
G-Loss: Graph-Guided Fine-Tuning of Language Models

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Traditional loss functions (cross-entropy, contrastive, triplet, and supervised con-2

trastive) for fine-tuning pre-trained language models, such as BERT, operate in3

the local neighborhood, overlooking the holistic structure of semantic relation-4

ships. Thus, we propose G-Loss, a novel graph-guided loss function that uses5

semi-supervised label propagation and leverages the structural relationships in6

the embedding manifold using graphs. G-Loss constructs a document similarity7

graph to capture global semantic relationships, guiding the language model to8

learn more discriminative and robust embeddings. We evaluated G-Loss on five9

benchmark datasets: MR (sentiment), R8 and R52 (topic), Ohsumed (medical),10

and 20NG (news). G-Loss converges faster and produces a semantically coherent11

embedding space, consequently improving classification performance compared12

to the language models trained with traditional losses across diverse classification13

tasks.14

1 Introduction15

Language models ranging from BERT [1], RoBERTa[2], with millions of parameters to large language16

models like GPT [3] and LLaMA [4], etc., with parameters in billions, have transformed natural17

language processing (NLP). These models follow a two-stage approach: unsupervised pre-training on18

large unlabeled text corpora to learn general representations, followed by supervised fine-tuning using19

labeled data and a task-specific loss function. However, fine-tuning presents challenges, including20

the need for large amounts of labeled data and substantial computational resources. Additionally,21

traditional fine-tuning losses, such as cross-entropy loss, focus on minimizing prediction error,22

potentially overlooking the semantic structure within the data.23

Over time, various fine-tuning strategies have emerged. For instance, BERT and RoBERTa employ24

cross-entropy loss with a classification head to a fully connected layer [1, 2], ensuring different25

classes remain separated in the embedding space. However, this approach overlooks the relationships26

between samples, focusing only on individual labels [5]. Pairwise or triplet-based approaches, such as27

in SBERT [6], address this by optimizing cosine similarity or triplet loss, aligning semantically similar28

document pairs while separating dissimilar ones in embedding space. However, these losses become29

computationally expensive, as their effectiveness depends on sampling many positive and negative30

pairs to form pairs/triplets. Moreover, a fundamental limitation persists: these losses optimize local31

relationships independently without enforcing global structural alignment. For instance, learning that32

A is close to B and distinct from C does not ensure appropriate positioning of B and C relative to33

each other unless pair (B,C) is explicitly optimized. This local optimization limits generalization to34

unseen data.35

To overcome these limitations, we propose a shift from local pairwise optimization to global structural36

alignment by modeling semantic relationships across all pairs through a graph. This alignment is37

enforced not just for the immediate neighbors (local consistency), but for multi-hop relationships38

that capture the global structure of the graph. Specifically, we propose a graph-based fine-tuning39

strategy by introducing G-Loss. While G-Loss can be applied wherever encoder-based embeddings40

are available, we focus on NLP tasks with transformer-based encoders. G-Loss is a graph-driven loss41

function that integrates the semi-supervised Label Propagation Algorithm (LPA) [7] into language42

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

G-Loss: Graph-Guided Fine-Tuning of Language Models

model (LM) fine-tuning by leveraging LPA; G-Loss diffuses label information from labeled nodes43

to unlabeled nodes through the graph structure. This enables the model to leverage both supervised44

labels and implicit relational information from the graph. This aligns with the manifold assumption45

in semi-supervised learning [8], which posits that proximity in feature space corresponds to label46

similarity.47

Furthermore, LPA is parameter-free, ensuring computational efficiency and scalability across model48

sizes and datasets. Another key feature of our approach is the self-reinforcing system, where the49

graph structure and LM embeddings co-evolve during fine-tuning. Improved embeddings dynamically50

reshape the graph structure, which in turn guides further refinement of the embeddings, leading to51

better structural alignment.52

Unlike prior work that either use LPA with static, full-dataset graphs for vision tasks [9] or constructs53

similarity graphs as soft targets for image classification [10], G-Loss offers key innovations. G-54

Loss dynamically constructs mini-batch graphs using evolving LM embeddings, enabling inductive55

learning with reduced memory and better generalization. Furthermore, G-Loss directly integrates LPA56

into the loss function, eliminating the need for separate pseudo-labeling/retraining, and streamlining57

training while preserving embedding consistency. To this end, we summarize the major contributions58

of this work as follows:59

• We propose a fine-tuning approach that integrates a graph-based loss derived from dynamically60

evolving graphs and the semi-supervised Label Propagation Algorithm (LPA). Unlike conven-61

tional losses that optimize local relationships (e.g., pairwise and triplet losses), our method62

enforces global semantic consistency among documents. The co-evolution of the graph structure63

and embedding space across successive fine-tuning epochs yields robust and more discriminative64

representations.65

• We implement and evaluate the proposed fine-tuning framework using BERT, RoBERTa, and66

DistilBERT, demonstrating its applicability across models of various sizes.67

• We conduct experiments on five benchmark datasets, spanning from binary to complex multi-68

class (up to 52 classes), with varying class distribution and different classification tasks. Perfor-69

mance is reported using accuracy and macro F1-score metrics.70

• We also compare the proposed fine-tuning framework with other traditional loss functions,71

including supervised contrastive, cosine similarity, triplet, and cross-entropy losses.72

The rest of the paper is organized as follows: Section 2 reviews related literature. Section 373

describes the fine-tuning process with G-Loss. Section 4 describes the benchmark datasets, language74

model variants considered, comparable loss functions, downstream tasks, and the evaluation criteria.75

Section 5 discusses the results, followed by Section 7, which concludes the paper with a list of future76

work.77

2 Related work78

Loss functions play a crucial role in fine-tuning language models (LMs) to enhance the models’ rep-79

resentation capabilities. Fine-tuning BERT [1], RoBERTa [2], and ALBERT [11] for a downstream task80

typically involves appending a classification head and optimizing the cross-entropy (CE) loss. While81

effective in classification, fine-tuning with cross-entropy loss treats training instances independently82

and ignores structural consistency. Similarity-based learning methods address this: Sentence-BERT83

(SBERT) [6] uses a Siamese network architecture with triplet and cosine similarity loss for fine-grained84

pairwise comparisons.85

SimCSE [12] proposed a contrastive learning via dropout augmentation, aligning the embedding86

space by contrasting positive/negative pairs. SimCSE aligns the embedding space, thereby promoting87

more effective sentence representations. SimCSE++ [13] further refined this approach by reducing88

negative pair noise and introducing a dimension-wise contrastive objective to prevent feature collapse.89

However, these methods remain locally optimized, focusing only on relationships between individual90

samples but failing to capture global semantic structures [14]. Gunel et al. [15] introduces supervised91

contrastive learning (SCL) objective to complement cross-entropy loss for fine-tuning language92

models.93

Graph-based models, such as graph neural networks (GNN), incorporate structural dependencies by94

leveraging relational information across datasets [16]. Graph Convolutional Networks (GCN) [16]95

2

G-Loss: Graph-Guided Fine-Tuning of Language Models

pioneered contextual aggregation via feature propagation. TextGCN [17] extended this to document96

classification with a heterogeneous word-document graph, and TensorGCN [18] integrates syntactic97

and sequential dependencies across words in text.98

Hybrid models, such as GNN-LM, have shown promise. BertGCN integrates BERT embeddings into99

GCN, enhancing text classification performance [19]. Other approaches include Cascading models:100

LM generates embeddings, which are then processed by a GNN for classification [20–22], Co-training101

methods: LMs and GNNs train jointly with a shared objective [22–24], and Frozen LM strategies:102

Frozen LM while only the GNN is trained [25, 26].103

Despite success, the above-mentioned graph-based methods suffer from two key limitations: (1)104

static graph construction (fixed, non-adaptive graphs) and (2) high computational overhead from joint105

GNN-LM training. For instance, BertGCN’s static, full-dataset graph incurs high memory usage and106

computational overhead, as well as prolonged training, due to the use of a memory bank and a small107

learning rate.108

We introduce G-Loss, which addresses these limitations through dynamic graph construction. G-Loss109

enables models to learn and refine semantic structures during fine-tuning, unlike prior methods110

that either (1) ignore global structural dependencies (cross-entropy, triplet loss, SimCSE), or (2)111

require expensive, static graphs (BertGCN, TextGCN). G-Loss bridges this gap by leveraging dynamic112

graph adaptation alongside efficient label propagation, thereby facilitating the direct integration of113

graph-structured learning into language model fine-tuning.114

3 Proposed fine-tuning framework115

3.1 Task description116

For a multi-class classification problem, we are given a document set D = {d1, d2, . . . , dn}, belong-117

ing to C distinct classes. We partition D into three disjoint sets: training, validation, and testing. The118

goal is to fine-tune a pre-trained language model on the training set by optimizing a task-specific loss119

function, and evaluate the fine-tuned language models’ performance on the testing set by classifying120

each test document into one of the C classes.121

During fine-tuning, we select a minibatch of size B from the training set V and represent it as a graph122

G = (Vk, Ek,Xk). Here, nodes Vk represent documents in current minibatch, edges Ek represent123

semantic relationships between documents, and Xk ∈ RB×d represents d-dimensional document124

embeddings from language model.125

3.2 G-Loss: Graph-driven loss computation126

Given the training document set T ∈ D and corresponding labels Y , fine-tuning is performed127

iteratively in m minibatches (b1, b2....bm). For each minibatch bk, the process follows these steps: we128

encode each document into dense representations using a language model, Φ(.). Then, we construct a129

similarity graph where nodes represent documents and edges are weighted using a similarity measure130

to capture the semantic relationships between them. Next, we hide a subset of labels based on a131

masking ratio gamma (γ). LPA [7] infers these hidden labels while keeping known labels fixed. The132

loss computed from the discrepancy between inferred and true labels of masked nodes gives us the133

value of G-Loss. Final loss is computed using a weighted average of G-Loss with the CE loss and134

minimized via backpropagation. This iterative process refines both the embeddings and the graph135

structure to align with the global semantic relationships across the document set. Figure 1 presents the136

G-Loss based fine-tuning framework for one minibatch. Each step is explained in detail as follows:137

(Step 1) Embedding extraction . Text in each document in minibatch bk, k ∈ (1, 2, ...m) is138

encoded and mapped by language model Φ(.) into a d-dimensional semantic space, capturing139

semantic information through contextual embeddings. The resulting embedding matrix Xk ∈ RB×d140

is represented as:141

Xk = Φ(Text in bk). (1)

where Φ(.) denotes a language model. These embeddings act as node features in the subsequent graph142

construction step. The quality of embeddings directly impacts the effectiveness of label propagation143

and the performance of downstream classification.144

3

G-Loss: Graph-Guided Fine-Tuning of Language Models

Logits

Backpropogate

Language model

Linear classifier

Embeddings,
Labeled nodes

Weak link

Text

Unlabeled nodes

Strong link

Label propagation

Figure 1: The language model Φ(.) generates embeddings from input text, which is feed into both
a linear classifier (producing logits) and a similarity-based document graph where nodes represent
documents and weight wij represents similarity between documents. Labels for few nodes (Yku) are
hidden and inferred using label propagation algorithm (LPA) producing (Ŷku). This gives graph-based
loss (LG), which is combined with cross-entropy loss LCE using weighting factor λ, and composite
loss backpropagates to update both language model parameters and linear classifier weights.

(Step 2) Graph construction. Next step is to construct a fully connected weighted graph G =145

(Vk, Ek,Xk) for current minibatch bk. The weight of an edge between two nodes i and j is computed146

using a Gaussian kernel: Wij = exp
(
−∥Xi−Xj∥2

2σ2

)
, Wii = 0, where Xi represents embeddings147

of document i, and σ controls the scale of neighborhood sensitivity in kernel space. We investigate148

two approaches for selecting σ and propose two variants of G-Loss function. First, G-Loss-SQRT149

derives σ analytically, as detailed in section D of appendix, by using double partial differentiation of150

the Gaussian kernel function, which yields σ =
√
d1/3 where d1 is the median Euclidean distance151

across all data points. Second, G-Loss-O determines optimal σ through systematic hyperparameter152

optimization. G-Loss-SQRT offers a computationally efficient alternative for environments with153

limited resources, bypassing resource-intensive hyperparameter tuning.154

The Gaussian kernel ensures that highly similar documents are strongly connected while dissim-155

ilar ones have weaker connections. Further, we normalize the adjacency matrix using symmetric156

normalization to stabilize information propagation in the graph: Ã = D−1/2WD−1/2, where157

Dii =
∑B

j=1 Wij represents the degree matrix. This ensures that label propagation distributes158

information effectively without amplifying numerical instabilities.159

(Step 3) Label propagation. We use a hyperparameter gamma (γ) to randomly split the minibatch160

node set Vk into two disjoint subsets to enable semi-supervised learning:161

• Vkl (Labeled subset): A γ fraction of nodes with true labels (Ykl) that guide propagation.162

• Vku (Evaluation subset): The remaining (1 − γ) fraction whose labels (Yku) are masked and163

must be inferred.164

We compute a column-stochastic transition matrix T:165

Tij = P (j → i) =
Ãij∑B

m=0 Ãmj

(2)

Using the closed-from label propagation solution of LPA [7], predicted labels for the evaluation set166

are computed as:167

Ŷku = (I − Tuu)
−1.TulYkl (3)

where I is identity matrix, Tuu is transition sub-matrix of evaluation nodes, Tul captures transitions168

from labeled to evaluation nodes.169

(Step 4) Loss computation. To compute the loss from graph, we compute the discrepancy between170

inferred labels (Ŷku) and true labels, (Yku) on the evaluation subset of size Be = (1− γ) ∗B:171

LG = − 1

Be

Be∑
j=1

C∑
c=1

ycku,j log
(
ŷcku,j

)
, (4)

4

G-Loss: Graph-Guided Fine-Tuning of Language Models

where: for the class c, ycku,j and ŷcku,j are the ground-truth and predicted labels of j-th evaluation172

node, Be is the number of samples in evaluation set of kth minibatch. C is the number of classes.173

(Step 5) Loss Function Integration: The final loss function combines the standard cross-entropy174

(CE) loss with the graph-based loss via weighted average. A scalar hyperparameter λ controls the175

trade-off between the two loss components:176

L = λ · LG + (1− λ) · LCE (5)
where LCE is the cross-entropy loss over all data points in the current training batch, LG is the177

graph-based propagation loss over the evaluation subset, λ ∈ [0, 1] controls the influence of both178

losses.179

The CE loss is defined as:180

LCE = − 1

B

B∑
i=1

C∑
c=1

yi,c log ŷi,c (6)

Here, B denotes the batch size, C represents the number of classes, yi,c is the ground truth label for181

sample i and class c, and ŷi,c is the corresponding predicted probability from the linear classifier.182

(Step 6) Model optimization via backpropagation. Both the language model parameters and183

the linear classifier weights are jointly optimized via gradient descent backpropagation, using the184

composite loss defined in equation 5. loss signal L :185

X
′

k ← Xk − η∇L, (7)

Where η represents the learning rate of the model. This step ensures that the embeddings evolve in a186

manner that enhances the effectiveness of label propagation.187

Dynamic graph updating. Since embeddings continuously improve throughout fine-tuning, the188

graph structure must be updated accordingly. After each backpropagation step, the adjacency matrix189

A is recomputed using the newly refined embeddings:190

W
′

ij ← exp

(
−
∥X′

i −X
′

j∥2

2σ2

)
. (8)

This iterative adaptation ensures that similarity-based relationships remain aligned with the evolv-191

ing representation space, leading to more accurate label propagation and improved classification192

performance. A detailed algorithm of approach is provided in section A of the appendix.193

4 Experimentation setup194

4.1 Datasets and downstream tasks195

We experimented on five diverse, widely used English language benchmark datasets for text clas-196

sification. Movie Review (MR) [27]: binary sentiment classification, where each sample is labeled197

as either positive or negative. R8 and R52 [28]: hierarchical news categorization datasets derived198

from Reuters-21578, with 8 and 52 topic categories, respectively. Ohsumed [29]: medical text199

classification dataset comprising MEDLINE abstracts, categorized into 23 medical subject headings200

(MeSH). Lastly, 20 Newsgroups (20NG) [30]: documents classified into 20 distinct newsgroups201

representing various discussion topics. For a fair comparison, we adopted BertGCN’s [31] data splits,202

ensuring consistent training and test partitions. Table 1 provides the train/validation/test split details203

for each dataset.204

4.2 Language models and traditional losses205

Language Models. While G-Loss is compatible with any encoder-based transformer, we evaluate it206

using three models of varying size and complexity: BERT-base-uncased (12 layers, 768 dim, 110M207

parameters) [1], RoBERTa-large [2] (24 layers, 1024 dim, 356M parameters), and DistilBERT-208

base-uncased (6 layers, 768 dim, 66M parameters) [32].209

5

G-Loss: Graph-Guided Fine-Tuning of Language Models

Table 1: Dataset statistics used for evaluation. The Train, Validation, and Test column represents the
number of documents in each split.

Dataset # Docs Train Validation Test # Classes
MR 10662 6397 711 3554 2
R8 7674 4936 549 2189 8
R52 9100 5865 667 2568 52
20NG 18846 10182 1132 7532 20
Ohsumed 7400 3021 336 4043 23

Traditional loss functions. We evaluate our proposed G-Loss under two configurations: integrated210

and standalone. In integrated approach, we implement the framework shown in Figure 1, where211

the hybrid loss jointly optimizes both the language model parameters and linear classifier weights.212

The integrated approach is in sync with approach followed by prior works such as BERT, RoBERTa,213

BertGCN [19], Gunel et al. [15] etc. In standalone approach, only the language model weights are214

updated using the computed loss.215

• Integrated: We compare G-Loss augmented with cross-entropy loss against standard cross-216

entropy alone, and hybrid supervised contrastive and cross-entropy loss (SCL+CE) [15].217

• Standalone: G-Loss is evaluated against triplet loss [33], supervised contrastive loss (SCL) [5],218

and cosine-similarity loss.219

Mathematical formulations for all traditional losses are provided in Appendix B.220

4.3 Fine-tuning convergence & hyperparameter tuning221

Evaluation strategies and early stopping. Following our dual evaluation framework, in integrated222

approach, we implement a classification-based monitoring system that tracks macro F1-score on the223

validation set throughout fine-tuning and applies early stopping when performance plateaus for a224

predetermined patience window. Performance evaluation utilizes a linear classifier with dimensions225

E × C (where E represents embedding size and C denotes the number of classes) attached to the226

final layer of language model.227

In standalone approach, we fine-tune the language model using only a single loss objective, with228

training convergence monitored via macro-silhouette score [34] on true labels of the validation229

set (the mathematical formula is provided in appendix C). Unlike the standard silhouette score,230

macro-silhouette takes into account the imbalance in the dataset and gives a balanced measure. After231

fine-tuning, a linear classifier is trained independently on the updated embeddings. Final predictions232

on the test set are then generated using this downstream classifier. This strategy eliminates the need for233

a supervised classification head to be trained alongside the language model (as in BERT, RoBERTa,234

and BertGCN) during fine-tuning, thereby reducing the number of parameters and computational235

overhead.236

Hyperparameter selection & final classifier. Hyperparameter optimization is conducted using237

Optuna. For G-Loss, we tune: Gaussian kernel width σ ∈ [0.1, 10], learning rate η ∈ {1e −238

05, 2e− 05, 3e− 05, 4e− 05, 5e− 05}, label hiding ratio γ ∈ [0.1, 0.9], and loss weighting factor239

λ ∈ [0.1, 0.9]. Traditional losses undergo similar tuning: temperature τ ∈ [0.01, 1] and learning rate240

η for Supervised Contrastive Loss (SCL), and learning rate η for cosine-similarity and triplet losses.241

We add details about hyperparameter selection in section G of the appendix. All the experiments in242

this study were conducted on a single NVIDIA A100 80GB GPU.243

Evaluation metrics and protocol. We report the test accuracy and macro F1-score as primary244

metrics, ensuring comparability with prior work such as TextGCN, TensorGCN, BertGCN. Macro245

F1-score provides a more reliable evaluation due to class imbalance in some datasets (e.g., R52,246

Ohsumed). In addition to classification performance, we measure the computational efficiency of247

G-Loss by tracking the fine-tuning time till convergence and the average time taken per epoch for248

G-Loss and other loss functions in table 3.249

6

G-Loss: Graph-Guided Fine-Tuning of Language Models

5 Results and discussion250

5.1 Classification performance analysis251

We experimentally compare the proposed G-Loss with a strong baseline of CE loss and SCL+CE loss252

functions (Section 4.2). For robust assessment, we used three distinct language model architectures253

(section 4.2).254

Table 2: Accuracy(%)/macro F1-score (%) obtained while fine-tuning different language model
variants across multiple datasets. The values highlighted in gray and yellow denote the best and
second-best performance, respectively. We report the mean and variance of three different seeds.

Model Loss MR R8 R52 20NG Ohsumed

BERT-base
-uncased

CE 85.64±0.81 / 85.64±0.81 97.57±0.16 / 93.90±0.84 96.29±0.15 / 84.42±0.60 83.98±0.12 / 83.49±0.18 71.09±0.31 / 63.40±0.83
GLoss-SQRT + CE 86.17±0.35 / 86.17±0.35 97.67±0.19 / 94.34±0.66 96.06±0.18 / 83.78±0.48 84.01±0.56 / 83.52±0.62 70.55±0.18 / 62.49±0.73
GLoss-O + CE 86.63±0.12 / 86.61±0.12 97.91±0.20 / 94.53±0.76 96.37±0.40 / 84.55±0.38 84.71±0.24 / 84.17±0.26 71.25±0.59 / 63.80±0.82
SCL + CE 85.97±0.50 / 85.95±0.50 97.88±0.17 / 93.96±0.57 96.18±0.14 / 83.75±0.77 84.39±0.10 / 83.99±0.13 71.28±0.17 / 63.64±0.20

RoBERTa
-large

CE 90.04 / 90.04 97.85 / 94.15 96.04 / 83.29 84.68 / 84.04 73.77 / 65.88
G-Loss-SQRT + CE 90.53±0.51 / 90.53±0.51 97.69 / 93.78 96.41 / 84.43 84.26 / 84.01 74.58 / 66.75
G-Loss-O + CE 90.87±0.62 / 90.87±0.62 97.49±0.05 / 93.04±0.12 96.65 / 84.82 85.19±0.31 / 84.23±0.73 75.35±0.42 / 68.58±1.02
SCL + CE [15] 90.82/ 90.81 97.81 / 93.80 96.22 / 83.19 84.53 / 83.97 75.76 / 68.53

DistilBERT
-base

CE 84.85±0.23 / 84.85±0.23 97.48±0.11 / 93.02±0.48 95.78±0.04 / 83.64±0.69 83.15±0.61 / 82.69±0.56 69.50±0.34 / 61.06±0.29
GLoss-SQRT + CE 85.14±0.33 / 85.14±0.34 97.46±0.17 / 93.62±0.69 96.13±0.34 / 83.93±0.35 83.61±0.23 / 83.16±0.20 69.93±0.38 / 61.39±0.21
GLoss-O + CE 85.10±0.45 / 85.10±0.45 97.71±0.12 / 93.61±0.22 96.07±0.04 / 84.44±0.43 83.64±0.28 / 83.23±0.27 70.16±0.21 / 62.41±0.34
SCL + CE 84.16±0.46 / 84.16±0.46 97.65±0.25 / 93.79±0.43 96.17±0.10 / 83.82±1.62 83.49±0.20 / 83.18±0.12 70.02±0.35 / 60.56±0.80

Table 2 shows classification accuracy and macro F1-score across all datasets and language model255

variants. G-Loss variants closely match and marginally surpass other loss baselines regardless of the256

underlying language model, with improvements of 0.03%− 1.06% in accuracy and 0.05%− 1.04%257

in macro F1-score over the second-best-performing loss, across all datasets. Notably, G-Loss variants258

generalize across different language model families, indicating its ability to enhance a variety of259

transformer backbones. While SCL+CE remains competitive on some datasets, it underperforms on260

small models such as DistilBERT. These results confirm the effectiveness of our graph-based loss261

function in fine-tuning language models for classification, demonstrating consistent improvements262

over baselines.263

Table 3 presents the standalone evaluation of G-Loss against traditional loss functions (detailed264

in Section 4.2). For comparison, we considered the best-performing G-Loss-O variant. G-Loss-265

O consistently achieves competitive or superior performance relative to traditional objectives. In266

particular, it delivers the highest Macro F1 on challenging datasets, such as Ohsumed (62.52%), and267

attains the highest silhouette scores across most benchmarks, indicating better structural alignment268

of embeddings. This demonstrates that beyond improving predictive accuracy, G-Loss-O produces269

semantically coherent embedding spaces. Notably, G-Loss-O converges in fewer epochs (e.g., 23 on270

R8) compared to alternative loss functions, highlighting its superior training efficiency. The average271

per-epoch training time and total time to convergence show that G-Loss maintains comparable272

per-epoch computational cost to existing baselines while achieving faster overall convergence.273

We also provide a timing breakdown for per epoch time across G-Loss and other baselines in Figure 5274

of the appendix. G-Loss records a total of 9.2 seconds for forward pass (BERT forward: 8.95 sec,275

graph construction: 0.18 sec, LPA operations: 0.07 sec) in one epoch, compared to Supervised276

Contrastive Loss (10.41 sec), Triplet Loss (9.15 sec), and Cosine Similarity Loss (9.09 sec). This277

confirms that the additional steps involved in graph construction, normalization, and LPA operations278

introduce negligible computational overhead during training.279

6 Comparison with SOTA models280

Table 4 provides a comprehensive comparison of our G-Loss fine-tuned language models against281

several state-of-the-art baselines. The baselines include three major paradigms in text classification:282

(i) graph-based methods (TextGCN [17], TensorGCN [18]), (ii) transformer-based language models283

(BERT (base-uncased), RoBERTa (large) language model, reported by Lin et al. [19]), and (iii) hybrid284

models that integrate language models with graph classification (Bert-GCN and RoBERTa-GCN285

versions of BertGCN [19]). All baseline results are taken from their respective published scores on286

the benchmark datasets used in this study. To ensure fairness across diverse approaches, accuracy is287

reported as the primary evaluation metric.288

7

G-Loss: Graph-Guided Fine-Tuning of Language Models

Table 3: Comparison of G-Loss-O with traditional losses using BERT-base-uncased. G-Loss-O
achieves superior or competitive accuracy and F1, produces well-separated embeddings (higher
silhouette scores), and converges in fewer epochs, demonstrating both effectiveness and efficiency.
The highlighted colors are the same as in Table 2

Dataset Loss Accuracy (%) Macro F1 (%) Test macro
silhouette score

Total train
time
(sec)

Avg. time
per epoch

(sec)

Early stopping
epoch

MR

SCL 86.36 86.36 0.5725 1258.41 33.04 35
Triplet 86.66 86.66 0.5331 941.55 27.50 29

Cos-sim 86.14 86.14 0.4479 654.56 27.70 20
GLoss-O 86.63 86.62 0.5507 810.85 27.77 25

R8

SCL 97.85 93.64 0.4869 1088.58 25.56 38
Triplet 97.69 93.96 0.6581 727.85 21.19 30

Cos-sim 97.94 94.10 0.7383 4960.64 21.65 200
GLoss-O 97.99 94.25 0.7870 572.29 21.77 23

R52

SCL 96.10 81.24 0.4561 1170.50 30.41 34
Triplet 96.53 82.54 0.4662 5496.14 25.05 189

Cos-sim 95.94 80.90 0.3972 1925.82 25.79 64
GLoss-O 96.24 81.99 0.4824 1095.93 25.87 39

Ohsumed

SCL 69.85 57.12 0.1373 691.03 15.70 39
Triplet 68.56 57.86 0.1222 1576.44 13.09 105

Cos-sim 70.49 59.65 0.1393 3064.31 13.42 200
GLoss-O 70.67 62.52 0.1468 633.50 13.50 41

20NG

SCL 84.93 84.47 0.5507 11671.10 52.76 200
Triplet 84.46 83.91 0.4538 8516.99 43.46 171

Cos-sim 84.20 83.72 0.5524 10155.44 45.10 200
GLoss-O 85.02 84.78 0.5849 8596.50 46.10 180

Table 4: Performance comparison (accuacy in %) with SOTA across benchmark datasets. G-Loss
consistently improves over graph-based and BERT, while achieving competitive results with BertGCN,
while avoiding full-graph overhead through dynamic mini-batch graph construction.

Model MR R8 R52 Ohsumed 20NG
TextGCN 76.74 97.07 93.56 68.36 86.34

TensorGCN 77.91 98.04 95.05 70.11 87.74
BERT-base 85.30 97.80 96.40 70.50 85.70

RoBERTa-large 89.40 97.80 96.20 70.70 83.80
Bert-GCN 86.00 98.10 96.60 72.80 89.30

RoBerta-GCN 89.70 98.20 96.10 72.80 89.50
G-Loss + BERT-base 87.14 98.04 96.48 71.48 85.13

G-Loss + RoBERTa-large 90.82 98.18 96.65 75.76 85.33

G-Loss delivers substantial gains over both standard pre-trained models and graph-based baselines.289

When combined with BERT-base, G-Loss consistently outperforms vanilla BERT across all datasets,290

achieving up to (+1.84) improvement on MR and (+0.98) on Ohsumed, highlighting the benefits of291

graph-driven structural supervision. Notably, G-Loss paired with RoBERTa-large attains new state-of-292

the-art results on MR (90.82), R52 (96.65), and Ohsumed (75.76), while remaining competitive on293

the other two. In contrast to BertGCN and RoBERTa-GCN, which require full-graph construction and294

incur significant memory costs, G-Loss achieves similar or superior accuracy with a lightweight, mini-295

batch dynamic graph, ensuring scalability and inductive generalization. Additionally, BertGCN’s296

simultaneous co-training of BERT and GCN part substantially increases computational resource297

requirements. These results demonstrate that G-Loss not only strengthens language model fine-tuning298

but also bridges the gap between graph-based and transformer-based paradigms in a more efficient299

manner.300

8

G-Loss: Graph-Guided Fine-Tuning of Language Models

0.1 0.3 0.5 0.7 0.9
Gamma ()

MR

R8

R52

20ng

ohsumed

Da
ta

se
t

86.13 86.26 86.29 86.83 85.66

93.44 94.37 93.65 94.97 94.50

84.99 84.39 85.15 84.63 84.49

82.95 83.86 84.91 83.06 83.14

54.05 57.86 59.56 62.24 55.67

60

65

70

75

80

85

90

95

100

Ma
cro

-F1
 (%

)

(a) Label hiding ratio γ vs Macro-F1

0.5× * 1× * 1.5× * 2× *
Sigma ()

MR

R8

R52

20ng

ohsumed

Da
ta

se
t

86.07 87.14 87.18 86.29

94.98 95.40 95.23 95.12

84.40 85.45 84.33 84.27

82.95 83.86 84.91 83.06

62.77 63.89 62.84 62.74

60

65

70

75

80

85

90

95

100

Ma
cro

-F1
 (%

)

(b) Sigma parameter σ vs Macro-F1

Figure 2: Hyperparameter sensitivity analysis of G-Loss on BERT-base-uncased: (a) label hiding
ratio γ and (b) Gaussian similarity parameter σ.

6.1 Ablation study results301

We conduct an ablation study to explore the effectiveness of our proposed graph-based loss function,302

utilizing the Bert-base-uncased language model due to its lightweight architecture and reduced303

computational overhead.304

Effect of label hiding ratio gamma (γ) on G-Loss performance. The label hiding ratio, denoted305

by gamma (γ) ∈ [0, 1], plays an important role in G-Loss function, by maintaining a proportion306

of labels masked and unmasked during the LPA iterations. Specifically, a proportion of (1 − γ)307

labels are hidden during fine-tuning, and LPA is applied to predict those hidden labels. Figure 2a308

presents an ablation study on γ, revealing that intermediate values - particularly in the range γ ∼309

{0.5 − 0.7} - consistently lead to better performance across all the datasets. This suggests that310

revealing approximately 50− 70% of the labels encourages the model to generalize effectively by311

maintaining a balance: enough labeled nodes for stable propagation and enough unlabeled nodes to312

guide meaningful learning.313

Impact of sigma in Gaussian similarity on performance of G-Loss. The parameter σ in the314

Gaussian similarity function determines graph connectivity and G-Loss performance. Small σ values315

create sparse, localized neighborhoods that preserve fine-grained distinctions, while larger values316

generate denser graphs that may blur class boundaries. Figure 2b shows performance across σ317

multipliers around the Optuna-optimized value (σ∗). The results reveal dataset-dependent sensitivity:318

MR and R8 datasets demonstrate remarkable stability, with performance varying by less than 1%319

across all σ values. Conversely, R52 shows a clear optimum at σ∗ (85.45%), with notable degradation320

at both extremes (84.40% at 0.5× and 84.27% at 2×). The 20NG and Ohsumed datasets exhibit321

intermediate sensitivity, with 20NG peaking at 1.5× σ∗ (84.91%) rather than the optimal point. This322

analysis reveals two key insights: (1) G-Loss maintains robust performance within a reasonable σ323

range for most datasets, validating its practical applicability, and (2) the optimal σ balances local324

precision with global connectivity, confirming the importance of proper hyperparameter tuning for325

maximizing G-Loss effectiveness.326

Additionally, Figure 6 in the appendix presents an ablation study on the weighting factor λ in G-Loss-327

O. We also plot t-SNE visualizations of learned embeddings across different loss functions on the328

MR and R8 datasets in section F of the appendix.329

7 Conclusion330

We proposed a novel graph-guided loss, G-Loss that shifts language model fine-tuning from the331

local pairwise optimization to global structure alignment. G-Loss utilizes a dynamically constructed332

semantic graph and semi-supervised LPA to capture global document similarity. Experiments on333

five benchmark datasets and three transformer architectures shows G-Loss’s consistent effectiveness334

in achieving performance improvements compared to traditional losses. The dynamic mini-batch335

graph construction ensures computational efficiency and scalability. G-Loss highlights the potential336

of integrating graphs into language model fine-tuning. Future research directions include: (1) Scaling337

9

G-Loss: Graph-Guided Fine-Tuning of Language Models

G-Loss to large-language models (e.g., GPT, LLaMa), (2) evaluating on larger, non-textual complex338

datasets, and (3) extending to multi-label and multi-modal tasks.339

References340

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of341

deep bidirectional transformers for language understanding. CoRR, 2018. 1, 2, 5342

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,343

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT344

pretraining approach. CoRR, 2019. 1, 2, 5345

[3] Alec Radford and Karthik Narasimhan. Improving language understanding by generative346

pre-training. 2018. 1347

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-348

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,349

Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation350

language models, 2023. 1351

[5] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron352

Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. CoRR, 2020. 1, 6, 12353

[6] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-354

networks. CoRR, 2019. 1, 2355

[7] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label356

propagation. 2002. 1, 3, 4, 15357

[8] Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised358

learning. CoRR, 2020. 2359

[9] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep360

semi-supervised learning. CoRR, abs/1904.04717, 2019. 2361

[10] Vlad Sobal, Mark Ibrahim, Randall Balestriero, Vivien Cabannes, Diane Bouchacourt, Pietro362

Astolfi, Kyunghyun Cho, and Yann LeCun. X-sample contrastive loss: Improving contrastive363

learning with sample similarity graphs, 2024. 2364

[11] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu365

Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. CoRR,366

2019. 2367

[12] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence368

embeddings. CoRR, abs/2104.08821, 2021. 2369

[13] Jiahao Xu, Wei Shao, Lihui Chen, and Lemao Liu. Simcse++: Improving contrastive learning370

for sentence embeddings from two perspectives. In Proceedings of the 2023 Conference on371

EMNLP, 2023. 2372

[14] Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao373

Yang. Provable stochastic optimization for global contrastive learning: Small batch does not374

harm performance. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang375

Niu, and Sivan Sabato, editors, ICML, Proceedings of Machine Learning Research, 2022. 2376

[15] Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning377

for pre-trained language model fine-tuning. CoRR, abs/2011.01403, 2020. 2, 6, 7378

[16] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional379

networks. CoRR, 2016. 2380

[17] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classifica-381

tion. CoRR, 2018. 3, 7382

[18] Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. Tensor graph convolutional networks383

for text classification, 2020. 3, 7384

[19] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu.385

Bertgcn: Transductive text classification by combining GCN and BERT. CoRR, 2021. 3, 6, 7386

[20] Zhibin Lu, Pan Du, and Jian-Yun Nie. VGCN-BERT: augmenting BERT with graph embedding387

for text classification. CoRR, 2020. 3388

10

G-Loss: Graph-Guided Fine-Tuning of Language Models

[21] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.389

Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation390

learning, 2024.391

[22] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Guangzhong Sun, and Xing Xie. Graph-392

formers: Gnn-nested language models for linked text representation. CoRR, 2021. 3393

[23] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.394

Learning on large-scale text-attributed graphs via variational inference, 2023.395

[24] Rui Xue, Xipeng Shen, Ruozhou Yu, and Xiaorui Liu. Efficient end-to-end language model396

fine-tuning on graphs, 2024. 3397

[25] Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large398

language models on textual graphs. In Kate Larson, editor, Proceedings of the Thirty-Third399

IJCAI-24, 2024. 3400

[26] Qi Zhu, Da Zheng, Xiang Song, Shichang Zhang, Bowen Jin, Yizhou Sun, and George Karypis.401

Parameter-efficient tuning large language models for graph representation learning, 2024. 3402

[27] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity403

summarization based on minimum cuts. In Proceedings of the 42nd ACL, 2004. 5404

[28] David D. Lewis. Reuters-21578 text categorization test collection. 1997. Distribution 1.0. 5405

[29] William Hersh, Chris Buckley, T. J. Leone, and David Hickam. Ohsumed: An interactive406

retrieval evaluation and new large test collection for research. In Proceedings of the 17th Annual407

International ACM SIGIR Conference on Research and Development in Information Retrieval,408

1994. 5409

[30] Ken Lang. Newsweeder: Learning to filter netnews, 1995. 5410

[31] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu.411

Github: Bertgcn-transductive text classification by combining gcn and bert, 2021. URL412

https://github.com/ZeroRin/BertGCN. 5413

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version414

of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. 5415

[33] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person416

re-identification. CoRR, 2017. 6, 12417

[34] John Pavlopoulos, Georgios Vardakas, and Aristidis Likas. Revisiting silhouette aggregation,418

2024. URL https://arxiv.org/abs/2401.05831. 6, 13419

[35] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant420

mapping. In 2006 IEEE (CVPR’06), 2006. 12421

[36] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian422

fields and harmonic functions. In Proceedings of the 20th International conference on Machine423

learning (ICML-03), pages 912–919, 2003. 15424

A Algorithm for the G-Loss based fine-tuning425

The algorithm below presents the outline of our proposed G-Loss based fine-tuning approach for426

language models in the document classification task, executed per minibatch k. The process begins427

with embedding extraction from the language model (Step 3), followed by normalization (Step 4). A428

crucial step is the construction of a similarity matrix using a Gaussian kernel function, which captures429

the semantic relationships between document embeddings (Step 5). The similarity matrix is then430

transformed into a normalized adjacency matrix (Step 6) and subsequently partitioned into two sets:431

one for which labels are known, and the other for which labels are masked (Step 7).432

11

https://github.com/ZeroRin/BertGCN
https://arxiv.org/abs/2401.05831

G-Loss: Graph-Guided Fine-Tuning of Language Models

Algorithm 1 Fine-tuning process at minibatch k

1: Input: Vk: Document set, Yk: Label set, Φ(.): language model (LM),
2: Hyperparameters: γ, η, σ
3: Output: Optimized weights of LM, Φ(.)
4: Xk ← Φ(Vk) {Extract embeddings from LM}
5: Xk ← Xk/∥Xk∥2 {Normalize embeddings}
6: Compute similarity matrix:
7: Wij ← exp

(
−∥Xki−Xkj∥2

2σ2

)
− diag(W)

8: Ã← D−1/2WD−1/2 {Normalize W}
9: Ykl, Yku ← γ-split(Yk) {Partition label set}

10: Label Propagation
Transition matrix T, where Tij ← Ãij∑B

m=0 Ãmj

11: Ŷku ← (I −Tuu)
−1.TulYkl

12: Compute cross-entropy loss:

13: LG ← − 1
Be

Be∑
j=1

C∑
c=1

Y c
ku,j log

(
Ŷ c
ku,j

)
14: return Loss LG

A transition matrix is computed which represents the probability of transition from node i to node j433

(step 10). The soft labels for label-masked nodes are computed using close-form solution of LPA. The434

resulting soft labels (Step 11) serve as targets for the cross-entropy loss computation (Step 13), which435

specifically evaluates the model’s predictions for instances with previously masked labels against436

their true labels. The loss is then return to be combined with CE loss and further backpropagation437

(Step 14). This approach effectively leverages both supervised label information and unsupervised438

document similarity relationships, enabling improved classification performance.439

B Traditional loss functions-mathematical formulations440

Supervised-contrastive loss441

Supervised contrastive loss (SCL) [5] enhances traditional contrastive learning [35] by incorporating442

class labels to optimize embeddings. Given a minibatch of samples (xi, yi) and their representations443

(zi ∈ Rd)), the loss function minimizes intra-class and maximizes inter-class distances in the (Rd)444

embedding space. Mathematically, supervised contrastive loss can be expressed as:445

LSCL(zi) = −
1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(9)

where z represents sample embeddings, P (i), positive samples for the anchor zi, A(i),all other446

samples excluding anchor, and τ , scalar temperature parameter controlling class separation.447

Triplet Loss Triplet Loss [33] constructs triplets (anchor, positive, negative) within each minibatch,448

encouraging the anchor-positive pair to be closer while pushing the negative further away. The loss is449

defined as:450

LTriplet =
1

Nbt

Nbt∑
i=1

max
(
0, ∥zi − z+i ∥

2
2 − ∥zi − z−i ∥

2
2 + α

)
where Nbt is the number of triplets formed from datapoints in minibatch, and zi, z

+
i , z

−
i are the451

anchor, positive, and negative sample embeddings, respectively, and α is a margin parameter enforcing452

separation.453

Cosine-Similarity Loss Cosine-Similarity loss operates by maximizing cosine similarity between454

positive pairs and minimizing the similarity between negative pairs in a batch. Given a minibatch of455

size B, the loss is defined as:456

12

G-Loss: Graph-Guided Fine-Tuning of Language Models

LCos-sim =
1

Np

Np∑
i=1

(
zi1 · zi2
∥zi1∥ · ∥zi2∥

− labeli
)2

where Np is the number of generated pairs in minibatch, zi
1·z

i
2

||zi
1||·||zi

2||
is cosine similarity between457

embeddings z1 and z2, and label ∈ {0, 1} denotes different-class (0) or same-class (1).458

C Macro-Silhouette coefficient based evaluation details459

In Macro-Silhouette coefficient based evaluation strategy, we monitor the cohesiveness of generated460

embeddings from learned model. The motive is that the model should learn to discriminate the461

embeddings of same/different class documents.462

Specifically, at each fine-tuning epoch, we calculate the macro-Silhouette score from embeddings463

generated from models’ most recent parameters and the true labels for the validation set. The464

macro-Silhouette coefficient [34] for a data point xi is given by:465

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))

where a(xi) is the average intra-class distance, while b(xi) is the average nearest-class distance.466

Silhouette-coefficient for each class, Ci is computed as follow:467

SC =
1

|C|
∑

xi∈Ci

s(xi)

And overall macro-Silhouette coefficient is:468

Smacro =
1

K

K∑
i=1

SC(Ci)

where K is the number of classes.469

Traditionally, Silhouette score is aggregated using micro-averaging (averaging over all data points),470

however it can be highly sensitive to cluster imbalance and noise. Macro-Silhouette score provides471

more robustness and reflects the quality of embedding and learning progress of the language model.472

We implement early stopping when this score plateaus to capture optimal embedding representations.473

D Sigma value computation for Gloss-SQRT474

The Gaussian kernel is defined as:475

k(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
.

Let476

d = ∥xi − xj∥2

(a fixed constant for given xi,xj), so the kernel simplifies to:477

k(σ) = exp

(
− d

2σ2

)
.

We compute partial derivatives with respect to σ (assuming σ > 0).478

13

G-Loss: Graph-Guided Fine-Tuning of Language Models

1. First Partial Derivative ∂k
∂σ479

Rewrite480

k = exp

(
−d

2
σ−2

)
.

Using the chain rule:481

∂k

∂σ
= exp

(
− d

2σ2

)
· ∂

∂σ

(
−d

2
σ−2

)
.

Compute the derivative inside:482

∂

∂σ

(
−d

2
σ−2

)
= −d

2
· (−2)σ−3 =

d

σ3
.

Thus:483

∂k

∂σ
=

d

σ3
exp

(
− d

2σ2

)
.

2. Second Partial Derivative ∂2k
∂σ2484

Differentiate ∂k
∂σ using the product rule:485

∂

∂σ

(
d

σ3
exp

(
− d

2σ2

))
= d · ∂

∂σ

(
σ−3 exp

(
−d

2
σ−2

))
.

Set u = σ−3 and v = exp
(
−d

2σ
−2
)
. Then:486

∂u

∂σ
= −3σ−4,

∂v

∂σ
= exp

(
− d

2σ2

)
· d

σ3
.

Apply the product rule:487

∂2k

∂σ2
= d

[
σ−3 ·

(
d

σ3
exp

(
− d

2σ2

))
+ exp

(
− d

2σ2

)
· (−3σ−4)

]
.

Simplify:488

∂2k

∂σ2
= d exp

(
− d

2σ2

)[
d

σ6
− 3

σ4

]
.

∂2k

∂σ2
=

d(d− 3σ2)

σ6
exp

(
− d

2σ2

)
.

3. Points of Inflection489

Points of inflection occur where ∂2k
∂σ2 = 0 or is undefined, and the concavity changes.490

Critical Points491

∂2k

∂σ2
= 0 =⇒ d(d− 3σ2) = 0

(since exp(·) > 0 and σ6 > 0 for σ > 0).492

Given d = ∥xi − xj∥2 > 0 (assuming xi ̸= xj), solve:493

d− 3σ2 = 0 =⇒ σ2 =
d

3
=⇒ σ =

√
d

3
(valid since σ > 0).

14

G-Loss: Graph-Guided Fine-Tuning of Language Models

Concavity Change494

- For σ <
√
d/3: d−3σ2 > 0⇒ ∂2k

∂σ2 > 0 (concave up). - For σ >
√
d/3: d−3σ2 < 0⇒ ∂2k

∂σ2 < 0495

(concave down). - At σ =
√
d/3, concavity changes from up to down.496

Undefined Point: σ = 0 is not in the domain (kernel undefined).497

Conclusion498

Point of inflection at σ =
√

d
3 where d = ∥xi − xj∥2

Median Pairwise Distance as Optimal Choice499

The median pairwise distance is often chosen as the kernel bandwidth σ because:500

• It is robust to outliers.501

• Reflects the dominant scale of the data.502

• Maximizes kernel sensitivity for typical pairs.503

E Singularity and Stability in the Closed-form LPA Solution504

The closed-form solution employed in this work follows the classical formulation of graph-based505

semi-supervised learning [7, 36]. When pairwise similarities are computed using the Gaussian506

kernel, the resulting similarity matrix W is positive semi-definite. This property ensures that the507

corresponding normalized transition matrix508

T = D−1W

is row-stochastic or, in the case of unlabeled data, substochastic. The submatrix Tuu, representing509

transitions among unlabeled nodes, therefore satisfies the substochastic property.510

Since Tuu is substochastic, its spectral radius ρ(Tuu) is strictly less than one, i.e.,511

ρ(Tuu) < 1.

This directly implies that the matrix (I − Tuu) is non-singular, ensuring the existence and stability512

of the closed-form solution.513

Formally, the spectral radius of a square matrix A is defined as514

ρ(A) = max
i
|λi|,

where λi denotes the eigenvalues of A. A matrix (I − A) is invertible if and only if 1 is not an515

eigenvalue of A. Consequently, if all eigenvalues of A satisfy |λi| < 1, the matrix (I − A) is516

guaranteed to be invertible (i.e., non-singular).517

Therefore, the closed-form label propagation solution,518

F = (I − Tuu)
−1TulYl,

is well-defined and numerically stable under the practical assumptions governing the mini-batch519

graph construction used in GLOSS.520

Furthermore, the condition ρ(Tuu) < 1 also guarantees convergence of iterative propagation schemes.521

When this condition holds, the matrix inverse can be equivalently expressed via the Neumann series522

expansion:523

(I − Tuu)
−1 = I + Tuu + T 2

uu + T 3
uu + · · ·

This infinite series converges exactly when the spectral radius of Tuu is less than one. This property524

provides the theoretical foundation for the convergence of iterative graph-based methods, such as525

Label Propagation (LPA) and PageRank, as both involve repeated multiplication by a transition matrix526

whose spectral radius is less than unity.527

15

G-Loss: Graph-Guided Fine-Tuning of Language Models

F Visualizations528

We visualize the evolution of the document graph during fine-tuning with G-Loss using a sample529

subset from the MR dataset to illustrate how the model progressively refines the underlying semantic530

structure. Figure 3a shows the temporal evolution of adjacency heatmaps, capturing how the coherence531

among same-class data points increases across epochs. Figure 3b provides a schematic example of532

this process: the initial graph (left) appears noisy and poorly aligned with class boundaries, indicating533

that pre-trained embeddings lack task-specific separation. After fine-tuning (right), the graph exhibits534

stronger intra-class (green) and weaker inter-class (red) connections. This structural transformation535

highlights how G-Loss promotes the emergence of coherent, class-consistent, and structure-aware536

representations aligned with the ground-truth labels.537

(a) Document similarity evolution for Bert-base-uncased with G-Loss fine-tuning. Heatmaps show single
minibatch similarity matrices over the epochs.

(b) Demo graph evolution during training: the left graph depicts the initial connectivity, while the right graph
highlights the strengthened intra-class (green) and weakened inter-class (red) connections, reflecting enhanced
semantic coherence and cluster formation.

Figure 4 presents t-SNE visualizations of the learned embeddings from BERT-base-uncased model,538

demonstrating the effectiveness of G-Loss in creating well-separated cluster representations. The539

visualizations reveal distinct class boundaries and improved intra-class cohesion compared to baseline540

methods.541

G Hyperparameter selection542

Table 5 and Table 6 summarize the search ranges and empirically optimal intervals obtained via543

Optuna-based tuning and ablation studies across benchmark datasets. The G-Loss framework is544

controlled by four key hyperparameters: learning rate (η), label-hiding ratio (γ), weighting coefficient545

(λ), and Gaussian kernel bandwidth (σ). Ablation studies show that γ ∈ [0.5, 0.7]—hiding about 30-546

50% of labels during label propagation—yields the best performance. For the weighting coefficient λ,547

experimental results demonstrate that prioritizing the structural regularization term with λ ∈ [0.7, 0.9]548

enhances geometric alignment in the embedding space. The Gaussian kernel bandwidth σ is dataset-549

dependent and lacks a universal optimal range, necessitating data-specific tuning. To address this550

challenge, we introduce two G-Loss variants: G-Loss-SQRT employs an analytical approximation551

for σ derived from the methodology presented in Section D, offering computational efficiency for552

resource-constrained deployments; conversely, G-Loss-O uses Optuna to identify the optimal σ, for553

maximal performance at the cost of increased hyperparameter tuning overhead. This dual design554

allows practitioners to balance computational cost and accuracy as needed.555

Additionally, Figure 6 in the appendix presents an ablation study on the weighting factor λ, which556

effectively modulates the trade-off between local label supervision via CE loss and global embedding557

structure alignment using G-Loss. Our results show that a range of 0.7− 0.9 consistently yields558

strong performance across benchmark datasets, indicating that this weighting achieves an optimal559

16

G-Loss: Graph-Guided Fine-Tuning of Language Models

(a) G-Loss (b) SCL

Figure 4: t-SNE visualization of learned embeddings with G-Loss and SCL on R8 dataset with
BERT-base-uncased. G-Loss shows a clear separation as compared to SCL.

integration of supervised signals and graph-structured relational information, thereby enhancing both560

predictive accuracy and embedding coherence.561

Loss Hyperparameters
Cross Entropy Learning rate (η)
Cosine-Similarity Learning rate (η)
Triplet Learning rate (η)

CE + SCL
Learning rate (η),
Temperature (τ),
Weight factor(λ)

CE + GLoss-SQRT
Learning rate (η),
Label-hiding ratio (γ),
Weight-factor (λ)

CE + GLoss-O

Learning rate (η),
Label-hiding ratio (γ),
Weight-factor (λ),
Gaussian-kernel width (σ)

Table 5: List of hyperparameters for G-Loss
and other baseline losses.

Optuna
search range

Optimal
range

(η) [1e− 05, 2e− 05, 3e− 05,
4e− 05, 5e− 05]

-

(γ) 0.1− 0.9 0.5− 0.7
(σ) 0.01− 10.0 Data-specific
(λ) 0.1− 0.9 0.7− 0.9

Table 6: G-Loss Hyperparameter Selection and
Optimal Range: For the hyperparameter σ, we
propose a resource-constrained approach, CE+G-
Loss-SQRT, where the value of σ can be deter-
mined mathematically, eliminating the need for
Optuna-based tuning.

H Detailed per epoch timing breakdown562

The figure 5 presents a detailed per-epoch timing breakdown for different training configurations563

— G-Loss, Triplet, SCL, and Cos-sim — highlighting the relative computational cost across major564

components: forward pass, backward pass, optimizer step, and I/O operations. G-Loss requires 27.74565

seconds per epoch, nearly identical to Triplet loss (27.58 sec) and Cosine similarity (27.76 sec),566

while being 15% faster than SCL (32.62 sec). The forward pass accounts for around 32− 33% of567

the computation across all loss functions. Notably, G-Loss’s graph-based components add minimal568

overhead: graph construction consumes only 0.18 seconds (0.7% of total time) and LPA operations569

require 0.07 seconds (0.2% of total time). These results demonstrate that the structural loss integration570

introduces minimal computational burden while maintaining efficiency comparable to conventional571

training pipelines.572

17

G-Loss: Graph-Guided Fine-Tuning of Language Models

0 5 10 15 20 25 30 35
Time (seconds)

GLOSS

Triplet

SCL

Cos-sim

9.20s
33% 60% 4%1%

9.15s
33% 61% 4%1%

10.41s
32% 63% 4%1%

9.09s
33% 61% 4%

Training Time Breakdown per Epoch

Forward Pass
Other I/O
Backward Pass
Optimizer Step

G-LOSS forward pass breakdown:- BERT Forward- 8.95 sec | Graph Construction- 0.18 sec | LPA Operations- 0.07 sec

Figure 5: Training time breakdown per epoch across different loss functions on the MR dataset
with BERT-base-uncased model. Each horizontal bar represents the total epoch time (in seconds)
decomposed into four components: forward pass, other I/O operations, backward pass, and optimizer
step. The percentages indicate the contribution of each component to the total epoch time. Despite
incorporating graph construction and label propagation operations, G-Loss maintains comparable
computational efficiency to baseline methods.

0.1 0.3 0.5 0.7 0.9
Lambda ()

MR

R8

R52

20ng

ohsumed

Da
ta

se
t

85.96 85.99 86.66 87.14 87.14

94.11 94.73 94.51 94.97 95.08

84.41 84.87 85.51 85.53 85.30

83.30 82.95 83.91 84.72 85.41

62.60 62.93 61.23 63.11 63.01

60

65

70

75

80

85

90

95

100

M
ac

ro
-F

1
(%

)

Figure 6: Hyperparameter sensitivity analysis of G-Loss on BERT-base-uncased: loss weighting
factor Lambda (λ) vs performance

18

	1 Introduction
	2 Related work
	3 Proposed fine-tuning framework
	3.1 Task description
	3.2 G-Loss: Graph-driven loss computation

	4 Experimentation setup
	4.1 Datasets and downstream tasks
	4.2 Language models and traditional losses
	4.3 Fine-tuning convergence & hyperparameter tuning

	5 Results and discussion
	5.1 Classification performance analysis

	6 Comparison with SOTA models
	6.1 Ablation study results

	7 Conclusion
	A Algorithm for the G-Loss based fine-tuning
	B Traditional loss functions-mathematical formulations
	C Macro-Silhouette coefficient based evaluation details
	D Sigma value computation for Gloss-SQRT
	E Singularity and Stability in the Closed-form LPA Solution
	F Visualizations
	G Hyperparameter selection
	H Detailed per epoch timing breakdown

