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Abstract

Recent advancements in speech-to-speech dia-001
logue systems leverage LLMs for multimodal002
interactions, yet they remain hindered by fine-003
tuning requirements, high computational over-004
head, and text-speech misalignment. Exist-005
ing speech-enabled LLMs often degrade con-006
versational quality by modifying the LLM,007
thereby compromising its linguistic capabil-008
ities. In contrast, we propose LLMVoX, a009
lightweight 30M-parameter, LLM-agnostic,010
autoregressive streaming TTS system that gen-011
erates high-quality speech with low latency,012
while fully preserving the capabilities of the013
base LLM. Our approach achieves a signif-014
icantly lower Word Error Rate compared to015
speech-enabled LLMs, while operating at com-016
parable latency. By decoupling speech synthe-017
sis from LLM processing via a multi-queue018
token streaming system, LLMVoX supports019
seamless, infinite-length dialogues. Its plug-020
and-play design also facilitates extension to021
various tasks with different backbones. Fur-022
thermore, LLMVoX generalizes to new lan-023
guages with only dataset adaptation, attain-024
ing a low Character Error Rate on an Arabic025
speech task. Additionally, we have integrated026
LLMVoX with a Vision-Language Model to027
create an omni-model with speech, text, and028
vision capabilities, without requiring additional029
multimodal training. Our source code and030
models will be made publicly available.031

1 Introduction032

Large Language Models (LLMs) have excelled in033

the new era of conversational AI, transforming how034

machines understand, generate, and interact with035

humans. While most LLMs were initially designed036

for text-based interactions, there are some recent037

efforts toward more natural and intuitive speech-to-038

speech dialogue systems, allowing users to engage039

with AI models through spoken language.040

Existing speech-enabled LLMs typically aims to041

unify text and speech processing within a single,042
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GLM-4-Voice 5.30 6.40
Freeze-Omni 4.23 14.05
MiniCPM-o 2.6 5.84 10.60

LLMVoX (Ours) 6.88 3.70

Figure 1: Speech quality (WER) vs latency (millisec-
onds) comparison of recent speech-enabled LLMs. Our
LLMVoX is LLM-agnostic streaming TTS that gener-
ates high-quality speech (lower WER) comparable to
XTTS (Casanova et al., 2024) while operating 10×
faster. In the plot, △ represents LLM-dependent meth-
ods, and ⋆ denotes LLM-agnostic methods. The size of
each symbol is proportional to the GPT score, indicating
overall response quality. All methods are evaluated un-
der similar settings and use similarly sized base LLMs.

fine-tuned LLM. Recent models such as Kyōtai 043

Moshi (Défossez et al., 2024), Mini-Omni (Xie 044

and Wu, 2024), LLaMA-Omni (Fang et al., 2024), 045

and Freeze-Omni (Wang et al., 2024) extend or 046

modify pretrained text-based LLMs, enabling them 047

to directly handle spoken inputs and outputs. Al- 048

though these end-to-end systems can offer faster 049

and streamlined speech generation, they require 050

large-scale fine-tuning of LLM on multimodal data. 051

This fine-tuning with speech data often compro- 052

mises the original reasoning and expressive capabil- 053

ities of the base LLM (Chen et al., 2024b; Défossez 054

et al., 2024; Kalajdzievski, 2024; Zhai et al., 2023), 055

while also imposing substantial computational and 056

data requirements for speech adaptation. Moreover, 057

these architectures often condition speech adapta- 058

tion on LLM hidden states, making them inherently 059

LLM-dependent, thereby requiring re-adaptation 060

for each base LLM. 061
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Alternatively, an LLM-agnostic approach is to062

leverage a cascaded pipeline, where speech is con-063

verted to text via automatic speech recognition064

(ASR), processed by an LLM to generate a tex-065

tual response, and finally passed through a text-to-066

speech (TTS) module for speech output. This cas-067

caded approach offers several advantages, includ-068

ing the availability of diverse off-the-shelf ASR069

(Radford et al., 2023), LLM (Fang et al., 2024),070

and TTS (Casanova et al., 2024) models, the preser-071

vation of base LLM capabilities, improved speech072

quality, and an LLM-agnostic design that allows073

seamless adaptation to any base LLM in a plug-and-074

play manner, without the need for computationally075

expensive model retraining. However, such cas-076

caded approaches often introduce high latency (see077

Cascaded-XTTS in Figure 1), making real-time078

interactions challenging. The primary reason for079

this high latency is the incompatibility between080

the autoregressive nature of LLM-based text gen-081

eration and conventional TTS models, which typ-082

ically process text inputs collectively, despite the083

text being available incrementally from LLM. This084

prevents speech generation from starting until the085

entire text response, or a large chunk of it, has086

been generated by the LLM. Furthermore, many087

existing TTS models rely on non-streaming speech088

decoders, leading to a larger delay between text089

and speech generation.090

To address the aforementioned limitations091

of existing speech-enabled LLMs, we pro-092

pose LLMVoX, an autoregressive, LLM-agnostic093

streaming framework. It aims to preserve the un-094

derlying LLM’s capabilities by completely decou-095

pling speech synthesis from the LLM, while en-096

abling high-quality, low-latency speech generation097

(Figure 1) in an autoregressive setting, running in098

parallel with the LLM’s text generation.099

1.1 Contributions100

Our LLMVoX leverages a lightweight transformer101

(Waswani et al., 2017) to generate discretized102

speech tokens in an autoregressive manner from103

streaming LLM text, making it straightforward104

to “plug” into any existing LLM pipeline without105

model retraining or fine-tuning. LLMVoX adopts a106

multi-queue streaming approach to enable continu-107

ous and potentially infinite-length speech genera-108

tion. By maintaining acoustic continuity and avoid-109

ing awkward pauses during extended dialogues,110

this design helps sustain a fluid user experience111

with minimal latency of 475 milliseconds for the112

entire cascaded pipeline including ASR (Radford 113

et al., 2023), LLaMA-3.1-8B (Fang et al., 2024), 114

and LLMVoX (Figure 1). 115

Furthermore, we demonstrate the generalization 116

ability of the LLMVoX architecture to languages 117

other than English by adapting it to Arabic for 118

seamless plugging with Arabic LLM like Jais (Sen- 119

gupta et al., 2023).This adaptation requires only a 120

simple change in the LLMVoX training data to 121

Arabic, without any architectural modifications, 122

such as explicit Grapheme-to-Phoneme (G2P) con- 123

version (Nguyen et al., 2023; Cherifi and Guerti, 124

2021; Jung et al., 2006), and can be similarly ap- 125

plied to any new language. Moreover, we inte- 126

grated LLMVoX with a Vision Language Model 127

(VLM) to obtain an omni-model with speech, text, 128

and vision capabilities without explicit multimodal 129

training. The key contributions of our method 130

are summarized below: 131

(i) We introduce LLMVoX, a lightweight 30M- 132

parameter, LLM-agnostic, autoregressive stream- 133

ing TTS framework that offers a plug-and-play 134

solution for seamless integration with any off-the- 135

shelf LLM or VLM—without fine-tuning or archi- 136

tectural modifications. 137

(ii) We use a multi-queue streaming mechanism 138

that enables continuous, low-latency speech genera- 139

tion and infinite-length speech, effectively adapting 140

to LLMs with different context lengths. 141

(iii) Our comprehensive experiments demonstrate 142

that LLMVoX performs favorably compared to 143

state-of-the-art speech-enabled LLMs in speech 144

quality and latency while preserving the underly- 145

ing LLM capabilities. Our cascaded system with 146

LLMVoX achieves a WER of 3.70, maintains high 147

speech quality with a UTMOS of 4.05, and delivers 148

an end-to-end latency of 475ms (see Figure 1). 149

(iv) We demonstrate LLMVoX’s ability to general- 150

ize to other languages, such as Arabic, by simply 151

modifying the training data-without any architec- 152

tural changes. To this end, we generated 1,500 153

hours (450k pairs) of a synthetic, single-speaker 154

Arabic text-speech dataset . 155

(v) Adapting LLMVoX to Arabic results in the first 156

streaming, autoregressive Arabic speech gener- 157

ator that can be seamlessly integrated with any 158

Arabic LLM, such as Jais (Sengupta et al., 2023), 159

to create Arabic speech-enabled LLMs. LLMVoX 160

achieves a CER of ∼ 8% comparable to even non- 161

streaming Arabic TTS methods, while operating at 162

lower latency—demonstrating the scalability and 163

adaptability of our approach. 164
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(vi) We further integrate LLMVoX with QWen 2.5-165

VL-7B VLM (Team, 2025) to obtain an omni-166

model with speech, text, and vision capabilities167

that do not require explicit multimodal training.168

This model performs favorably when compared169

to the state-of-the-art omni-model, MiniCPM-o170

2.6 (Yao et al., 2025), in visual speech question an-171

swering on LLaVA-Bench (in the wild) (Liu et al.,172

2024), while achieving 30% lower latency.173

2 Related Work174

Here, we review recent speech-enabled LLMs, fol-175

lowed by various speech tokenization methods em-176

ployed in TTS models and speech-enabled LLMs.177

Speech-enabled LLMs: Models such as Qwen-2178

Audio (Chu et al., 2024), VITA (Fu et al., 2024),179

Ichigo (Dao et al., 2024), and Baichuan-Omni (Li180

et al., 2024) append speech adapters to LLMs for181

speech-to-text tasks, yet still rely on separate TTS182

modules, inheriting latency issues from cascaded183

pipelines. SpeechGPT (Zhang et al., 2023a), Au-184

dioPaLM (Rubenstein et al., 2023), EMOVA (Chen185

et al., 2024a), and AnyGPT (Zhan et al., 2024) in-186

tegrate speech tokens directly into LLM vocabular-187

ies for end-to-end multimodal inference; however,188

as chain-of-modality methods, they incur latency189

by waiting for the complete text response before190

speech generation. Recent speech-enabled LLMs191

targeting low-latency interactions include Kyōtai192

Moshi (Défossez et al., 2024), which employs a193

dual-channel architecture with Mimi Neural Audio194

Codec for real-time dialogue; Mini-Omni (Xie and195

Wu, 2024), which combines text and speech model-196

ing with batch-parallel inference to reduce delays;197

and LLaMA-Omni (Fang et al., 2024), which uses198

a CTC-based mechanism (latency ∼236ms). GLM-199

4-Voice (Zeng et al., 2024) trains on a trillion bilin-200

gual tokens with a low-bitrate (175bps) tokenizer201

for high-fidelity synthesis at higher compute cost;202

MiniCPM-o 2.6 (Yao et al., 2025, 2024) adopts203

an omni-modal LLM with a streaming speech de-204

coder for real-time synthesis. Closer to our ap-205

proach, Freeze-Omni (Wang et al., 2024) mitigates206

catastrophic forgetting by freezing the base LLM207

and integrating speech-specific modules. They em-208

ploy a 3 stage training where LLM parameters209

are kept frozen throughout but in the final stage210

of training, Freeze-Omni conditions its speech211

decoder on LLM hidden states, necessitating re-212

training the speech components for any new base213

LLM, thereby limiting its plug-and-play capability.214

Speech Tokenization: Mapping waveforms to dis- 215

crete tokens compatible with transformers has ad- 216

vanced speech-to-speech modeling. Neural acous- 217

tic codecs (e.g., EnCodec (Défossez et al., 2022), 218

LauraGPT (Du et al., 2023)) employ residual vec- 219

tor quantization (RVQ) for high-fidelity synthesis; 220

hybrid approaches (e.g., SpeechTokenizer (Zhang 221

et al., 2023b)) use hierarchical RVQ layers to en- 222

hance phonetic representation; and supervised to- 223

kenizers (e.g., CosyVoice (Du et al., 2024)) inte- 224

grate vector quantization into ASR for improved 225

text-speech alignment. Mimi (Défossez et al., 226

2024) employs split-RVQ for balanced phonetic 227

discrimination and quality. 228

3 Methodology 229

Our proposed LLMVoX system in Figure 2 is a 230

fully autoregressive Text-to-Speech (TTS) frame- 231

work designed to convert text outputs from an up- 232

stream Large Language Model (LLM) into high- 233

fidelity streaming speech. The central motivation 234

behind our design is to decouple the speech syn- 235

thesis component from the text-generation process 236

so that the inherent reasoning and expressive ca- 237

pabilities of the LLM remain unaltered while not 238

compromising latency. By recasting TTS as a to- 239

ken prediction task over discrete acoustic units, we 240

leverage Transformers architecture (Waswani et al., 241

2017) and neural audio representations to achieve 242

natural, low-latency speech generation. 243

In our approach, the speech signal is represented 244

as a sequence of discrete tokens drawn from a fixed 245

vocabulary of 4096 entries. These tokens are gener- 246

ated by a neural audio codec, and the speech token 247

is predicted token-by-token in an autoregressive 248

manner. Figure 2 provides an overview of the over- 249

all architecture, where phoneme-aware embeddings 250

derived from Grapheme-to-Phoneme (G2P) (Zhu 251

et al., 2022) model are combined with previous 252

acoustic context and processed by a decoder-only 253

Transformer to predict the next speech token. 254

3.1 Neural Audio Tokenization 255

To model speech generation as an autoregressive 256

task using Transformers (Wang et al., 2023), we 257

use a neural audio codec that discretizes the con- 258

tinuous audio waveform using a single-layer resid- 259

ual vector quantization (RVQ) such as WavTok- 260

enizer (Ji et al., 2024). WavTokenizer yields a 261

compact representation that supports high-quality 262

speech reconstruction while keeping sequence 263
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Phoneme Embedding layer

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S(t-1) S(T) EOS......
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Masked Self-
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Figure 2: Overview of the proposed architecture. Text from the LLM is tokenized via a ByT5-based Grapheme-to-
Phoneme(G2P) model, producing byte-level phoneme embeddings (teal). These are concatenated with the previous
speech token’s feature vector (blue), L2-normalized, and fed into a decoder-only Transformer to generate the next
token. A neural codec (WavTokenizer) decoder (orange) reconstructs speech every n speech tokens predicted.

lengths manageable. Given a 24 kHz waveform x,264

the encoder Enc(·) extracts latent feature vectors265

{f1, f2, . . . , fT }, where T is the number of tokens.266

Each feature ft is quantized via St = VQ(ft) with267

St ∈ {1, . . . , 4096}. Typically, 40–75 tokens rep-268

resent one second of speech. The decoder Dec(·)269

then reconstructs the audio waveform from these270

discrete token indices.271

3.2 Byte-Level Grapheme-to-Phoneme272

Embedding273

To infuse phonetic information into the synthe-274

sis process without incurring the overhead of ex-275

plicit phoneme prediction, we employ the embed-276

ding layer of a ByT5-based Grapheme-to-Phoneme277

(G2P) model (Zhu et al., 2022). This decision is278

driven by two main considerations: (1) Phonetic279

Richness: This ByT5 based G2P model is fine-280

tuned on over 100 languages, so its embeddings281

capture subtle phonetic similarities and distinctions,282

ensuring accurate pronunciation, and (2) Computa-283

tional Efficiency: By directly reusing the learned284

embeddings as a “table lookup”, we avoid extra285

computation needed for explicit phoneme conver-286

sion, thus reducing latency.287

Embedding Extraction and Padding Alignment.288

Let t̃1, t̃2, . . . , t̃N denote the sequence of words289

produced by the LLM. Each word t̃i is decom-290

posed into byte-level sub-tokens using the ByT5 to-291

kenizer, i.e., t̃i → [βi
1, β

i
2, . . . , β

i
ni
], where ni is the292

number of sub-tokens for token t̃i. Let M be the to- 293

tal number of sub-tokens from all text tokens. Each 294

sub-token βi
j is then mapped to an embedding vec- 295

tor as bi
j = EmbedByT5(β

i
j), where bi

j ∈ R256. 296

The ground-truth speech is tokenized into a se- 297

quence of T discrete speech tokens using WavTo- 298

kenizer(Ji et al., 2024), where typically T > M . 299

To align the length mismatch we pad the sub-token 300

sequence to length T . Formally, the padded text em- 301

bedding sequence {b1,b2, . . . ,bT } is defined as: 302

bt =

{
EmbedByT5(βt), if 1 ≤ t ≤ M,

bPAD, if M < t ≤ T,
303

where βt is the t-th sub-token and bPAD ∈ R256 304

is the embedding for the <PAD> token (obtained 305

from the ByT5 embedding layer)(Xue et al., 2022). 306

Although bPAD does not encode phonetic infor- 307

mation, the Transformer’s self-attention mecha- 308

nism will use context from the previous inputs 309

to refine its representation. 310

3.3 Input Representation 311

At each time step t (t = 1, . . . , T ), the input vector 312

is constructed by concatenating the phoneme em- 313

bedding bt ∈ R256 with the latent acoustic feature 314

vector ft−1 ∈ R512 from the previous speech token 315

St−1, forming xt = [bt; ft−1] ∈ R768. This vector 316

is L2-normalized, and a learnable positional em- 317

bedding rt ∈ R768 is added, yielding zt = xt + rt. 318
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Algorithm 1 Streaming Inference with Adaptive
Chunk Size (Parallel Text Generation)
Require: Speech query xuser
Ensure: Real-time speech x̂
1: ASR-Text← ASR(xuser)
2: LLM-Text← LLM(ASR-Text) // Generate text to-

kens in parallel
3: Enqueue generated text tokens into FIFO queueQ0

4: Split Q0 into FIFO queues Q1 and Q2 (by sentence
boundaries)

5: for all i ∈ {1, 2} in parallel do
6: {S1, . . . , SM} ← LLMVoXi(Qi) // Generate

speech tokens
7: chunk_size← n, startIdx← 1
8: while startIdx ≤M and speech ongoing do
9: endIdx ← min(startIdx + chunk_size −

1,M)

10: Decode {SstartIdx, . . . , SendIdx} → x̂
(m)
i ; En-

queue into Pi

11: startIdx ← endIdx + 1, chunk_size ← 2 ·
chunk_size

12: end while
13: end for
14: Stream speech: Dequeue and stream chunks from P1

and P2 concurrently until complete.

The sequence {z1, z2, . . . , zT } is then fed into the319

decoder-only Transformer as shown in Figure 2.320

3.4 Decoder-Only Transformer for Speech321

Token Generation322

The core of our synthesis model is a lightweight323

decoder-only Transformer (4 layers) that au-324

toregressively predicts the sequence of speech325

tokens S1, S2, . . . , ST . Our objective is to326

model the conditional probability p
(
St |327

S1, S2, . . . , St−1, {z1, z2, . . . , zT }, θ
)

for each328

t = 1, . . . , T , where θ denotes the transformer’s.329

Moreover, At t = 1, no previous speech token is330

available. We thus initialize the acoustic context331

with a zero tensor ensuring that the model receives332

a consistent starting signal.333

3.5 Training Objective and Procedure334

Training LLMVoX involves minimizing the cross335

entropy loss over the ground-truth speech token336

sequence {S1, . . . , ST }:337

L = −
T∑
t=1

log p
(
St | S<t, z, θ

)
.338

A causal mask is applied within the Transformer to339

enforce the autoregressive property.340

4 Streaming Inference341

We adopt a low-latency streaming inference342

pipeline (Figure 3) for real-time speech dialouge343

system. Given the user’s speech input xuser, we344

ASR

LLM

T1 T2 T3 T4

T1 T 2 T 3 T 4 . T 5 T 6 T 7

LLMVoX - 2LLMVoX - 1

Toggle between Queues

Consumer Queue 1

T5 T6 T7

Consumer Queue 2

<eos>S1 S2 S3 S4 S5 S6 ....

Neural Codec Decoder

Playing Chunk 1 from sentence 1

Producer Queue 1

Sn Audio Chunk 1 .... Audio Chunk 2

<eos>S1 S2 S3 S4 S5 S6 ....

Neural Codec Decoder

Playing Chunk 1 from sentence 2

Producer Queue 2

Sn Audio Chunk 1 .... Audio Chunk 2

Figure 3: Overview of our streaming inference pipeline.
Two replica TTS modules process text in parallel from
two queues and place them into two producer queues.

first transcribe it using an ASR model (e.g., Whis- 345

per) to obtain tquery = ASR(xuser). An LLM then 346

generates a stream of words {t̃1, t̃2, . . . , t̃N} = 347

LLM(tquery), which are alternately enqueued into 348

two FIFO queues, Q1 and Q2, based on sen- 349

tence boundaries. Two replica TTS modules, 350

LLMVoX1 and LLMVoX2, concurrently dequeue 351

words from Q1 and Q2 and predict speech to- 352

kens {S1, S2, . . . , ST } = LLMVoXi(Qi) for i ∈ 353

{1, 2}. Every n speech token generated is then 354

decoded into speech by WavTokenizer decoder 355

and placed in producer queues P1 and P2 accord- 356

ingly which is then streamed to the user immedi- 357

ately ensuring uninterrupted playback. The initial 358

chunk size is n tokens, and after each segment is 359

decoded, the chunk size doubles, leveraging the 360

playback interval of previous speech to allow extra 361

processing time as decoding larger chunks gives 362

better speech output (Figure: 6). This toggling 363

mechanism seamlessly handles long or continuous 364

text without requiring models with an extended or 365

large context window. 366

5 Experimental Settings 367

Training Dataset: We use the VoiceAssistant- 368

400K dataset from the Mini-Omni series (Xie and 369

Wu, 2024), which contains over 400K GPT-4o- 370

generated question-answer pairs with correspond- 371

ing synthesized speech, curated for speech assis- 372

tant fine-tuning. Our training pipeline uses only the 373

answer text and synthetic speech, resulting in ap- 374

proximately 2,200 hours of single-speaker English 375

speech data. For Arabic, we collected 450K text 376

entries of varying lengths from diverse Hugging 377
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Face corpora, cleaned the data, and generated cor-378

responding speech using XTTS (Casanova et al.,379

2024) at a low-temperature setting, yielding about380

1,500 hours of single-speaker Arabic speech data.381

Training Configuration: Our streaming TTS382

model is a 4-layer, decoder-only Transformer383

(nembd = 768, nhead = 8) trained with a micro-384

batch size of 4, gradient_accumulation_steps385

of 8, and a context block size of 8192 tokens. We386

use AdamW(Loshchilov et al., 2017) (lr=3×10−4,387

weight_decay=0.1) with a 50K-step warmup, then388

decay the learning rate over 1M steps to 3× 10−6.389

Gradients are clipped at a norm of 1.0. The system390

runs on 4 A100 GPUs for around 3 days, using391

bfloat16 precision. We use flash-attention(Dao392

et al., 2022) for efficient and fast training while also393

using KV-Cache while inferencing. Under these394

settings, we separately train English and Arabic395

models on 2,200 and 1,500 hours of single-speaker396

speech data, respectively.397

6 Results and Evaluation398

6.1 Evaluation Tasks399

We evaluate LLMVoX on five key tasks: General400

QA Capability assesses the model’s ability to gen-401

erate coherent and informative responses to general402

queries, reflecting the preservation of the LLM’s403

reasoning; Knowledge Retention measures the404

accuracy on fact-based questions to ensure robust405

information; Speech Quality examines the natural-406

ness and clarity of the generated speech; Speech-407

Text Alignment verifies the consistency between408

the synthesized speech and corresponding text gen-409

erated by the LLM. Latency is defined as the total410

elapsed time from when a query is submitted to411

when the model begins speaking.412

6.2 Evaluation Datasets and Baselines413

Datasets. We evaluate LLMVoX using diverse414

datasets spanning multiple dimensions. For Gen-415

eral QA, we use questions from the AlpacaEval416

helpful-base and Vicuna subset (Li et al., 2023),417

excluding math-related queries. For Knowledge418

QA, 100 fact-based questions are sourced from419

Web Questions (Berant et al., 2013) and TriviaQA-420

verified (Joshi et al., 2017). To assess multilingual421

adaptability, we synthesize approximately 1,000422

Arabic sentences from various domains. Addi-423

tionally, for Chunk Size Analysis, we synthesize424

around 1,000 English sentences covering various425

topics, benchmarking the effects of chunk size426

on WER, CER, UTMOS, and latency. We also 427

evaluate on Visual Speech Question Answering 428

task (VSQA) on LLaVA-Bench (In-the-Wild) (Liu 429

et al., 2024), which consists of 24 diverse im- 430

ages and 60 open-ended questions spanning var- 431

ious domains that suit conversational systems. We 432

convert the text question to speech queries using 433

XTTS (Casanova et al., 2024). 434

Comparison Models. LLMVoX is com- 435

pared against recent speech-enabled LLMs: 436

SpeechGPT (Zhang et al., 2023a) (7B, expanded 437

vocabulary), Mini-Omni (Xie and Wu, 2024) 438

(0.5B, trained on VoiceAssistant-400K), Llama- 439

Omni (Fang et al., 2024) (LLaMA-3.1-8B with 440

CTC speech head), Moshi (Défossez et al., 2024) 441

(7B Helium model, dual-channel processing), 442

GLM-4-Voice (Zeng et al., 2024) (9B bilingual 443

model with ultra-low bitrate tokenizer), and 444

Freeze-Omni (Wang et al., 2024) (7B model 445

with frozen LLM core) and MiniCPM-o 2.6 446

(Yao et al., 2025). We also benchmark a cas- 447

caded pipeline with non-streaming TTS like 448

XTTS(Casanova et al., 2024). All the models were 449

evaluated on the basis of the best configuration 450

given in the paper or the default configuration 451

in the codebase. For Arabic TTS, no stream- 452

ing comparison exists; hence we compare to 453

non-streaming models - XTTS(Casanova et al., 454

2024), ArTST (Toyin et al., 2023), FastPitch 455

(Łańcucki, 2021), Tacotron 2 (Elias et al., 2021) 456

and Seamless (Barrault et al., 2023) in Table 3. 457

6.3 Evaluation Protocol 458

General QA and Knowledge Tasks: The ques- 459

tions are first converted into speech using XTTS 460

with multiple speaker modes to introduce input 461

variation. Model streaming speech responses are 462

saved and transcribed using Whisper-Large-v3 463

(Radford et al., 2023), and GPT-4o evaluates the 464

quality and correctness of these transcriptions. 465

For General QA, responses are scored from 1 466

to 10 based on coherence, informativeness, and 467

fluency, following MT-Bench protocols (Zheng 468

et al., 2023). For Knowledge QA, GPT-4o com- 469

pares responses against ground-truth answers, with 470

scores 0 for incorrect and 1 for correct response. 471

The total accuracy score is then normalized from 472

1 to 10. Details of the evaluation prompts are 473

given in Appendix 9.1. 474

Speech Quality: Naturalness is assessed using 475

UTMOS (Saeki et al., 2022), predicting MOS 476
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Model Base LLM GPT-4o Score (↑) UTMOS (↑) WER (↓) Latency (↓)
General QA Knowledge Avg. (1-5) (%) (ms)

Whisper+LLM+XTTS LLaMA 3.1 8B 6.70 7.70 7.20 4.23 1.70 4200

SpeechGPT LLaMA 2 13B 1.40 2.20 1.80 3.86 66.57 4000
Mini-Omni Qwen2 0.5B 2.7 2.4 2.55 3.24 26.12 350
Llama-Omni LLaMA 3.1 8B 3.44 3.84 3.64 3.32 9.18 220
Moshi Helium 7B 2.71 3.91 3.31 3.92 7.97 320
GLM-4-Voice GLM-4 9B 5.24 5.67 5.30 3.97 6.40 2500
Freeze-Omni Qwen2 7B 3.48 4.98 4.23 4.38 14.05 340
MiniCPM-o 2.6 Qwen2.5 7B 5.46 6.21 5.84 3.87 10.60 1200

Whisper+LLM+LLMVoX (Ours) LLaMA 3.1 8B 6.14 7.62 6.88 4.05 3.70 475

Table 1: Performance comparison of our framework (Whisper+LLM+LLMVoX) with other streaming speech-
enabled LLMs and cascaded systems. Our system, which integrates Whisper Small (224M) for ASR and LLMVoX
(30M) for text generation, achieves superior QA capabilities (6.14/7.62) compared to fine-tuned speech-enabled
LLMs, while maintaining competitive speech quality (UTMOS 4.05) and low latency (475ms). Our model
demonstrates superior text-speech alignment with a WER of 3.70%.

0 20 40 60 80 100

Answer Relevance

Speech Clarity

52%

62%

28%

18%

20%

20% LLMVoX Wins
Ties
FreezeOmni Wins

Figure 4: Human evaluation: Comparing with Freeze-
Omni on Answer Relevance and Speech Quality.

scores on a 1-5 scale.477

Speech-Text Alignment: ASR Word Error Rate478

(WER) is calculated by comparing Whisper-479

Large-v3 (Radford et al., 2023) transcriptions of480

the speech outputs with the LLM generated text481

averaged over General and Knowledge QA tasks.482

Latency: Measured from the reception of speech483

input to the first speech output, capturing both pro-484

cessing and synthesis delays.485

Human Evaluation: We compare our system486

with Freeze-Omni, one of the closely related ap-487

proaches that freeze the base LLM. For setup de-488

tails, see Appendix 9.2.489

6.4 Experimental Results490

Linguistic Capabilities: Our modular setup with491

Whisper for ASR, LLama 3.1 8B (Dubey et al.,492

2024) and LLMVoX achieves the highest GPT-493

4o score (see Table 1) among streaming models494

with 6.14 (General QA) and 7.62 (Knowledge495

QA) demonstrating its ability to preserve LLaMA496

3.2 8B’s language understanding capabilities. Al-497

though XTTS slightly outperforms LLMVoX shar-498

ing the same base LLM due to lower WER, its499

high latency (4200ms vs 475ms) makes it impracti-500

cal for real-time use, highlighting the efficiency of501

LLMVoX. Notably, LLaMA-Omni, despite using502

the same LLaMA 3.1 8B base, underperforms in503

both QA tasks (3.44 vs. 6.14, 3.84 vs. 7.62), sug-504

gesting LLM degradation. Similarly, Freeze-Omni,505

despite freezing its LLM backbone, suffers from a506

high WER (14.05%), which lowers coherence and507

0 100 200 300 400
Time (ms)

Total Time = 475 ms

Speech Decoder: 255±50

LLM Generation
| Word 1 | Word 2 | Word 3 | ...ASR : 120±50

Figure 5: Breakdown of average end-to-end latency (in
milliseconds) at a chunk size of 40 for a single query.

response quality. Also, based on human evaluation 508

results in Figure 4, we observe that the response 509

quality of our framework is much better than sim- 510

ilar approach like Freeze-Omni that also its LLM 511

parameters frozen. 512

Speech Quality & Alignment: While Freeze- 513

Omni yields a high UTMOS (Table 1), its WER 514

is substantially high (14.05%), indicating a mis- 515

alignment between the generated speech and text. 516

In contrast, LLMVoX achieves the lowest WER 517

at 3.70%, demonstrating superior text-to-speech 518

consistency while maintaining a strong UTMOS 519

score of 4.05. From the human evaluation results 520

in Figure 4, our approach favours speech clarity 521

compared to Freeze-Omni by a significant margin. 522

Latency Analysis: One of the key challenges in 523

real-time TTS is balancing low latency with high 524

speech quality. LLMVoX successfully achieves 525

this, delivering an end-to-end latency of 475ms, 526

making it competitive with end-to-end streaming- 527

capable models while significantly improving upon 528

cascaded approaches like Whisper+LLM+XTTS 529

(4200ms). While Llama-Omni achieves lower la- 530

tency (220ms), its trade-off in WER (9.18%) and 531

low UTMOS score of 3.32. In contrast, LLMVoX 532

achieves a more optimal balance, reducing latency 533

by nearly 86% compared to XTTS while main- 534

taining superior WER. This is crucial for applica- 535

tions where both real-time response and textual 536

accuracy are equally important, such as voice assis- 537
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Figure 6: Effect of chunk size on WER, CER, UTMOS,
and latency. Larger chunks enhance speech quality and
reduce error rates.

LLM Params Latency (s)

Qwen 2.5 0.5B 0.33
Lamma 3.2 3B 0.36
Lamma 3.1 8B 0.47
Phi 4 14B 0.95
Mixtral Small 24B 1.25
Qwen 2.5 32B 1.40
Lamma 3.3 70B 1.91

Table 2: End-to-end latency(ASR included) of LLMVoX
with various LLMs at chunk size of 40.

Model Streaming WER (↓) CER (↓)

XTTS No 0.062 0.017
ArTST No 0.264 0.125
FastPitch Arabic Finetuned No 0.493 0.153
Tacotron 2 Arabic Finetuned No 0.663 0.268
Tacotron 2 Arabic Finetuned No 0.663 0.268
Seamless-M4t-Large No 0.342 0.145
LLMVoX (Ours) Yes 0.234 0.082

Table 3: Arabic TTS performance comparison.
LLMVoX achieves competitive error rates in a stream-
ing setup, operating at nearly 10x faster speed compared
to state-of-the-art XTTS.

Model WER CER GPT Score Latency (s)

MiniCPM-o 2.6 0.053 0.036 6.32 1.45
LLMVoX (Ours) 0.042 0.022 6.41 1.05

Table 4: VSQA performance on LLaVA-Bench (In-the-
Wild) with Qwen 2.5 VL 7B as the backbone.

tants. Figure 5 shows that LLMVoX starts generat-538

ing speech tokens the moment LLM generates the539

first word unlike other chain-of-modality models540

and cascaded pipelines to achieve very low latency541

while operating in parallel to the LLM.542

Observations on Chunk Size Impact: From Fig-543

ure 6, we see that increasing the initial chunk size544

improves overall synthesis quality without signif-545

icantly increasing latency. Key observations in-546

clude: UTMOS improves from 3.75 to 4.41 as547

chunk size increases, suggesting speech reconstruc-548

tion from larger chunk size results in smoother and 549

more natural prosody. WER decreases from 0.041 550

to 0.036 confirming that larger chunks improve pho- 551

netic consistency. Latency remains under 1 second 552

for chunk sizes as large as 160 ensuring real-time 553

usability despite larger chunk sizes. 554

Latency Analysis with LLM Integration Table 2 555

shows that LLMVoX latency at a chunk size of 556

40 increases with LLM size. Smaller models like 557

Qwen 2.5 (0.5B) and Lamma 3.2 (3B) achieve 558

lower latencies (0.33–0.36s), while larger models 559

such as Phi 4 (14B) and Lamma 3.3 (70B) exceed 560

1s. This indicates that while larger LLMs impose 561

higher computational costs, architectural optimiza- 562

tions also impact latency. 563

6.5 Arabic Multilingual Performance: 564

On the curated Arabic eval set, LLMVoX achieves 565

a CER of 8.2%, outperforming most non-streaming 566

TTS methods except XTTS which was used to 567

synthesize the Arabic Training data suggesting ro- 568

bust adaptability to new languages without explicit 569

Grapheme-to-Phone(G2P) conversion or training. 570

6.6 Adaptability with Vision language Models 571

To demonstrate our method’s versatility, we inte- 572

grate LLMVoX into a multimodal pipeline for Vi- 573

sual Speech Question Answering (VSQA). Our 574

setup combines Whisper-Small for ASR, Qwen 575

2.5-VL-7B (Team, 2025) for visual-language 576

processing, and LLMVoX for speech synthesis. 577

Table 4 compares our system with the omni- 578

multimodal MiniCPM-o 2.6 model(Yao et al., 579

2025). We report word error rate (WER), char- 580

acter error rate (CER), and GPT-4o score. Our sys- 581

tem achieves lower WER and a comparable GPT 582

score, demonstrating that LLMVoX can be effec- 583

tively plugged into state-of-the-art VLM pipelines 584

for challenging speech VQA tasks. 585

7 Conclusion 586

We introduce LLMVoX, an LLM-agnostic autore- 587

gressive streaming TTS that decouples speech 588

synthesis from text generation. Leveraging a 589

lightweight Transformer and multi-queue stream- 590

ing, LLMVoX delivers high-quality, continuous 591

speech with minimal latency while preserving 592

LLM reasoning. Experiments on English and 593

Arabic tasks show that LLMVoX outperforms or 594

matches other speech-enabled LLMs, offering a 595

scalable solution for real-time multimodal AI. 596

8



8 Limitations597

LLMVoX achieves low-latency streaming TTS598

without modifying the underlying LLM, but it599

has the following limitations. First, the system600

lacks voice cloning, which limits its ability to601

generate speaker-specific vocal characteristics—a602

key feature for personalized interactions. Sec-603

ond, while we use Whisper for ASR, it is not604

fully integrated into the streaming pipeline, leav-605

ing potential latency reductions unexplored. Future606

work will focus on incorporating voice cloning607

and extending the streaming architecture to the608

ASR input, further enhancing personalization and609

real-time performance.610
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9 Appendix839

9.1 Prompt for Evaluating Spoken Chatbots840

This section describes the two primary GPT-4o841

prompts we use for evaluating spoken chatbot re-842

sponses. Each prompt targets a different aspect of843

performance: (1) the overall quality of an answer844

(General QA) and (2) the correctness of the answer845

compared to reference responses (Knowledge).846

9.1.1 General QA847

[Instruction]848

Please act as an impartial judge and evaluate the849

quality of the response provided by an AI assistant850

to the user question displayed below. Your evalua-851

tion should consider factors such as the helpfulness,852

relevance, accuracy, depth, creativity, and level of853

detail of the response. Begin your evaluation by854

providing a short explanation. Be as objective as855

possible. After providing your explanation, you856

must rate the response on a scale of 1 to 10 by857

strictly following this format: “Rating: [[5]]”.858

[Question]859

{User’s question goes here}860

[The Start of Assistant’s Answer]861

{Assistant’s response begins here}862

[The End of Assistant’s Answer]863

9.1.2 Knowledge864

[Instruction]865

You will be given a question, the reference an-866

swers to that question, and an answer to be judged.867

Your task is to judge whether the answer to be868

judged is correct, given the question and refer-869

ence answers. An answer is considered correct870

if it expresses the same meaning as at least one of871

the reference answers.872

You should respond in JSON format. First pro-873

vide a concise one-sentence analysis in the field874

“analysis”, then your final judgment in the field875

“judgment”, which can be “correct” or “incorrect”.876

[Question]877

{User’s question}878

[Reference Answer]879

{targets}880

[Answer To Be Judged]881

{answer_to_be_judged}882

Example Output (in JSON format):883

{
"analysis": "A concise explanation of

correctness or incorrectness.",

"judgment": "correct"
}

These prompts enable both qualitative (General 884

QA) and correctness-based (Knowledge) evalua- 885

tions of AI-generated spoken responses, ensuring a 886

comprehensive assessment of the system’s perfor- 887

mance. 888

9.2 Human Evaluation Setup and Conclusion 889

We conducted a human evaluation to compare the 890

streaming speech outputs of our proposed sys- 891

tem with those of Freeze-Omni. Specifically, we 892

randomly selected 30 questions from various do- 893

mains and generated responses using both systems. 894

These responses were distributed in batches of five 895

per user, with a total of 20 users participating in 896

the evaluation. For our system, we use Whisper- 897

Small for ASR, LLaMA 3.1 8B as the LLM, and 898

LLMVoX for streaming TTS, while Freeze-Omni 899

served as the baseline. The streaming speech re- 900

sponses were recorded and a custom user inter- 901

face was developed to facilitate evaluation. Partici- 902

pants listened to each response and rated the best 903

response based on two metrics: 904

(i)Answer Relevance: Evaluates how factual, use- 905

ful, and relevant the answer is to the question. 906

(ii)Speech Quality: Assesses the flow, word clarity, 907

and pronunciation of the generated speech. 908

These choices were then aggregated to compare 909

the overall performance of the two systems. The 910

aggregated results are illustrated in Figure 4 Our 911

human evaluation results indicate that our pro- 912

posed system outperforms Freeze-Omni on both 913

key metrics. Based on responses to the 30 ques- 914

tions, LLMVoX integrated with Whisper-Small 915

for ASR and LLaMA 3.1 8B as the LLM re- 916

ceived higher user ratings for both answer rele- 917

vance and speech quality. Specifically, our model 918

achieved wins in 52% of cases for answer rele- 919

vance and 62% for speech quality, compared to 920

Freeze-Omni’s 20% wins on each metric. These 921

findings suggest that decoupling speech synthesis 922

from text generation not only preserves the lin- 923

guistic capabilities of the LLM but also produces 924

more natural, clear, and engaging speech output, 925

demonstrating the effectiveness of our approach for 926

real-time dialogue applications. 927
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