rewriting the history of events, in a standard
probability space. In fact, in a continuous probability space we can select events such that a random
real variable y € [0, 1] (with probability given by the Lebesgue measure) verifies y = 0, but there is
no complete history of events where y = 0 (always as would be required, or even just once) because
the probability space is continuous by assumption and thus the event y = 0 has null probability

(only an interval would have non-null probability).

In this article we will show that this simple but non-trivial fact has profound implications not
only to Complexity Theory[1][2][3][4] but also to Machine Learning[2] and Quantum Mechanics
(independently of the implications to the P vs. NP problem). Almost all (in the sense we will define
in this article) real functions of a real variable cannot be computed for all practical purposes, not

even approximately. But a random selection allows computations in polynomial-time complexity



involving the incomplete knowledge about a real function that cannot be computed in polynomial-
time complexity. This is a fundamental reason why we cannot exclude a random time-evolution: a
deterministic time-evolution may exist, but it has so much complexity that it cannot be calculated

for all practical purposes, not even approximately (since L™ is non-separable).

Note that whenever we deal with a non-separable space, there are issues with computability[5]
because some elements of a non-separable space cannot be approximated by a finite set of elements,
up to an arbitrarily small error. For instance, L>°([0, 1]) and its dual space are both non-separable[6].
While there are separable spaces of real functions of real variables, whenever we add uncertain-
ties/probabilities to such spaces (which is often required when doing approximations) we tend
to create non-separable spaces[6], unless equivalence relations change the space of functions. For
instance, the set [0, 1] is separable but the Lebesgue measure imposes that the rational numbers
in [0,1] can be discarded, despite that the sets [0, 1] including /excluding rational numbers are
different. In the same way, the smooth functions (or functions computable in a reasonable time)

may be discarded from a space of functions for particular uncertainties/probabilities.

Using the simple fact mentioned above, we will also prove the existence of a computational problem
(defined by a continuous probability space) whose solution can be verified in time polynomial in
the numbers of bits of the input and output (NP) but cannot be solved in time polynomial in the
numbers of bits of the input and output (P), when using only a deterministic Turing machine|[7][8].
That is, P#NP.

The goal of this article is to define the specific problem unambiguously, and the level of mathematical
details will be adjusted to that: too much mathematical detail would shift the focus from the specific
problem. Less detail does not always imply less mathematical rigor. Since the present author is
an expert in Physics but not an expert in Complexity Theory, we will also try to prove the P vs.
NP as much as it is possible, but only as a secondary goal knowing that much work by experts
in complexity theory is still required because it is likely that: 1) something went wrong in the
relation described here between the specific problem and the P vs. NP problem; and/or 2) the
specific problem indeed can be used to solve the P vs. NP problem, but the proof presented here is

incomplete.

2. Complexity Theory in the context of probability theory

Complexity Theory can be studied in the context of probability theory[1][2][3][4], because many
real-world problems require approximations and uncertainties not only due to the limitations of
any computer (already accounted for by Complexity Theory when using only finite numbers of bits,

although there is also room for improvement here) but also due to the limitations of the measuring



devices of physical phenomena and limitations of the mathematical models used to approximate
the real-world, for instance when dealing with real variables. Most uncertainties are not related
to the computer used and do not get smaller when increasing the number of bits in the computer.
In fact, Physics as a science tries to be independent of Computer Science and vice-versa, as much
as possible. Probability theory is a language (or interface) that allows us to transfer a problem

between two sciences (these two or others).

There are two possible approaches to errors or uncertainties[1][2][3][4]: average error (with respect
to a probability measure) and maximal (except in sets of null measure with respect to a probability
measure) error. It turns out that both approaches can be defined using Hilbert spaces: the average
error (that is, L? norm) is defined by a normalized wave-function (an element of the Hilbert space)
being the square-root of a probability density function; and the maximal error (that is, L°° norm)

is defined by an element of the abelian von Neumann algebra of operators on the Hilbert space.

The average error is relevant because even if P!=NP it could still make no difference with respect to
the scenario P=NP for many practical purposes, if every NP problem with a reasonable probability
distribution on its inputs could be solved in polynomial time-complexity on average on a deterministic
Turing machine[9][10].

Moreover, since some functions are real constant functions, the definition of a real function must
be consistent with the definition of a real number. Certainly, a natural definition of a real number
in the context of Complexity Theory uses a standard probability space. Non-standard probability
spaces are rarely (or never) used in Experimental Physics, so it is not obvious how useful a “real
number” (or “real function”) defined in a non-standard probability space could be in real-world
applications. There are only countable or continuous measures (or mixed) in a standard probability
space, then we can define exactly only a countable number of real numbers (usually the rationals,
but not necessarily), the remaining real numbers can only be constrained to be inside an interval
with a finite width, eventually very small but never zero. We should also define all real functions
using a standard probability space, unless we find a fundamental reason not to do it (we will not
find it in this article).

We require a continuum standard probability space, since we can always define a regular conditional
probability density which implements a selection of events in such probability space[11]. For instance,
this is what we do when we neglect the intrinsic computation error (due to cosmic rays and many
other reasons), we define a deterministic function by selecting only certain events from a complete
history of random events. It is well known since many decades that in an infinite-dimensional
sphere of radius 1 (subset of a real Hilbert space) there is a uniform prior measure induced by the
L2-distance in the Hilbert space[12]. Every point in the sphere has null measure, only regions of the

sphere with non-null distance between some of its points may have non-null measure (compatible



with the uniform prior measure). This implies that any knowledge (compatible with the uniform prior
measure on the sphere) about a real normalized wave-function has necessarily uncertainties, defined
by a connected region in the sphere with non-null maximum L? distance to some wave-function,

however small it might be.

The discrete nature of the Turing machine is certainly compatible with a continuous probability
space: the number of bits of the input or output can be arbitrarily large, and it is proportional
to the logarithm of the resolution of the partition of the interval [0, 1], with each disjoint set of
the partition corresponding to a different binary number. Excluding a continuous cumulative prior
would be unjustified, for many reasons including: no prior is better for all cases[13], there are many
problems where a step cumulative prior would not fit well (for instance there is no uniform measure
for the rationals in [0, 1] only for the reals); it is hard to formulate any real-world problem where
only a step cumulative prior is used (think about the numbers 7 or /2 in numerical approximations,
for instance), we usually use a mixture of step and continuous cumulative priors; we can map an
ensemble of discrete random variables one-to-one to the real numbers, for instance an ensemble of
fair coins corresponds to the uniform real measure in the interval [0, 1]; also any real-world computer
has an intrinsic computation error (due to cosmic rays and many other reasons) which is usually
very small, but it cannot be eliminated. Thus, while we can formulate a new unsolved version of
the P vs. NP problem where only a step cumulative prior is accepted, such version of the problem

has little to do with real-world computers and real-world problems.

Note that there are 22" different boolean' functions on n boolean variables, Shannon proved that
almost all Boolean functions on n variables require circuits of size O(2"/n) [14]2, thus the time
complexity of almost all Boolean functions on n variables for a Turing machine is at least (and at
most, for all Boolean functions) O(2"/(nlog(n)))[15] which is not polynomial in n. Thus, almost
all numerical functions are not in the complexity class P, according to the uniform prior measure
for any resolution of the partition. Moreover, the uniform prior measure is compatible with a prior
measure which excludes (both in the maximal and in the average error approaches) all real functions
which are approximated by numerical functions with complexity class P, for all resolutions bigger

than some resolution of the partition.

3. Definition of the problem

Consider three measure spaces X = Y = [0,1] € R and X ® X with the Lebesgue measure,

corresponding to inputs (X or X ® X) and an output (Y") of real functions. Given an input in X, we

!That is, a function with m = 1m=1 boolean outputs
2See also: https://math.stackexchange.com/questions/756813/do-there-exist- polynomials-not-computable-in-

polynomial-time
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define a regular conditional probability density which is a function from X ® X — Y, given by the
probability that a function for an input in X some constant output y € Y. But there is always also
a marginal probability density for Y, and we cannot say without uncertainty which is the output,
because the corresponding prior probability density would be incompatible with the prior Lebesgue
measure (by the Radon-Nikodym theorem). Thus, the regular conditional probability density is a

deterministic selection of events which cannot be a complete history of events.

In a standard measure space it is always possible to define regular conditional probabilities[11] and
to choose the probability density p(x) = po(z) > 0 for all x € X, except in sets with null measure.
Thus, we will define p(z ® y) = p(y|z)po(z) the joint probability density for the tensor product
X ®Y for a particular p(z) = po(x) > 0 for all x € X, except in sets with null measure. Then, we

can obtain any other joint probability density p(x ® y) from the expression p(y|z)p(x) = p}()z(%’) p(x).

The following results are valid for a random input in the interval [0, 1] (which is a standard probability
space) and also for an input (or output) without uncertainties up to sets with null measure with
respect to the prior marginal measure of the input (or output), because we use regular conditional
probabilities (which always exist in standard probability spaces[11]) for fully known inputs (or
outputs). This is crucial, since the input includes two samples from a uniform distribution in [0, 1]

which may generate numerical functions in P when the sample is in a set of null measure.

However, a (continuous cumulative) probability distribution does not contain enough information to
unambiguously define a function. On the other hand, a real wave-function whose square is the joint
probability distribution allows the definition of a unitary operator on a separable Hilbert space.
A unitary operator is a random generalization of a deterministic symmetry transformation of a
(countable or continuous) sample space. Any unitary operator defined by a wave-function of two
continuous variables cannot be a deterministic symmetry transformation (for similar reasons that a

continuous probability distribution cannot unambiguously define a function).

Since p(z ® y) > 0 then there is always a normalized wave-function ¥ € L?(X ® Y) such that
|U(r ® y)|> = p(x ® y). Note that the Koopman-von Neumann version of classical statistical
mechanics[16] defines classical statistical mechanics as a particular case of quantum mechanics
where the algebra of observable operators is necessarily commutative (because the time-evolution is
deterministic). In an infinite-dimensional sphere of radius 1 (subset of a real Hilbert space) there
is a uniform prior measure induced by the L2-distance in the Hilbert space. We choose a prior
measure (compatible with the uniform prior measure) which excludes all real functions which are
approximated by numerical functions with complexity class P, for a high enough resolution of the

partition.

Given an input in ([0,1])? (the input consists of two samples from a uniform distribution in the



interval [0, 1], imported from ANU QRNG [17]? for instance) and a candidate output in [0, 1] the
wave-function uniquely defines a random symmetry transformation. Such symmetry transformation
is not lacking information since it can be inverted (the non-unitary isometries have null prior
measure). The cumulative probability distribution is given by the integral of the modulus squared

of the wave-function in the corresponding region of the sample space.

From the cumulative marginal probability distribution, such that Y is fully integrated we determine
x € X using the first sample from the uniform distribution in [0, 1]. From the cumulative conditional
probability distribution with the condition that x € X is what we determined previously, we
determine y € X using the second sample from the uniform distribution in [0,1]. We apply
the inverse-transform sampling method[18], that is check in the interval of the partition defined
by the bits corresponding to X and Y, whether the cumulative distribution crosses the sample
from the uniform distribution. This defines the deterministic verification of the candidate output

corresponding to the input, in agreement with the Born’s rule of Quantum Mechanics.

Note that the resulting deterministic function is not necessarily invertible, because the collapse of
the wave-function is irreversible (unless the symmetry transformation would be deterministic, which

is excluded in this case because we have a continuous probability space of functions).

4. The classical Turing machine defined as a Quantum computer

The Turing machine can be equivalently defined as the set of general recursive functions, which are
partial functions from non-negative integers to non-negative integers[19]. But the set of all functions
from non-negative integers to non-negative integers is not suitable to define a measure, since they
form an uncountable set, in a context where the continuum is not defined. Moreover, the general
recursive functions are based in the notion of computability (that the Turing machine halts in a
finite time), but computability does not hold in the limit of an infinite number of input bits, thus to
study such limit we need to define uncomputable functions somehow (we will use complete spaces,

where Cauchy sequences always converge to an element inside the space).

On the other hand, it is widely believed (and we will show in the following) that any computational
problem that can be solved by a classical computer can also be solved by a quantum computer and
vice-versa. That is, quantum computers obey the Church—Turing thesis. Note that it is well known
that some circuits (classical hardware) provide exponential speedups when compared with some
other circuits in some functions (because the input bits can be reparametrized, this is why the time
complexity of a function has an upper bound, but it is not known how to establish a lower bound;

it is also consistent with the fact that the halting problem is undecidable, that is, given an arbitrary

3See also: https://qrng.anu.edu.au/random-binary


https://qrng.anu.edu.au/random-binary

function from integers to integers and an arbitrary input, we cannot determine if the output of
such function is computable or not), thus the fact that a classical Turing machine can be defined
as a Quantum computer is compatible with the fact that quantum computers provide exponential

speedups when compared with some classical computers in some functions.

We start by noticing that the domain of a general recursive function can be defined by a dense
countable basis of a particular Hilbert space which is the (Guichardet) L? completion of the set
of all finite linear combinations of simple tensor products of elements of a countable basis of a
base Hilbert space, where all but finitely many of the factors equal the vacuum state[20] (like
in a Fock-space, but without the symmetrization). But the unitary linear transformations on a
normalized wave-function are not necessarily the most general transformations of the probability
measure corresponding to the wave-function. Because of that, we build a Fock-space where the
base Hilbert space is the previous Guichardet-space, then the unitary transformations on this
Fock-Guichardet-space allow us to implement the most general transformations of a probability
measure, corresponding to a normalized wave-function in the base Guichardet-space. Note that a
countable basis of the Guichardet-space is already made of simple tensor products, and the simple
tensor product is associative, thus the Fock-Guichardet-space is isomorphic to the Guichardet-space,
but we still prefer to use the Fock-Guichardet-space due to the existence of standard tools for

Fock-spaces.

Note that the input of a general recursive function is a finite number of integers, but its output is
only one integer. However, any function which outputs several integers is a direct sum of functions
which output one integer. The other way around is also true, once we define a vacuum state
(included in the Fock-Guichardet-space), that is, a function which outputs one integer is a particular
case of a function that outputs several integers where all outputs except one correspond to the

vacuum state. Thus, we can consider only unitary automorphisms of the Fock-Guichardet-space.

To be able to define a measure, we make the integers correspond to the (countable) step functions
with rational endpoints in the interval [0, 1] and weights which are plus or minus the square root
of a rational number[21]. The vacuum state is the constant positive function with norm 1, and it
corresponds to the integer 0. We eliminate duplicated step functions in the correspondence with the

integers, for instance if two neighbor intervals have the same weight then they are fused.

Then, the limit of infinitesimal intervals is well-defined, and it is defined by an element of L2([0, 1]).
Since the general recursive functions are partial functions, then they are a particular case of partially-
defined linear operators L?([0,1]) — L?([0,1]), and we can define the base Hilbert space of the
Fock-Guichardet-space as L?([0, 1]).



5. Worst case prior measure, rational functions and radical deter-
minism

In a standard probability space, there are only continuous and/or countable measures. However,
these may be mixed in an arbitrary way. For a theory of Physics we could choose the best case
prior measure (as we did in the previous sections), since we just want to find a prior which is
consistent with the experimental data, without many concerns about alternative priors. However,
in Cryptography we need guarantees that our limits are robust under arbitrary choices, so we need

to assume the worst case prior measure.

The previous sections could also be made compatible with the worst case prior measure, if we had a
computer capable of comparing real numbers not rational. That would be acceptable for a theory of

Physics, but it would make it difficult to obtain guarantees for Cryptography.

It is also difficult to guarantee true randomness is real-world applications of Cryptography. Since
probabilities only mean incomplete information, we can use Probability Theory in the context of
radical determinism (where nothing is random). For Cryptography, we need the worst case prior

measure, rational functions and radical determinism.

So we start by eliminating a non-standard probability measure: any probability theory is a universal
language (like English or mathematical logic) to define abstract models of the objects we want
to study. A standard probability theory is universal and irreducible, meaning that it has the
minimal content to be considered a probability theory (in agreement with Quantum Mechanics
and Experimental Physics, for instance). If the non-standard probability theory is also irreducible,
then the corresponding models are equivalent, and we can use the standard version without loss of
generality. This allows us to transfer models between different sciences. But often the non-standard
probability theory is reducible, this means that the boundary between model and probability theory
is not where it would be in the standard case and there are properties that we are attributing to

the probability theory that in fact belong to the model.

Thus, we should assume a standard probability theory and leave some flexibility in the definition of
the computer model and not the other way around, as it often happens in Complexity Theory where
there are strict axioms for different computer models, while asymptotic limits are taken without
defining the probability space, which is recipe to end up with mathematical results and questions

which are hard to transfer to experimental physics and many other sciences.

In the context of radical determinism, the history of events is a non-random countable sequence of
events. Thus, some events with null measure might happen, due to radical determinism. But only a

countable number of such events. That means that a continuous measure is only truly continuous



up to a countable number of points, this possibility is already considered by the worst case prior

measure.

Consider now a boolean function of a countable infinite number of bits. The time complexity of
almost all Boolean functions on n variables for a Turing machine is at least (and at most, for all
Boolean functions) O(2"/(nlog(n)))[14] [15] which is not polynomial in n, but the same boolean
function has different time complexities in different circuits[14] (because the input bits can be
reparametrized). Thus, the time complexity of a function depends on the circuit (computer design).
Also, an algorithm with polynomial time-complexity is not guaranteed to be fast (due to large order
and coefficients of the polynomial), thus only the asymptotic behavior is fast, and so we cannot
put an upper bound on the number of bits of the input. But the arbitrarily large number of bits of
the input introduces another ambiguity: given any problem with any time complexity (exponential
O(2"), for instance) there is a problem with linear time-complexity in the number of bits that takes
the same amount of time to run. Thus, the polynomial time-complexity is faster than exponential
time-complexity in asymptotic behavior, only for the same number of bits of the input. This is a

condition without much meaning when the input has a countable infinite number of bits.

What we can say is that the countable (or mixed) measure allows defining functions that eventually
have polynomial time complexity (that is, not necessarily non-polynomial time complexity). This
contrasts with the necessarily non-polynomial time complexity of the functions defined by the
continuous measure. In the following we will show that, given any mixed prior measure, we can
always redefine the problem to have a continuous prior measure such that its results cannot be
reproduced by a mixed prior measure, effectively converting the worst case prior measure into the

best case prior measure.

Converting the worst case measure to best case measure

The prior measure must be mixed or continuous, to allow for the limit of an infinite number of bits of
all computable functions. But we must prove that P # N P in a single deterministic Turing machine
(one with a continuous prior measure, for instance), not in the set of all possible deterministic Turing
machines. That would not be possible, since for any computable function f (including any function

in NP) there is a deterministic Turing machine where f is in P, by reparametrizing the input bits.

It is not obvious if we can prove P # N P in any single deterministic Turing machine, or just in one
particular deterministic Turing machine. However, given a worst case prior measure (thus mixed
measure), there is a subset of the input random sample which also implements a deterministic Turing
machine and where the prior measure is continuous, where P # N P, thus it becomes legitimate
to claim that this fact already shows that P # N P. Moreover, using subsets of the input random

sample (thus, regular conditioned probability) we can create any other prior measure, because any



abelian von Neumann algebra of operators on a separable Hilbert space is *-isomorphic to exactly

one of the following:
o [*({1,2,..,n}),n>1
. ()

« L>([0,1])

L>([0,1]U{1,2,....,n}),n>1
o L*>([0,1]UN).

Equivalently, a standard probability space is isomorphic (up to sets with null measure) to the
interval [0, 1] with Lebesgue measure, a finite or countable set of atoms, or a combination (disjoint

union) of both.

Thus, for the worst case prior measure if we include all subsets of the input random sample, then
using two integers (which is countable) we include a countable set of deterministic Turing machines
{k} and countable functions f ,,, one machine for each countable function fi 1 such that fj 1 is in
P and fy,, = fuk, then we cannot prove P # NP (in fact we would conclude that P = NP, due to
the possibility of reparametrizing the input bits).

Then, we can only prove P # NP in one particular deterministic Turing machine and not in any

single deterministic Turing machine.

Given any mixed prior measure, there is an interval of the input random sample where it is
continuous. We rescale to [0, 1] all intervals corresponding to such interval where the mixed measure
is continuous, using conditioned probability. The results in (the new interval of the input random

sample) [0, 1] cannot be fully reproduced by any other measure which is mixed in [0, 1].

Given any other measure which is mixed in [0, 1], there is an interval with rational endpoints of
the input random sample where there is a finite difference between the two cumulative probability
distributions, otherwise both would be continuous. This translates into two different averages of y

in an interval (for x) of a partition of [0, 1], separated by a finite difference.

Then the indicator function of a y corresponding to the continuous measure, in the interval (for x)
of the partition of [0, 1], is in NP (more precisely, it can be extended to be in NP, since we only
defined for x in a subset of [0,1]) but it cannot be reproduced by the mixed measure. It cannot be
reproduced by the continuous prior measure either, since a function constant in x in a finite interval
has null measure (for a continuous prior measure). Note that the function that corresponds to the

indicator function above defined, is a function constant in x in a finite interval.

10



Note that a continuous prior measure admits a regular conditional probability density, which allows
us to define a selection (verification) of a candidate output. The verification of a constant output is
in NP and thus in a mixed measure, but it requires one more input (the candidate output) and
thus it is compatible with a continuous measure of functions of x. That is, the measure is overall

mixed, being continuous only for functions with one input.

6. P£NP

When using a computer to solve the problem defined in the previous section, any disjoint set of
the partition is an interval. This gives us two options and two options only, either the selection of

events is fully deterministic or only approximately deterministic:

1. The selection of events is fully deterministic. Then we impose a condition on the output Y of
any wave-function in the sphere, this defines a regular conditional probability density for the
input X conditioned on a constant rational output y. As shown in the previous section, there
is a rational y corresponding to the continuous measure, in an interval with rational endpoints
(for z) of the partition of [0, 1], which it cannot be reproduced by a countable prior measure.
It cannot be reproduced by the continuous prior measure either, since a function constant in
x in a finite interval has null measure (for a continuous prior measure). That is, there is no
function in P corresponding to the indicator function for y, which is in NP (more precisely, it
can be extended to be in N P, since we only defined it for = in a subset of [0, 1]). This implies
P #NP.

2. The selection of events has some randomness, as small as we want. Then we do not impose
a condition on the output (eventually we impose a condition on the input X, depending
on whether we want fixed or averaged input). In a strict interpretation of the P vs. NP
problem this option is excluded by definition since the official formulation assumes that both
the verification and the solution of the problem are both fully deterministic. This already

implies P £ NP, in a strict interpretation.

Note that a complete history of events needs to be countable, so that we can convert it into a single
event (mapping complete histories of events one-to-one to the real numbers in the interval [0, 1], for
instance). We could also define a density (that is, yet to be integrated, using the disintegration
theorem|[22]) of an event. Such density is a regular conditional probability, since regular conditional
probabilities always exist in standard probability spaces[11]. But a density cannot correspond to a

single event (by definition) and thus it cannot be considered a complete history of events.

This proof is dependent on the fact that the prior measure is continuous. If it in part continuous,

and in part countable, then we can choose just the continuous part of the sample space (see the

11



previous section). While we can use a countable part of the sample space to approximately solve a
continuous problem, and a continuous part of the sample space to solve a countable problem, we
cannot change the prior measure from continuous to countable or vice-versa (by the Radon-Nikodym
theorem), because there is no Radon-Nikodym derivative between the two measures, since the sets
of null measure are disjoint between the two measures. The prior measure defines the physical world
where the computer exists, thus it cannot be removed from any complete computer model related

to a physical computer.
Note that in the first paragraph of the official statement of the P vs. NP problem[7], it is stated:

To define the problem precisely it is necessary to give a formal model of a computer.
The standard computer model in computability theory is the Turing machine, introduced
by Alan Turing in 1936. Although the model was introduced before physical computers
were built, it nevertheless continues to be accepted as the proper computer model for the

purpose of defining the notion of computable function.

As for any other proof, this proof is only as good as the axioms used (that is, assumptions). The
computer model used for a solid proof of the P vs. NP problem should be widely accepted as a
good approximation to a physical computer for the purpose of defining the notion of computable
function. We believe our computer model is accepted by most experts in Physics (as argued in
the previous section). We claim that our computer model makes no more assumptions than those
required by the official statement[7] (including the deterministic Turing machine), and it is as close
to a physical computer as possible, by today standards. Assuming a countable prior measure is not

realistic (as argued in the previous sections, for instance it would exclude an ensemble of fair coins).

However, we believe that allowing a random selection of events is even more realistic (as discussed
in the previous sections, also with implications to Machine Learning and Quantum Mechanics). In
the next section, we will define a selection of events which has some randomness (as small as we

want) and prove that even in that case, we still have P#NP.

7. Realistic version of the problem (still P#ANP)

A selection of events which is only approximately deterministic can be approximated by a step
function (step functions are dense in L?) and thus there is a square with non-null constant measure.
We rescale such square to [0, 1] x [0,1]. We then consider a real polynomial wave-function that is
near the point in the sphere corresponding to a constant wave-function, up to an error in the L?
norm which can be as small as we want because the polynomials are dense in L? (the corresponding

numerical polynomial does not need to be in P).

12



The first sample from the uniform distribution defines directly 2 € X. An approximation (in the L?
norm) with polynomial time-complexity to the selection function, is defined by setting y € Y equal

to the second sample from the uniform distribution.

Since the wave-function is polynomial non-constant, then the corresponding cumulative probability
distribution minus the second sample is strictly crescent (except in sets of null measure). Thus,
when we define the corresponding deterministic function we can choose the second sample which
produces an output which is as far from zero as we want (in the interval [0, 1]), because we are
using the L™ norm now. We cannot average over the random sample, otherwise we need a random
computer (see next section). Thus, no approximation is possible, and it suffices that we define a
partition for the output which has two disjoint sets (the measures of the sets are arbitrary, as long
as they are non-null) and a numerical output with one bit. Then, almost all numerical functions are

not in the P class, according to the prior measure.

8. Generation of random numbers has linear time-complexity

The two random samples from a uniform distribution in the interval [0,1] are inputs, in the
deterministic Turing machine. However, in the real-world these samples need to be generated
somewhere and in polynomial time-complexity, otherwise the time complexity of the random
selection computed by the real-world random computer could be non-polynomial in the number of

bits of the random samples.

Moreover, it would be better if the generation of random samples had linear time complexity, since
then we could do a constant rate of experiments over time to validate the probability distribution
of the random selection, otherwise it would be impractical to generate an infinite sequence of

experiments.

We cannot prove this mathematically (since we would need more axioms). However, the implications
of this article to Quantum Mechanics help to clarify the source of randomness of Quantum Mechanics
(and thus of the random samples). It is relevant to verify empirically that the generation of random
numbers with linear time complexity is possible, for all practical purposes. We can visually check
on the website from ANU QRNG # that the number of bits of the random sample grows linearly in

time and any complete history of events converges to a uniform probability distribution.

Moreover, the entropy is maximal, in the sense that the deterministic function needed to correlate the
bits is not computable for all practical purposes, not even approximately (since L is non-separable)

according to the prior measure.

“See also: https://qrng.anu.edu.au/random-binary
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9. On the consequences to Machine Learning

In the introduction we discussed the implications (of the results of this article), which are common
to Machine Learning and Quantum Mechanics. But Machine Learning (for instance Deep Neural
Networks) is not firmly based in probability theory, unlike Quantum Mechanics, then there are

more consequences.

In Machine Learning, methods inspired by probability theory are used often[2], but the formalism
is based in approximations to deterministic functions, guided by a distance (or equivalently, an
optimization problem) and not a measure. In fact, two of the main open problems are the alignment
of models and the incorporation of prior knowledge[23], which could be both well solved by a prior

measure if there would be any measure defined.

Our results imply that under reasonable assumptions, almost all functions are not computable not
even approximately. Thus, Machine Learning works because the functions we are approximating are
in fact probability distributions (eventually after some reparametrization[24]). This shouldn’t be
surprising, since Classical Information Theory shows (under reasonable assumptions) that probability
is unavoidable when we are dealing with representations of knowledge/information[1][2]. But in
Machine Learning the probability measure is not consistently defined (despite that many methods
are inspired by probability theory), the probability measure emerges from the approximation[24]
and often in an inconsistent way. The inconsistency is not due to a lack of computational power
since modern neural networks can fit very complex deterministic functions and fail badly[25][26] in
relatively simple probability distributions (e.g. catastrophic forgetting or the need of calibration to

have some probabilistic guarantees[26]).

This unavoidable emergence of a probability measure should be investigated as a potential source of
inefficiency, inconsistency and even danger. If the emergence of a probability measure is unavoidable,
why don’t we just define a probability measure in the formalism consistently? Many people say “it

is how our brain works”, so mathematics should step aside when there is empirical evidence.

But the empirical evidence is: oversized deep neural networks still generalize well, apparently
because often the learning process converges to a local maximum (of the optimization problem) near
the point where the learning begun[27]. This implies that if we repeat the learning process with a
random initialization (as we do when we consider ensembles of neural networks[25][28]), then we do
not expect the new parameters to be near any particular value, regardless of the result of the first
learning process. This expectation is justified by the fact that every three layers of a wide enough
neural network is a universal approximator of a function[29], so any deviation introduced by three
layers can be fully corrected in the next three layers, when composing dozens or hundreds of layers

as we do in a deep neural network. Then the correlation between the parameters corresponding to
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different local maximums converges to zero, when the number of layers increases.

Thus, there is empirical evidence that oversized deep neural networks still generalize well, precisely
because a prior measure emerges: deep learning does not converge to the global maximum and
instead to one of the local maximums chosen randomly, effectively sampling from a prior measure in
the sample space defined by all local maximums. This is consistent with the good results achieved
by ensembles of neural networks[25][28], which mimic many samples. However, it is a prior measure
which we cannot easily modify or even understand, because the measure space is the set of all local
maximums of the optimization problem. But, since we expect the parameters to be fully uncorrelated
between different local maximums, then many other prior measures (which we can modify and

understand, such as the uniform measure) should achieve the same level of generalization.

This is not a surprise, since oversized statistical models that still generalize well were already found
many decades ago by many people[12]: a standard probability space with a uniform probability

measure can be infinite-dimensional (the sphere[12] studied in this article, for instance).

More empirical evidence: no one looks to a blurred photo of a gorilla and says with certainty that it
is not a man in a gorilla suit. We all have many doubts, when we are not sure about a subject we
usually express doubts through the absence of an action (not just us, but also many animals), for

instance we don’t write a book about the subject we don’t know about.

There is no empirical evidence that our brain tries to create content which is a short distance from
content (books, conversations, etc.) created under exceptional circumstances (when doubts are
minimal). When we are driving, and we do not know what is in front of us, we usually just slow
down or stop the car. But what content defines “not knowing”? Is there empirical evidence about
the unknown? The unknown can only be an abstract concept, expressed through probability theory
or a logical equivalent. Is there empirical evidence that probabilities are reducible, that there is a

simpler logical equivalent? No, quite the opposite.

The only trade-off seems to be between costs (time complexity, etc.) and understanding/control. A
prior measure which we understand and/or control may mean much more costs than an emergent
(thus, inconsistent and uncontrollable) prior measure which just minimizes some distance. But this
trade-off is not new, and it is already present in all industries which deal with some safety risk
(which is essentially all industries). Distances are efficient for proof of concepts (pilot projects),
when the goal is to show that we are a short distance from where we want to be. But safety (as
most features) is not being at a short distance from being safe®. “We were at a short distance from
avoiding nuclear annihilation” is completely different from “we avoided nuclear annihilation”. To

avoid nuclear annihilation we need (probability) measures, not only distances.

®See for instance https://edition.cnn.com/2023/04,/29/us/ai-scam-calls-kidnapping-cec
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