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ABSTRACT

Federated Learning (FL) allows multiple parties to collaboratively train a machine
learning (ML) model without having to disclose their training data. Clients train
their own models locally and share only model updates with an aggregation server.
The first FL deployments have been in synchronous settings, with all clients
performing training and sharing model updates simultaneously. More recently,
Asynchronous FL (Async-FL) has emerged as a new approach that allows clients to
train at their own pace and send/receive updates when they are ready.
While FL is inherently less privacy-invasive than alternative centralized ML ap-
proaches, (aggregate) model updates can still leak sensitive information about
clients’ data. Therefore, FL algorithms need to satisfy Differential Privacy (DP)
to provably limit leakage. Alas, previous work on Async-FL has only considered
Central DP, which requires trust in the server, and thus may not always be viable.
In this paper, we present the first technique that satisfies Local DP (LDP) in the
context of the state-of-the-art aggregation algorithm for Async-FL, namely, Fed-
Buff. We experimentally demonstrate on three benchmark FL datasets that our
LDP technique performs equally well and, in some cases, better than FedBuff with
Central DP. Finally, we study how the staleness of the model updates received
by the asynchronous FL clients can be used to improve utility while preserving
privacy under different attack setups.

1 INTRODUCTION

Federated Learning (FL) is an emerging machine-learning paradigm that enhances privacy in dis-
tributed learning environments. The main idea is to let clients train their own local models, on their
local dataset, but collaborate to build a joint global model, by exchanging model updates through a
(central) aggregator server Kairouz et al. (2021b). FL deployments are gaining traction in various
settings, including language models, vision, fraud detection, etc. Hard et al. (2018); He et al. (2021);
Naseri et al. (2022a).

In traditional FL instantiations, all clients simultaneously train their models and send updated models
to the aggregation server. In reality, however, many applications involve large numbers of clients
running from diverse sets of devices with heterogeneous resources. Thus, only a small fraction of
them might be available at the same time for training and exchanging model updates – e.g., due to
limited connectivity, bandwidth, battery, or computing power. This leads to conflicting objectives:
on the one hand, larger numbers of clients should, in theory, yield better accuracy; on the other,
increasing concurrency in FL training leads to diminishing returns in the speed of model convergence
and quality of the model. Due to the heterogeneity of clients’ devices and data distributions, there
might be increasing numbers of clients, aka stragglers, taking longer to complete local training, which
ultimately stretches out the time it takes to complete each round of training, hampering utilization.

To overcome these issues, Asynchronous FL (Async-FL) Wang et al. (2021) allows clients to train
their models at their own pace, and send updates whenever they are ready. In other words, Async-FL
does not require all clients who are participating in model training to finish their computations before
proceeding to the next round. This alternative results in faster training of the global model and
ultimately better scalability and improved ability to handle stragglers.

Either way, FL is potentially vulnerable to different sets of attacks that target robustness and pri-
vacy De Cristofaro (2021); Lyu et al. (2020). The former involves an adversary aiming to compromise
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the accuracy and reliability of the global model. Robustness attacks can take various forms, such as
data and model poisoning attacks Enthoven and Al-Ars (2021). The latter focus on compromising
the confidentiality of the data and the clients’ privacy, e.g., through membership inference, model
inversion, or property inference attacks Melis et al. (2019); Nasr et al. (2019).

To mitigate privacy concerns, techniques have been proposed that integrate Differential Privacy
(DP) guarantees McMahan et al. (2017); Geyer et al. (2017); Truex et al. (2020). DP in FL bounds
information leakage by adding carefully calibrated noise to the model updates. It can take one of
two forms: Local or Central DP. The former involves a trusted central server adding DP noise to the
aggregate updates as received by individual clients, while the latter incorporates DP noise directly on
the updates locally on each client, before sharing them with the server for aggregation. A significant
limitation of central DP is its reliance on a trusted server. Additionally, it does not effectively counter
attacks like membership inference, model inversion, and property inference, which exploit potential
malice within the server. This underscores the critical role of Local DP in addressing such cases.

To the best of our knowledge, prior work in Async-FL has only studied Central DP Nguyen et al.
(2022). As mentioned, this requires the server to be trusted with access to the clients’ individual
updates, and the responsibility of correctly adding DP noise to the aggregated updates. The first issue
could, in theory, be mitigated through the use of secure multi-party computation (i.e., performing
secure aggregation so that the server can only recover the aggregates); however, this often comes with
prohibitively high computational overhead. The second issue still remains unmitigated. This prompts
the need to build Async-FL techniques that satisfy Local DP (LDP), allowing clients to enjoy sound
privacy guarantees vis-à-vis both the server and other adversarial clients.

In this paper, we introduce the first technique (to our knowledge) to guarantee LDP in Async-FL. We
base our method on FedBuff Nguyen et al. (2022), the state-of-art Async-FL technique, but modify it
to achieve LDP guarantees without compromising utility. Our experimental evaluation, conducted
on both image classification and language model tasks on benchmark FL datasets, attests to the
feasibility of our approach, with performance comparable to state-of-the-art buffered Async-FL with
Central DP.

Finally, we present a novel approach (i.e. staleness powered LDP) that leverages the concept of
staleness, i.e., the difference in timing between updates from different clients, for privacy. Our
intuition is that clients can decrease the amount of noise they need to add when their updates are
expected to be stale and, thus, increase the overall utility of the global model—while maintaining the
same level of privacy for the system.

2 BACKGROUND & PRELIMINARIES

2.1 ASYNCHRONOUS FEDERATED LEARNING (ASYNC-FL)

In the traditional FL paradigm, clients coordinate (synchronize) their training process. More precisely,
they train local models on their datasets and periodically synchronize them with a central aggregator
server. This synchronization, initiated and orchestrated by the server, ensures alignment among
clients and collective updates of the global model in each round. There often are two main challenges
in synchronous FL: scalability and dealing with stragglers.

Scalability is a critical concern, particularly in large-scale settings with a large number of clients, as
only a proportion of them may be accessible at any given time for training. Managing the training
process across many clients can thus prompt significant challenges, encompassing tasks such as
efficient communication, minimizing network congestion, and optimizing computational resources to
accommodate the scale of the FL system. Additionally, the presence of stragglers, i.e., clients whose
training progress is considerably slower than others, causes delays in the synchronization process and
further complicates the learning process.

Async-FL. To overcome these issues, the notion of Async-FL has been proposed as a variant to the
FL framework where the communication between the clients and the central server is not coordinated
in real-time Wang et al. (2021). The clients are not required to wait for other clients to complete their
training rounds before sending their updates to the server; rather, they can initiate communication
with the server as soon as they complete their local training. This allows for more flexibility in the
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training process, as clients can proceed at their own pace and contribute updates whenever they are
ready.

While Async-FL addresses some challenges, it also introduces new ones, including dealing with
the heterogeneity of client devices, outdated updates, communication bottlenecks, etc. Nonetheless,
various techniques in Async-FL can be used to ensure an effective training process Xie et al. (2022);
van Dijk et al. (2020); Chai et al. (2021); Chen et al. (2016); Wu et al. (2020); Li et al. (2019). In
this paper, we focus on Buffered Async-FL, which has been shown to be more efficient than other
Async-FL methods.

Buffered Async-FL. Nguyen et al. Nguyen et al. (2022) present a framework for Async-FL called
FedBuff. Fedbuff uses a server-side buffer for aggregation incorporating client-level DP (we introduce
DP in Section 2.2 below). More precisely, its implementation uses the Differentially Private Follow-
the-Regularized-Leader (DP-FTRL) technique proposed in Kairouz et al. (2021a). Unlike other
Async-FL techniques, the server model is not immediately updated upon receiving each client’s
update; rather, the updates are stored in a buffer. A server update is only executed when the buffer
includes K client updates. Nguyen et al. Nguyen et al. (2022) argue that K = 10 is the optimal
buffer size; thus, we use the same value in the rest of this paper.

Staleness. In Async-FL, staleness describes the discrepancy between the clients’ local models and
the global model Dai et al. (2019). It can occur for various reasons, e.g., network delays, slow
or overloaded clients, and hardware or software failures. Staleness can negatively impact model
performance since updates from stale clients may not be consistent with the current state of the global
model. To mitigate this issue, the server could impose a maximum delay constraint on client updates
or adjust the learning rate Zhang et al. (2016); alternatively, one could assign weights based on the
newness of the updates Nguyen et al. (2022); Huba et al. (2022).

2.2 DIFFERENTIAL PRIVACY (DP)

DP provides statistical guarantees with respect to the information an adversary can infer from the
output of a randomized algorithm. In other words, it provides an unconditional upper bound on the
influence of a single individual on the output by adding noise Dwork et al. (2014).
Definition 1. Differential Privacy. A randomized mechanism M provides (ε, δ)-differential privacy
if, for any two neighboring databases, D1 and D2 that differ in only a single record, and for all
possible outputs S ⊆ Range(A):

P [M(D1 ∈ A)] ≤ eε · P [M(D2 ∈ A)] + δ (1)

The ε parameter (aka privacy budget) is a metric of privacy loss. It also affects privacy-utility trade-
offs, i.e., lower ε values indicate higher levels of privacy, likely, at the cost of reduced utility. The δ
parameter accounts for a probability on which the upper bound ε does not hold. The amount of noise
needed to achieve DP is proportional to the sensitivity of the output; this measures the maximum
change in the output due to the inclusion or removal of a single record.

DP in FL. In the context of FL, DP can be implemented in various ways, including Central or Local
DP Duchi et al. (2013); Truex et al. (2020); Naseri et al. (2022b); Geyer et al. (2017); McMahan et al.
(2017). In Central DP, the server is trusted to inject noise into the updates received from the clients
during aggregation. By contrast, in Local DP (LDP), the clients add noise locally before sending the
model updates to the server.

LDP in FL. LDP enables the collection of sensitive data by incorporating local perturbations,
eliminating the dependency on a trusted server. M is a randomized algorithm which takes a given
vector v as input and outputs a perturbed vector v∗ The concept of ε-LDP is applied to M , with ε
representing the privacy budget as following:
Definition 2. Local Differential Privacy. A randomized algorithm M satisfies ε-LDP if and only if
the following is true for any two possible inputs v, v′ ∈ V and output v∗:

P [M(v) = v∗] ≤ eε · P [M(v′) = v∗] (2)

3 LOCAL DP IN BUFFERED ASYNC-FL

In this section, we present our algorithm implementing LDP in Buffered Async-FL.
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Algorithm 1: Local Differential Privacy in Buffered Async-FL (FedBuff+LDP)
1 Function Main():
2 Initialize: model θ0 Buffer B; while the model is not converged do
3 c← sample available clients
4 run CLIENT-TRAIN(params) asynchronously on c
5 if receive client update then
6 ∆i ← update from client i
7 B.insert(∆i)
8 end if
9 if B.isFull() then

10 apply_staleness_control(B)
11 ∆−r ← average_client_updates(B)
12 θr+1 ← θr − ηs∆−r
13 B.empty(), ∆−r ← 0, r ← r + 1
14 end if
15 end while
16 return θ
17 Function CLIENT-TRAIN(clipping norm S, dataset D, sampling probability p, noise magnitude
σ, client learning rate ηc, Iterations E, loss function L(θ(x), y)):

18 Initialize θ0
19 for each local epoch i from 1 to E do
20 for (x, y) ∈ random batch from dataset D with probability p do
21 gi = ∇θL(θi; (x, y))
22 end for

23 gbatch =
1

p ·D
(Σi∈batchgi ·min(1,

S

‖gi‖2
) +N(0, σ2I))

24 θi+1 = θi − ηc(gbatch)
25 end for
26 return θc

General Form of Async-FL. We assume the presence of C distributed clients. Dc denotes client c’s
data, and nc is the number of data points on c, i.e., n = |Dc|. θc is the local model parameter.

The optimization function of each client is:

fc(θc) =
1

nc

∑
i∈Dc

li(xi, yi, θc) (3)

where l represents the loss function of the corresponding data point. Consequently, the aggregated
optimization function is:

F (θ) =

C∑
c=1

nc
C
fc(θ) (4)

where θ is the model at the server side, and the goal is to find the optimized one (θ∗) for:

θ∗ = argminF (w) (5)

FedBuff+LDP. In Algorithm 1, we detail our approach for achieving LDP in Buffered Async-FL.
The FL process starts with the server generating a model with randomized weights; this model is
then distributed to all participating clients. Each client independently trains this initial model on its
respective dataset.

During the training process, and to satisfy LDP, gradients are clipped to limit their magnitude, and
each client adds Gaussian noise. The resulting privacy guarantees have been investigated in prior
work and formally proven Kim et al. (2021); Mahawaga Arachchige et al. (2022). In Async-FL, there
is no concept of rounds; each client sends its updates to the server as soon as they are available. The
server aggregates these updates by inserting them into a buffer. When the buffer becomes full, the
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server performs a staleness control on the updates before aggregating them to ensure that all updates
are consistent with the current model. This phase follows the same approach as Nguyen et al. (2022);
Huba et al. (2022) in handling stale updates – we discuss this step in more detail in Section 5. Once
the check is completed, the server aggregates the updates to obtain a new model (with a new version
denoted as r), which is then distributed to all clients for further training.

4 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation, conducted on three different datasets/tasks, of
our novel algorithm for LDP in Async-FL.

Datasets and Model Architectures. Our experiments use three different datasets: CIFAR-
10 Krizhevsky (2009), CINIC-10 Darlow et al. (2018), and Reddit-comments.1 CIFAR-10 includes
60,000 labeled images (50,000 training and 10,000 testing), each depicting one of ten object classes,
with 6,000 images per class. CINIC-10 has 10 classes and 270,000 images, 180,000 of which are
used for training and 90,000 for testing. To train on CIFAR-10 and CINIC-10 datasets, we use the
lightweight ResNet18 CNN model He et al. (2016). We also consider a word prediction task using
the Reddit-comments dataset. Following past work Bagdasaryan et al. (2020); Inan et al. (2016);
McMahan et al. (2017); Press and Wolf (2017), we use a model with a two-layer Long Short-Term
Memory (LSTM) and 10 million parameters trained on a chosen month (September 2019) from
the Reddit-comments dataset, and we filter users with a number of posts between 350 and 500.
Our training setup is similar to past work Bagdasaryan et al. (2020); Naseri et al. (2022b), and our
dictionary is restricted to the 30K most frequent words (instead of 50K) to speed up training and
boost model accuracy.

Setup. To partition the CIFAR-10 and CINIC-10 datasets, we follow the approach of past
work Nguyen et al. (2022); Hsu et al. (2019) and use a Dirichlet distribution with parameter 0.1
to divide the dataset among 5000 non-iid clients. For Reddit-comments, the filtered-out users are
recognized as clients with their posts as their training data. Following Nguyen et al. (2022); Huba
et al. (2022), we set the buffer size to 10. We experiment with different values of concurrency, i.e., the
number of clients training at a particular time. We sample the staleness of clients from a half-normal
distribution with σ = 0.5.

Results. In Figure 1, we report the model performance with respect to test accuracy of FedBuff+LDP
(our algorithm) compared to FedBuff+DP-FTRL (providing Central DP) across an increasing number
of communication trips, which encompass download, computation, and upload. Then, in Figure 2,
we present the accuracy results of each model for different privacy budgets, for the three datasets and
models and the two tested methods.

Overall, our experiments show that, under the same privacy budget (i.e., with the same epsilon
values), FedBuff+LDP provides better accuracy than FedBuff DP-FTRL. It also does this faster,
i.e., FedBuff+LDP enables the construction of a global model that achieves higher accuracy faster
with respect to communication trips. Note that using the same epsilon values in Local vs. Central
DP variants does not necessarily imply the same level of privacy since these values have different
meanings in either setting.

Finally, Table 1 shows the number of communication trips needed to reach a certain accuracy for the
three datasets. The results are averaged over five random runs, and the standard deviation is computed
based on these runs. Again, we observe that FedBuff+LDP picks up better accuracy and faster – i.e.,
in fewer trips – than FedBuff+DP-FTRL.

5 USING STALENESS AS PRIVACY

As mentioned in Section 1, we posit that the concept of staleness could be used to improve utility
while maintaining the same level of privacy. More precisely, we set to incorporate staleness while
adding noise in the Local DP setting when the adversary is one or more clients and not the server. In
this section, we show how to realize this approach and show that it can indeed enhance utility without
compromising privacy.

1https://bit.ly/google-reddit-comms
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Figure 1: Main task accuracy in buffered async FL with LDP in different communication trips.
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Figure 2: Main task accuracy in buffered async FL with LDP for three datasets with varying privacy
budgets ε (lower ε provide better privacy).

5.1 STALENESS

Definition. Following Nguyen et al. (2022), we denote staleness as τ , which is defined as the
difference between the model version that a client uses to start local training and the server model
version at the time when a client uploads its model update.

As performed in past work Huba et al. (2022), the staleness control phase in Algorithm 1 essentially
does the following: assuming there is an update ∆i from client i with a staleness value τi in the
buffer, the server gives the weight wi to update for

wi =
1√

1 + τi
(6)

Intuition. In the rest of the section, we present an experimental evaluation demonstrating that such
modified weights can compensate for lower levels of added DP noise, leading to improved utility
of the global model, while providing effective protection against membership inference attacks
(reviewed below).
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Dataset Accuracy FedBuff w/LDP FedBuff w/DP-FTRL
CIFAR-10 60% 137.8 ± 3.9 195.2 ± 4.2
CINIC-10 60% 154.1 ± 6.2 233.7 ± 5.3
Reddit-comments 15% 176.1 ± 9.1 214.8 ± 7.5

Table 1: Average ± standard deviation number of communication trips (in thousands) to reach a
target accuracy in the three datasets with ε = 8 and K = 10. Standard deviation is computed over 5
random runs of each setting with different seeds.

Server Buffer
(size K)

Attacker Client 1 Client 2 Client M

Gradient 
Ascent
Attack 

Observe 
Model 

Params

Dataset 1 Dataset 2 Dataset M

Staleness Distribution

Client K

Dataset K
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Varying Staleness Distribution

+
Varying Privacy Budget

Dataset N

Clients with 
Constant Staleness Distribution

+
Constant Privacy Budget

Figure 3: Adversarial Model – Active Membership Inference Attack against the Training Dataset of
all K Clients in Buffered Async-FL.

The main intuition when applying staleness is that updates sent from clients later (i.e., with higher
staleness) will be down-weighted to affect the global model in a smaller fashion. As a result, such
clients who anticipate sending their updates with higher staleness, can proactively reduce the amount
of DP noise they add. This ultimately allows us to achieve the same level of privacy at the system
level, while improving overall utility at the global model. Note that the level of privacy is in relation
to another adversary client at the global level, and not at the personal level of each client.

5.2 ADVERSARIAL MODEL

Membership Inference Attacks (MIA). We consider an adversary attempting to mount membership
inference. In machine learning, the goal of Membership Inference Attacks (MIAs) is to determine
whether a specific data point was included in the training dataset Shokri et al. (2017). In the context
of FL, the attacker may be the aggregation server or any of the clients. Adversaries could also be
passive or active: the former only monitor parameters, while the latter also manipulate inputs to
facilitate the attack.

MIA in Async-FL. LDP allows clients to protect their data from privacy attacks originating from
both the server and other clients. In our work, we consider an attack model where one of the clients
assumes the role of an attacker. More specifically, as depicted in Figure 3, we consider an adversary
carrying out an active MIA Nasr et al. (2019) to determine whether a particular data point exists in
any of the datasets held by clients 1 to K.

During training, the adversary (an active client) can intentionally manipulate the target model to
extract additional information about its training set. We follow the attack introduced by Nasr et
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Dataset Main Task Acc Attack Acc
CIFAR-10 85.4% 81.2%
CINIC-10 83.5% 79.6%

Table 2: Performance of the MIA attack with no defense.

al. Nasr et al. (2019), where the attacker performs a gradient ascent on a specific data point to infer
its membership by updating the local model parameters in a way that maximizes the loss on that data
point. It then sends the updates to the server, and if the target data point belongs to a client’s training
set, this comes with a reduction of the gradients of the loss function on that particular data point. This
reduction can be identified by the inference model, enabling the distinction between members and
non-members.

5.3 EXPERIMENTAL EVALUATION

Setup. For these experiments, we focus on the CIFAR-10 and CINIC-10 datasets. We follow the
same number of clients, model architecture, and buffer size as in the experiments presented earlier in
Section 4. We consider a worst-case scenario attack, whereby the attacker targets all other clients and
attempts to infer whether a specific data point exists in their respective datasets. As we aim to make
the attack more effective, the attacker’s updates are consistently chosen to be inserted into the buffer
immediately as it responds to the server without any delay.

We assess the performance of the attack by randomly sampling 100 member and 100 non-member
instances from the target model. To evaluate the performance of the attack, we measure the accuracy
of both the main task and the attack. This allows us to assess the impact of the attack on the
performance of the targeted task as well as the success rate of the attack itself.

Regarding staleness applied per client, we remind the reader that in the previous experiments, staleness
per client (i.e., how much time it takes to respond with their update to the server) is sampled by a
half-normal distribution, with standard deviation σ = 0.5. To measure the impact of staleness under
this new setup, we divide the clients into two same-size groups: (1) clients 1 to M and (2) clients N
to K. We vary the staleness distribution of group 1 by changing σ of the half-normal distribution
while maintaining a consistent staleness distribution for the remaining clients N to K. By varying
the staleness distribution of clients 1 to M , we can simulate different levels of staleness and observe
its effect on the main task and attack accuracy. Keeping the staleness distribution constant for clients
in group N to K provides a baseline or reference point for comparison. By maintaining a consistent
staleness level for this group, we can isolate and analyze the specific impact of varying staleness in
clients 1 to M .

To use this staleness-for-privacy approach, concurrently, the clients in the first group (i.e., 1 to M )
increase the staleness of their updates and decrease the LDP noise they apply on their local models
(thus increasing the privacy budget available). In practice, this is feasible as clients have the ability to
keep track of the most recent model version and estimate their staleness. Also, note that clients N to
K apply the same level of privacy budget as before.

We perform MIA using variable privacy budget (controlled by ε) and staleness distribution (controlled
by σ). We measure and compare the accuracy of the global model trained under these conditions of
privacy and staleness (Main Task Acc) and the accuracy of the attacker’s model (Attack Acc).

Results. Table 2 reports Main Task and Attack Accuracy when no DP is applied. The attack
is performed by the attacker against all other clients datasets (client 1 to K). The experiment
demonstrates that the attack is effective, surpassing a random guess baseline accuracy of 50%.
Additionally, the main task accuracy decreases only slightly, indicating the minor impact of the attack
on overall performance.

Then, in Table 3, we report the results of applying different privacy budgets and different scales of
staleness distributions on clients 1 to M . As expected, decreasing the privacy budget with the same
staleness scale mitigates the attack (baseline is 50%) better but provides worse utility.
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CIFAR-10 CINIC-10
ε σ Main Task Acc Attack Acc Main Task Acc Attack Acc

0.5 69.0% 51.2% 68.9% 53.1%
3 1 69.3% 51.0% 68.5% 52.9%

2 69.2% 50.5% 68.4% 50.7%

0.5 76.3% 57.9% 73.8% 60.5%
7 1 77.1% 56.1% 73.6% 57.7%

2 71.2% 52.5% 73.5% 55.1%

0.5 80.0% 64.6% 79.8% 66.4%
12 1 79.7% 59.9% 79.5% 63.9%

2 80.3% 57.2% 79.4% 59.8%

Table 3: Main task and attack accuracy with different staleness distribution scales (σ) and privacy
budgets (ε).

Moreover, keeping the privacy budget constant while increasing the staleness results in lower attack
accuracy. However, Main Task Accuracy stays around the same level. For example, in the case of
CINIC-10, if we keep the privacy budget at ε = 12 and increase the staleness scale (σ) from 0.5 to 2,
we get a reduction in Attack Accuracy from 66.4% to 59.8%.

Alternatively, by increasing the staleness of clients 1 to M , and simultaneously raising the privacy
budget, we can achieve equivalent mitigation of the attack with improved utility. For instance, in the
case of CIFAR-10 with ε = 3 and σ = 1, Main Task Accuracy is 69.3% while Attack Accuracy is
51.0%. By increasing the staleness scale to σ = 2 and privacy budget to ε = 7, we achieve similar
Attack Accuracy(52.5%) while obtaining superior utility (Main Task Accuracy of 71.2%).

6 CONCLUSION

In this paper, we presented a novel algorithm integrating Local Differential Privacy (LDP) in Buffered
Asynchronous Federated Learning (Async-FL). We performed an experimental evaluation on both
image classification and language model tasks, over three different datasets. Overall, we compared the
performance of our algorithm to the state-of-the-art Async-FL Central DP alternative and found the
results to be comparable. However, our proposed LDP has the advantage that the central aggregation
server does not need to be trusted.

We also explored how clients can leverage the concept of staleness in Async-FL to reduce the amount
of noise added to model updates when the system is under attack by a non-trusted client. By doing
this, FL clients can maintain the same level of privacy across the system while improving overall
global ML utility.

Limitations & Future Work. While our approach presents promising advantages, when dealing
with high-dimensional datasets that contain a large number of features, preserving privacy while
maintaining utility becomes a challenging task in LDP. Furthermore, incorporating staleness proves
to be beneficial when dealing with a client attacker. However, it remains a challenge and an item for
future research to investigate how staleness can improve model utility while maintaining the same
level of privacy in the presence of a fully adversarial server.

Also, there is a limit to the reduction of DP noise and the increase of staleness that an Async-FL
client can introduce for the Async-FL process to work. Determining an optimal threshold for these
two factors is highly dependent on the specific ML model architecture and task at hand. Identifying
this threshold to achieve the desired privacy-utility trade-off is part of our future work plans.

Finally, previous studies have demonstrated the effectiveness of DP noise addition in mitigating
robustness attacks in traditional FL Naseri et al. (2022b); Sun et al. (2019). In the future, we intend to
investigate this aspect of FL in the context of asynchronous updates.
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