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Abstract
Twitter bots are automatic programs operated001
by malicious actors to manipulate public opin-002
ion and spread misinformation. Research ef-003
forts have been made to automatically iden-004
tify bots based on texts and networks on so-005
cial media. Existing methods only leverage006
texts or networks alone, and while few works007
explored the shallow combination of the two008
modalities, we hypothesize that the interaction009
and information exchange between texts and010
graphs could be crucial for holistically evaluat-011
ing bot activities on social media. In addition,012
according to a recent survey (Cresci, 2020),013
Twitter bots are constantly evolving while ad-014
vanced bots steal genuine users’ tweets and di-015
lute their malicious content to evade detection.016
This results in greater inconsistency across the017
timeline of novel Twitter bots, which warrants018
more attention. In light of these challenges, we019
propose BIC, a Twitter Bot detection frame-020
work with text-graph Interaction and semantic021
Consistency. Specifically, in addition to sepa-022
rately modeling the two modalities on social023
media, BIC employs a text-graph interaction024
module to enable information exchange across025
modalities in the learning process. In addition,026
given the stealing behavior of novel Twitter027
bots, BIC proposes to model semantic con-028
sistency in tweets based on attention weights029
while using it to augment the decision process.030
Extensive experiments demonstrate that BIC031
consistently outperforms state-of-the-art base-032
lines on two widely adopted datasets. Further033
analyses reveal that text-graph interactions and034
modeling semantic consistency are essential035
improvements and help combat bot evolution.036

1 Introduction037

Twitter bots are controlled by automated pro-038

grams and manipulated to pursue malicious goals039

such as advocating for extremism and producing040

spam (Dickerson et al., 2014; Berger and Morgan,041

2015). Bots are also involved in spreading misin-042

formation during the pandemic (Shi et al., 2020).043

Figure 1: (a) Different types of combining modalities.
Previous methods adopt text modality and graph modal-
ity alone, or just shallow combine them. There is a need
for an interactive method that interacts and exchanges
information across the modalities. (b) Genuine users
and Twitter bots have different patterns of semantic con-
sistency. Tweets in red are abnormal and these example
tweets show semantic inconsistency.

Since Twitter bots pose threat to online society, 044

many efforts have been devoted to detecting bots. 045

The majority of the existing approaches are text- 046

based and graph-based. The text-based methods 047

analyze the content to detect Twitter bots by natu- 048

ral language processing techniques. Kudugunta and 049

Ferrara (2018) adopted recurrent neural networks 050

to extract textual information. Guo et al. (2021) 051

utilized the pre-trained language model BERT to 052

help detect bots. The graph-based methods model 053

the Twittersphere as graphs and adopt geometric 054

neural networks or concepts of network dynamics 055

to identify bots. (Feng et al., 2022a) constructed 056

a heterogeneous graph and leveraged the different 057

relation information. Magelinski et al. (2020a) ex- 058

ploited the ego-graph of Twitter users and proposed 059

a histogram and customized backward operator. 060

However, existing methods are faced with two 061

challenges. On the one hand, these methods only 062

adopt texts or graphs alone, and only a few works 063
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shallowly combine the two modalities as Figure064

1(a) shows. The text-based model can not get065

the graph modality information while the graph-066

based model can not get the text modality infor-067

mation. We hypothesize that it is wise to inter-068

act and exchange information between texts and069

graphs to evaluate bot activities. On the other hand,070

Cresci (2020) pointed out that Twitter bots are071

constantly evolving. Advanced bots steal genuine072

users’ tweets and dilute their malicious content to073

evade detection, which results in greater inconsis-074

tency across the timeline of advanced bots as Figure075

1(b) illustrates. Previous methods can not capture076

this characteristic. Namely, there is an urgent need077

for a method that can identify advanced bots.078

In inspire of these challenges, we propose a079

framework BIC (Twitter Bot Detection with Text-080

Graph Interaction and Semantic Consistency). BIC081

separately models the two modalities, text and082

graph, in social media. A text module is adopted083

to encode the textual information and a graph mod-084

ule to encode graph information. BIC employs a085

text-graph interaction module to enable different086

modality information exchange across modalities087

in the learning process. To capture the inconsis-088

tency of advanced bots, BIC leverages a semantic089

consistency module, which employs the attention090

weights and a sample pooling function. Our main091

contributions are summarized as follows:092

• We propose to interact and exchange information093

across text and graph modalities to help detect094

bots. We find that capturing novel bots’ inconsis-095

tency can increase detection performance.096

• We propose a novel Twitter bot detection model,097

BIC. It is an end-to-end model and contains a text-098

graph interaction module to exchange modality099

information and a semantic consistency module100

to capture the inconsistency of advanced bots.101

• We conduct extensive experiments to evaluate102

BIC and state-of-the-art models on two widely103

used datasets. Results illustrate that BIC out-104

performs all baseline methods. Further analyses105

reveal the effectiveness of the text-graph interac-106

tion module and semantic consistency module.107

2 Problem Definition108

We first define the task of Twitter bot detection with109

the text and graph modality. For a Twitter user ui ∈110

U , the text modality contains the description Bi111

and the tweets Si = {Si,j}Ti
j=1, where Ti denotes 112

the tweet count. The graph modality contains the 113

representation fi of ui and the heterogeneous graph 114

G = G(U,E, φ,Re), where U denotes the user set, 115

E denotes the edge set, φ : E −→ Re denotes the 116

relation mapping function and Re is the relation 117

type set. The neighbors of ui can be derived from 118

G as Ni = {ni,j}Jij=1 where Ji is the neighbor 119

count. The goal is to find a detection function 120

f : f(ui) −→ ŷ ∈ {0, 1}, such that ŷ approximates 121

ground truth y to maximize prediction accuracy. 122

3 Methodology 123

Figure 2 displays an overview of our proposed 124

framework named BIC. Specifically, BIC firstly 125

leverages a text module to encode textual infor- 126

mation and a graph module to encode graph infor- 127

mation. BIC then adopts a text-graph interaction 128

module to interact and exchange modality infor- 129

mation in the learning process. To further interact 130

the two modalities, BIC repeats this process for M 131

times. BIC extracts the semantic consistency from 132

the attention weights from the text module with the 133

help of the semantic consistency module. Finally, 134

BIC leverages text modality, graph modality, and 135

semantic consistency vectors to identify bots. 136

3.1 Modality Interaction 137

For simplicity, we omit the subscript of the user. 138

BIC first encodes the text modality and graph 139

modality information to obtain the initial represen- 140

tations. For text modality, BIC employs pre-trained 141

RoBERTa (Liu et al., 2019) to encode description 142

B and tweets {S}Ti=1 into h
(0)
int and {h(0)i }Ti=1. BIC 143

considers h(0)int as the text interaction modality be- 144

cause the description generally defines the user. 145

For graph modality, BIC employs the same encod- 146

ing methods as BotRGCN (Feng et al., 2021c) to 147

get the graph interaction representation g
(0)
int and 148

representations of its neighbors {g(0)i }Ji=1. 149

After obtaining the initial representations, BIC 150

employs M times modality interaction to ensure 151

text and graph information interact completely. We 152

describe the l-th interact process as follows. 153

Text Module BIC puts text representations into a 154

language model to extract textual information, i.e., 155

{h̃(l)int, h̃
(l)
1 , · · · , h̃(l)T } = LM({h(l−1)

int , h
(l−1)
1 , · · · , h(l−1)

T }),
(1) 156

where h̃
(l)
int denotes interaction representation of 157

text modality before interaction. BIC adopts trans- 158
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Figure 2: Overview of our proposed framework BIC.

former with multi-head attention (Vaswani et al.,159

2017) as the language model LM.160

graph module BIC firstly feeds graph represen-161

tations into a graph neural network to aggregate162

information between users and its neighbors, i.e.,163

{ĝ(l)int, ĝ
(l)
1 , · · · , ĝ(l)J } = GNN({g(l−1)

int , g
(l−1)
1 , · · · , g(l−1)

J }).164

BIC adopts relational graph convolutional net-165

works (Schlichtkrull et al., 2018) due to its ability166

to extract heterogeneous information. To measure167

which neighbor is important for bot detection, BIC168

employs multi-head attention for the user, i.e.,169

{g̃(l)int, g̃
(l)
1 , · · · , g̃(l)J } = att({ĝ(l)int, ĝ

(l)
1 , · · · , ĝ(l)J }),170

where g̃
(l)
int denotes interaction representation of171

graph modality before interaction and att denotes172

multi-head attention.173

3.1.1 Text-Graph Interaction Module174

BIC adopts a text-graph interaction module to in-175

teract and exchange information across text and176

graph modality in the learning process. specifically,177

BIC employ a interaction function inter to interact178

the text modality representation h̃
(l)
int and the graph179

modality representation g̃
(l)
int, i.e.,180

(g
(l)
int, h

(l)
int) = inter(g̃

(l)
int, h̃

(l)
int).181

For the detail about inter function, BIC calcu-182

lates the similarity coefficient between modality183

representations, i.e., 184

whh = h̃
(l)
int ⊗ (θ1 · h̃(l)int),

whg = h̃
(l)
int ⊗ (θ2 · g̃(l)int),

wgg = g̃
(l)
int ⊗ (θ2 · g̃(l)int),

wgh = g̃
(l)
int ⊗ (θ1 · h̃(l)int),

(2) 185

where θ1 and θ2 are learnable parameters that 186

transform the modality representations into the 187

interaction-sensitive space, and ‘⊗’ denotes the 188

dot product. BIC then applies a softmax function 189

to derive final similarity weights, i.e., 190

w̃hh, w̃hg = softmax(whh, whg),

w̃gg, w̃gh = softmax(wgg, wgh).
191

BIC finally makes the two representations inter- 192

act through the derived similarity weights, i.e., 193

h
(l)
int = w̃hhh̃

(l)
int + w̃hg g̃

(l)
int,

g
(l)
int = w̃gg g̃

(l)
int + w̃ghh̃

(l)
int.

194

So far, BIC could interact and exchange informa- 195

tion across the two modalities. 196

3.2 Semantic Consistency Detection 197

Since attention weights from the transformer could 198

indicate the correlations and consistency between 199

tweets, BIC adopts the attention weights to ex- 200

tract the semantic consistency information. BIC 201

can obtain the attention weight matrix Mi ∈ 202
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R(T+1)×(T+1) of text representation from equa-203

tion (1) in i-th interaction process. BIC then em-204

ploys a down-sample function to reduce the matrix205

size and obtain what matters in the matrix, i.e.,206

M̃i = sample(Mi), M̃i ∈ RK×K ,207

where K is a hyperparameter indicating the ma-208

trix size. BIC adopts fixed size max-pooling as209

sample function in the experiments. BIC then flat210

the matrix and applies a linear transform to obtain211

the semantic consistency representation, i.e.,212

di = θsc · Flatten(M̃i),213

where θsc is a shared learnable parameter of each214

interaction process. Finally, BIC applies an aggre-215

gating function to combine the representations of216

each interaction process, i.e.,217

d = σ(WD · aggr({di}Mi=1) + bD),218

where WD and bD are learnable parameters, σ de-219

notes activate function, and aggr denotes the aggre-220

gating function, such as concatenate or mean.221

3.3 Training and Inference222

BIC concatenates text modality h
(M)
int , graph modal-223

ity g
(M)
int , and semantic consistency d representation224

to obtain the representation of a user, i.e.,225

z = WD · (h(M)
int ∥g(M)

int ∥d) + bD. (3)226

BIC finally employs a softmax layer to get the227

predicted probability ŷ. We adopt cross entropy228

loss to optimize BIC, i.e.,229

l = −
∑
i∈U

[yi log(ŷi) + (1− yi) log(1− ŷi)] + λ
∑
ω∈θ

ω2,230

where U denotes all users in the training set, θ de-231

notes all training parameters, yi denotes the ground-232

truth label and λ is a regular coefficient.233

4 Experiment234

4.1 Experiment Settings235

More detailed information about the experiment236

settings and the implementation details of BIC can237

be found in the appendix. we submit our code and238

the best parameters as supplementary materials.239

Dataset To evaluate BIC and baselines, we make 240

use of two widely used datasets, Cresci-15 (Cresci 241

et al., 2015) and TwiBot-20 (Feng et al., 2021b). 242

These two datasets provide user follow relation- 243

ships to support graph-based models. TwiBot-20 in- 244

cludes 229, 580 Twitter users, 33, 488, 192 tweets, 245

33, 716, 171 edges while Cresci-15 includes 5, 301 246

Twitter users, 2, 827, 757 tweets, 14, 220 edges. 247

Baselines We compare BIC with Botometer 248

(Davis et al., 2016), Kudugunta et al. (Kudugunta 249

and Ferrara, 2018), Wei et al. (Wei and Nguyen, 250

2019), Alhosseini et al. (Ali Alhosseini et al., 251

2019), BotRGCN (Feng et al., 2021c), Yang et 252

al. (Yang et al., 2020), SATAR (Feng et al., 2021a), 253

and RGT (Feng et al., 2022a). 254

4.2 Main Results 255

We first evaluate whether these methods lever- 256

age text modality, graph modality, and interact 257

modalities. We then benchmark these baselines 258

on Crescie-15 and TwiBot-20, and present results 259

in Table 1. It is demonstrated that: 260

• BIC consistently outperforms all baselines in- 261

cluding the state-of-art methods RGT (Feng et al., 262

2022a) with at least 1% improvement of perfor- 263

mance on two datasets. 264

• The methods leveraged graph modality such as 265

RGT (Feng et al., 2022a) generally outperform 266

other methods that only adopt text modality or 267

other features. SATAR (Feng et al., 2021a) 268

achieves competitive performance with the text 269

modality and the graph modality. BIC further 270

makes these two modalities interact to achieve 271

the best performance. 272

• We conduct the significance test using the un- 273

paired t-test. The improvement between BIC and 274

the second-best baseline RGT is statistically sig- 275

nificant with p-value < 0.005 on Creaci-15 and 276

p-value < 0.0005 on TwiBot-20. 277

In the following, we first study the role of the 278

two modalities and the interaction module in BIC. 279

We then examine the effectiveness of the semantic 280

consistency module in identifying advanced bots. 281

Next, we evaluate the ability of BIC to detect ad- 282

vanced bots. We finally evaluate a specific bot in 283

the datasets to explore how BIC makes the choice. 284
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Table 1: Bot detection performance on Cresci-15 and TwiBot-20 benchmarks. For each baseline except for
Botometer which has fixed results, we run 5 times on the same splits with different random seeds. Text, Graph,
Modality-Int respectively denote whether baseline leverages text modality, graph modality and modality interaction.
Bold and underline indicate the highest and second highest performance. ‘BIC w/o Graph’ and ‘BIC w/o Text’
indicate BIC without the Graph Module and without the Text Module. BIC achieves the best performance.

Method Modalities Cresci-15 TwiBot-20

Text Graph Modality-Int Accuracy F1-score Accuracy F1-score

Yang et al. 77.08 (±0.21) 77.91 (±0.11) 81.64 (±0.46) 84.89 (±0.42)
Botometer 57.92 66.90 53.09 55.13
Kudugunta et al. ✓ 75.33 (±0.13) 75.74 (±0.16) 59.59 (±0.65) 47.26 (±1.35)
Wei et al. ✓ 96.18 (±1.54) 82.65 (±2.47) 70.23 (±0.10) 53.61 (±0.10)
BotRGCN ✓ 96.52 (±0.71) 97.30 (±0.53) 83.27 (±0.57) 85.26 (±0.38)
Alhossini et al. ✓ 89.57 (±0.60) 92.17 (±0.36) 59.92 (±0.68) 72.09 (±0.54)
RGT ✓ 97.15 (±0.32) 97.78 (±0.24) 86.57 (±0.41) 88.01 (±0.41)
SATAR ✓ ✓ 93.42 (±0.48) 95.05 (±0.34) 84.02 (±0.85) 86.07 (±0.70)

BIC w/o Graph ✓ 97.16 (±0.58) 97.80 (±0.46) 85.44 (±0.32) 86.97 (±0.41)
BIC w/o Text ✓ 96.86 (±0.52) 97.57 (±0.39) 85.78 (±0.48) 87.25 (±0.57)
BIC ✓ ✓ ✓ 98.35 (±0.24) 98.71 (±0.18) 87.61 (±0.21) 89.13 (±0.15)

4.3 Text-Graph Interaction Study285

Modality Effectiveness Study We remove the286

text modality representation h
(M)
int and the graph287

modality representation g
(M)
int in equation (3), to288

evaluate the role of each modality. The results are289

illustrated in Table 1. We can conclude that: (i)290

Removing any modality will cause a drop in perfor-291

mance, which illustrates that leveraging and mak-292

ing the two modalities interact can help identify293

bots. (ii) BIC without graph modality can achieve294

the second-best performance on Cresci-15. Other295

ablation settings can achieve competitive perfor-296

mance. It is shown that BIC can derive useful297

information from one modality and the semantic298

consistency representation can help identify bots.299

BIC adopts text and graph modalities and lever-300

ages the text-graph interaction module to make301

information across the two modalities. To further302

examine the ability of BIC to extract modality infor-303

mation, we gradually remove part of one modality304

information and conduct experiments. The results305

in Fig 3 demonstrate that: (i) Every modality in-306

formation benefits the performance of bot detec-307

tion. It suggests that bot detection relies on the308

text modality and the graph modality information.309

(ii) BIC could keep the performance with less in-310

formation of one modality. It illustrates that the311

interaction module is effective in exchanging infor-312

mation across the modalities.313

Interaction Function Study BIC employs an314

interaction function, which transforms representa-315

Figure 3: The performance of BIC trained with data that
part of one modality is gradually removed. The results
illustrate that every modality information benefits the
performance and BIC could keep the performance with
less information of one modality.

tions into an interaction-sensitive space and learns 316

the similarity weights, to exchange the modality 317

information. Apart from our proposed similarity- 318

based interaction, there are several other interaction 319

functions. We replace this function with other func- 320

tions such as mean or MLP, to evaluate the effec- 321

tiveness of our proposed interaction function. We 322

apply the following different interaction functions: 323

• Hard function computes the average of two in- 324

teraction representations to interact. 325

• Soft function utilizes two learnable parameters 326

as weights for two interaction representations to 327

generate new representations. 328

• MLP function concatenates two interaction rep- 329

resentations and feeds the intermediate into an 330

MLP layer to interact. 331
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Table 2: Performance of model with different interaction
functions. The results illustrate the effectiveness of the
proposed similarity-based interaction.

Function Cresci-15 TwiBot-20

Accuracy F1-score Accuracy F1-score

Ours 98.35 98.71 87.61 89.13
w/o interaction 95.89 96.85 85.97 87.42

Hard 96.64 97.41 86.64 88.15
Soft 97.01 97.69 87.06 88.27
MLP 97.38 97.97 86.98 88.44
Text 96.64 97.41 78.53 79.52

Graph 96.45 97.27 86.30 87.65

• Text function feeds the interaction representation332

from text modality into Linear layers.333

• Graph function feeds the interaction representa-334

tion from graph modality into Linear layers.335

The results in Table 2 illustrate that:336

• Almost all interaction strategies outperform meth-337

ods with no interaction, which indicates the ne-338

cessity of utilizing an interaction module to make339

two modalities interactive and exchange informa-340

tion.341

• Our similarity-based modality interaction func-342

tion outperforms others all, which well confirmed343

its efficacy, indicating that it can truly make two344

modalities inform each other and learn the rela-345

tive importance of modalities.346

Interaction Number Study To examine the role347

of the modality information interaction number M ,348

we conduct experiments with different interaction349

numbers and evaluate the model memory cost. The350

results in Figure 4 demonstrate that BIC with 2351

interactions performs the best over other settings.352

Besides, the two-interaction model has relatively353

less memory cost, which makes it the best selection.354

As the number of interaction number increases,355

the performance declines gradually, which may be356

caused by higher complexity increasing the training357

difficulty. Meanwhile, the one-interaction model358

may be deficient for learning so rich information,359

thus leading to unappealing performance.360

4.4 Semantic Consistency Study361

Discrimination Case Study We check the tweets362

of users in the used datasets to determine that hu-363

mans and bots have different semantic consistency364

patterns and that advanced bots may steal genuine365

tweets. We choose a genuine user, a traditional bot,366

Figure 4: Performance of different numbers of model in-
teraction layers and Params used for one training epoch.
The results illustrate that model with 1 interaction layer
has good performance with relatively lower Params.

Figure 5: Representative tweets of a genuine user, a
traditional bot, and an advanced bot. The tweet in red
indicates it has a relatively higher attention weight than
other tweets of the same user. More inconsistency has
been shown between the advanced bot’s tweets in red
and tweets in black.

and an advanced bot. Their representative tweets 367

are displayed in Figure 5 and we can find that novel 368

bots will have more inconsistency in tweets than 369

genuine users and traditional bots which posts sim- 370

ilar rubbish tweets. Next, we check their semantic 371

consistency matrices M̃i and they are shown in 372

Figure 6. We can find that the advanced bot has 373

relatively higher inconsistency in its matrices. 374

Discrimination Ability Study BIC adopts the 375

attention weight from the text module to generate 376

the semantic consistency representation d. We try 377

to find out the extent to which our semantic con- 378

sistency module can distinguish bots from genuine 379

users. We derive consistency matrices M̃i and cal- 380

culate the largest characteristic value. We draw box 381

plots with these characteristic values to find the 382

differences between bots and humans excavated 383
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Figure 6: Semantic consistency matrices of a genuine
user, a traditional bot, and an advanced bot. The result
illustrates that the matrices of advanced bots show more
inconsistency than traditional ones or humans.

Figure 7: The box plot is drawn from the max character-
istic values of the semantic consistency matrices. The
results illustrate that the consistency matrices of humans
and bots show different patterns.

by the module. The results manifested in Figure 7384

demonstrate that the consistency matrices of bots385

and humans exist in differences.386

To evaluate that the semantic consistency repre-387

sentation d can distinguish bots and humans. We388

conduct the k-means algorithm to cluster the repre-389

sentations and calculate the V-measure, which is a390

harmonic mean of homogeneity and completeness.391

BIC achieves 0.4312 of v-measure on Cresci-15392

and 0.3336 on TwiBot-20. More intuitively, we393

adopt t-sne to visualize the representation and the394

results are shown in Figure 8, which shows moder-395

ate collocation for groups of bot and human. It is396

proven that the semantic consistency representation397

can identify bots alone.398

4.5 Advanced Bot Study399

We claim that BIC could identify the advanced bots.400

To evaluate whether BIC can capture the advanced401

bots after 2020 (the TwiBot-20 published time), we402

sample some users related to the pandemic from a403

Figure 8: The t-sne plot of the semantic consistency
representations. The results illustrate that the represen-
tation of humans and the representations of bots are
obviously separated, which indicates the effectiveness
of the semantic consistency module.

Table 3: Bot detection performance on an up-to-date
dataset. BIC outperforms the other two baselines, which
illustrates BIC can better identify advanced bots.

Method Accuracy F1-score

Botometer 55.35 53.99
RGT 66.95 64.48
BIC 67.25 67.78

new Twitter crawl (Feng et al., 2022b) to construct 404

a new dataset. This dataset contains user-follow 405

relationships including 5,000 humans and 5,000 406

bots. We compare BIC with RGT, the second-best 407

baseline, and Botometer, the widely-used bot de- 408

tection tool. We randomly split this dataset into 409

the train set and the test set by 8:2 and train the 410

methods. Table 3 illustrates the results. We can 411

conclude that BIC achieves the best performance, 412

which proves that BIC can capture advanced bots 413

with the help of the text-graph interaction module 414

and the semantic consistency module. 415

4.6 Case Study 416

We study a specific Twitter user to explain how BIC 417

exchanges information across two modalities and 418

learns the relative importance to identify bots. For 419

this user, we study its tweets and neighbors with 420

the top-3 highest attention weight. We then derive 421

similarity weights in Equation (2) to quantitatively 422

analyze it. This user is visualized in Figure 9. We 423

discovered that neighborhood information is more 424

important in this cluster, due to more differences 425

in attention weights of the selected bot’s bot neigh- 426

bors and human neighbors than attention weights of 427

tweets. The conclusion is also reflected in similar- 428

ity weights. The similarity weights of the original 429

interaction representation from text modality are 0 430
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Figure 9: A sample user with its similarity weights
inside the box in the middle. On the left are tweets
with attention weights from the transformer in the text
module. On the right are its neighbors with attention
weights from multi-head attention in the graph module.

and 0.051, while the similarity weights of the orig-431

inal interaction representation from graph modality432

are 1 and 0.949. The results further display the433

effectiveness of similarity-based interaction in that434

it indeed learns the emphasis on modalities.435

5 Related Work436

5.1 Twitter-bot Detection437

Text-based Methods Text-based methods adopt438

techniques in natural language processing to iden-439

tify bots. Wei and Nguyen (2019) adopted multiple440

layers of bidirectional LSTM to conduct bot detec-441

tion. Stanton and Irissappane (2019) proposed to442

leverage generative adversarial networks to detect443

spam bots. Hayawi et al. (2022) adopted a variety444

of features and leveraged LSTM and dense layer445

to learn representations. Existing models can not446

capture the semantic consistency of users, which447

leads to failures to detect the advanced bots.448

Graph-based Methods Social network consist449

of rich information like social familiarity (Dey450

et al., 2017, 2018), attribution similarity (Peng451

et al., 2018), and user interaction (Viswanath et al.,452

2009). The graph constructs on Twittersphere453

help to detect bots. Feng et al. (2021a) leveraged454

user neighbor information combined with tweet455

and profile information. Graph neural networks456

are utilized to improve the Twitter bot detectors457

and can achieve great performance (Magelinski458

et al., 2020b; Dehghan et al., 2022; Yang et al.,459

2022). Ali Alhosseini et al. (2019) used graph con-460

volutional graph networks to aggregate user infor-461

mation. Feng et al. (2021c) constructed a hetero-462

geneous graph and adopted relational graph con-463

volutional graph networks to identify bots. Pre-464

vious models leverage the text or graph modality 465

alone without information interaction. We believe 466

that exchanging modality information across two 467

modalities can help improve performance. 468

5.2 Text-Graph Interaction 469

Text information is the basis of natural language 470

processing and pre-trained language models are the 471

dominant framework in capturing text features (De- 472

vlin et al., 2019; Liu et al., 2019; Lewis et al., 473

2020). Meanwhile, graph neural networks are in- 474

troduced to tackle NLP tasks, like fake news detec- 475

tion (Mehta et al., 2022), dialogue state tracking 476

(Feng et al., 2022c), and machine translation (Xu 477

et al., 2021). As both pre-trained LMs and graph 478

structure are proved to be effective, Text-graph 479

interaction was also widely used in the area of nat- 480

ural language processing. Some works interacted 481

with two modalities hierarchically such as using 482

encoded representations from knowledge graph to 483

augment the textual representation (Mihaylov and 484

Frank, 2018; Lin et al., 2019; Yang et al., 2019), or 485

utilizing text representations to enhance the inferen- 486

tial capability of graph (Feng et al., 2020; Lv et al., 487

2020). More Recently, GreaseLM (Zhang et al., 488

2022) proposed a model to allow two modalities 489

to interact between layers by interaction nodes, in 490

which truly deep interaction was achieved. 491

6 Conclusion 492

Twitter bot detection is a challenging task with 493

increasing importance. To conduct a more compre- 494

hensive bot detection, we proposed a bot-detection 495

model named BIC based. BIC interacts and ex- 496

changes information across text modality and graph 497

modality by a text-graph interaction module. BIC 498

contains a semantic consistency module that de- 499

rives the inconsistency from tweets by the attention 500

weight to identify advanced bots. We conducted 501

extensive experiments on two widely used bench- 502

marks to demonstrate the effectiveness of BIC in 503

comparison to competitive baselines. Further ex- 504

periments also bear out the effectiveness of modal- 505

ity interaction and semantic consistency detection. 506

In the future, we plan to explore better interaction 507

approaches. 508
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A Limitations773

The BIC framework has two minor limitations:774

• Our proposed BIC model utilizes representa-775

tion from three different modalities, namely text,776

graph, and semantic consistency, and we intro-777

duce an interaction mechanism to allow informa-778

tion exchange between text and graph. However,779

whether interaction and information exchange780

is necessary among all three modalities is still781

an open question. We leave it to future work to782

study the necessary by introducing interaction783

modules.784

• The new dataset we construct is limited to the785

topic of the pandemic while other popular topics786

are not considered. However, Twitter bots are787

Table 4: Hyperparameter settings of BIC.

Hyperparameter Value

model layer count M 2
graph module input size 768
graph module hidden size 768
text module input size 768
text module hidden size 768
epoch 30
early stop epoch 10
batch size 64
dropout 0.5
learning rate 1e-4
L2 regularization 1e-5
lr_scheduler_patience 5
lr_scheduler_step 0.1
Optimizer RAdamW

likely to behave differently with different top- 788

ics. We leave it to future works to analyze how 789

current approaches perform against bots with dif- 790

ferent topics. 791

B Social Impact 792

Our proposed BIC is a Twitter bot detection model 793

that leverages text-graph interaction and semantic 794

consistency modules. However, there are potential 795

biases or discrimination that exist among the text, 796

graph, or semantic consistency-based representa- 797

tion. For instance, some individuation users may 798

be divided into the bot class for they may behave 799

relevantly ’abnormal’. In conclusion, we suggest 800

that the application of the Twitter bot detection 801

model should be supervised by users and experts. 802

C Implementation Details 803

We implement our framework with pytorch (Paszke 804

et al., 2019), PyTorch geometric (Fey and Lenssen, 805

2019), and the transformer library from hugging- 806

face (Wolf et al., 2019). We limit each user’s tweet 807

number to 200, and for those who have posted 808

fewer tweets, we bring their initial embeddings up 809

to full strength with vectors made up of all zeros. 810

C.1 Hyperparamter Setting 811

Table 4 presents the hyperparameter settings of 812

BIC. For early stopping, we utilize the package 813

provided by Bjarten1. 814

1https://github.com/Bjarten/early-stopping-pytorch

11

https://doi.org/10.18653/v1/2021.emnlp-main.663
https://doi.org/10.18653/v1/2021.emnlp-main.663
https://doi.org/10.18653/v1/2021.emnlp-main.663
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860
http://arxiv.org/abs/2201.08860


C.2 Computation815

Our proposed method totally has 4.2M learnable816

parameters and 0.92 FLOPs2 with hyperparame-817

ters presented in Table 4. Our implementation is818

trained on an NVIDIA GeForce RTX 3090 GPU819

with 24GB memory, which takes approximately820

0.06 GPU hours for training an epoch.821

D Baseline Details822

• SATAR (Feng et al., 2021a) leverages the tweet,823

profile, and neighbor information and employs824

a co-influence module to combine them. It pre-825

trains the model with the follower count and fine-826

tunes it to detect bots.827

• Botometer (Davis et al., 2016) is a publicly avail-828

able service that leverages thousands of features829

to evaluate how likely a Twitter account exhibits830

similarity to the known characteristics of typical831

bots.832

• Kudugunta et al. (Kudugunta and Ferrara, 2018)833

subdivide bot-detection task to account-level clas-834

sification and tweet-level classification. In the835

former, they combine synthetic minority over-836

sampling (SMOTE) with undersampling tech-837

niques, and in the latter they propose an architec-838

ture that leverages a user’s tweets.839

• Wei et al. (Wei and Nguyen, 2019) propose a bot840

detection model with a three-layer BiLSTM to841

encode tweets, before which pre-trained GloVe842

word vectors are used as word embeddings.843

• Alhosseini et al. (Ali Alhosseini et al., 2019)844

utilize GCN to learn user representations from845

metadata such as user age, statuses_count, ac-846

count length name, followers_count to classify847

bots.848

• BotRGCN (Feng et al., 2021c) constructs a849

framework based on relational graph convolu-850

tional network (R-GCN) by leveraging repre-851

sentatives derived from the combination of user852

tweets, descriptions, numerical and categorical853

property information.854

• Yang et al. (Yang et al., 2020) adopt random855

forest with account metadata for bot detection,856

which is proposed to address the scalability and857

generalization challenge in Twitter bot detection.858

2https://github.com/Lyken17/pytorch-OpCounter

• RGT (Feng et al., 2022a) leverages relation and 859

influence heterogeneous graph network to con- 860

duct bot detection. RGT first learns users’ rep- 861

resentation under each relation with graph trans- 862

formers and then integrates representations with 863

the semantic attention network. 864

E Evaluation Details 865

We elaborate on the evaluation of our baselines 866

here. For methods without text and graph modal- 867

ities. Lee et al. (2011) adopt random forest clas- 868

sifier with Twitter bot features. Yang et al. (2020) 869

adopt random forest with minimal account meta- 870

data. Miller et al. (2014) extract 107 features from 871

a user’s tweet and metadata. Cresci et al. (2016) 872

encodes the sequence of a user’s online activity 873

with strings. Botometer (Davis et al., 2016) lever- 874

ages more than one thousand features. All of them 875

extract Twitter bot features, without dealing with 876

these features in graph modality or text modality. 877

For methods with only text modality, SA- 878

TAR (Feng et al., 2021a) leverages LSTM for its 879

tweet-semantic sub-network. Kudugunta and Fer- 880

rara (2018) adopt deep neural networks for tack- 881

ling user tweets. Wei and Nguyen (2019) propose 882

a model with a three-layer BiLSTM. All of them 883

deal with user information in text modalities. 884

For methods with only graph modality, 885

BotRGCN (Feng et al., 2021c) utilizes a relational 886

graph convolutional network in its proposed frame- 887

work. Ali Alhosseini et al. (2019) adopt graph 888

convolution network to learn user representations 889

and classify bots. RGT (Feng et al., 2022a) lever- 890

ages heterogeneous graph network to conduct bot 891

detection. All of them deal with user information 892

in graph modalities. 893

F Semantic consistency Study 894

Performance study To find how much semantic 895

consistency detection helps the overall BIC perfor- 896

mance with different parameter settings, we exper- 897

iment with different semantic consistency layers, 898

consistency matrix pooling sizes, and consistency 899

vector aggregation manners. The results shown in 900

Fig 10 demonstrate that semantic consistency truly 901

enhances the model performance. Although slight, 902

differences are manifested in different parameter 903

settings, which could be further studied. 904
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Figure 10: Accuracy of BIC with different settings of
considering semantic consistency. The results illustrate
the semantic consistency module can improve the per-
formance.

G Scientific Artifact905

The BIC model is implemented with the help of906

many widely-adopted scientific artifacts, including907

PyTorch (Paszke et al., 2019), NumPy (Harris et al.,908

2020), transformers (Wolf et al., 2019), sklearn (Pe-909

dregosa et al., 2011), PyTorch Geometric (Fey and910

Lenssen, 2019). We commit to making our code911

and data publicly available to facilitate reproduc-912

tion and further research.913
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