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Abstract

Continual model merging integrates independently fine-tuned models sequentially
without access to the original training data, offering a scalable and efficient solution
for continual learning. However, existing methods face two critical challenges:
parameter interference among tasks, which leads to catastrophic forgetting, and
limited adaptability to evolving test distributions. To address these issues, we
introduce the task of Test-Time Continual Model Merging (TTCMM), which
leverages a small set of unlabeled test samples during inference to alleviate pa-
rameter conflicts and handle distribution shifts. We propose MINGLE, a novel
framework for TTCMM. MINGLE employs a mixture-of-experts architecture with
parameter-efficient, low-rank experts, which enhances adaptability to evolving test
distributions while dynamically merging models to mitigate conflicts. To further re-
duce forgetting, we propose Null-Space Constrained Gating, which restricts gating
updates to subspaces orthogonal to prior task representations, thereby suppressing
activations on old tasks and preserving past knowledge. We further introduce an
Adaptive Relaxation Strategy that adjusts constraint strength dynamically based
on interference signals observed during test-time adaptation, striking a balance
between stability and adaptability. Extensive experiments on standard continual
merging benchmarks demonstrate that MINGLE achieves robust generalization,
significantly reduces forgetting, and consistently surpasses previous state-of-the-art
methods by 7-9% on average across diverse task orders. Our code is available at:
https://github.com/zihuanqiu/MINGLE

1 Introduction

Continual learning aims to incrementally adapt machine learning models to new tasks without forget-
ting previously learned knowledge, addressing the critical challenge of catastrophic forgetting [43]].
However, conventional continual learning approaches typically require continuous access to original
training data, raising significant concerns about privacy and substantial computational overhead due
to retraining efforts, thus limiting their applicability in dynamic, data-sensitive environments.

To address these limitations, recent works have explored an alternative paradigm known as continual
model merging (CMM), which sequentially integrates independently fine-tuned models directly in
parameter space, without revisiting any training data [38} 51, [70]. CMM typically operates under
a "merge-to-transfer" paradigm: given a pretrained model 8y and independently fine-tuned models
{6,}L_,, a unified model is constructed sequentially by combining task-specific weight updates
Al; = 6, — 0y via weighted averaging or projection-based strategies [24] [811 [69]).
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Despite its advantages in scalability, data privacy, and distributed training capabilities [44, [14} 571,
existing CMM methods still encounter critical issues, notably severe parameter interference between
tasks and limited adaptability to evolving test distributions. This parameter interference arises
because, as fine-tuned models are incrementally merged, overlapping or conflicting parameter
updates accumulate, resulting in severe forgetting of previously learned tasks. To mitigate this
interference, recent methods introduce structural constraints such as orthogonal projection [70} (78],
model linearization [38, 169]], and pruning-based sparsification [86} 90]. However, their effectiveness
diminishes as task count grows and interference becomes increasingly entangled. Moreover, models
merged across tasks often fail to generalize effectively, particularly when facing unseen or shifting
task conditions. These flaws result in severe forgetting of earlier tasks and substantial performance
gaps compared to the upper bound achieved by individually fine-tuned models. As shown in Fig.
TA [24]] suffers from large performance gaps and strong forgetting, reflected by low accuracy and
negative backward transfer. OPCM [70]] improves over TA via orthogonalized merging but still shows

notable degradation.
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In this paper, we propose MINGLE (MIxture of Null-Space Gated Low-Rank Experts), a method
designed to continually merge independently fine-tuned models at test-time while preserving prior
knowledge. MINGLE employs a mixture-of-experts architecture [27}45] composed of lightweight
LoRA-based [21] experts, enabling efficient and flexible test-time adaptation. To robustly prevent
interference from previously learned tasks, we introduce a novel Null-Space Constrained Gating
mechanism, restricting gating updates to task-orthogonal subspaces. Additionally, we propose an
Adaptive Relaxation Strategy to dynamically modulate constraint strength based on test-time
interference feedback during adaptation.

Extensive experiments on standard continual learning benchmarks show that MINGLE consistently
outperforms previous state-of-the-art approaches by 7-9% on average, achieving robust general-
ization and strong resistance to catastrophic forgetting across diverse continual learning scenarios.
Remarkably, these improvements are achieved entirely without any access to original training data,
demonstrating the effectiveness of our TTCMM paradigm and the power of test-time adaptation in
continual learning.

Our contributions are summarized as follows:

* We formalize test-time continual model merging (TTCMM), a novel task that leverages unlabeled
test samples to merge independently fine-tuned models.

* We propose MINGLE, a TTCMM framework with Adaptive Null-Space Constrained Gating to
effectively balance stability and plasticity.

» Extensive experiments show that MINGLE achieves state-of-the-art performance, consistently
outperforming prior methods in accuracy, robustness and resistance to forgetting.

2 Related Work

Continual Learning. Continual learning (CL) seeks to mitigate catastrophic forgetting [43]], where
learning new tasks overwrites prior knowledge. Regularization-based methods constrain updates
with importance weights [31} 92} 2| 30, |82]], while distillation aligns outputs to preserve knowledge
(2051121160, 52]]. Replay methods store exemplars or generate surrogates with prompts, prototypes, or
generators [55, 39,179,161, 153, and dynamic architectures expand capacity via growth or ensembling
[351198L142]]. Recent work leverages lightweight adapters or prompts in pre-trained models for efficient
transfer (89, 23| [80]. Model merging offers an alternative route. Some methods remain close to
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Figure 2: Comparison of three continual learning paradigms. (a) Conventional Continual Learning
trains models sequentially with data arriving in stages, without access to previous task data. (b)
Continual Model Merging continually fuses independently trained models, without access to any
training data. (c) Test-Time Continual Model Merging improves merging by leveraging a few
unlabeled test samples from the current task.

conventional CL by sequentially fine-tuning and merging models to reduce forgetting [41} 142 [16]],
typically requiring training data. In contrast, continual model merging [28, 138, 5, 51} [70] merges
independently fine-tuned models without revisiting training data, enabling greater scalability and
privacy.

Model Merging. Early work merged models via direct parameter averaging [[72} 58], later refined
by linear mode connectivity [13|[1]. Wortsman ez al. [81] showed that weight averaging can also
enhance robustness and out-of-distribution generalization. Task Arithmetic (TA) [24] views models as
task vectors to be summed, but relies on weight disentanglement [49]], often violated under standard
fine-tuning, motivating structured training 28| |65]. Beyond averaging, interference-aware methods
reweight or sparsify parameters [86, [90]], or fuse models via distillation and clustering [88. [76].
LoRA-based tuning [21] introduces additional entanglement challenges, spurring gradient-free or
retrieval-based strategies [22} 94} 195]]. More recently, dynamic merging [68| 40] adapts parameters
conditioned on inputs, achieving higher flexibility and performance, but remains limited to multi-task
fusion and unexplored in continual settings.

Test-Time Adaptation. TTA adapts models at inference to mitigate distribution shift. Early ap-
proaches used self-supervised objectives [66], entropy minimization [75]], or regularized updates [63].
Online TTA adapts continuously [25]], while batch-wise variants ignore temporal structure [[17]. To
enhance stability, later work introduced confidence filtering [48]], EMA [L1], partial updates [91],
test-time augmentation [93]], and adaptive BatchNorm [56]]. For vision—-language models, TTA often
employs prompts or adapters [59}[15,136]. We draw on TTA to guide merging, aligning fused models
with evolving test distributions.

Relation to Prior Work. Most related to our work are MoE-Adapter [89] and WEMOE [68]],
both built on MoE architectures [27} 29]. MoE-Adapter follows conventional continual learning,
embedding expert modules that are jointly trained across tasks. In contrast, we adopt a model-merging
paradigm, where experts are extracted from independently fine-tuned models and inserted without
further training. WEMOE incorporates test-time adaptation but targets multitask learning, assuming
simultaneous access to all models and data. By contrast, MINGLE is tailored for the more challenging
continual merging setting.

3 MINGLE: Mixture of Null-Space Gated Low-Rank Experts

3.1 Preliminaries

Problem Setting. We study continual learning in a model merging setting, where a sequence of
task-specific models {61, . . GT} are independently fine-tuned from a shared pre-trained model 6,

each using a dataset D; = {( T; 7y )} with label space C; C V. The goal is to construct a unified

model 9% that generalizes across the combined label space Cy.p = U;il C;.



Unlike conventional continual learning, we assume no access to training data during merging. All
adaptation happens directly in parameter space. This paradigm is relevant in scenarios where only
final fine-tuned models are retained, while original training data is discarded due to privacy, storage,
or accessibility constraints.

To contextualize this, we compare with two related paradigms in Fig.

¢ Conventional Continual Learning. A single model 6 is sequentially updated on Dy, ..., Dy,
discarding previous data. It requires direct training data access and extensive retraining.

¢ Continual Model Merging. A sequence of models are merged incrementally in parameter
space without access to training data and earlier models: 6" = Merge (6", 6,).

* Test-Time Continual Model Merging. An extension of the above where a small unlabeled
subset D5 C DIt (e.g., 5 samples per class) is available at each stage to provide lightweight
task-specific guidance. We refer to D¢ as the seed samples of task t.

Existing Continual Merging Strategies. Let 6y denote the parameters of a pre-trained model. The
corresponding task vector is defined as Af; = 6, — 6.

« Continual Task Arithmetic (C. TA). A simple additive merge [24]: ]! = 9]""=! + A4,
where ) is a scalar. While training-free, it is sensitive to A and prone to task interference.
* Orthogonal Projection-based Continual Merging (OPCM). Tang et al. [[70] propose pro-

jecting each A#, onto the orthogonal complement of previous directions: G?erged = 60y +

)\% {)\t_lAGQ"frlged + PE=1(AH,)|, where P*~1) retains components orthogonal to previous

updates. This reduces interference but ignores adaptation to task distributions.

To address these issues, we present MINGLE, which leverages Dieed to modulate the integration of 6;
at test-time, enhancing alignment to test distribution and mitigating task interference.

3.2 Motivation and Theoretical Analysis

Most existing continual model merging methods combine fine-tuned models via static averaging,
where each expert is assigned fixed coefficients, thereby enforcing the same mixing rule across
the whole input space. Consequently, it cannot specialize to regions where one expert is clearly
superior. In contrast, a Mixture-of-Experts (MoE) equips every input with a data-dependent gate
g(x) = (g1(x), ..., gr(z)) that selects or re-weights experts on-the-fly. We give a formal comparison
between static averaging and dynamic MoE under a noisy-routing scenario.

Theorem 1 (Dynamic MoE versus Static Averaging). Let {(Dy, fi)}1_, be T independent tasks with

priors P(t) and per-task risks R.(i). For any static mixture hggatic(z) = ZZT:1 «; fi(z) and any
hard-routed MoE hyjog (%) = fix (o) (x) with task-specific routing errors ey

T
R(hMoE) = Rideal + Z P(t) Et (Rwrong,t - Rt (t))a (1)

t=1
where Rigeal = Y, P(t)R¢(t) and Ryyong,t = ﬁ Zi# Ry (i). Moreover,

1. (Perfect routing) If &; = 0 for all t, then inf R(hyop) < inf R(hstatic) whenever at least two
g a

tasks disagree on their best expert.
2. (Noisy routing) If Z P(t)er (Rurong,t —Re(t)) < Riaric— Rideal, where R = info R(haric),
t
then the MoE still attains lower risk than any static mixture.

The theory above motivates a design that (i) keeps experts specialized and (ii) prevents interference
between tasks. Our MINGLE framework achieves both goals by combining

* Low-rank experts f; that capture task-specific variations with minimal parameters, and

¢ Null-space constrained gating that projects gradient updates away from subspaces spanned by
previously activated features, keeping ¢; small without harming earlier experts.

2Symbols and proofs are deferred to App. A



3.3 Low-Rank Expert Mixture for Continual Model Merging

We adopt MoE framework for continual model merging, in which each task 7 is equipped with a
low-rank expert f; and an associated input-dependent gating function g;. These components are
injected into the linear layers of the backbone (e.g., CLIP visual encoder). The gate g; modulates
expert activation based on the input features, allowing for fine-grained, localized task specialization.

Mixture of Low-Rank Expert. When a new task ¢ arrives, a dedicated expert f; and its gate g; are
appended to the model. The output of a given [-th layeﬂ can be formulated as follows:

grereet B x) = gtV (x) + g (x) - 10(x) = 6 (x +Zg(” P(X). @

where only the gate g; is adaptable during testing, while all experts { f;}!_; and old gates {g; :;i
remain frozen to preserve prior knowledge. To construct expert f;, we first project the task vector
Ad; onto the orthogonal complement of previously learned directions, following OPCM [70]:

P(t_l)(Aet): 27 <A6t (t 1) (f 1)T> u}(jt—l)vt(]t—l)T’ (3)
P,q=a,p#q

(t—1) (t—1)

where up and vq are the p-th and ¢-th singular vectors from the singular value decomposition

(SVD) of previous experts Zf;i fi(X), and « denotes the effective rank of previous experts. This
projection removes previously learned directions to mitigate interference. We then apply a rank-r
truncated SVD for P(t—1) (A6;) to construct a low-rank expert [21]]:

fr=BA=(UD)VT, @)
where U € R™*", % € R™*", and V € R%*", retaining the top 7 singular components. The
resulting expert captures the principal directions while significantly reducing parameter overhead.
Each gating function is implemented as a linear projection:
T

g(X) = WX 4+ b7, )
where Wt(g ) € R4*! and b§9 ) € R are learnable parameters. The gating function is adapted at test
time using a small number of unlabeled test data.

Test-Time Adaptation. To encourage the merged model to retain task-specific behavior, we minimize
the Kullback-Leibler divergence between its prediction and that of the corresponding individual
fine-tuned model ;. We define the adaptation objective as:

Li =By [KL (plws 67%) || p(a: 01))] - ©6)

where p(z; 0) denotes the predictive distribution

3.4 Adaptive Null-Space Constrained Gating for Interference Mitigation

When merging models continually, the primary challenge of gating is to integrate new experts without
disturbing prior task predictions. Consider two experts f1, fo and their corresponding gates g1, gs.
When evaluating on the first task domain X7, the interference from g can be quantified as:

£(g2) = llg1(X1) - fr(X1) + g2(X1) - fo(X1) — fu(XD)|. @)

This measures the deviation introduced by g on the domain where f; originally dominates. A
desirable gating function should suppress g2 (X1 ), ensuring predictions on X; remain unaffected.
However, as X; becomes inaccessible after adaptation, this error becomes unobservable and cannot
be minimized directly, resulting in prediction drift and catastrophic forgetting.

Hard Null-Space Projection. After completing task ¢, we cache the [-th layer inputs in the seed
buffer D{*d and estimate their covariance Covgl) € R4 Applying truncated SVD yields the

3The layer index [ is omitted hereafter whenever it does not cause ambiguity.



) € R?*k_ We then concatenate these with the subspaces from all

top-k dominant subspaces Ut(l
previous tasks and orthonormalize: U = orthonorm[Ut(l_)l\Ut(l)] € R4*t* The hard projector
isp=1-UPudT
for task ¢ is Wt(g D Wt(g b _ i VLgl)Pt(i)l. However, this projection may also discard gradient
components that are informative for task ¢ whenever its feature support overlaps with span(U;_1).

€ R4*4, To suppress interference from tasks < ¢ — 1, the gating update

Adaptive Null-Space Relaxation. To restore  Algorithm 1 MINGLE Procedure.
plasticity, we replace the all-one eigenvalues
of P,_1 with soft coefficients learned online.

Input: pre-trained model 6y and fine-tuned mod-
els {0,} ;; seed data {D{*d}1_|; hyper-
(i) Interference statistics. For each column parameters k, 3, ~v; learning rate
ul? of U", we measure instantaneous align- Output: Merged model gpere
ment: Init: 05"« 6; Uél) 0
r}(jl) = ||(VLt)Tu1(f)||2 JIVL2. () for task t = 1 to 1" do

> create low-rank experts (Egs. and E})
ft = SVDrrunc. (P(t_l)(gt - 90)) = BtAt
| —

use 01 —0g when t=1
[> add expert & initialize gate (Eq.

G?erged _ a;glfrlged+gt'ft7 {Wt(g)v bgg), S(O)} —0

We maintain per-direction interference scores
S(mb) ¢ RF (initialized to 0) by applying an
exponential moving average at each iteration
m:

Smb — g gm=t L (1 - g)r® (9

which suppresses stochastic gradient noise
while preserving the dominant interference
directions.

(ii) Adaptive shrinkage. Each direction
is attenuated by Alml) = exp(—v S(mJ))

(v > 0, AmD ¢ (0,1]). Let Ai™) =
diag()\(lm’l), ce )\Eyill))k) The relaxed pro-
Jector becomes:

P = v AP UL o

interpolating smoothly between no protection

for m = 1 to rotal iterations do

X « batch(Djeed)
{Vipo L Vi L} = VL(X, oot g,)
if t > 1 then

> project gradient onto null-space

(Eqs. E )
S(m) — ﬁs(m—l) + (1 _ ﬂ)?“
Vi Lt < Vi Lt P

end
Wt(g) — Wt(g) _ anf(y)Lt
b — b =V, Ly

(A = 0) and the hard null projector (A = I). end

D> update dominant subspaces

(iii) Update rule. We finally update: Uy + orthonorm(Uy-1 | U

WD el _pgr® B0 (11 end

Relaxing the projector inevitably allows more residual interference than the hard null-space variant,
yet empirically the increase is minor and is offset by markedly higher plasticity (Tab. [3)), indicating a
favorable stability—plasticity balance. The overall procedure is outlined in Algo. [I}

4 Experiments

We describe the experimental setup in Sec. d.1] followed by the main results in Sec.[d.2]and further
analysis and ablations in Sec. Due to page limitations, detailed results are provided in the
Appendix.

4.1 Experimental Setup

Datasets and Models. Following [[70]], we evaluate on image-classification tasks with CLIP-ViT
backbones [54]. We consider 8, 14, and 20-task groups using ViT-B/32, ViT-B/16, and ViT-L/14
models, each fine-tuned on up to 20 downstream tasks, with checkpoints from FusionBench [67]].
To assess order sensitivity, we repeat experiments over 10 random seeds (42-51). For comparison
with conventional CL, we use the Multi-domain Task-Incremental Learning (MTIL) benchmark [97]
with eleven vision tasks. Beyond vision, we evaluate on eight GLUE language tasks [74] with a
Flan-T5-base backbone [6]].



Table 1: Comparative results of continual merging methods, reporting average accuracy (ACC) and
backward transfer (BWT) over ten task orders (mean+std). DM and DA denote method assumptions:
dynamic merging or test data access. Best results are in bold; second-best are underlined. MINGLE*
denotes a lightweight variant.

M ‘ Assump. ‘ ViT-B/32 ViT-B/16 ViT-L/14
ethod
‘ DM /DA ‘ 8tasks 14 tasks 20tasks 8 tasks 14 tasks 20 tasks 8tasks 14 tasks 20 tasks
PRE-TRAINED -/ - 48.1 56.9 55.6 55.4 62.0 59.8 64.9 69.1 65.6
FINE-TUNED -/ - 90.4 89.3 89.8 92.4 91.3 91.6 94.3 93.4 93.5
C. FINE-TUNED -/ - 79.8 67.4 62.6 82.9 722 68.2 90.0 70.9 71.7
AVERAGE (SWA) [26] X1 X | 663+00 654+00 6l.1x00 723+00 69.7+00 64.8+00 80.0x00 77.5+00 71.1z00
C. TASK ARITHMETIC [24]| X/ X | 67.5+00 66.5+00 60.0+00 77.1+00 70.9+06 642100 82.1x00 77.9+00 70.3+00
~ C. TIES-MERGING [86] X1 X 149.0+102 66.2+06 59.9+07 66.8+37 70.5+08 63.0+16 643170 78.0+06 68.3 409
S MAGMAX-IND [41] X1 X | 70.7+00 67.0x00 612100 76.7+18 67.0+00 62.5+00 83.4+00 71.2+00 71.2+00
6’ CONSENSUS TA [77] Xl X 67.1 +04 64.1+08 458+15 72.8+05 69.0+00 49.9+19 804+05 75.0+10 51.3+24
O OPCM [70] Xl X 75.5+0s 71.9+03 65.7+02 81.8+03 77.1x05 703+02 87.0+04 83.5+02 76.0+02
< C. LW ADAMERGING 871 x/ 534432 598+16 59.7+74 599123 643+12 61.5+11 68.8+20 73.1+57 66.9+11
C. LORA-WEMOE [68] / 68.8+78 63.8+34 49.6+154 72.6+37 67.9+29 55.0+70 75.6+78 74.0+s50 56.9+ 198
MINGLE (Ours) / 85.8+0s 81.6+14 77.1+20 883+06 84.9+0s 819109 91.8+02 88.8+07 855413
MINGLE* (Ours) / 85.0+05 81.7+10 77.d+13 87.0+06 84.7+10 81.6+13 91.4+03 89.2+01 83.6+06
AVERAGE (SWA) [26] X1 X |-11.5+22 -8.0+13 -7.1+21 97415 -T1+1sa 73417 -73+14 58410 -64415
C. TASK ARITHMETIC [24]) | X/ X 9.6+15 -13+16 -34+10 -42+10 -13+04 -3.6+04 -7.1x0s -1.8+03 -3.3+03
« C. TIES-MERGING [86] X1 X |-153480 19406 -1.5+07 -55+04 1407 -15+12 -13.0+s57 -1.1+04 -2.9+10
& MaGMax-INp [41] Xl X -83+13 -7T4+1s -T2+16 -6.1+13 -74+20 -8.0+22 -50x08 -6.0+21 -6.5+21
[:/ CONSENSUS TA [77] Xl X 3.8+09 -13+09 -11.8+19 3.5+06 -l.1x08 -11.6+13 2.4+06 -2.5+08 -16.5+15
= OPCM [70] Xl X -6.3+11 -6.0+10 -7.8+15 -48+07 -5.1+14 -63+22 -2.6+10 -43+07 -6.5+18
A C.LW ADAMERGING [87]| X/ -32.5436 -24.1 417 -22.7 443 -27.8 227 -22.1+14 214412 243433 -19.6 17 -21.7 211
C. LORA-WEMOE [68] / -20.4 +90 -20.2 439 -24.5+100 -18.0+62 -18.8 +34 -25.8 +79 -17.8 £59 -16.8 +53 -27.9 +172
MINGLE (Ours) / -0.6+04 -l.1+03 -22+08 -04+01 -09+01 -19+04 -0.6+01 -1.0+03 -2.6+09
MINGLE* (Ours) / -0.1+01 -04+01 -1.3+06 -0.1+01 -03+01 -1.0x04 -0.2+00 -0.4+02 -1.5+06

Table 2: Results of continual merging Flan-T5-base models on 8 tasks, ordered alphabetically.

Method \ DM /DA \ CoLA MNLI MRPC OQNLI QQP RTE SST2 STSB \ ACCT BWT?
PRE-TRAINED -/ - 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2 75.7 -
INDIVIDUAL -/ - 75.0 83.4 87.5 91.5 854 859 93.6 88.7 86.4 -
TASK ARITHMETIC X1 X 69.1 58.1 779 88.9 83.1 79.1 90.7 74.0 77.6 -4.6
TIES-MERGING XX 39.3 70.0 824 88.8 81.8 758 89.7 76.8 75.6 -6.1
OPCM XX 69.9 72.9 78.7 90.3 838 830 922 73.7 80.6 2.5
LW ADAMERGING X/ 69.1 58.1 779 88.9 83.1 79.1 90.7 74.2 77.6 -4.7
LORA-WEMOE / 71.5 80.6 78.2 90.3 827 805 913 76.2 81.4 0.1
MINGLE (Ours) / 75.0 78.2 86.0 90.9 842 80.5 925 78.8 83.3 0.1

Implementation Details. We insert low-rank experts into the CLIP vision encoder. Two variants
are used: a full setup modifying all attention and MLP layers, and a lightweight one on attn.qgkv
and mlp.fcl. All experiments share a single set of global hyper-parameters across models and task
orders. Each expert has rank r = 64; the null-space constraint uses £k = 3, v = 1, and 8 = 0.99.
Adaptation runs for 50 iterations with Adam (Ir le-4, batch size 16). For vision tasks we use 5
unlabeled samples per class, and for NLP tasks 100 in total, all without access to prior-task data.

Evaluation Metrics. We evaluate using average accuracy (ACC) and backward transfer (BWT) [37].
ACC is the mean accuracy of the final merged model across all tasks: ACC = & 27 a; (6%,

where a;(-) is accuracy on task i. BWT measures forgetting by comparing performance on earlier
tasks before vs. after the final merge: BWT = 727 57" [, (05%) — a;(67%%)].

K2

4.2 Main Results

Overall Performance As shown in Tab. [l MINGLE substantially outperforms previous continual
merging methods on all CLIP backbones and task counts. It achieves the highest accuracy with
backward forgetting kept near zero, demonstrating both strong forward learning and long-term
stability. The lightweight variant performs on par with the full version, further underscoring the
robustness of our approach. On NLP benchmarks (Tab. [2), MINGLE likewise attains the best overall
accuracy and non-negative BWT, improving on multiple GLUE tasks while maintaining balanced
performance across the suite. Together, these results across vision and language confirm that MINGLE



Table 3: Comparison of last accuracy (%) with conventional CL approaches on MTIL benchmark.

O

< N s . o q

Method »‘\‘&5 RS R R e ﬂ@\%« o Avg.
Conventional CL (Sequential fine-tuned)

WISE-FT [81] 27.2 90.8 68.0 689 869 74.0 87.6 99.6 92,6 77.8 81.3 71.7
ZSCL [97] 40.6 922 81.3 70.5 94.8 90.5 91.9 98.7 939 85.3 80.2 83.6
MOE-ADAPTER [89] 49.8 9222 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0
DIKI [71] 452 95.7 86.3 729  98.0 97.0 892 994 942 81.6 76.6 85.1
AWOFORGET [96] 42.4 92.7 83.2 732 97.0 91.8 92.2 99.1 939 874 82.6 85.0
DUAL-RAIL [83] 525 968 833 80.1 964 990 899 988 935 855 792 86.8
MAGMAX [41] 40.2 96.1 81.1 720  97.8 76.3 88.4 992 930 705 68.9 80.3
MINGLE-SEQ 58.7 97.5 87.2 797 973 87.2 90.1 99.6  93.0 80.4 733 85.8

Continual Merging (Independent fine-tuned)
AVERAGE (SWA) [26] 26.5 92.3 74.3 484 737 74.0 87.1 84.0 912 67.5 68.5 71.6

C. TA [24] 26.6 92.5 74.5 487 743 74.4 87.0 85.5 91.2 67.7 68.6 71.9
C. TiEs [86] 30.5 94.0 74.8 498 717 73.8 87.3 81.5 90.6 67.0 67.9 71.7
MAGMAX-IND [41] 29.9 93.7 78.4 46.1 58.3 68.1 86.8 82.8 91.4 62.7 69.3 69.8
OPCM [70] 357 99 710 546 903 764 871 96.3 933 701 705 71.0
MINGLE 54.2 97.3 79.7 723 96.0 86.7 88.7 99.3 93.9 73.1 71.6 83.0

Table 4: Robustness results of ViT-B/32 continually merged across 4 tasks.

Method Clean  Motion Impulse Gaussian Pixelate Spatter Contrast JPEG  Avg.
C. LW ADAMERGING [87] 56.0+s53 47.5+44 43.1+23 43.3 434 18.1+47 46.6430 489445 49.1+40 449
. C. WEMOE [68] 3.4 +os 3.1 +04 43414 34414 3.0+16 4.0 +09 3.3 +07 4.0+12 3.6
;\3 C. LORA-WEMOE [68] 78.7 +45  T1.0+49  55.0438 594438 24941249 605138 685148 697144 61.0
— C. TASK ARITHMETIC [24] 77.5+00 66.0+00 589+00 59.6+00 29.7+00 63.5+00 66.0+x00 67.8+00 61.1
8 MAGMAX-IND [41] 79.1 400 69.0+00  60.6 +00 61.5+00 33.0+00 664100 686400 699100 635
< OPCM [70] 83.6+05 725106 64.7+i2 65.2+12  352+06 705105 725106 744103 673
MINGLE (Ours) 89.9+04 828108 67.5+20 70.7+12 379+04 T77.0+07  80.1+0s 829100 732
C. LW ADAMERGING [87] -38.0+71 -3734s50 -222430 -252+45 -20.8+63 -28.6+40 -34.7+65 -36.11+53 -29.5
+ C. WEMOE [68] -30.7 431 -28.7+38 -22.1+116 -255+98 -8.0x45 -234+n0 -27.6+s6 -28.6+52 -24.3
;\3 C. LORA-WEMOE [68] -13.6 469 -14.6 452 -11.3+47 -102437 -15.6488 -10.8+39 -11.2488 -16.7+66 -13.0
;’ C. TASK ARITHMETIC [24] -4.8+09 -6.1+12 -1.6 +30 -1.6 417 -2.7 +15 -3.1 425 -6.1+12  -5.1+08 -39
=z MAGMAX-IND [41] -7.7 08 -8.1x1s -6.1 49 -5.1 437 -3.5 130 -7.3 120 -84+16 -82x12 -6.8
A OPCM [70] 43418 45408 -6.4 7.1 -6.1 +43 -2.9 +09 -6.3 129 -4.5 125 57415 5.1
MINGLE (Ours) -0.21+02 -0.1+04 0.7 +10 0.6 1.1 -0.2 411 0.2 +07 0.0 +os 0.5+05  -0.2

consistently delivers state-of-the-art accuracy while nearly eliminating forgetting under diverse
continual scenarios.

Comparison with Conventional CL. Tab. |3|evaluates two CL paradigms on the MTIL benchmark:
conventional CL, where each task model is fine-tuned from its immediate predecessor; and continual
merging, which fine-tunes each task model independently before fusion, eliminating inter-model
dependencies and enabling flexible task ordering and model reuse. Within the merging family,
MINGLE sets a new state-of-the-art, and when integrated into a sequential fine-tuning pipeline, it
matches the performance of SOTA CL methods. This demonstrates both its strength as a fusion
strategy and its versatility across different training regimes.

Robustness to Test-Time Distribution Shifts. Following prior work [87, [68], we evaluate MIN-
GLE on seven corruptions (motion blur, impulse noise, Gaussian noise, pixelate, spatter, contrast,
JPEG) and report results in Tab. |4] It preserves high accuracy and near-zero or even positive BWT,
outperforming all baselines, whereas direct application of SOTA TTA-based merging (WEMOE,
AdaMerging) in a continual setting fails without tailored designs to continual setup.

4.3 Ablation Results and Analysis

Ablation Study. We explore the contribution of each component in Tab. 5] Row 1 shows a
fixed-weight merging of low-rank experts as our baseline. In Row 2, adding TTA boosts ACC
substantially but at the cost of worsening BWT with more tasks. Row 3 demonstrates that freezing
earlier gates curbs forgetting while retaining ACC gains. Row 4 then applies null-space constraints,
yielding further BWT improvements. Finally, Row 5 presents the full method with adaptive relaxation,
which best harmonizes accuracy and long-term stability.



Table 5: Ablation study of MINGLE with CLIP ViT-B/16 over 8, 14, and 20 tasks.

Test-Time Frozen Null-Space Adaptive ACC(%) 1 BWT(%) 1
Adaptation Old Gate Constrained Gate Relaxation 8tasks 14 tasks 20tasks 8tasks 14 tasks 20 tasks
X - - - 787 +01  764+10 70.6+04 -05+01 -1.0+03 -1.3+03
X X X 86.4+53 81.7+23 76.7+13 -6.0+s2 -7.7+34 -12.8+13
X X 874 +04 813108 762+13 -23+05 -43+0s8 -6.8+00
X 86.0+15s 83.5+00 783417 -0.1+xo1 -0.1x01  -0.2+01
88.3+06 849408 819400 -04+01 -09+01 -1.9+04

Table 6: Ablation on number of adaptation steps for ViT-B/32 across 8, 14, and 20 tasks.

Steps ACC (8-task) BWT (8-task) ACC (14-task) BWT (14-task) ACC (20-task) BWT (20-task)
5 60.9+14 -0.1+02 62.4+17 -0.3+01 60.2+15 -0.1+02
10 68.6+16 -0.2+02 68.5+16 -0.1x02 63.5+10 -0.4+03
20 78.4+06 -0.2+01 75.5+13 -0.4+01 71.0+12 -0.4+04
50 85.8+038 -0.6+04 81.6+14 -1.1+03 771420 -2.2+08

Table 7: Efficiency and sample analysis. (a) Expert insertion layers and rank sweep over 8 tasks on
CLIP-ViT-B/32. (b) Wall-clock adaptation time across tasks on CLIP-ViT-B/32. (c¢) Accuracy (%) of
CLIP-ViT-B/16 under varying numbers of test samples.

(b) Wall-clock adaptation time across tasks

(a) Expert insertion layers and rank sweep (8 tasks)

#Tasks Adaptation steps  Total Time (s) Avg./task (s)

Configuration TTA Time Train. Param Full Param ACC(%) 3 50 78 08
attn.gkv_proj (r = 64) 61s 27.7k 116.0M 69.9 14 50 138 9.9
attn.out_proj (r = 64) 47 s 9.3k 97.0M 53.9 20 50 211 10.6
mlp.fcl ET = 2:11; jg s 396081:( }H; m %? (c) Results with varying samples/class
mlp.fc2 (r = 64 s X . .
attn & mlp (r = 64) 78's 83.0k 1731 M 85.8 # Samples/class 8-task 14-task 20-task
qkv & foi (r — 32) 65 s 369 k 137 M 845 0 (Static) 78.7+01 76.4+10 70.6+04
qkv & fcl (r=128) 65s 369k 191.6 M 85.1 1 88.4+04 84.6+11 81.7+19
qkv & fcl (r = 768) 70s 369k 7103 M 83.7 3 88.6+04 84.7+x10 81.7x10
qkv & fcl (r = 64) 65s 36.9k 139.7M 850 5 883107 849108 81.9x09

10 88.6+03 85.1+11 82.1+12

Ablation on TTA optimization steps. Tab. [6| reports accuracy and backward transfer of CLIP
ViT-B/32 under different adaptation steps across 8, 14, and 20 tasks. Accuracy improves steadily with
longer schedules, rising from 60-63% at 5 steps to 77-86% at 50 steps. Forgetting remains negligible,
with BWT close to zero in all cases and only a minor drop of about 2% in the 20-task setting at 50
steps. Notably, as few as 20 steps are sufficient to surpass all baselines in Tab. 1, while 50 steps yield
the best accuracy with only a modest increase in cost. These results confirm that MINGLE is both
effective under tight compute budgets and scalable with additional adaptation.

Computation and Parameter Efficiency. Tab.[/|summarizes the efficiency analysis. In part (a),
inserting experts into both attn and mlp layers yields the highest accuracy, 85.8%, but also the
longest adaptation time of 78s and 83k trainable parameters. A lighter hybrid scheme qkv & fci
with rank 64 reaches 85.0% accuracy with 36.9k parameters and 65s, offering a better trade-off.
The rank sweep shows that raising the rank from 32 to 64 improves accuracy from 84.5% to 85.0%,
while larger ranks bring little or even negative gain, e.g., rank 768 drops to 83.7%. Part (b) reports
wall-clock adaptation time as tasks increase: with 20 tasks the total is 211s, averaging about 10s per
task. After adaptation the router remains fixed and inference is purely feedforward without TTA,
enabling low-latency deployment across all tasks. Overall, MINGLE achieves a strong balance of
accuracy, parameter efficiency, and scalability under diverse resource budgets.

Number of Seed Samples. The number of seed samples per class is crucial for TTA reliability and
efficiency. As shown in Tab.[/|(c), using no samples reduces to the Static baseline, where LoRA
modules are merged with fixed coefficients (0.3) without adaptation, yielding 70-79% accuracy.
Introducing a single sample lifts accuracy to 81-88%, and adding more samples offers only minor
gains. Variance across task orders decreases with more samples, making five samples per class a
balanced trade-off between performance and efficiency.
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Figure 3: Gate activations across eight tasks under varying . Each subplot shows one gate; curves
and shaded areas indicate mean and std across layers. Gray bars mark the gate’s training task. Lower
~+ leads to stronger suppression on prior tasks.
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Figure 4: Sensitivity analysis of the null-space constrained gating w.r.t. hyper-parameters /3, v, and k.

Visualization on Gate Activations. Fig. [3|shows that the null-space constraint suppresses gate
responses on previously seen tasks, reducing forgetting, with smaller  giving stronger attenuation.
We also observe that gate activations remain below 1.0 across tasks, even in the w/o Null-Space
variant (blue curve), showing that under-activation is not solely due to the constraint. Instead, it
reflects the complementary nature of experts: multiple LoRA modules capture overlapping but
distinct subspaces, and softly combining them often yields better performance, especially in settings
like TTCMM where task boundaries are fuzzy.

Hyper-parameter of Gate. We study the effect of three key hyper-parameters: -, 3, and k. «y controls
the strength of null-space suppression; smaller values lead to stronger attenuation of activations on
prior tasks, reducing forgetting (Fig.[#a). As shown in Fig.[db] 3 regulates the smoothness of the EMA
used to accumulate interference signals. A moderate setting (8 = 0.99) balances responsiveness
and stability. Smaller 8 amplifies noise sensitivity, while larger 3 slows detection of interference. k
determines the number of principal directions retained per task. The mitigation of forgetting saturates
at k = 3 (Fig.[dd), indicating that a small number of task-specific directions suffices.

5 Conclusions

In this work, we introduced the task of test-time continual model merging (TTCMM) and proposed
MINGLE, a novel framework for TTCMM that integrates a mixture-of-experts architecture with
adaptive null-space constrained gating. Extensive empirical evaluations show that MINGLE substan-
tially improves generalization and mitigates catastrophic forgetting, consistently outperforming prior
state-of-the-art approaches. These results establish TTCMM as a principled paradigm for addressing
both task interference and distribution shift, and highlight the practical potential of MINGLE for
scalable and efficient continual learning in real-world applications.
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paper’s contributions and scope?
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Justification: The abstract and introduction clearly state the main contributions, which are
consistently supported by both theoretical insights and empirical evaluations presented
throughout the paper.
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed approach are explicitly discussed in Appendix.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical claims are accompanied by clear assumptions and complete
proofs in Appendix, with theorem formally stated and rigorously derived.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed descriptions of datasets, training protocols, and evaluation metrics are
provided in Section[4.T]and Appendix, enabling faithful reproduction of the main results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code and data are not provided at submission time, but the authors state
they will release them upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper includes detailed descriptions of datasets, data splits, training
procedures, hyperparameters, and evaluation protocols in both the main text and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports mean and standard deviation across multiple runs with
different random seeds and clearly states the sources of variability, ensuring the statistical
reliability of the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the type of GPUs used, training time per experiment,
and overall compute requirements, providing sufficient details to assess reproducibility and
resource demands.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no identified ethical
concerns related to data usage, human subjects, or societal impact.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a Broader Impacts section stating that the work aims to
advance machine learning and does not raise specific societal concerns requiring detailed
discussion.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce models or datasets with a high risk of misuse, so
safeguards are not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in the paper are properly cited, and their licenses
and terms of use are respected and included where applicable.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new datasets, models, or code assets, so this
question is not applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects, so
this question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects, so IRB approval is
not applicable.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods in this research do not involve LLMs in any important,
original, or non-standard way, so this question is not applicable.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23


https://neurips.cc/Conferences/2025/LLM

Appendix

A Theoretical Risk Comparison ................ ... ... ... .. ..
B Additional Descriptions .............. ... ... .. i
B.1 Details of Dataset and Task Settings ..............cooiiiiiiiiiiiiiinea....
B.2 Details of Downstream Models .......... ... ... i i
B.3  Details of BaSeliNes .. ... ...oviuiiitti ettt 27
B.4 Details of Baseline Hyper-parameters ...............o.oiiiiiiiiiiiiieennnnn 29
B.5 Comparison of Assumptions and Requirements ................ .. ... ... 29|
C Additional Results ........ ... . i 30|
C.1  Detailed Overall Performance Results ......... ... ..., 30)
C.2  Accuracy Trends Across Sequential Tasks .............. ... . it 30|
C.3  Detailed Results Under Distribution Shifts ..................c ... ... 30)
C.4 Inference Efficiency and Parameter Overhead ................................ 34]
C.5 Forward Transfer Analysis ...........oiiuiiiiiiiiiiiii i 34]
C.6  Additional Visualizations of Gate Activations and Relaxation Effect ............ 35]
D DISCUSSIONS . ...ttt ettt B8l
D.1  Use of Unlabeled Adaptation Samples .............ccoiuiiiiiiiiiiiniean..
D.1 Relation to Rehearsal-Free Continual Learning ...............................
D3 LIMItations ... ...ttt ettt et e e
D.4  Broader IMPACES .. ... .....uirninee et e e e e B8]

A Theoretical Risk Comparison: Dynamic MoE vs. Static Averaging

Problem Setup and Definitions Consider 7" independent tasks, each associated with a data distri-
bution D; fort = 1,...,T. For each task t, a pre-trained expert model f;(x) outputs a probability
distribution over classes, trained specifically on D;. The overall data distribution D is a mixture
of these tasks, where an example (z, y) is drawn from task ¢ with prior probability P(t), and then
(z,y) ~ D;. The expected risk of a predictive model h(z) is defined as:

T

t=1

where ¢(h(z),y) is a loss function (e.g., cross-entropy or 0-1 loss).

We compare two methods to combine the experts into a final prediction h(z):

* Static Averaging: Defined as Agyic(2) = Zle a; fi(x), where a = (a1, ..., ar) is a fixed
weight vector independent of x, typically with a; > 0 and ) . o; = 1 for probability outputs.

* Dynamic Mixture-of-Experts (MoE): Defined as hwor(z) = fi=(2)(x), where i*(z) =
argmax; g;(x) and g(x) = (g1(x),...,gr(z)) is a gating function that selects one expert
per input (hard routing). The gating is subject to routing noise, modeled below.

Routing Noise Model For each input = drawn from Dy, the true task is ¢, and the ideal expert is
f+. The gating selects the correct expert i*(x) = ¢t with probability 1 — ;, and an incorrect expert
i*(x) # t with probability e, = P(i*(z) # t | © ~ D), the task-specific routing error rate. On error,
the gating selects a random expert from {1, ..., 7} \ {¢} uniformly. Define:

* Ri(i) = E(zy)~p, [€(fi(2), y)], the risk of expert i on task ¢.

* Rigeal = 23:1 P(t)R(t), the risk with perfect routing.

* Ryrong,t = ﬁ > 4t Ry (1), the average risk of incorrect experts on task .

e = Zthl P(t)et, the overall routing error rate.
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Theorem A.1 (Dynamic MoE versus Static Averaging). Let {(Dy, f;)}~_, be T indepen-
dent tasks with priors P(t) and per-task risks Ry(i). For any static mixture hgpatic(z) =

23:1 a; fi(z) and any hard-routed MoE hyiog(2) = fix (o) () with task-specific routing
errors €;:

T
R(hyok) = Rideal + »_ P(t) et (Rurong.t — Re(t)), (13)
t=1
where Rigeal = Y, P(t)R:(t) and Ryyong,t = ﬁ Zi# Ry (7). Moreover,
1. (Perfect routing) If e, = 0 for all t, then inf R(hyop) < inf R(hstatic) whenever at least
g fe%
two tasks disagree on their best expert.
2. (Noisy routing) IfZP(t)st (Ruwrongt — Ri(t)) < Riasic — Rideal, where Rl =

t
inf o, R(Pstaric), then the MoE still attains lower risk than any static mixture.

\. J

Proof. The proof proceeds in three parts: (1) deriving the MoE risk with routing noise, (2) proving
the optimal gating case, and (3) establishing the condition for MoE superiority under routing noise.

Step 1: MoE Risk with Routing Noise
The MOoE prediction is hnog (%) = fi+ (o) (), where i*(2) = arg max; g;(x). The expected risk is:

T

R(hMOE):Ezy)ND[ (fz z)( ) )] Zp(t)Exy)~Dt[ (fz z)( ) )] (14)

t=1
For task ¢, condition on routing correctness:
* Correct routing (i*(x) = t): Probability 1 — &, risk R;(t).

* Incorrect routing (i*(z) # t) Probability e;, selects a random expert from {1,...,7} \ {t},
with average risk Ryrong,t = ﬁ > st Bt (7).

The expected risk on task ¢ is:

E(x,y ~Dt[ (fz *(x) ( ) )] = (1 - Et)Rt(t) + EtRwrong,t- (15)
Thus, the total risk is:

T
R(hMoE) = Z P(t) [(1 — €t)Rt(t) + 5tRwr0ng,t} . (16)
t=1
Rewrite:
T T T
R(hwoe) = > P()Ry(t) + > P(t)er(Rurong.t — Ri(t)) = Rigea + 3 P(t)ede,  (17)
t=1 t=1 t=1

where 6; = Ruyrong,t — R¢(t) > 0is the risk increase due to misrouting on task ¢.
Step 2: Optimal Gating (No Routing Noise)

Assume an oracle gating function with e, = 0 for all ¢, so ¢*(x) = ¢ for all z ~ D;. Then:

R(hyor) = Z P(t)Ry(t) = Ridear (18)
Define hypothesis classes:
T
Htatic = {x’_)zazfz(x) |O‘GRT}7 (19)
i=1
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HmoE = {;L = fir@)(2) | 17 (2) = arg mlaxgi(:v),g X — RT} . (20)

Any static model hgyic () = Zil a; fi(x) can be approximated by an MoE with g(z) assigning
constant weights, so Hgic € Hmor- Thus:

R;\(/IOE = ;I(lf)‘ R(hMOE) < Holf R(hstatic) R:lanc (2D

Under task heterogeneity (R;(t) < R.(s) and R,(s) < R(t) for some ¢t # s), the ideal MoE routes
each x ~ D, to f;, achieving:

T
Rigea = Y _ P(t)Ry(1). (22)
t=1

For static averaging:

statlc ZP E(acy ~Dy [ <Z azfz )] : (23)

Since / is convex (e.g., cross-entropy), Jensen’s inequality implies:

14 (Z O‘ifi(x)my)

with strict inequality unless oy = 1 and a;; = 0 for ¢ # ¢, which cannot hold for all tasks simultane-
ously under heterogeneity. Thus:

> Ry(t), (24)

R:tatic > Rideal = RK/IOE' (25)

Step 3: MoE Superiority with Routing Noise

Let v = R, — fidear > 0 under task heterogeneity. The MoE outperforms the static model if:
R(hMUE) < R:tatic' (26)
Substitute:
T
Rigeat + Y _ P(£)£46; < Rigear + - 27
t=1
Thus:
T
Z P(t)stét <7y = R:tatic — Rideal- (28)
t=1

Since 0; = Rurong,t — R¢(t), the condition is:

T

Z P(t)gt (Rwrong,t - Ry (t)) < R:tatic — Rigear- (29)
t=1
If this holds, the MoE’s risk, despite routing noise, remains below the best static risk. O

Conclusion: The MOoE risk is Rigea + Z;T:l P(t)et(Rwrong,t — Re(t)), and it outperforms static
averaging when routing noise is sufficiently small relative to the static model’s suboptimality. The

optimal gating case confirms Ry g < I3, With strict inequality under task heterogeneity.

B Additional Descriptions

B.1 Details of Dataset and Task Settings

Dataset Details Following prior works [70], we evaluate continual model merging on twenty
publicly available image classification datasets, including SUN397 [84]], Stanford Cars [32], RE-
SISC45 [4], EuroSAT [19]], SVHN [46]], GTSRB [64], MNIST [34], DTD [7], Flowers102 [47],
PCAM [73]l, FER2013 [18]], Oxford-IIIT Pet [50], STL-10 [9]], CIFAR-100 and CIFAR-10 [33],
Food-101 [3]], Fashion-MNIST [83]], EMNIST [10]], KMNIST [8]], and Rendered SST-2 [62].
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Table 8: Extended downstream datasets used in our experiments.

Dataset #Classes #Train (k) #Test (k) Task
SUN397 287 19.9 19.9 Scene category
Stanford Cars 196 8.1 8.0 Car series
RESISC45 45 18.9 6.3 Remote—sensing scene
EuroSAT 10 21.6 2.7 Satellite land-use
SVHN 10 73.3 26.0 Digit recognition
GTSRB 43 39.2 12.6 Traffic sign
MNIST 10 60 10 Hand-written digit
DTD 47 3.8 1.9 Texture recognition
Flowers102 102 1.0 6.1 Flower species
PCAM 2 262 32.8 Tumour detection
FER2013 7 28.7 3.6 Facial emotion
Oxford IIIT Pet 37 3.7 3.7 Animal species
STL10 10 5 8 Object recognition
CIFAR-100 100 50 10 Natural object
CIFAR-10 10 50 10 Natural object
Food101 101 75.8 25.3 Food type
Fashion-MNIST 10 60 10 Fashion product
EMNIST (digits) 10 60 10 Hand-written digit
KMNIST 10 60 10 Kuzushiji character
Rendered SST-2 2 6.9 1.8 Rendered sentiment

Task Grouping We group the 20 datasets into three progressive task sets and evaluate the merged
models using average accuracy (ACC) and backward transfer (BWT) metrics. For each task group,
we perform 10 experiments using different task sequences (listed in Tab. [9), and report both the
mean and standard deviation of the results to ensure robustness and consistency.

« 8-task group: (1) SUN397, (2) Stanford Cars, (3) RESISC45, (4) EuroSAT, (5) SVHN, (6)
GTSRB, (7) MNIST, (8) DTD.

« 14-task group: (1) SUN397, (2) Stanford Cars, (3) RESISC45, (4) EuroSAT, (5) SVHN, (6)
GTSRB, (7) MNIST, (8) DTD, (9) Flowers102, (10) PCAM, (11) FER2013, (12) OxfordIIITPet,
(13) STL10, (14) CIFAR100.

e 20-task group: (1) SUN397, (2) Stanford Cars, (3) RESISC45, (4) EuroSAT, (5) SVHN, (6)
GTSRB, (7) MNIST, (8) DTD, (9) Flowers102, (10) PCAM, (11) FER2013, (12) OxfordIIITPet,
(13) STL10, (14) CIFAR100, (15) CIFARI10, (16) Food101, (17) FashionMNIST, (18) EMNIST,
(19) KMNIST, (20) RenderedSST?2.

B.2 Details of Downstream Models

In this section, we present the evaluation setup for pre-trained and fine-tuned models. As shown in
Tab. [I0] we evaluate the zero-shot accuracy of the original CLIP-ViT models and the performance
of fine-tuned models on the test sets of various downstream tasks. The fine-tuned checkpoints are
obtained directly from Hugging Face (https://huggingface.co/tanganke), where each model
has been fine-tuned on task-specific training data using a standard protocol. The visual encoder is
updated during fine-tuning, while the classification head is fixed and initialized from the pre-trained
text encoder. The fine-tuning setup follows a standard configuration: cross-entropy loss, Adam
optimizer, cosine annealing learning rate schedule with a peak learning rate of 1e-5, batch size 128,
and 4000 training steps.

B.3 Details of Baselines
Our experiments involve the following comparison methods and our method:
 Stochastic Weight Averaging (SWA). A simple model averaging technique to stabilize opti-

mization and improve generalization [26]]. At each step ¢, the model parameters are averaged
across previous checkpoint: g5V = 3 [07W1 (¢ — 1) + 63VA]. This approach can be interpreted
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Table 9: Dataset orderings used for experiments in each task group.

Group ‘ Order ‘ Dataset Order (by ID)

1 (04— 05— 07— 08 —03 — 06— 01 —02)
2 |(07—08—05—04—02—06—03—01)
3 (03—06—04—02—01—08—05—07)
4 1(06—08—02—01—03—07—04—05)
3 tasks 5 (07— 06 — 03 — 08 — 05 — 01 — 04 — 02)
6 |(07—02—03—08—05—04—01—006)
7 (07 —01 —04— 03— 08— 05— 02— 06)
8 (08 - 05— 06— 07— 01 - 04— 03 —02)
9 |(01—04—05—02—06—03—07—08)
10 | (08 — 03— 01 — 02— 06— 05— 07 — 04)
1 09—13—-08—07—14—12—06—03— 10— 04 —05—01—02—11)
2 |(09—10—-11—-14—07—13—-04—02— 06— 08— 03— 12— 05—01)
3 05—-08—12—06—11—-01—-10—-04—-14—03—-02—13—-09—07)
4 03—-10—-09—12—04—13—01 —-06—11—02— 14 — 08 — 07 — 05)
14 tasks 5 08—14—09—06—12—13—05—03—04— 11— 10— 01— 07— 02)
6 03—12—13—-01—11—-04— 10— 05— 14— 08 — 09 — 07 — 02 — 06)
7 07—-01—-12—10—02—-08—>13—04—05— 11— 14— 03 — 06— 09)
8 05—12—04—11—-03—08—10—01 —-09 — 13— 14— 07 — 06 — 02)
9 (10—-07—09—02—03—13—-01 = 12— 14— 04— 11 — 06 — 05 — 08)
10 |(01-02—11—-06—08—12—07—05—10—14—03 — 13— 09 — 04)
1 20—06—15—05—10—-14—-16—-19—-07—13—-18—11—-02—12—-03—17—08— 09— 01 — 04)
2 09—14—06—-03—-07—04—-18—01—-17—-19—-08—-20—-13—-16—>11—-12—-15—-05—10—02)
3 09—15—-16—11—-03—-13—-08—10—12—02—-20—-01—-05—19—07—=06— 04— 18 > 17— 14)
4 17—-04—-11—-19—-18—-10—-07—15—-12—13—-08 -02— 01 - 06— 05— 03 - 20— 16 — 14 — 09)
20 tasks 5 (14—-16—-04—-20—15—-17—-07—-11—-06—18—12—-01 —-19—09— 10— 05— 08 — 02 — 13 — 03)
6 02—06—17—04—-19—18—-08—16—-20—-01—-10—-13—-07—-09—-05—11—=15—14—03—12)
7 (19—-01—-09—14—06—20—17—04—-08—02—15—-03—-16—13—-12—-07—=10—=05— 11— 18)
8 15—-07—-08—02—10—-06—17—20—-05—-19—-16—01—18—09— 13— 11—04— 14— 12— 03)
9 (10-05—-07—11—-01—-03—17—15—-18—04—-14—-19—-02—06— 13 —-20—08 - 12— 09 — 16)
10 |01—-11—-02—15—-03—-10—12—19—16—13—07—05—09 — 04 — 14 — 20— 06 — 18 — 17 — 08)

as a form of uniform model ensembling. While conceptually straightforward, SWA treats all
checkpoints equally and does not account for inter-task conflicts.

* Continual Task Arithmetic (C. TA). A training-free merging strategy that linearly combines
task-specific fine-tuned models with a shared pre-trained model [24]. It computes the merged

parameters as 0! = ¢! 1 \(0, — 6,), where  is a scaling factor. TA is computationally
efficient and easy to apply, but sensitive to A and prone to destructive interference when merging
dissimilar tasks.

¢ Continual Ties-Merging (C. Ties). An extension of Task Arithmetic that reduces parameter-
level redundancy and sign conflicts during model merging [86]. For task ¢, the difference vector
A0y = 6; — 0 is trimmed and sign-normalized to obtain AfT®® = Ties (A tT‘eﬁ, Aﬁt) and the

merged model is given by g""8! = gerEed L \ AQTies,

* Orthogonal Projection-based Continual Merging (OPCM). A projection-based scheme to
mitigate task interference by enforcing orthogonality between parameter updates [[70]. Specif-
ically, each Af; is projected onto the orthogonal complement of the subspace spanned by

previous updates: 67" = g + /\% [At 1A0merged PED(AH,)|, where P(*—1) denotes the
orthogonal projection.

* Maximum Magnitude Selection (MagMax). An extension of Task Arithmetic that, for
each parameter dimension, selects the update with the larger absolute value: AgY*EM™ —

MagMax (A@MagMax Aé)t) and the merged model is given by "¢ = grereed - \ ApMeEMax,
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Table 10: Test set accuracy of the pre-trained model and individual fine-tuned models on different

downstream tasks.

\4”591 o 5\9’0(5 oSP(S o 5‘23’ o8 ) \,46‘5\@’ Psl\
Model < o o S e NS DR <
CLIP-ViT-B/32
Pretrained 632 596 603 450 316 325 483 442 664 60.6
Fine-tuned 749 785  95.1 9.1 973 989 996 797 886 88.0
CLIP-ViT-B/16
Pretrained 655 647 664 541 520 435 517 450 713 54.0
Fine-tuned 789 859 966 990 976 990 997 823 949 90.6
CLIP-ViT-L/14
Pretrained 682 779 713 612 584 505 763 555 792 512
Fine-tuned 828 928 974 991 979 992 998 855 977 o1.1
< )
'YQQ\ 0 \S g%«
Q\“) 6\\\ Q %\Q Q\\Q \Q\ RN \S'i \s" &
Model % o S R O T R
CLIP-ViT-B/32
Pretrained 413 833 97.1 637 898 824 630 120 100 58.6
Fine-tuned 716 925 975 884 976 884 947 956 982 713
CLIP-ViT-B/16
Pre-trained 464 884 983 663 908 870 673 124 112 60.6
Fine-tuned 728 945 982 888 983 919 945 953 981 757
CLIP-ViT-L/14
Pre-trained 500 932 994 751 956 912  67.0 123 97 68.9
Fine-uned 759 957 992 930 991 948 953 954 983 80.5

B.4 Details of Baseline Hyper-parameters

Tab. [l 1| summarizes the hyper-parameters for all baseline methods under different task configurations
(8, 14, 20 tasks). Top-k denotes the pruning ratio, TALL the TALL mask threshold, and Cons. the
consensus mask threshold. The column LR is the learning rate, while Steps indicates the number of
adaptation steps. r represents the LoRA rank, and the last column jointly reports the null dimension
(k), EMA decay (5), and relaxation coefficient (7).

Table 11: hyper-parameter settings for all baselines.

Method Tasks A Top-k  TALL  Cons. LR Steps r k/B/~

8 0.3 - - - - - -
TASK ARITHMETIC 14720 01 ] ] ] ) ] ]

8 0.3 20 - - - - -
TIES-MERGING 14/20 01 20 ) ) ) i i
CONSENSUS TA 8/14/20 0.1 - 0.2 - - - -
LW. ADAMERGING 8/14/20 0.3 - - le-4 50 - -
WEMOE 8/14/20 0.3 - - le-4 50 - -
LORA-WEMOE 8/14/20 0.3 - - le-4 50 64 -
MINGLE-STATIC 8/14/20 0.3 - - - - - -
MINGLE (Ours) 8/14/20 - - - le-4 50 64 3/0.99/1.0

B.5 Comparison of Assumptions and Requirements

Tab. [12] summarizes the assumptions and resource requirements of all baseline methods. We report
whether each method requires storing intermediate activations, introduces additional parameters (for
storage or inference), and incurs extra test-time computation. Our method only maintains a fixed-size
covariance matrix instead of full activations, leading to constant memory regardless of test set size.
Although LoRA experts are stored, the router merges them into a single model per input, so the
effective inference cost matches that of a standard individual model.
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Table 12: Comparison of baseline assumptions and requirements.

Extra Parameters Extra Parameters

Method Save Activations (Storage) (Inference) Test-time Compute
TASK ARITHMETIC No No No No
TIES-MERGING No No No No
MAGMAX-IND No No No No
OPCM No No No No
CONSENSUS TA No Yes No No
LW. ADAMERGING No No No Yes
WEMOE No Yes No Yes
MINGLE-STATIC No No No No
MINGLE (Ours) No! Yes? No? Yes

! Only a fixed-size covariance matrix is maintained, resulting in constant memory regardless of test set size.
2 LoRA experts are stored, but the router merges them into a single model per input, making the effective
inference size equivalent to a standard individual model.

C Additional Results

In this section, we provide additional experimental results to support the findings reported in the main
paper. Specifically, we include: (1) detailed overall performance results (C.I)); (2) accuracy trends
across sequential tasks (C.2); (3) detailed results under distribution shifts (C.3); and (4) extended
visualizations of gate activations and hyper-parameter effects (C.6).

C.1 Detailed Overall Performance Results

Tab. [13] expands on the average results in Tab. [I] by reporting per-task average accuracy after
continually merging 20 tasks. We compare six methods, SWA, Task Arithmetic, Ties-Merging,
MagMax-IND, OPCM, and our proposed MINGLE across three CLIP-ViT backbones (B/32, B/16,
L/14). MINGLE achieves the highest accuracy on most tasks. These fine-grained results reinforce the
main paper’s findings, highlighting MINGLE’s ability to improve performance on continual model
merging.

C.2 Accuracy Trends Across Sequential Tasks

Fig. [5| provides a detailed view of accuracy throughout the continual merging process across different
settings, showing both the performance on the current task and on previously encountered ones. The
progressive accuracy drop across columns illustrates the degree of forgetting over time. Notably,
MINGLE consistently alleviates this degradation, demonstrating markedly reduced forgetting across
the full task sequence. Fig. [6|further compares the average accuracy curves of MINGLE and baseline
methods on previously seen tasks after each new model is merged, using the CLIP ViT-B/16 backbone.
Results are averaged over 10 random task orderings. MINGLE consistently achieves the highest
performance throughout the merging process, with its accuracy curve clearly dominating those of
competing methods. Moreover, the narrower standard deviation bands indicate that MINGLE is more
robust to the task orders.

C.3 Detailed Results Under Distribution Shifts

Tab. [[4] expands on Tab. [ by reporting per-dataset accuracy under both clean test conditions and
seven common corruption types: motion blur, impulse noise, Gaussian noise, pixelation, spatter,
contrast shift, and JPEG compression. We evaluate six merging methods, across four downstream
tasks: Cars, EuroSAT, RESISC45, and GTSRB. This detailed breakdown complements the average
results in the main paper, providing a more comprehensive assessment of robustness under test-time
distribution shifts.
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Table 13: Test set accuracy comparisons on different downstream tasks.

0

g o K \J < o0
Model I T S L N o
ViT-B/32
C. FINE-TUNED 539 38.2 64.7 98.7 454 34.4 86.7 584 57.5 67.7
AVERAGE (SWA) 64.2 59.6 64.8 60.9 473 43.1 71.8 46.4 66.5 63.9
C.TA 62.0 53.7 60.9 58.1 48.5 489 79.4 46.1 61.1 73.4
C.TIES 62.5 49.1 55.8 50.9 54.6 49.3 82.0 46.7 58.5 69.9
MAGMAX-IND 63.6 53.1 59.7 49.1 53.8 53.1 79.8 432 56.9 75.1
CONSENSUS TA 37.0 252 35.2 36.7 37.3 44.1 80.6 30.3 33.5 59.2
C. LW ADAMERGING 63.1 60.0 63.5 60.1 35.6 32.1 51.8 454 66.6 60.2
C. LoORA-WEMOE 514 45.8 63.3 435 429 34.6 58.9 46.5 47.5 60.1
OPCM 64.4 51.1 66.0 71.7 66.1 56.0 90.2 40.4 64.9 80.2
MINGLE (OURS) 67.8 58.3 83.5 90.0 82.9 91.8 98.0 65.3 74.0 66.9
MINGLE* (OURS) 68.8 64.2 83.8 91.1 82.4 89.0 96.9 62.8 76.7 72.8
ViT-B/16
C. FINE-TUNED 62.7 58.0 67.6 99.1 46.0 29.2 939 61.9 64.1 75.2
AVERAGE (SWA) 67.1 64.6 69.3 634 62.4 52.7 80.7 46.6 71.8 63.1
C.TA 65.8 575 63.8 59.5 64.7 54.0 88.0 453 67.5 67.1
C.TIES 64.2 529 60.9 53.0 62.8 48.8 88.4 45.0 61.3 68.5
MAGMAX-IND 65.8 51.8 57.8 42.6 54.4 437 83.0 42.8 60.4 69.8
CONSENSUS TA 42.6 24.8 304 344 47.6 42.2 79.9 30.6 36.2 74.3
C. LW ADAMERGING 65.5 65.7 69.8 594 50.1 442 61.1 47.1 71.8 579
C. LORA-WEMOE 62.7 60.2 69.4 37.7 52.1 39.9 63.1 453 64.3 51.7
OPCM 67.9 559 73.7 71.5 74.4 63.2 94.1 49.2 72.3 79.6
MINGLE (OURS) 71.5 64.9 85.3 90.0 87.5 90.1 97.1 62.7 82.6 80.6
MINGLE* (OURS) 72.0 72.1 87.9 933 87.1 89.2 97.4 62.5 86.8 76.4
ViT-L/14
C. FINE-TUNED 69.5 73.6 78.3 99.2 59.3 49.3 98.6 69.7 83.2 78.3
AVERAGE (SWA) 70.7 71.7 76.4 75.3 69.5 62.1 93.7 57.7 80.0 73.6
C.TA 70.4 74.1 73.9 66.3 69.9 65.6 95.1 56.6 78.6 70.4
C.TIES 69.7 70.3 65.3 479 76.1 63.6 94.7 54.4 779 723
MAGMAX-IND 73.1 73.7 75.6 64.6 73.7 68.8 94.6 56.1 78.0 71.7
CONSENSUS TA 50.7 39.1 31.7 36.4 394 449 88.5 33.8 45.7 62.5
C. LW ADAMERGING 68.8 78.6 75.9 65.7 58.3 51.6 79.9 574 80.6 52.4
C. LORA-WEMOE 62.1 68.1 68.7 532 47.5 494 69.8 49.1 66.2 54.2
OPCM 73.1 78.3 82.4 80.2 80.8 80.4 97.4 61.6 84.8 76.3
MINGLE (OURS) 75.9 83.4 87.8 88.7 91.1 94.5 98.4 70.8 94.8 75.3
MINGLE* (OURS) 74.5 85.9 90.5 92.5 90.1 92.7 98.1 69.2 95.7 74.0

<
N N G s

N S N " \ S st S 5
Model G T @ @ @ (T T o e
ViT-B/32
C. FINE-TUNED 58.3 68.5 86.7 40.2 70.5 50.0 90.7 72.4 54.5 54.5
AVERAGE (SWA) 50.2 84.1 97.0 69.8 92.7 80.4 71.3 15.0 11.5 61.8
C.TA 514 82.3 94.9 64.6 914 71.9 739 17.8 12.2 59.9
C.TIES 49.5 81.3 95.2 63.7 91.2 70.2 73.7 17.8 16.9 59.8
MAGMAX-IND 56.5 79.9 94.6 68.7 91.9 73.8 74.3 18.3 154 63.9
CONSENSUS TA 41.7 58.8 81.8 41.5 78.1 29.8 72.6 17.4 18.5 54.1
C. LW ADAMERGING 432 83.7 96.8 67.0 89.9 81.6 63.7 16.8 10.7 59.1
C. LORA-WEMOE 44.6 72.5 86.1 40.1 63.8 63.8 48.1 10.3 12.8 55.7
OPCM 58.5 82.9 95.9 67.6 92.8 74.0 76.3 224 18.3 64.6
MINGLE (OURS) 65.0 85.5 97.0 72.6 94.1 81.5 854 50.4 65.2 67.1
MINGLE* (OURS) 65.3 88.5 97.7 73.9 94.7 83.7 86.4 39.3 56.1 68.7
ViT-B/16
C. FINE-TUNED 60.5 84.5 90.5 38.8 73.6 61.9 89.7 83.3 51.5 72.8
AVERAGE (SWA) 50.9 89.6 98.0 729 94.2 85.9 733 15.6 124 62.5
C.TA 50.7 89.3 97.0 68.0 93.1 80.3 75.7 18.1 16.7 61.8
C.TIES 50.4 87.9 96.3 63.1 91.7 78.0 75.0 234 24.9 61.5
MAGMAX-IND 57.7 88.8 97.5 71.5 94.4 81.3 77.2 24.5 25.0 59.4
CONSENSUS TA 45.6 76.8 87.7 44.4 82.2 38.4 72.7 18.8 30.0 58.6
C. LW ADAMERGING 46.8 88.9 98.1 69.2 91.4 86.6 67.2 17.2 11.0 59.2
C. LORA-WEMOE 45.6 91.2 92.3 41.3 64.3 78.1 48.0 235 16.6 52.7
OPCM 59.5 91.8 97.7 73.2 94.7 83.1 81.3 26.5 234 66.8
MINGLE (OURS) 67.6 92.7 97.4 74.0 95.3 87.7 87.4 73.5 79.9 74.0
MINGLE* (OURS) 67.9 93.5 98.4 77.7 96.4 89.7 87.8 56.6 64.5 75.3
ViT-L/14
C. FINE-TUNED 68.0 92.1 94.5 60.5 85.7 74.8 93.1 89.0 59.2 78.8
AVERAGE (SWA) 52.7 94.2 99.2 81.7 97.0 90.7 77.4 16.1 104 66.1
C.TA 55.7 94.2 98.6 79.1 96.6 87.6 80.8 17.6 10.6 63.6
C.TIES 57.6 93.5 97.8 74.0 95.6 84.7 79.7 20.2 12.6 58.4
MAGMAX-IND 529 939 98.7 82.1 97.3 89.5 81.6 19.2 11.1 68.4
CONSENSUS TA 50.3 82.2 89.7 47.5 86.2 43.5 75.3 14.5 104 534
C. LW ADAMERGING 49.2 93.5 99.3 772 95.8 91.1 68.2 18.6 9.8 66.6
C. LORA-WEMOE 46.3 84.5 87.6 52.1 70.5 73.3 50.0 18.7 10.9 56.5
OPCM 61.8 954 99.2 83.0 97.8 90.9 86.0 26.4 14.7 71.0
MINGLE (OURS) 67.7 96.0 98.7 814 97.1 90.6 90.6 60.7 88.6 79.8
MINGLE* (OURS) 67.9 96.0 99.4 84.7 97.8 924 88.8 53.0 57.1 75.5
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Figure 5: Accuracy matrices of MINGLE (ViT-B/32, ViT-B/16, and ViT-L/14) under different task
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Table 14: Robustness results when merging ViT-B/32 models on four tasks.

Clean Test Set Corruption: Motion Blur
Method Cars EuroSAT RESISC45 GTSRB Avg ACC | Cars EuroSAT RESISC45 GTSRB Avg ACC
C. LW ADAMERGING | 65.3 49.7 65.4 43.8 56.0 64.2 25.6 62.5 37.5 475
C. WEMOE 0.5 8.1 2.6 2.5 34 0.5 8.0 1.8 2.3 3.1
C. LORA-WEMOE 66.1 84.3 81.0 83.6 78.7 64.8 57.9 82.0 79.2 71.0
C. TASK ARITHMETIC | 64.6  90.4 80.2 74.8 71.5 62.3 59.4 78.5 63.3 65.9
MAGMAX-IND 63.1 89.2 81.7 82.5 79.1 61.4 62.1 80.0 72.6 69.0
OPCM 65.7 92.3 85.7 90.5 83.6 62.8 62.5 83.7 82.2 72.8
MINGLE (Ours) 744 965 91.5 97.3 89.9 73.2 70.5 91.9 95.8 82.9
Corruption: Impulse Noise Corruption: Gaussian Noise
Method Cars EuroSAT RESISC45 GTSRB Avg ACC | Cars EuroSAT RESISC45 GTSRB Avg ACC
C. LW ADAMERGING | 60.5 30.1 56.3 255 43.1 62.3 25.6 59.7 25.6 433
C. WEMOE 0.5 11.2 2.3 32 4.3 0.5 8.1 2.4 2.8 3.4
C. LORA-WEMOE 62.2 234 69.9 64.6 55.0 64.9 31.7 77.8 63.4 59.4
C. TASK ARITHMETIC | 59.9 57.7 72.9 45.0 58.9 61.8 514 75.1 50.1 59.6
MAGMAX-IND 592 563 74.3 52.5 60.6 60.6 51.7 77.0 56.5 61.5
OPCM 61.1 57.1 78.5 62.0 64.7 63.0 52.4 80.7 64.9 65.2
MINGLE (Ours) 69.6 28.0 86.1 86.1 67.5 72.0 38.5 89.4 82.9 70.7
Corruption: Pixelate Corruption: Spatter
Method Cars EuroSAT RESISC45 GTSRB Avg ACC | Cars EuroSAT RESISC45 GTSRB Avg ACC
C. LW ADAMERGING | 3.4 16.5 13.5 39.2 18.1 61.3 34.1 58.2 32.8 46.6
C. WEMOE 0.5 6.3 2.5 2.5 3.0 0.5 10.1 2.7 2.6 4.0
C. LORA-WEMOE 0.8 26.0 5.8 67.0 24.9 62.4 35.4 71.2 73.0 60.5
C. TASK ARITHMETIC | 2.5 31.7 19.1 65.6 29.7 61.2 63.1 72.7 57.0 63.5
MAGMAX-IND 2.6 36.1 19.3 74.0 33.0 60.0 64.9 74.8 66.1 66.4
OPCM 2.1 34.3 19.5 84.9 35.2 61.5 64.7 78.8 76.8 70.5
MINGLE (Ours) 2.3 35.6 18.5 95.1 379 70.1 57.8 86.2 93.9 77.0
Corruption: Contrast Corruption: JPEG Compression
Method Cars EuroSAT RESISC45 GTSRB Avg ACC | Cars EuroSAT RESISC45 GTSRB Avg ACC
C. LW ADAMERGING | 61.8 26.0 63.1 44.8 48.9 65.1 29.6 65.4 36.4 49.1
C. WEMOE 0.5 75 2.3 3.0 33 0.5 10.5 2.4 2.7 4.0
C. LORA-WEMOE 64.3 46.5 71.7 85.6 68.5 65.5 59.1 80.4 74.0 69.7
C. TASK ARITHMETIC | 62.5 55.2 75.3 70.8 66.0 64.1 66.2 80.0 61.0 67.8
MAGMAX-IND 61.3 58.0 76.9 78.2 68.6 62.5 67.7 81.1 68.5 69.9
OPCM 63.8 57.5 81.3 87.4 72.5 65.0 68.0 85.4 79.3 74.4
MINGLE (Ours) 724 60.1 90.4 97.3 80.1 73.7 73.5 92.0 92.4 82.9

C.4 Inference Efficiency and Parameter Overhead

Tab. [I5] compares the inference efficiency and parameter overhead of all baselines on the CLIP
ViT-B/32 model after merging eight tasks. We report the total number of parameters, additional
storage and inference parameters, throughput (images per second), and accuracy. The results show
that most static merging methods (e.g., Task Arithmetic, Ties-Merging, MAGMAX-Ind, OPCM)
incur no extra storage or inference overhead, but typically achieve limited accuracy. Consensus
TA and WEMOE introduce significant storage overhead, while WEMOE also scales up inference
parameters considerably. By contrast, MINGLE achieves a favorable trade-off: although it introduces
additional parameters for LoORA experts and the router, the effective inference overhead remains small,
and throughput is only marginally reduced compared to static baselines. This efficiency advantage
comes while delivering substantially higher accuracy.

C.5 Forward Transfer Analysis

Forward transfer (FWT) is an important metric in continual learning, as it quantifies how effectively
prior knowledge facilitates the learning of future tasks. We adopt the standard definition:

T
_ 1 merged —
FWT = T-1 {at(et ) — at} ] (30)

where a;(0]""**") denotes the test accuracy on task ¢ using the merged model after task ¢, and a;

is the accuracy of the individually fine-tuned model for task ¢. Positive FWT indicates beneficial
transfer, while negative values suggest interference.
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Table 15: Comparison of inference efficiency and parameter overhead on CLIP ViT-B/32 model after
eight tasks merging.

Method Total Params (M) Extra Storage (M) Extra Inference (M) Throughput (img/s) ACC (%)
TASK ARITHMETIC 87.5 0.0 0.0 ~910 67.5
TIES-MERGING 87.5 0.0 0.0 ~910 49.0
MAGMAX-IND 87.5 0.0 0.0 ~910 70.7
OPCM 87.5 0.0 0.0 ~910 75.5
CONSENSUS TA 87.5 87.5 0.0 ~910 69.0
LW. ADAMERGING 87.5 0.0 0.0 ~910 52.9
WEMOE 540.9 4534 0.07 ~858 4.9
WEMOE-LORA 103.7 16.2 0.07 ~848 66.6
MINGLE 173.1 85.6 0.6 ~841 85.8
MINGLE* 113.7 26.2 0.3 ~862 85.0

Table 16: Forward transfer (FWT) results on 8-task continual merging with CLIP ViT-B/16.

Method ACC (%) BWT (%) FWT (%)
TASK ARITHMETIC 77.1 £0.0 -42+1.0 -13.4+0.0
TIES-MERGING 66.8 = 3.7 -55+04 -30.7£9.9
OPCM 81.8 £0.3 -4.8 £ 0.7 9.0+04
MINGLE (Ours) 88.3 £ 0.6 -04+£0.1 -3.8+0.8

Tab. [T6]reports the results for the 8-task continual merging setup on CLIP ViT-B/16. The results
demonstrate that MINGLE achieves nearly zero forgetting (BWT = 0) while obtaining the highest
forward transfer among all baselines, showing that our adaptive gating and merging strategy not only
preserves past knowledge but also enhances feature utility for future tasks.

C.6 Additional Visualizations of Gate Activations and the Relaxation Effect

We provide an extended ablation study on gate hyper-parameters, including visualizations of gate
activations under 14-task (Fig. [7) and 20-task (Fig.[§) configurations, complementing the 8-task
results presented in the main paper. The visualizations demonstrate that the null-space constraint
remains effective as the number of tasks increases, consistently suppressing gate responses to inputs
from previously seen tasks and thereby mitigating forgetting.
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Figure 7: Visualization of gate activations across 14 tasks under varying ~ values. Each subplot
corresponds to a gate, with curves and shaded regions denoting the mean and standard deviation of
activations across layers. Gray bars mark the training dataset for each gate. Smaller ~y values result in

stronger suppression of activations on previously learned tasks.
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D Discussions

D.1 Use of Unlabeled Adaptation Samples

In our experiments, we simulate a realistic deployment setting by randomly sampling 5 unlabeled
examples per class from the test split, which serve as adaptation samples for model merging. Such
small unlabeled buffers are practical in real-world applications and can be obtained from various
sources, including (i) incoming test-time data such as recent user queries or model inputs, (ii) held-out
validation inputs or small training subsets (if available), (iii) user-provided samples (e.g., few-shot
examples) that do not raise privacy concerns, (iv) synthetically generated data, or (v) manually curated
public data. Importantly, our method does not depend on precise sample selection, and the buffer size
remains fixed and small, ensuring feasibility and robustness in deployment scenarios.

D.2 Relation to Rehearsal-Free Continual Learning

Test-time continual model merging (TTCMM) is closely related to the paradigm of rehearsal-free
continual learning (RFCL), as both approaches share two fundamental constraints: (i) they do not
retain past training data, and (ii) they avoid storing previous task models. The key distinction lies
in the information available at each stage. RFCL assumes access to the training data of the current
task and incrementally fine-tunes a single model over time. In contrast, TTCMM assumes access
to independently fine-tuned models for each new task and focuses on merging these expert models
rather than training them from scratch. Additionally, TTCMM relies on a small unlabeled buffer at
test time (e.g., 5 samples per class) to guide the merging process.

From a privacy perspective, TTCMM provides stronger guarantees. Since it does not require access
to full training sets, it only depends on a small set of unlabeled samples, which can be user-provided
without risk, synthetically generated, or curated from public data. By comparison, RFCL requires
access to large-scale labeled datasets for every task, raising more significant concerns regarding
privacy, storage, and legal constraints (e.g., medical images, personal data, or copyrighted corpora).
The reliance on a tiny unlabeled buffer makes TTCMM more practical in scenarios where data privacy
is a primary consideration.

D.3 Limitations

As with many model merging methods, our approach assumes that all independently fine-tuned
models originate from a shared pretrained initialization. The extent to which this assumption
influences merging performance remains unclear and warrants further investigation. In addition,
our current experiments focus on merging models with identical backbone architectures (e.g., CLIP
ViT-B/16). Although our use of LoRA-based expert offers some structural uniformity, which could
potentially accommodate heterogeneous backbones, we have not yet explored this setting. Extending
our framework to support diverse initialization points or architectural variants remains an open
direction for future work.

D.4 Broader Impacts

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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