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Abstract
Ad quality plays a central role in ranking sys-1

tems, promoting high-quality ads and demoting2

low-quality ones to enhance user experience and ul-3

timately drive long-term value for both people and4

businesses. The quality of each ad is estimated5

by a value model, which computes a weighted6

sum of various quality predictions. Since differ-7

ent user cohorts exhibit heterogeneous sensitivities8

to the same ad, personalization aims to customize9

these weights to achieve a more efficient trade-10

off between ads performance and user engagement.11

In this paper, we propose a new personalization12

framework with two key innovations: 1) a multi-13

task multi-label (MTML) causal model that jointly14

predicts user sensitivities across multiple ad qual-15

ity signals; and 2) a user sensitivity information16

aware and structural information aware optimiza-17

tion framework for learning more efficient scalar18

weights. With these improvements, our frame-19

work achieves a 0.5% increase in ads performance20

while maintaining neutral engagement, and deliv-21

ers a 1.4x gain in efficiency compared to the current22

system.23

1 Introduction24

Social media platforms prioritize delivering high-quality user25

experiences by facilitating the creation and discovery of or-26

ganic content. To sustain their business models, these plat-27

forms strategically insert advertisements into the content28

stream. While increasing the number of ad impressions29

may improve short-term ads performance metrics, it can de-30

grade long-term user satisfaction—particularly when users31

are shown low-quality or irrelevant ads. Negative reactions32

such as reporting, hiding, or disliking ads are clear signals of33

dissatisfaction and offer valuable supervision signals to guide34

ranking decisions. These signals motivate the development35

of quantitative methods to assess and enforce ad quality as a36

central part of ad delivery systems.37

Modern ad ranking systems use machine learning models38

to estimate the likelihood of various negative user interac-39

tions, such as low relevance scores, high hide rates, or poor40

feedback. Each model prediction is associated with a positive41

Figure 1: Illustration of quality value model.

scalar weight that reflects the system’s prioritization of differ- 42

ent types of negative signals. The weighted predictions, often 43

referred to as quality bids, are aggregated by a value model 44

to produce the final ad score (Figure 1). This score is used 45

to rank and serve ads, balancing ads performance goals with 46

user experience constraints. The effectiveness of this balance 47

directly affects both platform ads performance and user re- 48

tention, making the value model a central component of any 49

large-scale ad system. 50

Traditionally, the value model applies a uniform policy in 51

which the scalar weights are fixed across the entire user base. 52

However, users exhibit substantial heterogeneity in their sen- 53

sitivities to different ad signals. For instance, some users may 54

be highly tolerant of repetitive creatives or strong calls-to- 55

action, while others may find such features intrusive. Apply- 56

ing the same penalty weights to all users fails to capture these 57

nuances, potentially leaving performance gains on the table. 58

By customizing scalar weights for different user cohorts, the 59

system can selectively relax or enforce quality constraints, 60

thus enabling more personalized ad exposure strategies. We 61

refer to this scalar customization process as personalization1. 62

The personalization process consists of two core compo- 63

nents: cohort prediction and scalar weight optimization. In 64

the first stage, the system must infer which cohort a given 65

user belongs to based on their sensitivity to various ad qual- 66

ity signals. Cohort prediction is a crucial step tailoring the 67

ad experience to users in different cohorts, it can be achieved 68

through various machine learning models, such as clustering 69

algorithms (e.g. k-means [MacQueen and B., 1967]) or clas- 70

sification models (e.g. logistic regression [Jr. et al., 2013]), 71

these methods typically group users by their demographic, 72

behavior and engagement pattern. However, these classi- 73

cal machine learning models may not capture the underly- 74

1Ideally we want the personalization process to be performed on
individual user level, due to complexity constraints, currently we
focus on user cohort level.



ing causal relationships between user characteristics and ad75

preferences. To address this limitation, causal modeling tech-76

niques are employed, allowing us to identify the causal rela-77

tionships between variables rather than correlations and en-78

abling more accurate predictions and better decision-making.79

The key focus of causal modeling for cohort prediction is80

the incremental change in outcome due to a treatment or81

intervention [Rubin, 2005], which is termed heterogeneous82

treatment effect (HTE) or conditional average treatment ef-83

fect (CATE). Uplift models have been used extensively in84

the analysis of HTE/CATE and there are several major cat-85

egories: (1) Causal Trees, where different splitting crite-86

ria such as distribution divergences [Radcliffe and Surry,87

2011] and expected responses [Saito et al., 2020; Zhao et88

al., 2017] are used to divide user groups; (2) Meta-learner,89

which predicts the expected outcome to tackle the counter-90

factual problem [Künzel et al., 2019; Alaa et al., 2023]; (3)91

Deep Neural Networks (DNNs), which leverage the robust92

representation power and the exceptional predictive capabil-93

ity of DNNs to model causal relationships [Shi et al., 2024;94

Raul et al., 2023; Shalit et al., 2017; Louizos et al., 2017];95

and (4) Sequential modeling, which focuses on long-term96

reward and enables continuous learning [Zhao et al., 2020;97

Du et al., 2019a]. In our proposed framework, we design98

a multi-task multi-label (MTML) causal model that jointly99

predicts user sensitivity across multiple quality dimensions.100

This model captures shared representations across tasks while101

modeling the individual treatment effects for each quality sig-102

nal. As a result, it provides a compact and expressive way to103

encode user-level quality preferences.104

The second component of our personalization framework105

involves optimizing the scalar weights for each user cohort.106

This is a constrained optimization problem that seeks to107

maximize user engagement subject to ad performance con-108

straints. There are various optimization problem formulation109

to achieve this goal, such as Bayesian optimization [Agarwal110

et al., 2018], policy gradient approach [Jeunen et al., 2024],111

multi-objective optimization [Tang et al., 2024] using con-112

vex optimization [Boyd and Vandenberghe, 2004], learning113

based control [Agarwal et al., 2014], functional optimiza-114

tion [Zhang et al., 2014] and reinforcement learning [Cai et115

al., 2017]. However, many of these approaches—especially116

black-box or sample-inefficient methods such as Bayesian117

optimization and reinforcement learning—face significant118

practical challenges when applied at industrial scale. These119

include high computational cost, lack of transparency, lower120

robustness and slow convergence. In contrast, we adopt a121

white-box convex optimization approach, which provides a122

more tractable and interpretable solution pathway. Convex123

programs enable deterministic guarantees, exploit the prob-124

lem structure induced by the value model and user sensitivity125

estimates, and scale efficiently to the billions of impressions126

handled in a production system. This formulation ensures127

both robustness and deployability, making it well-suited for128

large-scale personalization.129

In this paper, we present a novel bi-level personalization130

framework called Opus (OPtimization and User Sensitivity131

modeling); the detail flow of this framework are: 1) in the132

user cohort prediction phase, a MTML model is developed133

to predict user’s sensitivity level for multiple quality bids si- 134

multaneously; 2) in the mathematical optimization phase: a 135

convex optimization problem is formulated and solved to ob- 136

tain the optimal scalar for each user cohort. The contributions 137

of this paper are as follows: 138

• We design a multi-task multi-label (MTML) causal 139

model that jointly estimates user sensitivity across mul- 140

tiple ad quality dimensions. By leveraging cross-domain 141

knowledge transfer, the model effectively addresses 142

quality signal sparsity and achieves an average AUCC 143

gain of 2% (Area Under Cost Curve). 144

• We propose a convex optimization framework that learns 145

personalized value model weights, enabling fine-grained 146

control over the trade-off between user engagement 147

and ad performance. This approach improves engage- 148

ment/ads performance metric efficiency by 1.44× com- 149

pared to the current baseline. 150

• Our end-to-end system delivers a 0.5% lift in ad per- 151

formance while maintaining neutral user engagement, 152

demonstrating measurable impact on one of the world’s 153

largest social media platforms. 154

2 Preliminaries and Related Work 155

We begin with a high-level overview of the Opus frame- 156

work; detailed architectural and modeling components are 157

presented in the following section. 158

2.1 Heterogeneous Treatment Effect Modeling 159

Heterogeneous treatment effect (HTE) modeling refers to the 160

process of predicting a user’s sensitivity to changes in ad 161

quality. Typically, for each quality bid, a separate machine 162

learning model—such as a decision tree or deep neural net- 163

work—is trained to map user features to a cohort identifier. 164

However, this approach has several limitations: 1) The num- 165

ber of models grows linearly with the number of quality bids, 166

making system maintenance increasingly inefficient; 2) Qual- 167

ity bids often exhibit semantic or behavioral similarity, yet 168

independent modeling fails to leverage shared information 169

across tasks, potentially missing out on richer representations 170

and improved performance. 171

To address these limitations, we adopt a multi-task multi- 172

label (MTML) model paradigm that predicts user cohorts 173

across multiple quality bids simultaneously. MTML archi- 174

tectures have demonstrated strong performance in various ad- 175

related tasks, including personalized recommendation [Gao 176

et al., 2024; Tang et al., 2020; Ma et al., 2018a], model de- 177

biasing [Ma et al., 2018b; Zhang et al., 2020], and auction 178

design [Ma et al., 2022; Kalra et al., 2023]. 179

In our MTML setup, all user features are first processed 180

by shared layers to learn generalizable representations, which 181

are then passed to task-specific heads that independently pre- 182

dict cohort assignments for each quality bid. This joint train- 183

ing strategy improves model robustness and overall predic- 184

tion performance across domains, helping to mitigate com- 185

mon challenges such as data imbalance, noisy supervision, 186

and domain-specific overfitting. 187



Figure 2: MTML model for user sensitivity prediction.

2.2 Mathematical Optimization188

Given the user sensitivity predictions from the MTML model,189

the next step is to derive optimal scalar weights for each190

cohort to maximize top-line metrics. To enable supervised191

learning in this phase, we conduct randomized controlled trial192

(RCT) experiments. In these experiments, users are randomly193

assigned to treatment groups, each configured with a different194

manually selected scalar for a given quality bid. By record-195

ing the resulting ad performance and user engagement met-196

rics under each scalar, we construct a training and evaluation197

dataset for optimization.198

Using this data, we formulate a constrained optimization199

problem as follows:200

maximize Total Engagement
subject to Total Ads Performance ≥ Performance Constraint.

(1)

In this high-level formulation, the optimization variables are201

the scalar weights assigned to each user cohort. The ob-202

jective is to maximize overall user engagement, subject to203

maintaining a minimum level of ad performance. While al-204

ternative formulations are possible (e.g., maximizing ad per-205

formance subject to engagement constraints), we adopt the206

engagement-maximization form in Eq. (1), and demonstrate207

that it can also be adapted to prioritize ad performance as208

needed.209

3 Detailed Design210

In this section, a detailed walk through of the Opus frame-211

work will be provided. For notational clarity, matrices are in212

bold upper case (e.g. A), vectors are in bold lower case (e.g.213

x), scalars and variables are non-bold (e.g. α, a).214

3.1 MTML Model for User Sensitivity Prediction215

To estimate the causal treatment effects of multiple quality216

bids simultaneously, we adopted a unified multi-task multi-217

label (MTML) causal modeling approach (as shown in Fig-218

ure 2). Unlike modeling each treatment and domain in-219

dependently, the MTML framework allows the model to220

learn shared representations across tasks and domains, fa-221

cilitating knowledge transfer. This is particularly valuable222

when data quality or treatment labeling may vary across sur-223

faces—errors or sparsity in one domain can be mitigated224

by more robust signal from the other. Furthermore, user225

or contextual patterns may exhibit cross-domain commonal-226

ities, which can be effectively captured by shared layers in227

the MTML architecture, enhancing generalization. By jointly228

modeling the multiple treatments, we also enable the model 229

to better understand interaction or substitution effects when 230

both treatment types may co-occur or influence similar down- 231

stream metrics. 232

In the MTML architecture, input feature will go through a 233

shared bottom layer, which is responsible for learning com- 234

mon knowledge among all tasks; later the shared output are 235

fed into different task-specific heads which learn task-specific 236

features and produce task outputs. The shared layers and task- 237

specific heads are both feed-forward neural networks with 238

non-linear activation functions. 239

The input features to the MTML model typically include 240

user demographic features and user activity features, let x 241

represent the input feature vector and there are N shared lay- 242

ers; also let Wi and bi be the shared weight matrix and 243

shared bias vector in shared layer i, the final output of the 244

shared layer hshared is represented as: 245

hshared = σ(WN−1...σ(W2σ (W0x+ b0) + b1)...+ bN−1) ,
(2)

where σ(·) is the ReLU activation function. Then the shared 246

layer output hshared serves as the common input to each task- 247

specific head, similarly, the output of the task-specific layer 248

for task i can be represented as: 249

gi = σ
(
Wihshared + bi

)
, (3)

where Wi and bi are the weight matrix and the bias vector 250

for task i. After the task layers, the final out is computed as: 251

yi = Wigi + bi. (4)

To train the MTML model, the loss function is defined as a 252

weighted sum of the mean squared error loss for each task: 253

Ltotal =
∑
i

ωiL(yi, ŷi), (5)

where 254

L(y, ŷ) = −
∑
j

(yj − ŷj)
2. (6)

ŷ is ground-truth label vector for each data point and y is the 255

model output. 256

In our case, the user’s sensitivity score is defined as the ex- 257

pected engagement gain per expected ads performance loss, 258

i.e., the ratio form of two objective CATE’s. The larger 259

the ratio, the user is more sensitive to ads quality treatment. 260

However, it is well known that ratio form is more noisy to 261

model directly due to the noise amplification from outliers. 262

To address this challenge, we adopt the Lagrangian select- 263

ing criteria[Du et al., 2019b] used in [Shi et al., 2024], to 264

transform the conditional outcome metric to linear form as 265

follows: 266

Tt = Rt + λ ·Qt, (7)
where Rt and Qt are the ads performance and quality bid 267

value after treatment t is applied (e.g. setting the weighting 268

scalar for this quality bid to a particular value). Note that λ is 269

a hyper-parameter of the model that we will search during the 270

model tuning. Let t = 1 represent that certain scalar is ap- 271

plied to the quality bid and t = 0 represent the scalar associ- 272

ated to the quality bid is 0, the user’s sensitivity (transformed 273



by Lagrangian selecting criteria) can be mathematically com-274

puted as:275

∆T = Tt=1 − Tt=0. (8)
However, it is challenging to obtain the sensitivity score from276

the RCT experiment due to counterfactual effect, i.e. the indi-277

vidual in the experiment can not be in the treatment and con-278

trol group simultaneously. To tackle this problem, the doubly279

robust learner (DRL) method [Shi et al., 2024] is employed280

to estimate the user sensitivity score; the MTML paradigm281

is then applied on top of DRL estimator to estimate multiple282

cross-domain sensitivity score as multiple tasks.283

3.2 Linear Programming284

Let N be the number of user cohorts and D be the cardinal-285

ity of scalar decisions, also denote {α0, α1, ..., αD−1} as the286

finite scalar decision set that we choose to apply to different287

user cohorts. From the dataset collected from the RCT exper-288

iment; an engagement matrix EN×D and an ads performance289

matrix PN×D can be obtained, where Ei,j represents the en-290

gagement response of cohort i when applying scalar decision291

αj , Pi,j represents the ads performance response of cohort292

i when applying scalar decision αj . Let xi,j∈ {0, 1} be the293

binary variable denoting whether cohort i should be assigned294

scalar αj ; also denote B as the baseline ads performance and295

0 < ρ < 1 as the ads performance budget. Given the finite296

response of scalar decisions, a naive integer programming op-297

timization (ILP) can be formulated as follows:298

max
∑

0≤i<N−1
0≤j<D−1

Ei,j · xi,j

s.t
∑

0≤i<N−1
0≤j<D−1

Pi,j · xi,j ≥ (1− ρ)B,

∑
0≤j<D−1

xi,j = 1, ∀i = 0, 1, ..., N − 1. (9)

The equality constraint in (9) ensures that for each cohort,299

only one valid scalar is chosen. On one hand, the ILP formu-300

lation ensures that the solution is optimal; on the other hand, it301

is also considered a NP-hard problem, which imposes a great302

challenge to the scalability as N and D increase; especially303

when it is more desirable to optimize over a continuous scalar304

range rather than a finite set of scalar numbers. In order to305

achieve this goal, certain relaxation is needed to reduce the306

problem’s complexity and some approximations are required307

to estimate the ads performance and engagement response for308

each cohort under arbitrary scalar.309

In the engagement matrix EN×D and ads performance310

matrix PN×D, each row of EN×D and PN×D can be311

viewed as the engagement response sample points and ads312

performance response sample points given scalar samples313

{α0, α1, ..., αD−1}, respectively. With these information,314

least square curve fitting can be performed to predict the ads315

performance and engagement behavior of each cohort in the316

continuous space. A simple approach is to assume linearity317

in both ads performance and engagement and perform linear318

fitting. In this scenario, the engagement response for cohort i319

can be represented as kixi+di, where ki and di are the slope320

(a) Cohort 0.

(b) Cohort 93.

Figure 3: Curve fitting of ads performance metric and en-
gagement metric response.
and intercept of the engagement response for cohort i, xi is 321

the continuous scalar associated with cohort i; similarly, the 322

ads performance response for cohort i can be represented as 323

wixi+ zi and the simple linear programming problem can be 324

formulated as follows: 325

max
∑

0≤i<N−1

kixi + bi

s.t
∑

0≤i<N−1

wixi + zi ≥ (1− ρ)B,

l ≤ xi ≤ u, ∀i ∈ {0, 1, ..., N − 1}. (10)
In the above formulation (10), the objective engagement 326

function is the sum of predicted engagement of all cohorts, 327

the constraint ads performance function is also the sum of 328

predicted ads performance of all cohorts. l and u are uni- 329

versal lower bound and upper bound for the scalar variable 330

xi. The advantages of LP formulation over ILP are: 1) the 331

dimension of optimization variables is reduced from N ×D 332

to N , making it more scalable to multi-objective and multi- 333

constraints formulation depending on business needs; 2) LP 334

is easier to solve than ILP (P vs NP-hard); 3) the generated 335

policy is continuous in stead of finite set; 4) linear fitting can 336

handle certain outliers and thus yield a more generalizable 337

result. 338

However, the LP formulation relies on the linearity as- 339

sumption on ads performance metric and engagement met- 340

ric, which may not be true for some cohorts; in addition, the 341

user’s sensitivity information for each cohort given by the 342

MTML output is not utilized. In the next subsection, these 343

side information are further incorporated into the optimiza- 344

tion problem. 345

3.3 User-sensitivity-aware and Structure-aware 346

Constraints 347

In the RCT dataset, we collected the ads performance metric 348

and engagement metric response of each cohort for the Ad 349

quality bid and the linearity of engagement response can be 350

verified (see Figure 3a). However, there are also strong non- 351

linear ads performance metric behavior in some other cohorts. 352



To better capture this non-linearity, quadratic fitting is applied353

to approximate the ads performance behavior for each cohort354

(see Figure 3b); as a result, the ads performance response of355

cohort i can be modeled as aix2
i + bixi + ci, where ai, bi and356

ci are the coefficients of the quadratic forms. It is also worth-357

while to note that linear fitting is a special case of quadratic358

fitting , hence the quadratic constraint is backward compati-359

ble for the cohorts whose ads performance metric behavior is360

linear.361

In addition to the original LP formulation (10), we found it362

crucial to incorporate product constraints to enhance general-363

ization and accelerate optimizer convergence. Users are cate-364

gorized based on model-predicted sensitivities, and it is gen-365

erally optimal to assign smaller scalars to more sensitive co-366

horts. To achieve this, we introduce a monotonic constraint:367

for cohort i and cohort j, i, j ∈ {0, 1, ..., N − 1}, if i ≤ j,368

then xi ≤ xj , as cohorts are sorted in ascending order of sen-369

sitivity. This approach significantly improved generalization,370

as evidenced by enhanced performance on the test set, and371

also resulted in faster convergence.372

The new linear programming problem formulation with373

quadratic constraint and monotonic constraint is finalized as374

follows:375

max
∑

0≤i<N−1

kixi + bi

s.t
∑

0≤i<N−1

aix
2
i + bixi + ci ≥ (1− ρ)B,

l ≤ xi ≤ u, ∀i ∈ {0, 1, ..., N − 1},
xi ≤ xj , ∀i ≤ j and i, j ∈ {0, 1, ..., N − 1}. (11)

The final optimization problem can be solved by the embed-376

ded conic solver (ECOS) [Domahidi et al., 2013], a classical377

primal-dual interior-point solver [Wright, 1997] for convex378

cone programs. ECOS reformulates our quadratically con-379

strained problem into conic form by expressing the quadratic380

constraint as a second-order cone. It then solves the result-381

ing second-order cone program (SOCP) using a primal-dual382

Newton method, iteratively updating primal and dual vari-383

ables while maintaining feasibility within the cone. ECOS384

offers high numerical accuracy and is efficient for medium-385

scale problems, making it a practical choice for our use case.386

4 Offline and Online Evaluations387

In this section, offline and online evaluation results will be388

provided. The Opus framework is applied to two quality bids:389

quality bid 1 and quality bid 2, which use the prediction of a390

user’s feedback toward an ad as the proxy for the ad’s quality.391

In the MTML model, user cohorts for these two bids will392

be predicted simultaneously, then the predictions are fed into393

the optimization algorithm to obtain the personalized scalars394

individually (see Figure 2).395

4.1 MTML Model Offline Performance396

For the model architecture change from individual models to397

MTML (Figure. 2), AUCC (Area under Cost Curve) [Du et398

al., 2019b] is used to measure business gain by a combination399

of ads performance and engagement. In an AUCC plot, the400

Figure 4: MTML model AUCC for two quality bids.

Table 1: Evaluation AUCC comparison between baseline
models and MTML.

Eval AUCC Quality bid 1 Quality bid 2

Baseline 0.748 0.792
MTML 0.766 (+2.4%) 0.807 (+1.9%)

aggregated engagement gain is represented in the Y-axis and 401

the aggregated ads performance loss is represented in the X- 402

axis. The overall curve serves to help evaluate the return on 403

investment predictions. The training and evaluation AUCC 404

for the MTML model is shown in Figure 4. After MTML 405

training is completed, a validation dataset is used to evalu- 406

ate the performance of MTML model and the current model 407

(baseline), the comparison of model performances is shown 408

in Table 1. It can be observed that, with the new MTML ar- 409

chitecture, there is a 2.4% AUCC increase in predicting user 410

cohorts for quality bid 1 and a 1.9% AUCC increase in pre- 411

dicting user cohorts for quality bid 2. Therefore, the advan- 412

tage of MTML architecture is clearly demonstrated. 413

4.2 Optimization Offline Performance 414

For the optimization part, two datasets containing each user 415

cohort’s ads performance metric and engagement metric re- 416

sponses at different time t0 < t1 are collected, denoted as 417

Dt0 , Dt1 . In additions, each user is also randomly assigned 418

a user bucket from 1 to 10 and the user bucket dimension 419

can also be split into 2 disjoint sets {u0, u1}. The final train- 420

ing and testing dataset are Dt0,u0
and Dt1,u1

(see Figure 5). 421

The reasons for creating disjoint training and testing dataset 422

in both time and user bucket dimension are as follows: 423

• Split by time: avoid using future information to make 424

prediction in the past and ensure that the model’s per- 425

formance is accurately evaluated when faced with future 426

data. 427

• Split by user bucket: the dataset collected from RCT ex- 428

periment is also a sampled version of production traffic. 429

The user bucket split also helps prevent overfitting and 430

boost generalizability of the policy derived from the op- 431

timization solution. 432

After solving the optimization problem and obtaining the 433

scalar policy for each cohort, the predicted engagement met- 434

ric and predicted ads performance metric for each cohort can 435

also be computed by applying the scalar to the fitted function. 436



Figure 5: Training and testing dataset for optimization prob-
lem.

As a result, the summation of the predicted engagement met-437

ric and predicted ads performance metric for all cohorts will438

serve as the engagement proxy and ads performance proxy for439

the ads system. For better visualization, the absolute values440

of engagement and ads performance are not used; rather, they441

are compared with a baseline performance and the percent-442

age of delta is computed. To be more concise, let (µ0, θ0)443

be the (ads performance metric,engagement metric) perfor-444

mance point evaluated under a uniform policy (αi = 1 for445

all cohorts i); denote (µ1, θ1) as the performance point eval-446

uated under any other personalized scalar policy, the ads per-447

formance metric delta and engagement metric delta is defined448

as:449

ads performance metric delta =
µ1 − µ0

µ0
, (12)

engagement metric delta =
θ1 − θ0

θ0
. (13)

By changing the ads performance budget ρ, which represents450

the business needs, an ads performance vs engagement trade-451

off curve can be generated to show the performance or effi-452

ciency of the optimization approach. In this paper, we gener-453

ated and compare the performance of the following 4 meth-454

ods:455

• LP: linear programming method defined in (10).456

• LP sorted: linear programming method plus monotonic457

constraint.458

• LPQC: linear programming method with quadratic con-459

straint in revneue, i.e. replacing linear modeling of ads460

performance metric in (10) with quadratic modeling.461

• LPQC sorted: linear programming method with462

quadratic and monotonic constraint, as defined in (11).463

In addition to the above 4 performance curves, an isolated ads464

performance vs engagement performance point under current465

baseline’s scalar policy can also be evaluated. Current base-466

line’s policy is obtained by first predicting user sensitivity467

with a single deep neural network model and then solving468

the linear programming problem in (10). The overall perfor-469

mance comparison for quality bid 1 is shown in Figure 6a and470

several highlights can be observed:471

• 4 trade-off curves are located to the top-right area of472

the current baseline’s performance point, which means473

that under certain scalar policies, ads performance met-474

ric gain and engagement metric can be achieved simul-475

taneously.476

(a) Quality bid 1.

(b) Quality bid 2.

Figure 6: Ads performance vs engagement trade-off curves
of different methods for quality bid 1 and 2.

• Under the same level of engagement, there is about 477

0.06% offline ads performance metric delta gain from 478

current baseline’s performance point to the LP perfor- 479

mance curve; given that the only difference between 480

them is the user sensitivity prediction part (single DNN 481

model vs MTML), the offline ads performance metric 482

improvement further validates the advantage of MTML 483

model. 484

• Comparing LP vs LPQC and LP sorted vs LPQC sorted, 485

it can be observed that by changing the ads performance 486

metric modeling from linear to quadratic, the ads perfor- 487

mance vs engagement performance curve shifts to the 488

right by about 0.01% to 0.02% ads performance delta 489

gain, demonstrating that quadratic modeling better cap- 490

tures the ads performance metric behavior and achieve 491

ads performance gain. 492

• Comparing LP vs LP sorted and LPQC vs LPQC sorted, 493

it can also be observed that by adding the monotonic 494

constraint, there is roughly 0.04% to 0.05% positive ads 495

performance metric delta shift of the performance curve, 496

which is a clear indication of the importance in user sen- 497

sitivity information in the optimization problem. 498

Similar results can be derived for quality bid 2 (Figure. 6b) 499

and they are omitted here due to space constraint. With the 500



(a) Quality bid 1.

(b) Quality bid 2.

Figure 7: Ads performance vs engagement trade-off curves
of uniform policy vs performance from Opus for quality bid
1 and 2.

performance curves and the current baseline’s performance501

point, it is easy to fine-tune the ads performance budget ρ to502

find the scalar policy that achieves the business need. For503

example, if the business objective is to increase ads perfor-504

mance metric with neutral engagement; a horizon line can505

be drawn across the current baseline’s performance point and506

the intersection of the horizontal line with the performance507

curve will be the solution that maximizes ads performance508

metric; and the scalar policy associated with the intersection509

point will be the optimal policy. Similarly, a vertical line can510

be drawn if the goal is to increase engagement without ads511

performance metric loss. It is also worthwhile to compare512

the personalization result with uniform policies. Figure 7a513

shows the performance trade-off curve when applying uni-514

form policies under different scalars for quality bid 1, as the515

scalar gets larger, the systems transition from a high ads per-516

formance but low engagement to region into a low ads perfor-517

mance but high engagement region. However, the system’s518

performance is limited by the performance curve; personal-519

ization enables the system to explore area with higher ads per-520

formance and engagement. By simple DNN model for user521

sensitivity prediction and LP formulation (10), the system522

achieved 3 times engagment metric delta gain with roughly523

Table 2: Comparison of normalized efficiency between cur-
rent baseline and Opus.

Metrics Normalized efficiency

Baseline 13.96%
Opus 20.12%

Table 3: Online performance of Opus framework.

Metrics Ads performance DAU Time-spent

Baseline 100% 100% 100%
Pretest (Opus) 100.5% 99.999% 100.0072%

Backtest (Opus) 100.47% 99.996% 100.0085%

0.4% ads performance metric spent compared to baseline pol- 524

icy; the Opus framework further increase the ads performance 525

metric by roughly 0.15% with no engagement metric loss, 526

as a result, from the ads performance metric’s perspective, 527

the Opus method is equivalent to applying a uniform scalar 528

(roughly 1.1) but from the engagement metric’s perspective, 529

it achieves more than 3 times engagement metric delta gain 530

than the uniform scalar policy. Apart from focusing on in- 531

dividual ads performance or engagement metric gain while 532

fixing the other metric, the ads performance over engagement 533

efficiency metric provides another perspective to quantify the 534

power of the algorithm. The efficiency metric is defined as 535

the product of some normalization constants C0 and the ra- 536

tio of engagement metric delta over ads performance metric 537

delta, which are already defined in (12): 538

efficiency = C0 ·
engagement metric delta

ads performance metric delta

= C0 ·
θ1 − θ0
µ1 − µ0

. (14)

With the offline dataset, the efficiency of current baseline’s 539

policy and the proposed Opus framework can be computed; 540

it can be observed from Table 2 that the Opus framework 541

achieves 1.44x efficiency boost compared to current baseline. 542

543

4.3 Online Results 544

With the promising offline result, an online A/B test is con- 545

ducted (one-month) before the launch and a backtest is also 546

conducted (one-month). Our current business goal is to max- 547

imize ads performance without engagement loss, hence ac- 548

cording to Figure 6, a horizontal line is drawn and intersect 549

with the LPQC sorted curve; the scalar policy associated with 550

the intersection point will be the personalized policy for on- 551

line testing. Similar steps are also applied to the quality bid 2 552

to obtain a new scalar policy for each cohort. 553

After applying the new policy treatment, the overall online 554

ads performance and engagement performance is shown in 555

Table 3. With the new Opus framework, around 0.5% ads 556

performance metric gain with neutral engagement metric can 557

be achieved. 558



5 Conclusions and Future Works559

In this paper, a personalization framework call Opus is devel-560

oped, aiming to customize ad’s quality bid scalar for different561

user cohorts and can achieve both ads performance metric and562

engagement metric gain. With the MTML model, user sen-563

sitivity is first predicted and later linear programming prob-564

lem with quadratic and monotonic constraint is formulated to565

solve for the scalar policy. The new policy achieves around566

0.5% ads performance metric gain in online experiments, as567

well as 1.44x efficiency boost. For future directions, we are568

planning to extend the user sensitivity prediction from single569

snapshot model prediction to dynamic user sensitivity predic-570

tion; we are also planning to extend to optimization formula-571

tion to multi-objective, multi-constraint optimization.572

6 GenAI Usage Disclosure573

In accordance with the ACM’s Authorship Policy, we provide574

the following disclosure regarding the use of Generative AI575

(GenAI) tools in the preparation of this research paper:576

• During the research and development stage, no GenAI577

tool was utilized to assist in the collection, processing578

and analysis of large datasets, nor was it used in the579

codebase.580

• During the draft writing and editing, no GenAI tool was581

used to help initial text for any sections, nor was it used582

for refining of the draft.583
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