© © N O o A~ W N

G-Loss: Graph-Guided Fine-Tuning of Language Models

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract

Traditional loss functions (cross-entropy, contrastive, triplet, and supervised con-
trastive) for fine-tuning pre-trained language models, such as BERT, operate in
the local neighborhood, overlooking the holistic structure of semantic relation-
ships. Thus, we propose G-Loss, a novel graph-guided loss function that uses
semi-supervised label propagation and leverages the structural relationships in
the embedding manifold using graphs. G-Loss constructs a document similarity
graph to capture global semantic relationships, guiding the language model to
learn more discriminative and robust embeddings. We evaluated G-Loss on five
benchmark datasets: MR (sentiment), R8 and R52 (topic), Ohsumed (medical),
and 20NG (news). G-Loss converges faster and produces a semantically coherent
embedding space, consequently improving classification performance compared
to the language models trained with traditional losses across diverse classification
tasks.

1 Introduction

Language models ranging from BERT [1], RoBERTa[2], with millions of parameters to large language
models like GPT [3] and LLaMA [4], etc., with parameters in billions, have transformed natural
language processing (NLP). These models follow a two-stage approach: unsupervised pre-training on
large unlabeled text corpora to learn general representations, followed by supervised fine-tuning using
labeled data and a task-specific loss function. However, fine-tuning presents challenges, including
the need for large amounts of labeled data and substantial computational resources. Additionally,
traditional fine-tuning losses, such as cross-entropy loss, focus on minimizing prediction error,
potentially overlooking the semantic structure within the data.

Over time, various fine-tuning strategies have emerged. For instance, BERT and RoBERTa employ
cross-entropy loss with a classification head to a fully connected layer [1, 2], ensuring different
classes remain separated in the embedding space. However, this approach overlooks the relationships
between samples, focusing only on individual labels [5]. Pairwise or triplet-based approaches, such as
in SBERT [6], address this by optimizing cosine similarity or triplet loss, aligning semantically similar
document pairs while separating dissimilar ones in embedding space. However, these losses become
computationally expensive, as their effectiveness depends on sampling many positive and negative
pairs to form pairs/triplets. Moreover, a fundamental limitation persists: these losses optimize local
relationships independently without enforcing global structural alignment. For instance, learning that
Ais close to B and distinct from C' does not ensure appropriate positioning of B and C' relative to
each other unless pair (B, C') is explicitly optimized. This local optimization limits generalization to
unseen data.

To overcome these limitations, we propose a shift from local pairwise optimization to global structural
alignment by modeling semantic relationships across all pairs through a graph. This alignment is
enforced not just for the immediate neighbors (local consistency), but for multi-hop relationships
that capture the global structure of the graph. Specifically, we propose a graph-based fine-tuning
strategy by introducing G-Loss. While G-Loss can be applied wherever encoder-based embeddings
are available, we focus on NLP tasks with transformer-based encoders. G-Loss is a graph-driven loss
function that integrates the semi-supervised Label Propagation Algorithm (LPA) [7] into language

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

43
44
45
46
47

48
49
50
51
52

53
54
55
56
57
58
59

60
61
62
63
64
65

66
67

68
69
70

71
72

73
74
75
76
77

78

79
80
81
82
83
84
85

86
87
88
89
90
91
92
93

94
95

G-Loss: Graph-Guided Fine-Tuning of Language Models

model (LM) fine-tuning by leveraging LPA; G-Loss diffuses label information from labeled nodes
to unlabeled nodes through the graph structure. This enables the model to leverage both supervised
labels and implicit relational information from the graph. This aligns with the manifold assumption
in semi-supervised learning [8], which posits that proximity in feature space corresponds to label
similarity.

Furthermore, LPA is parameter-free, ensuring computational efficiency and scalability across model
sizes and datasets. Another key feature of our approach is the self-reinforcing system, where the
graph structure and LM embeddings co-evolve during fine-tuning. Improved embeddings dynamically
reshape the graph structure, which in turn guides further refinement of the embeddings, leading to
better structural alignment.

Unlike prior work that either use LPA with static, full-dataset graphs for vision tasks [9] or constructs
similarity graphs as soft targets for image classification [10], G-Loss offers key innovations. G-
Loss dynamically constructs mini-batch graphs using evolving LM embeddings, enabling inductive
learning with reduced memory and better generalization. Furthermore, G-Loss directly integrates LPA
into the loss function, eliminating the need for separate pseudo-labeling/retraining, and streamlining
training while preserving embedding consistency. To this end, we summarize the major contributions
of this work as follows:

* We propose a fine-tuning approach that integrates a graph-based loss derived from dynamically
evolving graphs and the semi-supervised Label Propagation Algorithm (LPA). Unlike conven-
tional losses that optimize local relationships (e.g., pairwise and triplet losses), our method
enforces global semantic consistency among documents. The co-evolution of the graph structure
and embedding space across successive fine-tuning epochs yields robust and more discriminative
representations.

* We implement and evaluate the proposed fine-tuning framework using BERT, RoBERTa, and
DistilBERT, demonstrating its applicability across models of various sizes.

* We conduct experiments on five benchmark datasets, spanning from binary to complex multi-
class (up to 52 classes), with varying class distribution and different classification tasks. Perfor-
mance is reported using accuracy and macro F1-score metrics.

* We also compare the proposed fine-tuning framework with other traditional loss functions,
including supervised contrastive, cosine similarity, triplet, and cross-entropy losses.

The rest of the paper is organized as follows: Section 2 reviews related literature. Section 3
describes the fine-tuning process with G-Loss. Section 4 describes the benchmark datasets, language
model variants considered, comparable loss functions, downstream tasks, and the evaluation criteria.
Section 5 discusses the results, followed by Section 7, which concludes the paper with a list of future
work.

2 Related work

Loss functions play a crucial role in fine-tuning language models (LMs) to enhance the models’ rep-
resentation capabilities. Fine-tuning BERT [1], RoBERTa [2], and ALBERT [11] for a downstream task
typically involves appending a classification head and optimizing the cross-entropy (CE) loss. While
effective in classification, fine-tuning with cross-entropy loss treats training instances independently
and ignores structural consistency. Similarity-based learning methods address this: Sentence-BERT
(SBERT) [6] uses a Siamese network architecture with triplet and cosine similarity loss for fine-grained
pairwise comparisons.

SimCSE [12] proposed a contrastive learning via dropout augmentation, aligning the embedding
space by contrasting positive/negative pairs. SimCSE aligns the embedding space, thereby promoting
more effective sentence representations. SimCSE++ [13] further refined this approach by reducing
negative pair noise and introducing a dimension-wise contrastive objective to prevent feature collapse.
However, these methods remain locally optimized, focusing only on relationships between individual
samples but failing to capture global semantic structures [14]. Gunel et al. [15] introduces supervised
contrastive learning (SCL) objective to complement cross-entropy loss for fine-tuning language
models.

Graph-based models, such as graph neural networks (GNN), incorporate structural dependencies by
leveraging relational information across datasets [16]. Graph Convolutional Networks (GCN) [16]

96
97
98

99
100
101
102
103

104
105
106
107

109
110
111
112
113
114

115

116

117
118
119
120
121

122
123
124
125

126

127
128
129
130
131
132

134
135
136
137

138
139
140
141

142
143
144

G-Loss: Graph-Guided Fine-Tuning of Language Models

pioneered contextual aggregation via feature propagation. TextGCN [17] extended this to document
classification with a heterogeneous word-document graph, and TensorGCN [18] integrates syntactic
and sequential dependencies across words in text.

Hybrid models, such as GNN-LM, have shown promise. BertGCN integrates BERT embeddings into
GCN, enhancing text classification performance [19]. Other approaches include Cascading models:
LM generates embeddings, which are then processed by a GNN for classification [20-22], Co-training
methods: LMs and GNNs train jointly with a shared objective [22-24], and Frozen LM strategies:
Frozen LM while only the GNN is trained [25, 26].

Despite success, the above-mentioned graph-based methods suffer from two key limitations: (1)
static graph construction (fixed, non-adaptive graphs) and (2) high computational overhead from joint
GNN-LM training. For instance, BertGCN’s static, full-dataset graph incurs high memory usage and
computational overhead, as well as prolonged training, due to the use of a memory bank and a small
learning rate.

We introduce G-Loss, which addresses these limitations through dynamic graph construction. G-Loss
enables models to learn and refine semantic structures during fine-tuning, unlike prior methods
that either (1) ignore global structural dependencies (cross-entropy, triplet loss, SimCSE), or (2)
require expensive, static graphs (BertGCN, TextGCN). G-Loss bridges this gap by leveraging dynamic
graph adaptation alongside efficient label propagation, thereby facilitating the direct integration of
graph-structured learning into language model fine-tuning.

3 Proposed fine-tuning framework
3.1 Task description

For a multi-class classification problem, we are given a document set D = {dy,da, ..., d,}, belong-
ing to C distinct classes. We partition D into three disjoint sets: training, validation, and testing. The
goal is to fine-tune a pre-trained language model on the training set by optimizing a task-specific loss
function, and evaluate the fine-tuned language models’ performance on the testing set by classifying
each test document into one of the C classes.

During fine-tuning, we select a minibatch of size B from the training set }V and represent it as a graph
G = (Vk, &k, Xi). Here, nodes Vy, represent documents in current minibatch, edges &, represent
semantic relationships between documents, and &, € RZ*? represents d-dimensional document
embeddings from language model.

3.2 G-Loss: Graph-driven loss computation

Given the training document set 7 € D and corresponding labels), fine-tuning is performed
iteratively in m minibatches (b1, bs....b,,). For each minibatch by, the process follows these steps: we
encode each document into dense representations using a language model, ®(.). Then, we construct a
similarity graph where nodes represent documents and edges are weighted using a similarity measure
to capture the semantic relationships between them. Next, we hide a subset of labels based on a
masking ratio gamma (7). LPA [7] infers these hidden labels while keeping known labels fixed. The
loss computed from the discrepancy between inferred and true labels of masked nodes gives us the
value of G-Loss. Final loss is computed using a weighted average of G-Loss with the CE loss and
minimized via backpropagation. This iterative process refines both the embeddings and the graph
structure to align with the global semantic relationships across the document set. Figure 1 presents the
G-Loss based fine-tuning framework for one minibatch. Each step is explained in detail as follows:

(Step 1) Embedding extraction . Text in each document in minibatch by, k& € (1,2,...m) is
encoded and mapped by language model ®(.) into a d-dimensional semantic space, capturing
semantic information through contextual embeddings. The resulting embedding matrix X;, € RE*4
is represented as:

Xy = ®(Text in by).)

where ®(.) denotes a language model. These embeddings act as node features in the subsequent graph
construction step. The quality of embeddings directly impacts the effectiveness of label propagation
and the performance of downstream classification.

145
146

147

148
149
150
151
152
153
154

166
167

168

170
171

G-Loss: Graph-Guided Fine-Tuning of Language Models

——————— I @ oo T
Language model | ¢ Embeddings, X OUnlabe\ed nodes —Label propagation

6 6 0---—----
| Emb, X Q __c ° o -0

| @‘I’(-) —>» G-Loss,Lg I ;
—) + 1 \ © o0 o ==
1 ; 1 i

Linear classifier

Backpropogate
Text ! XxC ! P

L=XLg+(1—-X\).Lce ‘

LG = *Y[m log qu

Figure 1: The language model ®(.) generates embeddings from input text, which is feed into both
a linear classifier (producing logits) and a similarity-based document graph where nodes represent
documents and weight w;; represents similarity between documents. Labels for few nodes (Y%,,) are

hidden and inferred using label propagation algorithm (LPA) producing (qu). This gives graph-based
loss (L), which is combined with cross-entropy loss Lo using weighting factor A, and composite
loss backpropagates to update both language model parameters and linear classifier weights.

(Step 2) Graph construction. Next step is to construct a fully connected weighted graph G =
(Vi &k, Xi) for current minibatch by,. The weight of an edge between two nodes ¢ and j is computed

X, —X;|?
%
of document ¢, and ¢ controls the scale of neighborhood sensitivity in kernel space. We investigate
two approaches for selecting o and propose two variants of G-Loss function. First, G-Loss-SORT
derives o analytically, as detailed in section D of appendix, by using double partial differentiation of
the Gaussian kernel function, which yields o = /d; /3 where d; is the median Euclidean distance
across all data points. Second, G-Loss-O determines optimal ¢ through systematic hyperparameter
optimization. G-Loss-SORT offers a computationally efficient alternative for environments with
limited resources, bypassing resource-intensive hyperparameter tuning.

using a Gaussian kernel: W;; = exp (7 W;; = 0, where X represents embeddings

The Gaussian kernel ensures that highly similar documents are strongly connected while dissim-
ilar ones have weaker connections. Further, we normalize the adjacency matrix using symmetric

normalization to stabilize information propagation in the graph: A = D~/2WD~1/2, where
D, = Ele W, represents the degree matrix. This ensures that label propagation distributes
information effectively without amplifying numerical instabilities.

(Step 3) Label propagation. We use a hyperparameter gamma (y) to randomly split the minibatch
node set V, into two disjoint subsets to enable semi-supervised learning:

* Vi (Labeled subset): A + fraction of nodes with true labels (Y%;) that guide propagation.

* Vi (Evaluation subset): The remaining (1 — «y) fraction whose labels (Y%,) are masked and
must be inferred.

We compute a column-stochastic transition matrix T
-
Zm:O AmJ
Using the closed-from label propagation solution of LPA [7], predicted labels for the evaluation set
are computed as:

Y —1

Yiu = = Tuu) TuYu 3
where [is identity matrix, T, is transition sub-matrix of evaluation nodes, T},; captures transitions
from labeled to evaluation nodes.

(Step 4) Loss computation. To compute the loss from graph, we compute the discrepancy between
inferred labels (Y,) and true labels, (Y,) on the evaluation subset of size B, = (1 — v) * B:

1 &Z

l:g = 5 Z yku,] log yku]) 4)

€ j=1c=1

172

173

174
175

177
178
179

181
182

184
185

191
192
193

194

195

196
197
198
199

201
202
203
204

205

206
207

209

G-Loss: Graph-Guided Fine-Tuning of Language Models

where: for the class ¢, yi,, ; and gy, ; are the ground-truth and predicted labels of j-th evaluation
node, B, is the number of samples in evaluation set of k*" minibatch. C' is the number of classes.

(Step 5) Loss Function Integration: The final loss function combines the standard cross-entropy
(CE) loss with the graph-based loss via weighted average. A scalar hyperparameter A controls the
trade-off between the two loss components:

ﬁZ)\-ﬁg+(1—)\)~£cg 5)
where L¢¢ is the cross-entropy loss over all data points in the current training batch, Lg is the
graph-based propagation loss over the evaluation subset, A € [0, 1] controls the influence of both
losses.

The CE loss is defined as:
1 B.C
Lee=—7% ; Zl Yi,c 10g i c (6)

Here, B denotes the batch size, C represents the number of classes, ¥; . is the ground truth label for
sample ¢ and class c, and §; . is the corresponding predicted probability from the linear classifier.

(Step 6) Model optimization via backpropagation. Both the language model parameters and
the linear classifier weights are jointly optimized via gradient descent backpropagation, using the
composite loss defined in equation 5. loss signal £ :

X, « X, — VL, @)

Where 7) represents the learning rate of the model. This step ensures that the embeddings evolve in a
manner that enhances the effectiveness of label propagation.

Dynamic graph updating. Since embeddings continuously improve throughout fine-tuning, the
graph structure must be updated accordingly. After each backpropagation step, the adjacency matrix
A is recomputed using the newly refined embeddings:

o I - X .
i P\ T s |- ®)

This iterative adaptation ensures that similarity-based relationships remain aligned with the evolv-
ing representation space, leading to more accurate label propagation and improved classification
performance. A detailed algorithm of approach is provided in section A of the appendix.

4 Experimentation setup
4.1 Datasets and downstream tasks

We experimented on five diverse, widely used English language benchmark datasets for text clas-
sification. Movie Review (MR) [27]: binary sentiment classification, where each sample is labeled
as either positive or negative. R8 and R52 [28]: hierarchical news categorization datasets derived
from Reuters-21578, with 8 and 52 topic categories, respectively. Ohsumed [29]: medical text
classification dataset comprising MEDLINE abstracts, categorized into 23 medical subject headings
(MeSH). Lastly, 20 Newsgroups (20NG) [30]: documents classified into 20 distinct newsgroups
representing various discussion topics. For a fair comparison, we adopted BertGCN’s [31] data splits,
ensuring consistent training and test partitions. Table 1 provides the train/validation/test split details
for each dataset.

4.2 Language models and traditional losses

Language Models. While G-Loss is compatible with any encoder-based transformer, we evaluate it
using three models of varying size and complexity: BERT-base-uncased (12 layers, 768 dim, 110M
parameters) [1], RoBERTa-1large [2] (24 layers, 1024 dim, 356M parameters), and Disti1BERT-
base-uncased (6 layers, 768 dim, 66M parameters) [32].

210
211
212
213
214
215

216
217

218
219

220

237
238
239
240
241
242
243

244
245
246
247
248
249

G-Loss: Graph-Guided Fine-Tuning of Language Models

Table 1: Dataset statistics used for evaluation. The Train, Validation, and Test column represents the
number of documents in each split.

Dataset #Docs Train Validation Test # Classes

MR 10662 6397 711 3554 2
R8 7674 4936 549 2189 8
R52 9100 5865 667 2568 52
20NG 18846 10182 1132 7532 20
Ohsumed 7400 3021 336 4043 23

Traditional loss functions. We evaluate our proposed G-Loss under two configurations: integrated
and standalone. In integrated approach, we implement the framework shown in Figure 1, where
the hybrid loss jointly optimizes both the language model parameters and linear classifier weights.
The integrated approach is in sync with approach followed by prior works such as BERT, RoBERTa,
BertGCN [19], Gunel et al. [15] etc. In standalone approach, only the language model weights are
updated using the computed loss.

* Integrated: We compare G-Loss augmented with cross-entropy loss against standard cross-
entropy alone, and hybrid supervised contrastive and cross-entropy loss (SCL+CE) [15].

» Standalone: G-Loss is evaluated against triplet loss [33], supervised contrastive loss (SCL) [5],
and cosine-similarity loss.

Mathematical formulations for all traditional losses are provided in Appendix B.

4.3 Fine-tuning convergence & hyperparameter tuning

Evaluation strategies and early stopping. Following our dual evaluation framework, in integrated
approach, we implement a classification-based monitoring system that tracks macro F1-score on the
validation set throughout fine-tuning and applies early stopping when performance plateaus for a
predetermined patience window. Performance evaluation utilizes a linear classifier with dimensions
E x C (where F represents embedding size and C' denotes the number of classes) attached to the
final layer of language model.

In standalone approach, we fine-tune the language model using only a single loss objective, with
training convergence monitored via macro-silhouette score [34] on true labels of the validation
set (the mathematical formula is provided in appendix C). Unlike the standard silhouette score,
macro-silhouette takes into account the imbalance in the dataset and gives a balanced measure. After
fine-tuning, a linear classifier is trained independently on the updated embeddings. Final predictions
on the test set are then generated using this downstream classifier. This strategy eliminates the need for
a supervised classification head to be trained alongside the language model (as in BERT, RoBERTa,
and BertGCN) during fine-tuning, thereby reducing the number of parameters and computational
overhead.

Hyperparameter selection & final classifier. Hyperparameter optimization is conducted using
Optuna. For G-Loss, we tune: Gaussian kernel width ¢ € [0.1,10], learning rate n € {le —
05,2e — 05,3e — 05,4e — 05, 5e — 05}, label hiding ratio v € [0.1,0.9], and loss weighting factor
A €]0.1,0.9]. Traditional losses undergo similar tuning: temperature 7 € [0.01, 1] and learning rate
7 for Supervised Contrastive Loss (SCL), and learning rate 7 for cosine-similarity and triplet losses.
We add details about hyperparameter selection in section G of the appendix. All the experiments in
this study were conducted on a single NVIDIA A100 80GB GPU.

Evaluation metrics and protocol. We report the test accuracy and macro F1l-score as primary
metrics, ensuring comparability with prior work such as TextGCN, TensorGCN, BertGCN. Macro
F1-score provides a more reliable evaluation due to class imbalance in some datasets (e.g., R52,
Ohsumed). In addition to classification performance, we measure the computational efficiency of
G-Loss by tracking the fine-tuning time till convergence and the average time taken per epoch for
G-Loss and other loss functions in table 3.

250

251

252
253
254

256
257
258
259
260
261
262
263

264
265
266
267
268
269
270
271
272
273

274
275
276
277
278
279

280

281
282
283
284
285
286
287
288

G-Loss: Graph-Guided Fine-Tuning of Language Models

5 Results and discussion

5.1 Classification performance analysis

We experimentally compare the proposed G-Loss with a strong baseline of CE loss and SCL+CE loss
functions (Section 4.2). For robust assessment, we used three distinct language model architectures
(section 4.2).

Table 2: Accuracy(%)/macro Fl-score (%) obtained while fine-tuning different language model
variants across multiple datasets. The values highlighted in |gray and yellow denote the best and

second-best performance, respectively. We report the mean and variance of three different seeds.

Model

Loss

MR

R8

R52

20NG

Ohsumed

BERT-base
-uncased

CE
GLoss-SQRT + CE

85.64+0.81/85.64+0.81
86.17+0.35 / 86.174+0.35

97.57+0.16 /93.904-0.84
97.67+0.19 / 94.3440.66

96.29+0.15 / 84.424-0.60
96.06+0.18 / 83.7840.48

83.98+0.12/83.4940.18
84.01+0.56 / 83.5240.62

71.09+0.31/63.4040.83
70.55+0.18 / 62.494+0.73

RoBERTa
-large

GLoss-O + CE 86.63+0.12/86.61:£0.12 97.91:£0.20/94.53+£0.76 96.37+0.40/84.55+0.38 ~ 84.71+0.24/84.17+0.26 71.25+0.59 / 63.80+0.82
SCL + CE 85.97£0.50/85.95£0.50 97.88+0.17/93.96+0.57 96.18+0.14/83.75+0.77 84.3940.10/83.9940.13 71.28+0.17 / 63.64:£0.20
CE 90.04790.04 97.85794.15 96.04783.29 84.68/84.04 73.77765.88

G-Loss-SQRT + CE
G-Loss-O + CE
SCL + CE [15]

90.53+0.51/90.53+0.51
90.87+0.62 / 90.8740.62
90.82/90.81

97.69/93.78
97.49+0.05 / 93.0440.12
97.81/93.80

96.41/84.43
96.65 / 84.82
96.22/83.19

84.26/84.01
85.19+0.31/84.234+0.73
84.53/83.97

74.58 1 66.75
75.35+0.42/ 68.58+1.02
7576/ 68.53

CE 848550.23/84.8550.23 97.48%0.117/93.02£048 95.78+0.04/ 83.6410.69 83.15£0.61/82.69£0.56 69.50+0.34 / 61.06:0.29
DistilBERT GLoss-SQRT + CE | 85.14+£0.33/85.144£034 97.46+0.17/93.6240.69 96.13+0.34/83.93+0.35 83.61+0.23/83.16+0.20 69.93+0.38/ 61.39+0.21
R GLoss-O + CE 85.10+£0.45/85.1040.45 [97.71£0.12/93.61£0.22 96.074+0.04/ [84.4440.43 [83.64+0.28/83.23£0.27 70.16£0.21/62.41+0.34

SCL + CE

84.16+0.46 / 84.164-0.46

97.65+0.25/93.79+0.43

96.17£0.10 /83.82+1.62

83.49+0.20/ 83.18+0.12

70.02:£0.35 /60.56+0.80

Table 2 shows classification accuracy and macro F1-score across all datasets and language model
variants. G-Loss variants closely match and marginally surpass other loss baselines regardless of the
underlying language model, with improvements of 0.03% — 1.06% in accuracy and 0.05% — 1.04%
in macro F1-score over the second-best-performing loss, across all datasets. Notably, G-Loss variants
generalize across different language model families, indicating its ability to enhance a variety of
transformer backbones. While SCL+CE remains competitive on some datasets, it underperforms on
small models such as DistilBERT. These results confirm the effectiveness of our graph-based loss
function in fine-tuning language models for classification, demonstrating consistent improvements
over baselines.

Table 3 presents the standalone evaluation of G-Loss against traditional loss functions (detailed
in Section 4.2). For comparison, we considered the best-performing G-Loss-O variant. G-Loss-
O consistently achieves competitive or superior performance relative to traditional objectives. In
particular, it delivers the highest Macro F1 on challenging datasets, such as Ohsumed (62.52%), and
attains the highest silhouette scores across most benchmarks, indicating better structural alignment
of embeddings. This demonstrates that beyond improving predictive accuracy, G-Loss-O produces
semantically coherent embedding spaces. Notably, G-Loss-O converges in fewer epochs (e.g., 23 on
R8) compared to alternative loss functions, highlighting its superior training efficiency. The average
per-epoch training time and total time to convergence show that G-Loss maintains comparable
per-epoch computational cost to existing baselines while achieving faster overall convergence.

We also provide a timing breakdown for per epoch time across G-Loss and other baselines in Figure 5
of the appendix. G-Loss records a total of 9.2 seconds for forward pass (BERT forward: 8.95 sec,
graph construction: 0.18 sec, LPA operations: 0.07 sec) in one epoch, compared to Supervised
Contrastive Loss (10.41 sec), Triplet Loss (9.15 sec), and Cosine Similarity Loss (9.09 sec). This
confirms that the additional steps involved in graph construction, normalization, and LPA operations
introduce negligible computational overhead during training.

6 Comparison with SOTA models

Table 4 provides a comprehensive comparison of our G-Loss fine-tuned language models against
several state-of-the-art baselines. The baselines include three major paradigms in text classification:
(i) graph-based methods (TextGCN [17], TensorGCN [18]), (ii) transformer-based language models
(BERT (base-uncased), ROBERTa (large) language model, reported by Lin et al. [19]), and (iii) hybrid
models that integrate language models with graph classification (Bert-GCN and RoBERTa-GCN
versions of BertGCN [19]). All baseline results are taken from their respective published scores on
the benchmark datasets used in this study. To ensure fairness across diverse approaches, accuracy is
reported as the primary evaluation metric.

289
290
291
292

294
295
296
297
298

300

G-Loss: Graph-Guided Fine-Tuning of Language Models

Table 3: Comparison of G-Loss-O with traditional losses using BERT-base-uncased. G-Loss-O
achieves superior or competitive accuracy and F1, produces well-separated embeddings (higher
silhouette scores), and converges in fewer epochs, demonstrating both effectiveness and efficiency.
The highlighted colors are the same as in Table 2

Total train Avg. time

Dataset Loss Accuracy (%) Macro F1 (%) silzf)flteltl::cszgre time per epoch Earlzps(t)(c)ﬂpmg
(sec) (sec)

SCL 86.36 86.36 0.5725 1258.41 33.04 35

MR Triplet 86.66 86.66 0.5331 941.55 27.50 29
Cos-sim 86.14 86.14 0.4479 654.56 27.70 20

GLoss-O 86.63 86.62 0.5507 810.85 27.77 25

SCL 97.85 93.64 0.4869 1088.58 25.56 38

RS Triplet 97.69 93.96 0.6581 727.85 21.19 30
Cos-sim 97.94 94.10 0.7383 4960.64 21.65 200

GLoss-O 97.99 94.25 0.7870 572.29 21.77 23

SCL 96.10 81.24 0.4561 1170.50 30.41 34

R52 Triplet 96.53 82.54 0.4662 5496.14 25.05 189
Cos-sim 95.94 80.90 0.3972 1925.82 25.79 64

GLoss-O 96.24 81.99 0.4824 1095.93 25.87 39

SCL 69.85 57.12 0.1373 691.03 15.70 39

Ohsumed Triplet 68.56 57.86 0.1222 1576.44 13.09 105
Cos-sim 70.49 59.65 0.1393 3064.31 13.42 200

GLoss-O 70.67 62.52 0.1468 633.50 13.50 41
SCL 84.93 84.47 0.5507 11671.10 52.76 200

20NG Triplet 84.46 83.91 0.4538 8516.99 43.46 171
Cos-sim 84.20 83.72 0.5524 10155.44 45.10 200
GLoss-O 85.02 84.78 0.5849 8596.50 46.10 180

Table 4: Performance comparison (accuacy in %) with SOTA across benchmark datasets. G-Loss
consistently improves over graph-based and BERT, while achieving competitive results with BertGCN,
while avoiding full-graph overhead through dynamic mini-batch graph construction.

Model MR RS R52 Ohsumed 20NG
TextGCN 76.74 97.07 93.56 68.36 86.34
TensorGCN 7791 98.04 95.05 70.11 87.74
BERT-base 85.30 97.80 96.40 70.50 85.70
RoBERTa-large 89.40 97.80 96.20 70.70 83.80
Bert-GCN 86.00 98.10 96.60 72.80 89.30
RoBerta-GCN 89.70 98.20 96.10 72.80 89.50

G-Loss + BERT-base 87.14 98.04 96.48 71.48 85.13
G-Loss + RoBERTa-large 90.82 98.18 96.65 75.76 85.33

G-Loss delivers substantial gains over both standard pre-trained models and graph-based baselines.
When combined with BERT-base, G-Loss consistently outperforms vanilla BERT across all datasets,
achieving up to (4-1.84) improvement on MR and (+0.98) on Ohsumed, highlighting the benefits of
graph-driven structural supervision. Notably, G-Loss paired with RoBERTa-large attains new state-of-
the-art results on MR (90.82), R52 (96.65), and Ohsumed (75.76), while remaining competitive on
the other two. In contrast to BertGCN and RoBERTa-GCN, which require full-graph construction and
incur significant memory costs, G-Loss achieves similar or superior accuracy with a lightweight, mini-
batch dynamic graph, ensuring scalability and inductive generalization. Additionally, BertGCN’s
simultaneous co-training of BERT and GCN part substantially increases computational resource
requirements. These results demonstrate that G-Loss not only strengthens language model fine-tuning
but also bridges the gap between graph-based and transformer-based paradigms in a more efficient
manner.

301

302
303
304

305
306
307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325
326

327
328
329

330

331
332
333
334
335
336
337

G-Loss: Graph-Guided Fine-Tuning of Language Models

100 100
MR | 86.13 86.26 86.29 86.83 85.66 I:% MR 86.07 86.29 I»95
-90 -90
R8 94.37 93.65 94.97 94.50 R8 94.98 95.40 95.23 95.12
- -85 § - -85
& =t &S -
8 R52 | 84.99 84.39 85.15 84.63 84.49 80 % 8 R52 84.40 85.45 84.33 84.27 -80
& e] e
a g a g
-75 2 -75 2
20ng | 82.95 83.86 84.91 83.06 83.14 20ng 82.95 83.86 84.91 83.06
70 -70
ohsumed 54.05 57.86 59.56 62.24 55.67 65 ohsumed 62.77 63.89 62.84 62.74 65
-60 -60
0.1 0.3 05 0.7 0.9 0.5x0* 1xo* 1.5x0 2x0%
Gamma (y) Sigma (o)

(a) Label hiding ratio vy vs Macro-F1 (b) Sigma parameter o vs Macro-F1

Figure 2: Hyperparameter sensitivity analysis of G-Loss on BERT-base-uncased: (a) label hiding
ratio -y and (b) Gaussian similarity parameter o.

6.1 Ablation study results

We conduct an ablation study to explore the effectiveness of our proposed graph-based loss function,
utilizing the Bert-base-uncased language model due to its lightweight architecture and reduced
computational overhead.

Effect of label hiding ratio gamma () on G-Loss performance. The label hiding ratio, denoted
by gamma () € [0, 1], plays an important role in G-Loss function, by maintaining a proportion
of labels masked and unmasked during the LPA iterations. Specifically, a proportion of (1 — =)
labels are hidden during fine-tuning, and LPA is applied to predict those hidden labels. Figure 2a
presents an ablation study on v, revealing that intermediate values - particularly in the range v ~
{0.5 — 0.7} - consistently lead to better performance across all the datasets. This suggests that
revealing approximately 50 — 70% of the labels encourages the model to generalize effectively by
maintaining a balance: enough labeled nodes for stable propagation and enough unlabeled nodes to
guide meaningful learning.

Impact of sigma in Gaussian similarity on performance of G-Loss. The parameter ¢ in the
Gaussian similarity function determines graph connectivity and G-Loss performance. Small o values
create sparse, localized neighborhoods that preserve fine-grained distinctions, while larger values
generate denser graphs that may blur class boundaries. Figure 2b shows performance across o
multipliers around the Optuna-optimized value (o*). The results reveal dataset-dependent sensitivity:
MR and R8 datasets demonstrate remarkable stability, with performance varying by less than 1%
across all o values. Conversely, R52 shows a clear optimum at o* (85.45%), with notable degradation
at both extremes (84.40% at 0.5x and 84.27% at 2x). The 20NG and Ohsumed datasets exhibit
intermediate sensitivity, with 20NG peaking at 1.5 x o* (84.91%) rather than the optimal point. This
analysis reveals two key insights: (1) G-Loss maintains robust performance within a reasonable o
range for most datasets, validating its practical applicability, and (2) the optimal o balances local
precision with global connectivity, confirming the importance of proper hyperparameter tuning for
maximizing G-Loss effectiveness.

Additionally, Figure 6 in the appendix presents an ablation study on the weighting factor A in G-Loss-
0. We also plot t-SNE visualizations of learned embeddings across different loss functions on the
MR and RS datasets in section F of the appendix.

7 Conclusion

We proposed a novel graph-guided loss, G-Loss that shifts language model fine-tuning from the
local pairwise optimization to global structure alignment. G-Loss utilizes a dynamically constructed
semantic graph and semi-supervised LPA to capture global document similarity. Experiments on
five benchmark datasets and three transformer architectures shows G-Loss’s consistent effectiveness
in achieving performance improvements compared to traditional losses. The dynamic mini-batch
graph construction ensures computational efficiency and scalability. G-Loss highlights the potential
of integrating graphs into language model fine-tuning. Future research directions include: (1) Scaling

338
339

340

341
342

343
344
345

346
347

348
349
350
351

352
353

354
355

356
357

358
359

360
361

362
363
364

365
366
367

368
369

370
371
372

373
374
375
376

377
378

379
380

381
382

383
384

385
386

387
388

G-Loss: Graph-Guided Fine-Tuning of Language Models

G-Loss to large-language models (e.g., GPT, LLaMa), (2) evaluating on larger, non-textual complex
datasets, and (3) extending to multi-label and multi-modal tasks.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, 2018. 1,2, 5

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, 2019. 1,2, 5

[3] Alec Radford and Karthik Narasimhan. Improving language understanding by generative
pre-training. 2018. 1

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. 1

[5] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. CoRR, 2020. 1, 6, 12

[6] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, 2019. 1,2

[7] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label
propagation. 2002. 1, 3, 4, 15

[8] Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised
learning. CoRR, 2020. 2

[9] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep
semi-supervised learning. CoRR, abs/1904.04717, 2019. 2

[10] Vlad Sobal, Mark Ibrahim, Randall Balestriero, Vivien Cabannes, Diane Bouchacourt, Pietro
Astolfi, Kyunghyun Cho, and Yann LeCun. X-sample contrastive loss: Improving contrastive
learning with sample similarity graphs, 2024. 2

[11] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. CoRR,
2019. 2

[12] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. CoRR, abs/2104.08821, 2021. 2

[13] Jiahao Xu, Wei Shao, Lihui Chen, and Lemao Liu. Simcse++: Improving contrastive learning
for sentence embeddings from two perspectives. In Proceedings of the 2023 Conference on
EMNLP, 2023. 2

[14] Zhuoning Yuan, Yuexin Wu, Zi-Hao Qiu, Xianzhi Du, Lijun Zhang, Denny Zhou, and Tianbao
Yang. Provable stochastic optimization for global contrastive learning: Small batch does not

harm performance. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, ICML, Proceedings of Machine Learning Research, 2022. 2

[15] Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning
for pre-trained language model fine-tuning. CoRR, abs/2011.01403, 2020. 2, 6, 7

[16] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. CoRR, 2016. 2

[17] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classifica-
tion. CoRR, 2018. 3,7

[18] Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. Tensor graph convolutional networks
for text classification, 2020. 3, 7

[19] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu.
Bertgen: Transductive text classification by combining GCN and BERT. CoRR, 2021. 3, 6,7

[20] Zhibin Lu, Pan Du, and Jian-Yun Nie. VGCN-BERT: augmenting BERT with graph embedding
for text classification. CoRR, 2020. 3

10

389
390
391

392
393

394
395

396
397

398
399

401
402

404

405

406
407
408
409

410

411
412
413

414
415

416
417

418
419

420
421

422
423
424

425

426
427
428
429
430
431
432

G-Loss: Graph-Guided Fine-Tuning of Language Models

[21] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.
Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning, 2024.

[22] Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Guangzhong Sun, and Xing Xie. Graph-
formers: Gnn-nested language models for linked text representation. CoRR, 2021. 3

[23] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang.
Learning on large-scale text-attributed graphs via variational inference, 2023.

[24] Rui Xue, Xipeng Shen, Ruozhou Yu, and Xiaorui Liu. Efficient end-to-end language model
fine-tuning on graphs, 2024. 3

[25] Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large
language models on textual graphs. In Kate Larson, editor, Proceedings of the Thirty-Third
IJCAI-24,2024. 3

[26] Qi Zhu, Da Zheng, Xiang Song, Shichang Zhang, Bowen Jin, Yizhou Sun, and George Karypis.
Parameter-efficient tuning large language models for graph representation learning, 2024. 3

[27] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the 42nd ACL, 2004. 5

[28] David D. Lewis. Reuters-21578 text categorization test collection. 1997. Distribution 1.0. 5

[29] William Hersh, Chris Buckley, T. J. Leone, and David Hickam. Ohsumed: An interactive
retrieval evaluation and new large test collection for research. In Proceedings of the 17th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval,
1994. 5

[30] Ken Lang. Newsweeder: Learning to filter netnews, 1995. 5

[31] Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu.
Github: Bertgen-transductive text classification by combining gen and bert, 2021. URL
https://github.com/ZeroRin/BertGCN. 5

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. 5

[33] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. CoRR, 2017. 6, 12

[34] John Pavlopoulos, Georgios Vardakas, and Aristidis Likas. Revisiting silhouette aggregation,
2024. URL https://arxiv.org/abs/2401.05831. 6, 13

[35] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE (CVPR’06), 2006. 12

[36] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pages 912-919, 2003. 15

A Algorithm for the G-Loss based fine-tuning

The algorithm below presents the outline of our proposed G-Loss based fine-tuning approach for
language models in the document classification task, executed per minibatch k. The process begins
with embedding extraction from the language model (Step 3), followed by normalization (Step 4). A
crucial step is the construction of a similarity matrix using a Gaussian kernel function, which captures
the semantic relationships between document embeddings (Step 5). The similarity matrix is then
transformed into a normalized adjacency matrix (Step 6) and subsequently partitioned into two sets:
one for which labels are known, and the other for which labels are masked (Step 7).

11

https://github.com/ZeroRin/BertGCN
https://arxiv.org/abs/2401.05831

434
435
436
437
438

440

441

442
443
444
445

446
447

448
449
450

G-Loss: Graph-Guided Fine-Tuning of Language Models

Algorithm 1 Fine-tuning process at minibatch &

Input: Vi: Document set, Yy: Label set, ®(.): language model (LM),
Hyperparameters: v, 7,0

Output: Optimized weights of LM, ®(.)

Xk < ©(V%) {Extract embeddings from LM}

Xi < Xi/|| Xkl|l2 {Normalize embeddings}

Compute similarity matrix:

Wij — exp (_ ||in2—a)2(kj”2> o diag(W)
A « D=1/2W D~1/2 {Normalize W}

Yii, Yiw < v-split(Yy) {Partition label set}
Label Propagation

A AR A A

Ju—

Transition matrix T, where Tj; < BA#AM
11: Y & (I = Touu) " Tt Vi
12: Compute crossj—gentgopy loss:
13 Lg —7- Zfl 2 Vi log (V)
14: return Loss L'jgi -

m=0

A transition matrix is computed which represents the probability of transition from node 7 to node j
(step 10). The soft labels for label-masked nodes are computed using close-form solution of LPA. The
resulting soft labels (Step 11) serve as targets for the cross-entropy loss computation (Step 13), which
specifically evaluates the model’s predictions for instances with previously masked labels against
their true labels. The loss is then return to be combined with CE loss and further backpropagation
(Step 14). This approach effectively leverages both supervised label information and unsupervised
document similarity relationships, enabling improved classification performance.

B Traditional loss functions-mathematical formulations

Supervised-contrastive loss

Supervised contrastive loss (SCL) [5] enhances traditional contrastive learning [35] by incorporating
class labels to optimize embeddings. Given a minibatch of samples (z;, y;) and their representations
(z; € R%)), the loss function minimizes intra-class and maximizes inter-class distances in the (R%)
embedding space. Mathematically, supervised contrastive loss can be expressed as:

Lscr(zi) = —‘Piim Z log 5

peP(i)

exp(z; - 2p/T)
aeA(i) €XP(2i - 2a/T)

&)

where z represents sample embeddings, P (i), positive samples for the anchor z;, A(i),all other
samples excluding anchor, and 7, scalar temperature parameter controlling class separation.

Triplet Loss Triplet Loss [33] constructs triplets (anchor; positive, negative) within each minibatch,
encouraging the anchor-positive pair to be closer while pushing the negative further away. The loss is
defined as:

Ny

£Triplet = Nibt Zmax (07 ||Zi - Zj_H% - Hzi - Z:H% + Oé)
i=1

where Ny, is the number of triplets formed from datapoints in minibatch, and z;, zj' ,z; are the
anchor, positive, and negative sample embeddings, respectively, and « is a margin parameter enforcing
separation.

Cosine-Similarity Loss Cosine-Similarity loss operates by maximizing cosine similarity between
positive pairs and minimizing the similarity between negative pairs in a batch. Given a minibatch of
size B, the loss is defined as:

12

457

458

460
461
462

463
464
465

466
467

468

470
471
472
473

474

475

476

477

478

G-Loss: Graph-Guided Fine-Tuning of Language Models

Np

2
1
ECos—sim = < labell)
Z [EHE sz||

p =1

i1
where N, is the number of generated pairs in minibatch, % is cosine similarity between
1 2

embeddings z; and 29, and label € {0, 1} denotes different-class (0) or same-class (1).

C Macro-Silhouette coefficient based evaluation details

In Macro-Silhouette coefficient based evaluation strategy, we monitor the cohesiveness of generated
embeddings from learned model. The motive is that the model should learn to discriminate the
embeddings of same/different class documents.

Specifically, at each fine-tuning epoch, we calculate the macro-Silhouette score from embeddings
generated from models’ most recent parameters and the true labels for the validation set. The
macro-Silhouette coefficient [34] for a data point x; is given by:

b(z;) — a(z)

s(x;) = max(a(z;), b(z;))

where a(x;) is the average intra-class distance, while b(x;) is the average nearest-class distance.
Silhouette-coefficient for each class, C; is computed as follow:

1
Sc = — s(x;

And overall macro-Silhouette coefficient is:

K
ma(‘ro = 7~ §
K —

where K is the number of classes.

Traditionally, Silhouette score is aggregated using micro-averaging (averaging over all data points),
however it can be highly sensitive to cluster imbalance and noise. Macro-Silhouette score provides
more robustness and reflects the quality of embedding and learning progress of the language model.
We implement early stopping when this score plateaus to capture optimal embedding representations.

D Sigma value computation for Gloss-SQRT

The Gaussian kernel is defined as:

C_x . I2
k(x;,x;) = exp (—XLXJ”) .

202

Let

d = |x; — x|

(a fixed constant for given x;, X;), so the kernel simplifies to:

k(o) = exp (_sz) .

We compute partial derivatives with respect to o (assuming o > 0).

13

G-Loss: Graph-Guided Fine-Tuning of Language Models

Ok

479 1. First Partial Derivative B

]

480 Rewrite

d
k = exp (—20_2> .

Ok _ AN 9 ([d
ao_eXp 202 Oo 20 ’

4s2 Compute the derivative inside:

481 Using the chain rule:

483 Thus:

. . . 2
24 2. Second Partial Derivative 2_%

485 Differentiate 271; using the product rule:

o (4d _ ANy 9 (,-s 4
0o \ o3 xp 202 e \7 exp 27 '

a6 Setu=o03andv = exp (7%0*2). Then:

@__3 —4 @—e _i i
o 7 P 202 ’

487 Apply the product rule:
0%k _3 d d d 4
w—d[a '(asexp (‘w)) oxp (‘w) (=30)}'

agg Simplify:

489 3. Points of Inflection

. . . 2 . .
490 Points of inflection occur where % = 0 or is undefined, and the concavity changes.

491 Critical Points

0k ,
492 (since exp(+) > 0 and 6% > 0 for o > 0).

sa Givend = ||x; — x;||* > 0 (assuming x; # X;), solve:

d—30*=0 = 02:§ = U:\/g (valid since o > 0).

14

494

495

496

497

498

499

500

501

502

503

504

505
506
507
508

509
510

511

512
513

514

515
516
517

518

519
520

521
522
523

524
525
526
527

G-Loss: Graph-Guided Fine-Tuning of Language Models

Concavity Change

-Foro < \/d/3: d—30% >0 = % > 0 (concave up). - Foro > /d/3: d—30% < 0 = % <0
(concave down). - At o = /d/3, concavity changes from up to down.

Undefined Point: o = 0 is not in the domain (kernel undefined).

Conclusion

Point of inflection at o = where d = ||x; — x;||?

Wi,

Median Pairwise Distance as Optimal Choice
The median pairwise distance is often chosen as the kernel bandwidth o because:

¢ It is robust to outliers.
¢ Reflects the dominant scale of the data.

¢ Maximizes kernel sensitivity for typical pairs.

E Singularity and Stability in the Closed-form LPA Solution

The closed-form solution employed in this work follows the classical formulation of graph-based
semi-supervised learning [7, 36]. When pairwise similarities are computed using the Gaussian
kernel, the resulting similarity matrix W is positive semi-definite. This property ensures that the
corresponding normalized transition matrix

T=D"'W
is row-stochastic or, in the case of unlabeled data, substochastic. The submatrix T, representing
transitions among unlabeled nodes, therefore satisfies the substochastic property.

Since T, is substochastic, its spectral radius p(T,,,) is strictly less than one, i.e.,

p(Tyw) < 1.

This directly implies that the matrix (I — T,) is non-singular, ensuring the existence and stability
of the closed-form solution.

Formally, the spectral radius of a square matrix A is defined as

p(A) = max |\,

where)\; denotes the eigenvalues of A. A matrix (I — A) is invertible if and only if 1 is not an
eigenvalue of A. Consequently, if all eigenvalues of A satisfy |A\;] < 1, the matrix (I — A) is
guaranteed to be invertible (i.e., non-singular).

Therefore, the closed-form label propagation solution,
F= (I - Tuu)_lTulely

is well-defined and numerically stable under the practical assumptions governing the mini-batch
graph construction used in GLOSS.

Furthermore, the condition p(7,,,,) < 1 also guarantees convergence of iterative propagation schemes.
When this condition holds, the matrix inverse can be equivalently expressed via the Neumann series
expansion:

(I = Tuu) ™" =T+ T + Ty + Ty + -

uu
This infinite series converges exactly when the spectral radius of Ty, is less than one. This property
provides the theoretical foundation for the convergence of iterative graph-based methods, such as
Label Propagation (LPA) and PageRank, as both involve repeated multiplication by a transition matrix
whose spectral radius is less than unity.

15

528

529
530
531
532
533
534
535
536
537

538
539
540
541

542

543
544
545
546
547
548
549
550
551
552
553
554
555

556
557
558
559

G-Loss: Graph-Guided Fine-Tuning of Language Models

F Visualizations

We visualize the evolution of the document graph during fine-tuning with G-Loss using a sample
subset from the MR dataset to illustrate how the model progressively refines the underlying semantic
structure. Figure 3a shows the temporal evolution of adjacency heatmaps, capturing how the coherence
among same-class data points increases across epochs. Figure 3b provides a schematic example of
this process: the initial graph (left) appears noisy and poorly aligned with class boundaries, indicating
that pre-trained embeddings lack task-specific separation. After fine-tuning (right), the graph exhibits
stronger intra-class (green) and weaker inter-class (red) connections. This structural transformation
highlights how G-Loss promotes the emergence of coherent, class-consistent, and structure-aware
representations aligned with the ground-truth labels.

\cy Matrix (Epoch 40) Adjacency Matrix (Epoch 80)

Adjacency Matrix (Epoch 1)

>
=3
T
a
2
3
a
<
=
5
S
ol
o
2
a
S
~
&
.2

o

A

I 1.0

0.8

60 50 40 30 20 10 0

60 50 40 30 20 10 O
l

60 50 40 3q 20 10 0
l

60 50 40 30 20 10 0

(a) Document similarity evolution for Bert-base-uncased with G-Loss fine-tuning. Heatmaps show single
minibatch similarity matrices over the epochs.

(" A
That dogged good... |48 | The plot grows... That dogged good |-002| The plot grows
some doldrums. resolution .. some doldrums. | | .. resolution
S J N\ J
2 | 18 01 |18 .002| 49 .002 |.73
A\ (
If hill'isn't51 | Solondz maybe... If hill isn't | .70 | Solondz maybe...
and cliche appeals to me and cliche appeals to me
J N\ J

(b) Demo graph evolution during training: the left graph depicts the initial connectivity, while the right graph
highlights the strengthened intra-class (green) and weakened inter-class (red) connections, reflecting enhanced
semantic coherence and cluster formation.

Figure 4 presents t-SNE visualizations of the learned embeddings from BERT-base-uncased model,
demonstrating the effectiveness of G-Loss in creating well-separated cluster representations. The
visualizations reveal distinct class boundaries and improved intra-class cohesion compared to baseline
methods.

G Hyperparameter selection

Table 5 and Table 6 summarize the search ranges and empirically optimal intervals obtained via
Optuna-based tuning and ablation studies across benchmark datasets. The G-Loss framework is
controlled by four key hyperparameters: learning rate (1), label-hiding ratio (+), weighting coefficient
(M), and Gaussian kernel bandwidth (o). Ablation studies show that v € [0.5, 0.7]—hiding about 30-
50% of labels during label propagation—yields the best performance. For the weighting coefficient A,
experimental results demonstrate that prioritizing the structural regularization term with A € [0.7,0.9]
enhances geometric alignment in the embedding space. The Gaussian kernel bandwidth o is dataset-
dependent and lacks a universal optimal range, necessitating data-specific tuning. To address this
challenge, we introduce two G-Loss variants: G-Loss-SQRT employs an analytical approximation
for o derived from the methodology presented in Section D, offering computational efficiency for
resource-constrained deployments; conversely, G-Loss-O uses Optuna to identify the optimal o, for
maximal performance at the cost of increased hyperparameter tuning overhead. This dual design
allows practitioners to balance computational cost and accuracy as needed.

Additionally, Figure 6 in the appendix presents an ablation study on the weighting factor A, which
effectively modulates the trade-off between local label supervision via CE loss and global embedding
structure alignment using G-Loss. Our results show that a range of 0.7 — 0.9 consistently yields
strong performance across benchmark datasets, indicating that this weighting achieves an optimal

16

560
561

562

563
564
565
566
567
568
569
570
571
572

G-Loss: Graph-Guided Fine-Tuning of Language Models

t-SNE Visualization - Epoch 0 tSNE Visualization - Epoch 0

(a) G-Loss (b) SCL

Figure 4: t-SNE visualization of learned embeddings with G-Loss and SCL on RS8 dataset with
BERT-base-uncased. G-Loss shows a clear separation as compared to SCL.

integration of supervised signals and graph-structured relational information, thereby enhancing both
predictive accuracy and embedding coherence.

Loss Hyperparameters

Cross Entropy Learning rate (1) -

Cosine-Similarity ~ Learning rate (1) gg:lclll:iange ?al:;?al

Triplet Learning rate (17) [Te — 05,2¢ — 05,3¢ — 05
Learning rate (7)), M) 4o — 0550 — 05]’ T

CE + SCL Temperature (7), ™) 01— 0_97 05—0.7
Weight factor()\) 0.0l —10.0 Data-specific
Learning rate (1), (i) 01-09 0.7 89

CE + GLoss-SQRT Label-hiding ratio (7),) 0.1-0. -
Weight-factor (\) Tab}e 6: G-Loss Hyperparameter Selection and
Learning rate (1)), Optimal Range: For the hyperparameter o, we
Label-hiding ratio (7), propose a resource-constrained approach, CE+G-

CE + GLoss-O Weight-factor (\), Loss-SQRT, where the value of o can be deter-

Gaussian-kernel width (o) mined mathematically, eliminating the need for
Optuna-based tuning.

Table 5: List of hyperparameters for G-Loss
and other baseline losses.

H Detailed per epoch timing breakdown

The figure 5 presents a detailed per-epoch timing breakdown for different training configurations
— G-Loss, Triplet, SCL, and Cos-sim — highlighting the relative computational cost across major
components: forward pass, backward pass, optimizer step, and I/O operations. G-Loss requires 27.74
seconds per epoch, nearly identical to Triplet loss (27.58 sec) and Cosine similarity (27.76 sec),
while being 15% faster than SCL (32.62 sec). The forward pass accounts for around 32 — 33% of
the computation across all loss functions. Notably, G-Loss’s graph-based components add minimal
overhead: graph construction consumes only 0.18 seconds (0.7% of total time) and LPA operations
require 0.07 seconds (0.2% of total time). These results demonstrate that the structural loss integration
introduces minimal computational burden while maintaining efficiency comparable to conventional
training pipelines.

17

G-Loss: Graph-Guided Fine-Tuning of Language Models

Training Time Breakdown per Epoch

10.41
= ow =R

Forward Pass
0 Other /O
W Backward Pass
mmm Optimizer Step

0 5 10 15 20
Time (seconds)

25

30

G-LOSS forward pass breakdown:- BERT Forward- 8.95 sec | Graph Construction- 0.18 sec | LPA Operations- 0.07 sec

35

Figure 5: Training time breakdown per epoch across different loss functions on the MR dataset
with BERT-base-uncased model. Each horizontal bar represents the total epoch time (in seconds)
decomposed into four components: forward pass, other I/O operations, backward pass, and optimizer
step. The percentages indicate the contribution of each component to the total epoch time. Despite
incorporating graph construction and label propagation operations, G-Loss maintains comparable

computational efficiency to baseline methods.

MR 86.66 87.14

R8 94.51 94.97

R52

Dataset

20ng

ohsumed 62.60 62.93 61.23 63.11 63.01
0.1 0.3 0.5 0.7 0.9
Lambda (A)

100

95

90

85

80

75

-70

-65

-60

Macro-F1 (%)

Figure 6: Hyperparameter sensitivity analysis of G-Loss on BERT-base-uncased: loss weighting

factor Lambda () vs performance

18

	1 Introduction
	2 Related work
	3 Proposed fine-tuning framework
	3.1 Task description
	3.2 G-Loss: Graph-driven loss computation

	4 Experimentation setup
	4.1 Datasets and downstream tasks
	4.2 Language models and traditional losses
	4.3 Fine-tuning convergence & hyperparameter tuning

	5 Results and discussion
	5.1 Classification performance analysis

	6 Comparison with SOTA models
	6.1 Ablation study results

	7 Conclusion
	A Algorithm for the G-Loss based fine-tuning
	B Traditional loss functions-mathematical formulations
	C Macro-Silhouette coefficient based evaluation details
	D Sigma value computation for Gloss-SQRT
	E Singularity and Stability in the Closed-form LPA Solution
	F Visualizations
	G Hyperparameter selection
	H Detailed per epoch timing breakdown

