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ABSTRACT

Audio–Visual Question Answering (AVQA) is a challenging multimodal task that
requires jointly reasoning over audio, visual, and textual information in a given
video to answer natural language questions. Inspired by recent advances in Video
QA, many existing AVQA approaches primarily focus on visual information pro-
cessing, leveraging pre-trained models to extract object-level and motion-level
representations. However, in those methods, the audio input is primarily treated as
complementary to video analysis, and the textual question information contributes
minimally to audio–visual understanding, as it is typically integrated only in the
final stages of reasoning. To address these limitations, we propose a novel Query-
guided Spatial–Temporal–Frequency (QSTar) interaction method, which effec-
tively incorporates question-guided clues and exploits the distinctive frequency-
domain characteristics of audio signals, alongside spatial and temporal perception,
to enhance audio–visual understanding. Furthermore, we introduce a Query Con-
text Reasoning (QCR) block inspired by prompting, which guides the model to fo-
cus more precisely on semantically relevant audio and visual features. Extensive
experiments conducted on two AVQA benchmarks demonstrate the effectiveness
of our proposed method, achieving significant performance improvements over
existing Audio QA, Visual QA, Video QA, and AVQA approaches. The code is
released under https://github.com/lik1996/QSTar.

1 INTRODUCTION

Understanding audio–visual scenes in videos is crucial for a wide range of real-world applications,
including autonomous driving (Wang et al., 2024), human–computer interaction (Li et al., 2023c),
and event localization (Grumiaux et al., 2022). Querying specific information from videos provides
an intuitive and interactive interface that enables humans to engage with machines and gain deeper
insights into the physical world. As a representative task in multimodal video understanding, Audio–
Visual Question Answering (AVQA) (Yun et al., 2021; Yang et al., 2022) requires models to jointly
interpret and reason over both aural and visual modalities to answer natural language questions about
video content. Unlike traditional Visual or Video QA tasks (Yu et al., 2019; Le et al., 2020) that rely
primarily on visual cues, AVQA demands a deeper integration of sound cues and visual content to
capture the full semantics of a scene.

In many real-world scenarios, audio conveys critical information that visuals alone may fail to cap-
ture. Tasks such as identifying a speaker in a conversation or distinguishing between visually simi-
lar events often rely heavily on auditory cues (He et al., 1999; Ji et al., 2021). Therefore, effective
AVQA systems must not only interpret visual content but also recognize sound events, understand
their temporal dynamics, and model their interactions with visual signals. To facilitate research in
this direction, Li et al. (2022) proposed a large-scale dataset for music scene understanding, called
MUSIC-AVQA, which has become a standard benchmark for questioning audio–visual content.
Similarly, in music AVQA, audio is especially helpful when visual cues are limited (e.g., subtle flute
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(a) Audio–visual question answering (AVQA) task.

(b) Prior Methods. (c) Our QSTar.

Figure 1: Illustration of AVQA task and comparison between prior methods and QSTar. (a) Input
sample (audio, video, and question) for an AVQA task. (b) Prior works rely on object-level cues,
struggling with subtle motions (e.g., inactive flute player). (c) QSTar enhances spatial–temporal–
frequency interaction. Green patches highlight spatial focus. The red box shows diminishing high-
frequency bands as the flute stops, while the violin remains active.

performances where motion is minimal despite continuous presence), as illustrated in Fig. 1. This
emphasizes the value of audio cues in improving question answering accuracy.

Most existing AVQA methods primarily focus on visual information processing. For instance, PSTP
(Li et al., 2023a) introduced a spatial–temporal perception module to select Top-K frames for align-
ment. APL (Li et al., 2024b) proposed a question–object and audio–object matching scheme that
leverages pre-trained object detectors to enhance visual recognition. However, these approaches
primarily rely on visual cues, treating audio as a secondary modality for temporal alignment. For
instance, in PSOT (Li et al., 2025), audio was used only to select sound-driven patches that were
then aggregated into a largely vision-centric pipeline. As a result, the distinctive properties of the
aural modality are underutilized. Furthermore, question information is often incorporated only at the
final stage via simple operations (e.g., multiplication), limiting the semantic alignment between the
query and the multimodal content. For instance, TSPM (Li et al., 2024a) incorporated the question
only at the final fusion and prediction stage, and its auxiliary prompt was used merely to identify key
temporal segments. We believe that the late fusion leads to redundant audio–visual representations
and hinders model performance for AVQA.

In this paper, we jointly consider query guidance for both audio and visual feature learning and
enhance cross-modal interactions across multiple dimensions. This design is motivated by the fol-
lowing observations: 1) questions typically target one or a few instruments, requiring focused rather
than holistic audio–visual representation; 2) wind instruments (e.g., clarinet and saxophone) often
exhibit subtle visual cues but distinctive spectral characteristics, making frequency-domain analy-
sis more effective, as shown in Fig. 1; 3) instruments of the same category still differ in temporal
patterns during performance. Based on these insights, our method emphasizes the role of linguistic
cues throughout the pipeline to support fine-grained cross-modal reasoning. We emphasize spatial,
temporal, and frequency-domain interactions. These are especially important in polyphonic scenar-
ios where multiple instruments play simultaneously and subtle timbral or harmonic cues (Agostini
et al., 2003) cannot be captured by visual or temporal features alone.

To address these limitations, we propose a Query-guided Spatial–Temporal–Frequency Interaction
(QSTar) method for the music AVQA task. Specifically, we design a query-guided multimodal cor-
relation module that refines audio and visual features conditioned on the question from the early
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stage. This module consists of three components: modality-specific self-enhancing, cross-modal
guidance capturing, and information propagation. Next, we introduce a spatial–temporal–frequency
interaction module that further enriches the query-guided features by emphasizing semantic rele-
vance across spatial, temporal, and frequency dimensions, particularly beneficial for distinguishing
sound patterns over time and frequency. Finally, a query context reasoning block is employed to re-
fine and fuse features before prediction. It uses prompting to incorporate linguistic context and task-
specific constraints for more precise reasoning. In summary, our method improves query-guided
alignment throughout the entire pipeline and effectively integrates audio and visual cues across spa-
tial, temporal, and frequency domains. We validate our method on the benchmark MUSIC-AVQA
and other AVQA datasets and show that our approach significantly outperforms previous Audio QA,
Visual QA, Video QA, and AVQA methods.

Our main contributions can be summarized as:

• We propose QSTar, a novel framework that integrates query guidance throughout the entire
pipeline to refine modality-specific features. By embedding linguistic context early, QSTar
enhances both audio and visual representations in a question-aware manner, enabling more
precise cross-modal reasoning.

• We introduce a fine-grained interaction module that emphasizes semantic cues across spa-
tial, temporal, and frequency dimensions. This design enhances discriminative understand-
ing, especially in polyphonic scenarios where subtle audio or visual cues are critical.

• We design a reasoning block that injects task-aware linguistic context through prompting
to guide final predictions, improving semantic alignment between the question and multi-
modal features.

• Extensive experiments demonstrate that QSTar achieves new state-of-the-art performance
on the MUSIC-AVQA benchmark.

2 RELATED WORK

2.1 AUDIO–VISUAL SCENE UNDERSTANDING

Over the past decade, significant progress has been made in multimodal learning, particularly in
tasks involving audio–visual scene understanding (Duan et al., 2023). These tasks focus on the aural
and visual modalities, which are fundamental components of human perception, given their critical
roles in interpreting daily life with semantic, spatial, and temporal coherence. This field encom-
passes a variety of challenges, including sound source localization (Grumiaux et al., 2022), motion
recognition (Kuehne et al., 2011), video parsing (Zhang et al., 1995), semantic segmentation (Li
et al., 2023b), and video description (Xu et al., 2016). Recent advances exploit the complementary
nature of different modalities to enhance information alignment, facilitating more robust scene rea-
soning. While unified multimodal models can capture global spatiotemporal representations, further
research is needed to enhance fine-grained, task-specific focuses.

2.2 AUDIO–VISUAL QUESTION ANSWERING

Audio–Visual Question Answering (AVQA) leverages multimodal information from video content
to answer user-posed questions. Compared to other QA tasks (e.g., audio QA, visual QA, and video
QA), AVQA is more challenging as it requires integration of multiple modalities to address linguistic
queries effectively. In particular, inadequate aural or visual perception can lead to suboptimal or
even incorrect predictions. To advance research in this domain, several AVQA datasets have been
introduced, including Pano-AVQA (Yun et al., 2021), MUSIC-AVQA (Li et al., 2022), and AVQA
(Yang et al., 2022). Recent approaches such as LAVISH (Lin et al., 2023) aim to enhance audio-
visual association and improve model training efficiency on large-scale data. APL (Li et al., 2024b)
introduces a question-conditioned clue discovery module that uses visual or audio embeddings as
queries and attends to the question at a single stage. TSPM (Li et al., 2024a) introduces an auxiliary
prompt used in the sequential temporal perception module to identify key temporal audio and visual
cues and incorporates the question only at the final fusion stage. PSOT (Li et al., 2025) emphasizes
object-level and motion-level visual changes to boost performance. In contrast to prior approaches
that primarily focus on visual processing and incorporate question information only at later stages,
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Figure 2: Overall framework of the proposed QSTar method. We use pre-trained encoders to ex-
tract audio, visual, and linguistic features, Fa, Fv , Fw, respectively. The Query-Guided Multimodal
Correlation module (QGMC in yellow area) refines Fa and Fv using query information, result-
ing in F ′

aq and F ′
vq . These features are further enhanced by the Spatial–Temporal–Frequency In-

teraction module (STFI in purple area), which integrates Spatial–Temporal Interaction (STI) and
Temporal–Frequency Interaction (TFI), using additional frequency-aware features from AST (Gong
et al., 2021). The Query Context Reasoning block (QCR in green area) incorporates prompt-based
context (Fprompt) and sentence-level linguistic features (Fsentence) to guide multimodal fusion for
answer prediction. For brevity, we remove self-attention units.

our method emphasizes richer, query-relevant refinement of both audio and visual features while
enabling the model to attend to linguistic cues throughout the entire processing pipeline.

3 METHOD

To address the challenges of music AVQA, we propose QSTar, a novel network that enables query-
guided extraction of visual and audio cues and facilitates effective spatial–temporal–frequency in-
teraction and query context reasoning, thereby enhancing answer prediction performance. Fig. 2
illustrates the overall framework of the proposed method.

3.1 INPUT REPRESENTATION

The input video sequence is first divided into T non-overlapping audio and visual segments, each
with a duration of one second. These segments, along with the input question, are then encoded
using modality-specific models.

Visual Representation. Each visual segment is divided into M patches and appended with a special
[CLS] token at the beginning. To effectively represent visual content from the video, we employ a
pretrained CLIP (Radford et al., 2021) model with frozen parameters to extract two types of features:
frame-level and patch-level representations. The patch level features are further compressed using
Token Merging (ToMe) (Bolya et al., 2023), reducing them to M ′ tokens that preserve spatially
sensitive information. Finally, the frame-level and patch-level features across all T video segments
are denoted as Fv = {f t

v}Tt=1 ∈ RT×D and Fp = {f t
p}Tt=1 ∈ RT×M ′×D, respectively.

Audio Representation. Following previous works, each audio segment is processed using a 2D
CNN, VGGish (Gemmeke et al., 2017), which is pretrained on a large-scale AudioSet dataset. The
resulting audio features are represented as Fa = {f t

a}Tt=1 ∈ RT×D.

Text Representation. The input question is first tokenized into individual words. We then utilize
a pretrained CLIP text encoder to extract both sentence-level and word-level linguistic features.
The sentence-level features capture the overall semantic context of the question and are denoted
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as Fsentence ∈ RD. The word-level features are represented as a fixed-length sequence of token
embeddings, denoted as Fw ∈ RN×D, where N is the number of tokens.

3.2 QUERY-GUIDED MULTIMODAL CORRELATION MODULE

In this subsection, we propose an effective module, Query-Guided Multimodal Correlation
(QGMC), to enhance unified interaction among visual, audio, and linguistic features. In contrast to
the prior two-stage fusion methods that first integrate audio and visual features before incorporating
textual information, our approach jointly emphasizes modality-specific features that are semantically
aligned with the question. This enables more focused and context-aware multimodal reasoning.

QGMC consists of three stages: self-enhancing, capturing, and propagating. First, internal rela-
tionships are strengthened by applying multi-head self-attention (SA) (Vaswani et al., 2017) units
independently to the visual, audio, and linguistic features. Next, the self-enhanced word-level lin-
guistic features serve as query in multi-head cross-attention (CA) (Vaswani et al., 2017) units to
capture shared semantics from the frame-level visual features and audio features (used as keys and
values, respectively). For simplicity, the visual capturing step is formulated as (with a similar oper-
ation for audio to obtain Fqa):

Fqv = CA(SA(Fw), SA(Fv), SA(Fv)), (1)

To fuse the captured information, we aggregate the cross-modal outputs with residual linguistic
features,

Fqg = Fqv + Fqa + SA(Fw), (2)
where Fqg represents the query-guided semantic context. Subsequently, this guidance is propagated
back to the visual and audio streams via cross-attention with Fv as query and Fqg as keys and values
(or use Fa to obtain Faq). This step is denoted as:

Fvq = CA(Fv, Fqg, Fqg), (3)

Finally, the outputs are refined by incorporating the original modality features via residual connec-
tion, followed by a Feed-Forward Network (FFN):

F ′
vq = FFN(Fvq + Fv);F

′
aq = FFN(Faq + Fa), (4)

where F ′
vq and F ′

aq denote the query-guided visual and audio representations.

3.3 SPATIAL–TEMPORAL–FREQUENCY INTERACTION MODULE

To more effectively exploit the audio information in videos, we introduce two dedicated submodules
to localize performing instruments across spatial, temporal, and frequency dimensions.

Spatial–Temporal Interaction. Since videos contain both spatial and temporal dimensions that
may cover redundant information, we design a spatial–temporal submodule to selectively refine the
previously obtained query-guided features. Specifically, we enhance the patch-level visual features
Fp to better align fine-grained spatial details with the query-guided audio context. First, Fp is refined
using a SA unit, and then used as the query in a CA unit, where the query-guided audio features F ′

aq
serve as keys and values:

Fsi = CA(SA(Fp), F
′
aq, F

′
aq), (5)

This operation encourages the model to focus on sounding regions that correspond to the question.
In parallel, to capture global temporal dependencies, we perform a temporal interaction between the
query-guided audio and visual features. Specifically, we compute the dot product between F ′

aq and
F ′
vq , followed by a softmax function:

Fti = F ′
vq · softmax(F ′⊤

aq · F ′
vq), (6)

where ⊤ is the transpose operation. We integrate the spatial and temporal outputs by concatenating
the corresponding features after reshape, followed by a Feed-Forward Network:

Fvi = FFN(Concat(Fsi, Fti)), (7)

where Concat denotes the concatenation layer. This fusion enables the model to yield refined spatial–
temporal visual features conditioned on the query.
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Temporal–Frequency Interaction. In some cases, spatial–temporal perception alone is insufficient
for comprehensive music scene understanding. For instance, a flutist typically keeps the instrument
near his/her mouth, with minimal or subtle motion that is difficult to detect visually, potentially
leading to misinterpretation. In such cases, frequency-based analysis plays a crucial role in distin-
guishing instruments by capturing their unique spectral signatures. These spectral “fingerprints" are
often more informative than time- or spatial-domain features, particularly in polyphonic scenarios
or acoustically complex environments for cross-model reasoning.

To better exploit these discriminative clues, we design a temporal–frequency submodule to refine the
audio representation. Specifically, we utilize a pretrained Audio Spectrogram Transformer (AST)
(Gong et al., 2021) to extract rich frequency-aware features from the audio waveform, denoted as
Fast ∈ RT×F×D. Notably, while two instruments may generate similar time-domain waveforms or
pitches, their timbral characteristics often differ significantly due to the unique distribution of over-
tones and harmonics across frequency bands. These subtle spectral distinctions are more effectively
captured by AST compared to models like VGGish (Gemmeke et al., 2017). This is largely due
to architectural differences: AST’s transformers model long-range dependencies across frequency
bins, enabling it to represent harmonic structures and overtone patterns that define timbre (Agostini
et al., 2003; Zhao et al., 2018; Koutini et al., 2021; Chen et al., 2022). To further highlight informa-
tive frequency regions, we introduce a frequency-wise attention over the AST features, enabling the
model to explicitly emphasize frequency bands that are most relevant for query-guided instrument
recognition. In detail, we first aggregate the AST-based audio features over the temporal dimension
to obtain a condensed frequency representation. Using this representation and the question em-
beddings, we compute frequency attention weights that highlight question-relevant spectral bands.
These weights are then broadcast and applied across the original AST features to emphasize salient
frequency regions:

fmean =
1

T

T∑
t=1

Fast[t, :, :], (8)

af = softmax(W1 · Fw +W2 · ReLU(W3 · f⊤
mean)), (9)

F ′
ast = af · Fast, (10)

where W1, W2, and W3 are learnable projection matrices. Finally, to align and integrate F ′
ast and

F ′
aq , we concatenate them and apply a convolutional fusion block composed of two convolutional

layers with batch normalization and ReLU activation:

Fai = ConvBlock(Concat(F ′
ast, F

′
aq)), (11)

This fusion allows the model to effectively associate discriminative spectral patterns with the corre-
sponding instruments, producing more informative and query-guided audio features.

3.4 QUERY CONTEXT REASONING BLOCK AND PREDICTION

To enhance final answer prediction using the refined visual and audio features, we introduce a Query
Context Reasoning (QCR) block inspired by prompt-based conditioning (Khattak et al., 2023).
Prompts can provide focused guidance for interpreting visual and audio content under task-specific
constraints. In our music scene understanding task, the relevant cues often involve musical instru-
ments, specifically their type, performance duration, location, temporal sequence, and loudness.
These aspects, though derived from the dataset’s question types, capture general audio–visual rea-
soning dimensions. They are used to construct the query context, which guides the refinement of
the updated modality-specific features. More details about the prompts can be found in Appendix
Sec. A.2.3. We first encode these context-related keywords using the same CLIP text encoder, yield-
ing prompt embeddings denoted as Fprompt. Since not all aspects are equally relevant for each
question, we incorporate the sentence-level question embedding Fsentence. They are concatenated
and passed through a multi-head self-attention unit to produce the query context feature Fqc:

Fqc = SA(Concat(Fprompt, Fsentence)), (12)

Next, we apply cross-attention using Fqc as the query to guide the refinement of visual and audio
features Fvi and Fai, respectively:

Ffv = CA(Fqc, Fvi, Fvi);Ffa = CA(Fqc, Fai, Fai), (13)

6



Published as a conference paper at ICLR 2026

This process enables the model to extract the most informative audio and visual cues under the
linguistic query context. For final answer prediction, we perform a simple multimodal fusion and
classification. The fused representation is obtained by

Fav = FC(Concat(Ffv, Ffa)), (14)

where Ffv and Ffa are combined with a concatenation layer and a linear layer followed by a tanh
activation function. Then we adopt an element-wise multiplication operation ◦ to integrate the ques-
tion features and final visual audio representations as: e = Fsentence ◦ Fav . The resulting feature e
is then used to predict the final answer from a predefined vocabulary set.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRIC

Dataset. The experiments were primarily conducted on the widely-used MUSIC-AVQA (Li et al.,
2022) dataset. MUSIC-AVQA contains more than 40K QA pairs distributed across 9,288 videos.
These pairs, centered around music-related scenarios, are categorized into three types based on the
modalities required to answer them: Audio QA, Visual QA, and Audio-Visual QA. The questions
were generated using a set of predefined templates. We also evaluated models on AVQA (Yang
et al., 2022), which comprises over 57K QA pairs derived from real-world videos, and provided
discussion on the compared results in Appendix Sec. A.1.

Evaluation Metric. Following the standard protocol in previous AVQA studies, we report answer
accuracy (Antol et al., 2015) for each question type (as classified in the benchmark) along with the
overall average to evaluate model performance in different audio–visual scenarios.

4.2 IMPLEMENTATION DETAILS

Videos were segmented into 1-second clips from 60-second recordings. We used a CLIP-ViT-L/14
(Radford et al., 2021) model for visual and textual feature extraction. Audio features were extracted
using VGGish (Gemmeke et al., 2017) pre-trained on AudioSet, while AST (Gong et al., 2021)
was employed to capture time–frequency representations. All features were projected into 512-
dimensional vectors for consistency. We trained all models using the AdamW (Loshchilov et al.,
2017) optimizer with an initial learning rate of 1e-4, decayed by a factor of 0.1 every 10 epochs.
The batch size and number of training epochs were set to 64 and 30, respectively. All experiments
were conducted using PyTorch on a single NVIDIA H100 GPU.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Compared Methods. To verify the effectiveness of the proposed method, we compared it with pre-
vious state-of-the-art multimodal QA approaches. For audio QA, we adopted FCN-LSTM (Fayek
& Johnson, 2020). For visual QA, we considered MCAN (Yu et al., 2019). For video QA, we
evaluated PSAC (Li et al., 2019), HME (Fan et al., 2019), and HCRN (Le et al., 2020). Finally,
we compared against a comprehensive set of recent AVQA methods, including AVSD (Schwartz
et al., 2019), PanaAVQA (Yun et al., 2021), AVST (Li et al., 2022), COCA (Lao et al., 2023), PSTP
(Li et al., 2023a), LAVISH (Lin et al., 2023), APL (Li et al., 2024b), TSPM (Li et al., 2024a),
MCCD (Ma et al., 2024), PSOT (Li et al., 2025), and QA-TIGER (Kim et al., 2025). All methods
were trained and evaluated using the same dataset split for fair comparison. We further compared
our method with recent large multimodal models (MLLMs), including GPT-4o (Hurst et al., 2024),
VideoLLaMA2 (Cheng et al., 2024), Qwen2.5-Omni (Xu et al., 2025), and Ming-Omni (AI et al.,
2025).

Quantitative Results. The quantitative results are reported in Table 1. Our proposed QSTar
achieved state-of-the-art results across most question types, outperforming TSPM and QA-TIGER
by 2.19% and 1.36% in overall accuracy, respectively. Compared with earlier models designed for
single-modality reasoning with simple multimodal fusion (e.g., MCAN for visual QA and HCRN
for video QA), QSTar showed substantial gains across all metrics, which are consistent with trends
observed in other AVQA models. These improvements underscore the advantage of deep multi-
modal alignment among audio, visual, and textual features for complex video scene understanding.

7



Published as a conference paper at ICLR 2026

Table 1: Comparison with existing methods on the MUSIC-AVQA (Li et al., 2022) test set, re-
porting accuracy (%) across different question types. The short names are the abbreviations for
question types “Counting", “Comparative", “Location", “Existential", and “Temporal", respectively.
For space, FCN-LSTM, VideoLLaMA2, and Qwen2.5-Omni are denoted as FCN, VLLaMa2, and
Qwen-Omni, respectively. The best results are bold while the second best are underlined.

Method Audio QA Visual QA Audio-Visual QA AvgCount. Comp. Avg Count. Local. Avg Exist. Count. Local. Comp. Temp. Avg

FCN (Fayek & Johnson, 2020) 70.80 65.66 68.90 64.58 48.08 56.23 82.29 59.92 46.20 62.94 47.45 60.42 60.81
MCAN (Yu et al., 2019) 78.07 57.74 70.58 71.76 71.76 71.76 80.77 65.22 54.57 56.77 46.84 61.52 65.83
PSAC (Li et al., 2019) 75.02 66.84 72.00 68.00 70.78 69.41 79.76 61.66 55.22 61.13 59.85 63.60 66.62
HME (Fan et al., 2019) 73.65 63.74 69.89 67.42 70.20 68.83 80.87 63.64 54.89 63.03 60.58 64.78 66.75
AVSD (Schwartz et al., 2019) 72.47 62.46 68.78 66.00 74.53 70.31 80.77 64.03 57.93 62.85 61.07 65.44 67.32
HCRN (Le et al., 2020) 71.29 50.67 63.69 65.33 64.98 65.15 54.15 53.28 41.74 51.04 46.72 49.82 56.34
LAViT (Yun et al., 2021) 75.71 65.99 72.13 70.51 75.76 73.16 82.09 65.38 61.30 63.67 62.04 66.97 69.53
AVST (Li et al., 2022) 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
COCA (Lao et al., 2023) 79.35 67.68 75.42 75.10 75.43 75.23 83.50 66.63 69.72 64.12 65.57 69.96 72.33
PSTP (Li et al., 2023a) 73.97 65.59 70.91 77.15 77.36 77.26 76.18 72.23 71.80 71.79 69.00 72.57 73.52
LAVISH (Lin et al., 2023) 82.09 65.56 75.97 78.98 81.43 80.22 81.71 75.51 66.13 63.77 67.96 71.26 74.46
APL (Li et al., 2024b) 82.40 70.71 78.09 76.52 82.74 79.69 82.99 73.29 66.68 64.76 65.95 70.96 74.53
VLLaMa2 (Cheng et al., 2024) 79.65 52.69 69.71 81.20 83.02 82.12 77.43 63.48 69.67 62.67 68.13 67.88 71.98
GPT-4o (Hurst et al., 2024) 65.68 37.04 55.12 72.77 62.20 67.42 55.87 54.94 59.57 38.24 42.58 50.35 55.72
TSPM (Li et al., 2024a) 84.07 64.65 76.91 82.29 84.90 83.61 82.19 76.21 71.85 65.76 71.17 73.51 76.79
MCCD (Ma et al., 2024) 83.87 71.04 79.14 79.78 76.73 78.24 80.87 71.46 51.63 64.67 64.60 67.13 72.20
PSOT (Li et al., 2025) - - 78.22 - - 80.07 - - - - - 72.61 75.29
Qwen-Omni (Xu et al., 2025) 62.93 39.56 54.31 67.92 59.02 63.42 51.92 55.10 60.98 36.42 40.27 49.12 53.83
Ming-Omni (AI et al., 2025) 62.44 40.74 54.44 67.50 58.29 62.84 52.73 53.91 62.17 37.24 41.85 49.63 53.98
QA-TIGER (Kim et al., 2025) 84.86 67.85 78.58 83.96 86.29 85.14 83.10 78.58 72.50 63.94 69.59 73.74 77.62
QSTar (ours) 85.64 72.05 80.63 83.46 84.90 84.17 83.81 79.76 72.72 70.03 72.38 75.98 78.98

Notably, QSTar surpassed existing AVQA approaches that primarily rely on visual processing tech-
niques such as frame selection or object-level perception. For example, QSTar achieved 78.98%
average accuracy, compared to 76.79% by TSPM and 74.53% by APL. It also outperformed the
previous SOTA QA-TIGER by 2.05% on Audio QA and 2.24% on Audio-Visual QA types. For
example, in Audio QA, our method achieved a 4.2% gain over QA-TIGER on comparative ques-
tions. In Audio-Visual QA, comparative and temporal questions improved by 6.09% and 2.79%,
respectively, compared with QA-TIGER. These gains arise because frequency energy patterns pro-
vide precise indicators of instrument activity, especially for polyphonic scenes. Unlike visual cues,
which may be subtle, occluded, or ambiguous, frequency features clearly reflect when an instrument
starts, stops, or changes intensity. These results demonstrate the strength of our frequency-aware
modeling design. Despite not relying on pre-trained object detectors or specially designed visual
perception modules, QSTar still performed competitively on Visual QA type, trailing QA-TIGER by
only 0.97%, while significantly outperforming other vision-centric methods such as APL (+4.48%)
and PSOT (+4.1%). This demonstrates that our query-guided multimodal design preserves strong
visual reasoning. The comparison highlights the effectiveness of our model and motivates future
enhancements in the spatial localization of performing instruments.

In addition, we conducted experiments and report comparisons with GPT-4o, Qwen2.5-Omni, and
Ming-Omni. Following common practice for proprietary models, these MLLMs were evaluated in a
zero-shot setting due to their closed-source nature and large-scale pre-training benefits. The highly
capable GPT-4o achieved only 55.72% average accuracy while Qwen2.5-Omni (7B) and Ming-Lite-
Omni achieved similar modest results at 53.83% and 53.98%, respectively. These models strug-
gled particularly with question types requiring fine-grained temporal and comparative reasoning in
polyphonic scenes, exhibiting drops of nearly 30% on these categories. In contrast, QSTar signifi-
cantly outperformed all evaluated zero-shot MLLMs across every question type. We further assessed
MLLM performance under a fine-tuning setting by comparing against VideoLLaMA2, a represen-
tative open-source MLLM. Even with task-specific fine-tuning, VideoLLaMA2 still trailed QSTar
substantially—particularly on comparative questions, where QSTar exceeded it by 19.36% (Audio
QA) and 7.36% (Audio-Visual QA). This performance gain highlights the specialized strength of
QSTar on cross-modal reasoning within complex polyphonic scenes.
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Table 2: Ablation study on the proposed main
modules.

Method Audio QA Visual QA A-V QA Avg

w/o all 73.87 79.15 70.33 73.29
w/o QGMC 79.08 83.44 72.92 76.80
w/o QCR 79.33 83.24 75.43 78.19
w/o STI 79.21 82.62 75.06 77.80
w/o TFI 78.21 83.24 74.39 77.41
w/o STFI 77.09 81.79 74.02 76.62
QSTar 80.63 84.17 75.98 78.98

Table 3: Ablation study on the query guid-
ance. The notations r/m in B, M, and F rep-
resent the exclusion of query guidance dur-
ing the beginning, middle, and final stages,
respectively.

Method Audio QA Visual QA A-V QA Avg

r/m in B 78.96 83.61 74.90 77.93
r/m in M 80.07 83.65 75.65 78.55
r/m in F 79.39 83.32 75.47 78.25
QSTar 80.63 84.17 75.98 78.98

Table 4: Efficiency analysis and comparison on MUSIC-AVQA test set.

Method Trainable Parameters (M) FLOPs (G) Avg Accuracy (%)

AVST (Li et al., 2022) 18.48 3.19 71.59
LAVISH (Lin et al., 2023) 21.09 - 74.46
TSPM (Li et al., 2024a) 6.22 1.42 76.79
QA-TIGER (Kim et al., 2025) 14.51 2.70 77.62
QSTar (w/o TFI) 11.95 2.15 77.41
QSTar (ours) 13.20 2.43 78.98

4.4 ABLATION STUDIES

Ablation Study on Main Modules. To verify the effectiveness of the main modules (i.e., QGMC,
STI, TFI, QCR, etc.), we conducted ablation studies by removing each module. Table 2 reports
the corresponding results. Removing all modules and retaining only simple multimodal fusion led
to a performance drop of over 5%, highlighting the overall importance of our design. Specifically,
removing QGMC and QCR reduced the overall accuracy to 76.80% and 78.19%, respectively. Per-
formance dropped across all question types as well, underscoring the importance of multimodal
feature correlation and context-aware reasoning tailored to each query. The removal of the spatial–
temporal–frequency interaction module also significantly impacted performance. Without STI, over-
all accuracy dropped by 1.18%, and notably, Visual QA accuracy declined by 1.55%, emphasizing
the value of our spatial perception and temporal alignment. Eliminating the TFI module caused a
sharp decrease in Audio QA and Audio-Visual QA performance (2.42% and 1.59%, respectively),
indicating that questions requiring recognition of which instrument is sounding or when it becomes
active rely heavily on frequency-domain cues. The improvement is particularly notable for compar-
ative and temporal questions, where reasoning depends on detecting onset/offset transitions that are
often imperceptible in RGB frames. These results demonstrate the necessity of frequency-domain
reasoning for auditory understanding. In summary, each module plays a critical role in enhancing
model performance. When integrated, they work synergistically, enabling QSTar to achieve the
best results on the MUSIC-AVQA benchmark. More ablation studies on these modules and their
alternatives can be found in Appendix Sec. A.2.

Effect of Query Guidance throughout the Pipeline. To assess the impact of query guidance
throughout the QSTar pipeline, we performed ablation studies by selectively removing its corre-
sponding components. Query guidance is integrated at three stages: beginning (via query-guided
semantic context in QGMC), middle (through question embeddings in TFI), and final (using prompt-
ing in QCR). The resulting ablated models are denoted as M−

b , M−
m, and M−

f , respectively. Note
that the final-stage multiplication, as commonly used in prior works, was retained in all ablations.
The results, shown in Table 3, indicate consistent performance drops when any stage of query guid-
ance is removed. Removing early-stage guidance (M−

b ) resulted in a 1.05% drop, indicating that
early query-guided refinement helps identify representative audio and visual features. In the middle
stage, M−

m, which omits question embeddings in TFI, led to only a slight drop (0.43%), suggesting
that prior query-guided features already carried useful linguistic information. Final-stage prompting
also proved beneficial, as M−

f underperformed QSTar (by 0.73%), confirming the value of incor-
porating query context during reasoning. These findings underscore the importance of integrating
query guidance throughout the pipeline to enhance audio–visual scene understanding. Additional
studies on the prompting mechanism are provided in Appendix Sec. A.2.3.
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(a) Result comparison against QA-TIGER and ground truth.

(b) One example of QSTar prediction (Left: input sample; Right: prediction and question-related
sounding area and timestamps).

Figure 3: Qualitative results in the MUSIC-AVQA (Li et al., 2022) dataset. (a) compares answer pre-
dictions between QSTar and QA-TIGER (Kim et al., 2025) on two examples. (b) visualizes spatial,
temporal, and frequency focuses from QSTar’s STFI module. Green boxes highlight the patch-level
visual attention at key timestamps selected via audio-based temporal focus. A 2D spectrogram pro-
vides an overview of frequency dynamics for better interpretability.

4.5 COMPUTATIONAL COSTS

Table 4 reports the computational costs of QSTar compared with AVST, LAVISH, TSPM, and QA-
TIGER. QSTar used fewer trainable parameters, lower FLOPs, and achieved higher accuracy than
AVST and LAVISH. Compared to QA-TIGER, QSTar delivered higher performance while maintain-
ing comparable computational costs. Although TSPM is the most lightweight, its accuracy lagged
behind QSTar by 2.19%, indicating that QSTar provides a substantially better accuracy–efficiency
trade-off. Despite introducing an additional AST-based audio branch, QSTar remains efficient be-
cause it employs a lightweight frequency-interaction module (TFI). As shown in the table, this led to
an increase of 1.25M trainable parameters and 0.28G FLOPs compared to QSTar without TFI, while
still keeping the overall complexity comparable to or lower than other models. The AST branch
introduced only a modest computation overhead for a clear accuracy gain (1.57%).

4.6 QUALITATIVE RESULTS

In Fig. 3, we present qualitative results from the MUSIC-AVQA test set. Subfigure (a) demonstrates
QSTar’s advantage over the previous SOTA method, QA-TIGER, in complex multi-instrument sce-
narios. For instance, even when the cello is not consistently visible, QSTar correctly predicted the
answer Four by leveraging frequency-enhanced audio cues. Similarly, our method succeeded in
distinguishing two guzhengs in a performance scene. Subfigure (b) visualizes temporal visual at-
tentions and frequency-relevant audio information. The STFI module captures dynamic changes in
audio intensity, correctly identifying that the clarinet continues playing while the bassoon stops at the
middle timestamp. These examples highlight QSTar’s ability to localize query-relevant instruments
across space, time, and frequency, enabling accurate reasoning in complex musical scenes.

5 CONCLUSION

In this work, we propose a Query-Guided Spatial–Temporal–Frequency Interaction (QSTar)
method for the music AVQA task. We design a query-guided multimodal correlation module that
incorporates the query guidance into audio–visual feature learning to enhance relevant representa-
tions. We also propose a spatial, temporal, and frequency interaction module to effectively align au-
dio, visual, and textual modalities across these dimensions. Furthermore, a prompting-based query
reasoning block is employed to incorporate linguistic context before final prediction. Extensive
experiments on the standard AVQA datasets demonstrate that QSTar consistently outperforms state-
of-the-art methods, while ablation studies confirm the effectiveness of its components.
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A APPENDIX

This supplementary document includes detailed discussion of the results on AVQA (Yang et al.,
2022) dataset, additional ablation studies on main modules, and more qualitative results across dif-
ferent question types. We also provide a discussion for future work.

A.1 RESULTS ON AVQA DATASET

To further assess the robustness of our proposed method, we evaluated it on the AVQA dataset,
which includes more diverse scenarios beyond music-related events. In detail, AVQA covers diverse
everyday scenes (e.g., alarms, dog barking, speech, water flow, and vehicle sounds). These signals
are typically broadband, less structured, and often non-harmonic. The corresponding questions
generally focus on salient, dominant audio events (e.g., “Is the alarm ringing?") rather than subtle
harmonic differences, compared to MUSIC-AVQA. To ensure direct comparability and mitigate
potential implementation discrepancies, we thus follow the exact reporting format established by
prior methods (Li et al., 2023a; 2024a) in Table 5. We also report our model’s performance with
and without query prompting for fair comparison. Our method outperformed previous PSTP and
TSPM in terms of average accuracy, demonstrating that the proposed modules are not restricted to
music-specific settings.

A.2 MORE ABLATION STUDIES

In this section, we further report several groups of ablation studies with respect to the designs
of query-guided multimodal correlation (QGMC) module, spatial–temporal–frequency interaction
(STFI) module, and query context reasoning (QCR) block.

A.2.1 ABLATION ON QUESTION-GUIDED FEATURE PROCESSING

To evaluate the impact of different strategies for early-stage multimodal feature processing, we
conducted an ablation study focused on question-guided representations. We compared three al-
ternatives: (a) direct fusion of audio and visual features, as in AVST (Li et al., 2022); (b) sepa-
rate cross-attention between linguistic features and each modality (audio/visual); and (c) sequential
cross-attention with audio and linguistic cues for visual update (similar for audio), as in QA-TIGER
(Kim et al., 2025). Table 6 presents the results. All methods incorporating early question guidance
outperformed (a), with at least a 0.8% gain in average accuracy. Method (b) confirms the utility of
basic cross-attention for enhancing modality-specific representations. While (c) achieved a slight
edge over our method (d) on Audio-Visual QA type (0.08%), it did not surpass our approach in
overall performance. These findings highlight the effectiveness of question-guided processing and
suggest that early fusion of audio and visual features offers limited additional benefit.

A.2.2 ABLATION ON FEATURE USAGE IN STFI

To assess the contribution of the additional features introduced beyond the query-guided represen-
tations from QGMC, we conducted an ablation study by removing patch-level visual features (Fp)
and AST-based (Gong et al., 2021) audio features (Fast) from the spatial—temporal interaction
(STI) and temporal—frequency interaction (TFI) modules, respectively. The results are reported in
Table 7. Excluding Fp led to a 1.43% and 0.9% drop in Visual QA and Audio-Visual QA perfor-
mance, confirming the finding that patch-level features are critical for spatial perception. Removing
Fast caused a 1.37% decrease in average accuracy, notably degrading performance on audio-related
questions. This aligns with recent work (Pei et al., 2025) showing that AST provides richer audio
representations than VGGish (Gemmeke et al., 2017), especially in complex audio–video scenes.
We attribute the improved performance to our frequency-wise audio modeling, which enhances the
model’s ability to distinguish instruments both within and across categories.

A.2.3 ABLATION ON PROMPTING IN QCR

Before introducing the prompts used in our method, we first examine the MUSIC-AVQA (Li et al.,
2022) benchmark to motivate the design of our query context. Specifically, we identify five key
aspects (type, duration, location, sequence, and loudness) as fundamental to understanding music
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Table 5: Comparison with existing methods on the AVQA (Yang et al., 2022) test set.

Method Prompting Total Accuracy (%)

PSAC (Li et al., 2019) 87.4
HCRN (Le et al., 2020) 89.0
PSTP (Li et al., 2023a) 90.2
TSPM (Li et al., 2024a) ✓ 90.8
QSTar (ours) 90.9
QSTar (ours) ✓ 91.2

Table 6: Ablation study on early-stage question-guided feature processing. (a) integrates audio
and visual features to form sounding visual features (AVST (Li et al., 2022)); (b) applies separate
cross-attention between linguistic and each modality; (c) uses dual-branch sequential cross-attention
(QA-TIGER (Kim et al., 2025)); (d) our proposed query-guided multimodal correlation (QGMC)
module.

Method Audio QA Visual QA Audio-Visual QA Avg

a 78.03 83.69 74.43 77.52
b 80.20 83.86 75.06 78.30
c 80.07 84.06 76.06 78.89
d (ours) 80.63 84.17 75.98 78.98

scenes and guiding multimodal reasoning. The MUSIC-AVQA dataset features questions involving
22 instruments, categorized into four types: String (i.e., violin, cello, guitar, ukulele, erhu, guzheng,
pipa, bass, banjo), Wind (i.e., tuba, trumpet, suona, bassoon, clarinet, bagpipe, flute, saxophone),
Percussion (i.e., drum, xylophone, congas), and Keyboard (i.e., accordion, piano). Each instru-
ment class involves distinct visual and auditory cues, and depending on the user’s question, different
modalities and temporal spans may become more relevant for accurate reasoning. We present all 33
sample questions from MUSIC-AVQA in Table 8, along with a summary of the key analytical as-
pects they target. Most questions focus on one to three core elements of music scene understanding.
Accordingly, our prompt-based query context construction uses a set of guiding keywords (type, per-
formance duration, location, temporal sequence, and loudness) to capture these aspects effectively.
These prompts explicitly correspond to these reasoning dimensions: identifying what is sounding
or appearing, when an event occurs, where it occurs, in what order, and with what intensity. For
example, under the “type" aspect, the underlying focus may concern instrument category or audio
identity. Note that we do not craft question-specific prompts or explanations. We intentionally use
a unified prompt formulation for two reasons: (1) Avoiding prompt-answer leakage. Using tailored
prompts per question risks encoding partial answers or shortcuts. Unified prompts ensure the model
must rely on audio, visual, and textual cues during reasoning. (2) Ensuring scalability and stability.
A consistent, domain-agnostic prompt set scales naturally to new question types and datasets, while
also providing stable semantic anchors for multimodal alignment.

To evaluate the effectiveness of our proposed prompts, we conducted an ablation study on MUSIC-
AVQA. As a baseline, we removed the prompts entirely, following the M−

f variant described in
the main text. We then compared three alternative prompting strategies: (1) the declarative prompt
formulation used in TSPM (Li et al., 2024a), which converts questions into related statements. For
instance, a given question “Where is the first sounding instrument?" is converted to “The instruments
in the video do not sound at the same time."; (2) prompts generated using a pre-trained video cap-
tioning model, Scenic (Zhou et al., 2024), to describe overall video dynamics as a longer narrative

Table 7: Ablation study on the feature usage in the spatial–temporal–frequency interaction module.

Method Audio QA Visual QA Audio-Visual QA Avg

w/o Fp 79.27 82.74 75.08 77.88
w/o Fast 78.90 83.24 74.53 77.61
STFI (ours) 80.63 84.17 75.98 78.98
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Table 8: Overview of the five question types and 33 sample questions from MUSIC-AVQA (Li
et al., 2022), along with their summarized focus areas (i.e., type, duration, sequence, location, and
loudness) for the answering task.

Question Types Sample Questions Focuses

Counting

Is there a clarinet sound? type & loudness
How many musical instruments were heard throughout the video? type & loudness

How many types of musical instruments were heard throughout the video? type & loudness
Is there a violin in the entire video? type

Are there drum and piano instruments in the video? type
How many types of musical instruments appeared in the entire video? type

How many guzhengs are in the entire video? type
How many instruments are sounding in the video? type & loudness

How many types of musical instruments sound in the video? type & loudness
How many instruments in the video did not sound from beginning to end? type & duration

How many sounding sounas in the video? type & loudness

Comparative

Is the guitar more rhythmic than the cello? type & sequence
Is the clarinet louder than the bassoon? type & loudness

Is the saxophone playing longer than the banjo? type & duration
Is the instrument on the left more rhythmic than the instrument on the right? location & sequence

Is the instrument on the right louder than the instrument on the left? location & loudness
Is the pipa on the left more rhythmic than the erhu on the right? type & location & sequence

Is the ukulele on the right louder than the bass on the left? type & location & loudness

Location

Where is the performance? location
What is the instrument on the left of xylophone? type & location

What kind of musical instrument is it? type
What kind of instrument is the leftmost instrument? type & location

Where is the loudest instrument? location & loudness
Is the first sound coming from the right instrument? location & sequence

Which is the musical instrument that sounds at the same time as the congas? type & sequence
What is the right instrument of the last sounding instrument? type & location & sequence

Existential
Is this sound from the instrument in the video? loudness
Is the accordion in the video always playing? type & duration

Is there a voiceover? type & loudness

Temporal
Where is the first sounding instrument? location & sequence

Which pipa makes the sound last? type & sequence
Which instrument makes sounds before the trumpet? type & sequence

Table 9: Ablation study on alternative prompting strategies for query-context construction. Trans-
lation refers to question-to-statement conversions used in TSPM (Li et al., 2024a); Caption denotes
video-level descriptions generated by a pretrained captioning model (Zhou et al., 2024); Generative
Prompts correspond to constrained attribute-oriented texts produced by GPT-4o (Hurst et al., 2024).

Method Audio QA Visual QA Audio-Visual QA Avg

w/o Prompts 79.39 83.32 75.47 78.25
w Translation 79.45 83.77 75.59 78.44
w Caption 79.33 84.35 75.06 78.28
w Generative Prompts 79.21 84.56 75.16 78.37
QCR (ours) 80.63 84.17 75.98 78.98

paragraph (e.g., “A man is strumming a guitar while a girl plays the bass beside him in a room."); (3)
attribute-expansion prompts, commonly adopted in text-to-image generation. We use the following
generative-style prompt template: “A detailed description of instruments, their location, appearance,
and actions that help answer the <question>." The produced long-form natural-language descrip-
tions by GPT-4o (Hurst et al., 2024) are encoded using the same pre-trained text encoder as in the
other baselines. Table 9 presents the results. Models using prompting strategies consistently outper-
formed the baseline. Variant (1), which uses temporal translations, underperformed due to its limited
focus on temporal cues, failing to capture location-based or comparative queries. Variant (2), aided
by global visual summaries, performed better on Visual QA type but struggled with audio-related
questions. Variant (3), although attribute-expanded prompts provide more constrained descriptions
than free-form captions, they still introduce substantial irrelevant details and dilute query-specific
information. Consequently, they did not outperform our unified prompts. Even worse, they may
risk prompt-answer leakage. These findings highlight the effectiveness of our tailored prompting
approach in capturing diverse query contexts.
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Table 10: Ablation study on the temporal audio pathway.

Method Audio QA Visual QA Audio-Visual QA Avg

w Fast 78.96 83.94 75.12 78.14
w Fa (ours) 80.63 84.17 75.98 78.98
w Fast & Fa 79.83 84.19 75.65 78.65

A.2.4 ABLATION ON FEATURE USAGE FOR AUDIO PATHWAY

In QSTar, the temporal audio pathway is designed to capture coarse temporal dynamics for input au-
dios. For this purpose, VGGish-style convolutional features are sufficient and, importantly, provide
stable frame-level embeddings aligned to video timestamps. In contrast, AST provides fine-grained
spectral modeling with long-range attention over frequency bins, which is essential for distinguish-
ing harmonic structures, overtone distributions, and instrument timbre. This is why AST features
are specifically used inside the TFI module, where frequency reasoning is required. To directly as-
sess this, we include an additional ablation where we replaced the temporal VGGish pathway with
AST-only features. As shown in Table 10, this substitution did not improve performance and in fact
slightly reduced accuracy due to poorer temporal alignment and feature redundancy. We extended
this ablation by adding a variant that combined VGGish and AST features as the feature extraction.
The results show that simply merging the two feature sets did not lead to performance improvement.
The overall accuracy (78.65%) remained very close to the our version (78.98%), and the Audio
QA accuracy even dropped slightly (-0.8%). The observations further support our design choice of
assigning distinct roles to the two backbones: VGGish for temporal audio pathway and AST for
fine-grained frequency reasoning.

A.3 QUALITATIVE RESULTS

In this section, we present the predictive results of our method on each question type of the MUSIC-
AVQA (Li et al., 2022) dataset in Fig. 4 and Fig. 5. For each example, we show video frames, audio
waveforms, the question, our model’s top-3 predictions, and the ground truth. These results highlight
our model’s ability to interpret diverse audio–visual cues and generate accurate answers. Notably,
even in challenging cases involving rare instruments (e.g., guzheng, erhu), our method demonstrates
strong reasoning and robust performance. Overall, these examples showcase the model’s general-
ization ability across question types and confirm its effectiveness in music scene understanding.

A.4 DISCUSSION AND FUTURE WORK

Although our proposed method has achieved strong performance in music-scene AVQA, it still has
some directions that can be explored in the future. The current model operates on fixed-length video
segments and may struggle with longer videos that require temporal abstraction or memory mecha-
nisms. In this work, our frequency-domain modeling is applied only to the audio modality, as audio
frequency patterns (timbre, harmonics, onset energy) provide discriminative cues that are unavail-
able in visual frames. In turn, explicit visual frequency-domain processing (e.g., high-pass/low-pass
filtering or DCT-based feature extraction) may help capture micro-motions that are hard to detect in
the RGB and audio domains, which is an interesting future direction. Another promising direction is
integrating dynamic prompting or large language model-based reasoning, which could enable more
flexible and interpretable context modeling. We plan to extend the model to handle open-ended
questions beyond the current predefined setup, allowing for richer natural language understanding.
For Visual QA, especially location-related questions, our proposed method still slightly lags behind
the state-of-the-art. We believe there is substantial room for improvement by integrating object-
level cues (e.g., object detectors, motion-based visual features, or segmentation cues) and richer
relational reasoning mechanisms such as scene graphs, which could strengthen fine-grained spa-
tial understanding. Last but not least, expanding the approach to other multimodal QA benchmarks
(e.g., movie scenes and open-world scenes with complex sound compositions) beyond music-related
datasets will further validate its generalizability.
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(a) Audio QA: Counting

(b) Audio QA: Comparative

(c) Visual QA: Counting

(d) Visual QA: Location

Figure 4: Prediction results of our method for different question types of Audio QA (counting,
comparative) and Visual QA (counting, location) in MUSIC-AVQA (Li et al., 2022), with video
ids: “00007961", “00002646", “00002454", and “00004109", respectively. We provide the top 3
answers predicted by our method in sequence.
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Audio-Visual QA: Existential

Audio-Visual QA: Counting

Audio-Visual QA: Location

Audio-Visual QA: Comparative

Audio-Visual QA: Temporal

Figure 5: Prediction results of our method for different question types of Audio-Visual QA (existen-
tial, counting, location, comparative, temporal) in MUSIC-AVQA (Li et al., 2022), with video ids:
“00003803", “00004995", “00008437", “00005464", and “00004026", respectively. We provide the
top 3 answers predicted by our method in sequence.
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