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ABSTRACT

Generative models for structure-based drug design (SBDD) aim to generate novel
3D molecules for specified protein targets in silico. The prevailing paradigm
focuses on model expressivity - typically with powerful Graph Neural Network
(GNN) models - but is agnostic to binding affinity during training, potentially
overlooking better molecules. We address this issue with a two-pronged approach:
learn an economical surrogate for affinity to infer an unlabeled molecular graph,
and optimize for labels conditioned on this graph and desired molecular properties
(e.g., QED, SA). The resulting model FastSBDD achieves state-of-the-art results
as well as streamlined computation and model size (up to 1000x faster and with
100x fewer trainable parameters compared to existing methods), paving way for
improved docking software. We also establish rigorous theoretical results to expose
the representation limits of GNNs in SBDD contexts and the generalizability of our
affinity scoring model, advocating more emphasis on generalization going forward.

1 INTRODUCTION

Identifying ligands that bind well to a protein target and have desired properties is a key challenge of
Structure-based drug design (SBDD), while experimental determination of binding is costly. Recently
deep generative models have proposed to accelerate SBDD by suggesting good candidate molecules
from learned conditional ligand distribution given a target protein from experimental or in silico
binding observations (Vamathevan et al., 2019; Bilodeau et al., 2022). These approaches include
autoregressive models (Peng et al., 2022; Luo et al., 2021a), variational autoencoders (Ragoza et al.,
2022), reinforcement learning (Li et al., 2021), and diffusion models (Schneuing et al., 2022).

However, existing methods are oblivious to binding affinity as they seek to match the observed ligand
distribution, which often includes molecules with varying affinities. Furthermore, they optimize
jointly atom types and 3D coordinates with powerful GNN encoders with typically expensive training
and sampling procedures. We address these issues with a novel two-phase generative method
FastSBDD that draws inspiration from the success of performance-aware methods in other domains
(Joachims, 2005), and directly optimizes for the metrics of interest, i.e. properties and binding affinity.

Specifically, we first learn a cheap affinity surrogate to infer an unlabeled molecular graph, and then
optimize its atom labels and coordinates. We demonstrate the versatility of our approach with three
versions of FastSBDD tailored to the problems of (i) drug repurposing, which generates samples from
a known ligand set; (ii) drug generation, which generates novel unseen ligands; and (iii) property
optimisation, which seeks to control both molecular properties and binding. FastSBDD achieves
SBDD state of the art with up to 1000x speed up and 100x fewer parameters.

A broader objective, and contribution, of this work is to foster theoretical underpinnings for SBDD.
We take two important steps in this pursuit. First, we expose the limits on the expressivity of
GNNs to distinguish distinct molecules conditioned on protein targets. Next we prove generalization
bounds for our binding surrogate to ground its strong empirical performance. While such results
on representational limits and generalization ability are known for GNN models in unconditional
settings (Garg et al., 2020; Joshi et al., 2023; Ju et al., 2023), to our knowledge, these are the first
results in conditional drug discovery contexts.
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1.1 OUR CONTRIBUTIONS

We summarize our main contributions below. Specifically, we

1. (Conceptual) introduce metric-aware optimization for generative SBDD settings;

2. (Methodological) propose FastSBDD as a streamlined generative framework that optimizes
for docking scores and physicochemical properties;

3. (Empirical) show that FastSBDD significantly outperforms existing methods with orders of
magnitude fewer parameters and faster runtime; and

4. (Theoretical) analyze representational challenges of GNNs in SBDD contexts, and establish
that FastSBDD generalizes well with respect to predicting scores for new target-ligand pairs.

2 PRELIMINARIES AND RELATED WORK

Deep (Geometric) Learning for Drug Design. Deep learning has enabled progress on various
facets of drug design across molecular generation (Jin et al., 2018; Zang & Wang, 2020; Verma et al.,
2022; Shi et al., 2020; Luo et al., 2021b; Hoogeboom et al., 2022; Igashov et al., 2022), molecular
optimization (Jin et al., 2019) and drug repurposing (Pushpakom et al., 2019). It has also accelerated
advancements in protein folding and design (Jumper et al., 2021; Wu et al., 2022b; Ahdritz et al.,
2022; Verkuil et al., 2022; Hie et al., 2022; Shi et al., 2023; Watson et al., 2022; Ingraham et al., 2022;
Wu et al., 2022a; Verma et al., 2023) and docking (Stärk et al., 2022b; Ganea et al., 2022; Corso et al.,
2023). We refer the reader to the surveys by Chen et al. (2018) and Pandey et al. (2022).

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018) have recently emerged as a workhorse for modeling data, such as molecules, that can be
represented as graphs. They can be extended to encode important symmetries occurring in geometric
graphs (Satorras et al., 2021), so have found success across diverse tasks in the drug design pipeline
including docking (Corso et al., 2023) and molecular property prediction (Stärk et al., 2022a).

Molecular properties The goal of SBDD is to generate drug candidates with high binding affinity
to a target protein, while controlling for other properties. We list below common molecular properties,
calculated in practice using the RDKit software (Landrum et al., 2020), that are relevant to drug
design (Bilodeau et al., 2022; Peng et al., 2022):

• Binding affinity – the strength of the natural connection between the ligand and the protein.
A common surrogate for affinity is the Vina score (Alhossary et al., 2015).

• LogP – logarithm of the partition coefficient, which is a solubility indicator.

• QED – quantitative estimate of drug-likeness, a mixture of properties correlated with drugs.

• SA – Synthetic accessibility, an estimate of how easy it would be to synthesize the molecule.

• Lipinski’s Rule of Five – A heuristic about whether a molecule would be an active oral drug.

Setting. We view proteins P as labelled graphs: each pocket G = (V,E) consists of nodes
V = {v1, . . . , vN} with vi representing atoms, and edges E ⊆ V × V . Each node v = (a, s) is
associated with an atom type a ∈ A = {C,N,O, . . .} and 3D coordinates s ∈ R3, and each edge
e ∈ E with a bond type from {1, 2, 3}. We represent the molecule M analogously as another
graph. We often include superscripts GP and GM to distinguish between protein and molecule
graphs. We also distinguish between a labelled molecular graph GM and unlabelled one UM . The
unlabelled graph contains information about the number of nodes and connectivity between them, but
no information about atom types or 3D coordinates.

The problem of SBDD can be posed as modeling the conditional distribution p(GM |GP ). The main
challenge of SBDD is to generate candidate ligands with high binding affinity to a target protein.
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Figure 1: Comparison of FastSBDD to common approaches. Top: SBDD approaches commonly
learn to approximate the data distribution of atom types and 3D coordinates conditioned on the protein
pocket. Bottom: FastSBDD first generates the unlabelled graph explicitly optimized for binding
affinity. Then it predicts atom types using different strategies designed for solving different tasks
independently of the protein pocket. Finally, it generates a 3D configuration.

3 FAST STRUCTURE-BASED DRUG DESIGN

3.1 DECOUPLING THE UNLABELLED MOLECULAR GRAPH FROM ATOM TYPES

One of the main innovations underlying our framework is the separation of molecular representation
into the unlabeled molecular graph and atom types. As a motivation, we first investigate how Vina
binding scores behave when we modify the atom types and coordinates, while keeping the underlying
graph intact. After making these adjustments, we measured the Vina scores of the modified molecules
and compared them to the scores of their unaltered counterparts.

Remarkably, our analysis showed a strong coefficient of determination, with an R2 value of 0.76,
between the scores of the original molecules and their modified counterparts. This significant result
highlights that a considerable portion of the variability in binding affinity, as quantified by the Vina
score, can be attributed to the information contained within the unlabeled molecular graph itself, even
before incorporating atom-specific details. Please see Appendix A for details.

It is important to recognize that these findings pertain to the Vina software and not the intrinsic
biological process of binding. While Vina is the most prevalent approximation, it remains just that
– an approximation. Nonetheless, upon conducting similar experiments with Gnina (McNutt et al.,
2021), a reportedly significantly more accurate binding approximation than Vina, we found analogous
results. Please see Appendix A.4 for details. This suggests that the observed behavior is not solely an
artifact of Vina but may be more widespread.

Inspired by these findings, we propose a new disentangled model FastSBDD (see Figure 1). We first
generate the high-binding unlabelled graph structures UM , and generate atom types aM independently
of the protein. The model is defined by a disentangled conditional distribution

p(GM |GP )
def
= p(aM , sM |UM

�
��, GP )p(UM |GP ), (1)

where we assume atoms aM are conditionally independent of the protein pocket GP given the
unlabelled graph structure UM . The generative model thus reduces to two independent components:
unlabelled graph sampler and atom sampler. We discuss them below.

3.2 UNLABELLED GRAPH SAMPLER

Typically, one would train the unlabelled graph model p(UM |GP ) to match the empirical distribution.
However, we hypothesize that observed ligand-protein complexes contain examples with suboptimal
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binding. We first learn a binding surrogate gθ to predict binding affinity from unlabelled graph alone,

gθ(U
M , GP ) ≈ Vina(GM , GP ). (2)

Next, we use gθ to score unlabelled graphs from a repository of molecules, and choose those with the
best predicted affinities. We define a generative distribution

pθ(U
M |GP ) = UNIFORM

({
UM ∈ UM | vmin ≤ gθ(G

P , UM ) ≤ vmax

})
, (3)

where UM is a database of unlabelled graph structures, and vmin, vmax are threshold hyperparameters.
We set vmin and vmax to be the 5th and 10th percentiles of all predictions for UM , and filter out the
best 5% of the scores to avoid outliers. As UM , we used the ZINC250k dataset (Irwin et al., 2012)
instead of the CrossDocked2020 (Francoeur et al., 2020), which only contains 8,000 unique ligands.

We note that instead of sampling from a database, one can define a deep generative model over
unlabelled graphs. However, given that there is substantial variability in the molecular space even
with predefined unlabelled graphs, we have not investigated this direction.

Architecture of the scoring model gθ To parametrize the binding surrogate gθ, we chose the
E(3)-equivariant graph neural network (EGNN) (Satorras et al., 2021), which computes a learnable
representation of the protein pocket. This protein pocket representation is concatenated with features
describing the ligand’s unlabelled graph. We chose as features (i) number of nodes, (ii) number of
rings, (iii) number of rotatable bonds, and (iv) graph diameter. The features are passed through an
MLP with ReLU activations. Remarkably, these four simple features already perform well, and more
sophisticated methods like GNNs did not bring significant improvements. See Appendix B for details.

Training data for gθ To train the binding affinity predictor gθ, we need pairs of protein-ligand pairs
with their affinity estimates. We chose not to use the CrossDocked2020 dataset, the gold standard
for SBDD, for the following reasons: 1) even though it contains 100,000 protein-ligand pairs, there
are only around 8,000 unique ligands, which can be insufficient for generalisation, 2) for a given
protein pocket there may exist ligands with better affinity than what is present in the data and 3)
for the scoring model to assign good values only to good structures, it needs to be trained also on
examples with poor binding affinity that are not available.

To address the above, we construct a dataset ourselves. We sample 1000 diverse ligand-protein
complexes from CrossDocked2020, and couple 50 additional random molecules from the ZINC250k.
This results in 51,000 pairs, for which we compute the Vina ground-truth binding affinity. The scoring
model gθ is trained with stochastic gradient descent to minimize the mean squared error between
prediction g and Vina scores. See Appendix B.1 for details.

(a) Protein pocket with opti-
mal ligand size ≈ 20

(b) Protein pocket with opti-
mal ligand size ≥ 38

Figure 2: Optimal ligand size has two modes. Rep-
resentative examples showing that the scoring model
learns the optimal ligand size which is different for
different proteins.

Scoring model detects optimal molecule
size To understand what the scoring
learned, we visualized its predictions as a
function of the size of the molecule. We no-
tice that protein pockets fall under two cases:
either there is an optimal size of the ligand
(Figure 2a) or there is a monotonic relation-
ship favouring larger ligands (Figure 2b).
We hypothesize the model learnt the optimal
ligand size per pocket, but for some pock-
ets this size is larger than the largest avail-
able molecule (38 atoms) in the ZINC250k
dataset.

3.3 ATOM SAMPLER

The atom sampler p(aM , sM |UM ) generates atom types and coordinates of each atom. As mentioned
in Section 3.1, the precise 3D conformation has marginal effect on the Vina score, and therefore we
simply generate any valid 3D configuration with RDKit. We choose a factorisation

p(sM ,aM |UM ) = p(sM |aM , UM )p(aM |UM ), (4)
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where p(sM |aM , UM ) is an off-the-shelf conformation generation model available in RDKit. In
practice, the 3D configuration of the ligand must be in the vicinity of the protein pocket in order to
correctly compute its binding affinity using Vina. We therefore train a separate model which predicts
the center of mass of the ligand based on the protein pocket, and use it to center the conformers. See
Appendix C for more details.

We propose three different approaches to modeling the atom type sampler p(aM |UM ) that are tailored
for solving different problems.

3.3.1 DRUG REPURPOSING

We begin with a model FastSBDD-DR for drug repurposing, i.e. sampling from known molecules
that are synthesizable. We define the atom sampler to follow the empirical distribution of known
ligands with a given unlabelled graph UM :

pDR(a
M |UM ) = UNIFORM

(
{aM |(aM , UM ) ∈ D}

)
, (5)

where (aM , UM ) denotes a molecule with unlabelled graph UM and atoms aM , and D is a molecular
database. In our experiments, we used ZINC250 dataset (Irwin et al., 2012).

3.3.2 NOVEL DRUG GENERATION

FastSBDD can also be applied for generation of novel drugs. We adapt an existing deep hierarchical
generative model MoFlow (Zang & Wang, 2020), consisting of an unlabelled graph model fU and a
conditional atom model fa|U . The atom model induces a conditional distribution pfa|U (a

M |UM ),
which we use as our atom sampling distribution for novel drug generation:

pND(a
M |UM ) = pfa|U (a

M |UM ). (6)

We use a pre-trained MoFlow with no further training or fine-tuning, so omit them from the trainable
parameter count of the result (Table 1). We denote this model variant as FastSBDD-ND.

3.3.3 PROPERTY OPTIMIZATION

Finally, we show that our approach allows for joint optimization of molecular properties and binding
affinity. As an illustrative example, we follow Gómez-Bombarelli et al. (2018) and choose 5 · QED +
SA as the property mixture to optimize. We first sample 50 candidates for atom assignments using
aM ∼ pND(a

M |UM ), and choose the one with the best value of the desired property. We emphasize
that this optimization is performed with respect to atom types, while keeping the unlabelled graph
structure UM fixed. We denote this model FastSBDD-PO.

We also consider optimization in the latent space of the atom type generative model. Since the atom
type generative model of Section 3.3.2 is a normalizing flow, we can compute a latent representation
of each atom type assignment. We use the pre-trained model for predicting molecular properties
based on the latent representation of a molecule, and used its gradients to perform optimization in the
latent space. This approach has the benefit of being faster as it does not require passing through the
flow model at each iteration. In our experiments however this yielded worse results than the random
search, suggesting suboptimal performance of the property predictor model.

4 RESULTS

Figure 3: Binding Affinity vs QED trade-
off. Our models allow for controlling the
binding affinity of predictions.

Data We follow related work of Peng et al. (2022);
Schneuing et al. (2022) and use the CrossDocked2020
dataset (Francoeur et al., 2020) for evaluating the mod-
els in our experiments. We use the same train-test
split, which seperates protein pockets based on their
sequence similarity computed with MMseqs2 (Steineg-
ger & Söding, 2017) and contains 100,000 train and 100
test protein-ligand pairs.

We follow the evaluation procedure described in Peng
et al. (2022). For each of 100 test protein pockets, we
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Table 1: FastSBDD finds high-quality drug candidates up to 1000x faster than competing
methods. Comparison of multiple properties of the CrossDocked2020 test data and other generation
methods. Results for DiffSBDD were taken from Schneuing et al. (2022), where "High Affinity" was
not reported. To report results for TargetDiff, we used samples provided by the authors. Reported
runtime was taken from their paper, where standard deviation was not reported. † denotes method run
exclusively on CPU. The #Params column refers to the number of trainable parameters.

Vina Score
(kcal/mol, ↓)

High
Affinity (↑)

QED (↑) SA (↑) Diversity (↑) #Params (↓) Time (s, ↓)

Test set -6.99 ± 2.16 - 0.48 ± 0.21 0.73 ± 0.14 - - -

DiffSBDD -6.58 ± 2.06 - 0.50 ± 0.15 0.34 ± 0.09 0.73 ± 0.11 3.5M 1634 ± 769
Pocket2Mol -7.10 ± 2.56 0.55 ± 0.31 0.57 ± 0.16 0.74 ± 0.13 0.72 ± 0.16 3.7M 2504 ± 220
TargetDiff -6.91 ± 2.25 0.52 ± 0.32 0.48 ± 0.20 0.58 ± 0.13 0.72 ± 0.09 2.5M 3428 ± NA

FastSBDD–DR -7.82 ± 1.47 0.72 ± 0.36 0.66 ± 0.15 0.78 ± 0.08 0.68 ± 0.05 23K 1.8† ± 0.4
FastSBDD–ND -7.78 ± 1.47 0.71 ± 0.34 0.61 ± 0.18 0.69 ± 0.09 0.68 ± 0.06 23K 3.9† ± 0.9
FastSBDD–PO -7.98± 1.46 0.75 ± 0.35 0.80 ± 0.10 0.73 ± 0.08 0.66 ± 0.06 23K 115† ± 11

sample 100 molecules using each of our sampling strategies described in this section. As evaluation
metrics we report 1) Vina Score estimating binding affinity (Alhossary et al., 2015), 2) High Affinity,
which is the percentage of generated molecules with binding affinity at least as good as ground truth,
3) QED, a quantitative estimate of druglikeness, 4) SA, synthetic accesibility, 5) Diversity defined by
average Tanimoto dissimilarity for the generated molecules in the pocket, 6) #Params, the number of
trainable parameters and 7) Time to generate 100 molecules in seconds. We include more molecular
metrics in Appendix D. As baselines, we use three recent methods for SBDD: Pocket2Mol (Peng
et al., 2022), DiffSBDD (Schneuing et al., 2022) and TargetDiff (Guan et al., 2023).

We report the results in Table 1. Clearly, all our approaches significantly outperform the previous
state of the art, Pocket2Mol while being 20-1000x faster despite being run solely on CPU (and not on
GPU unlike the baselines). Additionally, our method has only 23k trainable parameters, which is two
orders of magnitude less than the baselines. We also note a decrease in diversity compared to these
baselines: this is expected given that our model uses known unlabelled graphs during sampling.

Trade-off between QED and Binding Affinity prediction As seen in Equation (3), our method
allows for controlling the binding affinity of the generated ligands. We therefore investigated the per-
formance of the model when we vary the vmin, vmax thresholds. Specifically, we evaluated 10 different
versions of the unlabelled graph sampler with (vmin, vmax) set to (q0, q5), (q5, q10), . . . , (q45, q50),
where qk is the kth percentile of the predictions for UM (note that these percentiles depend on the
protein pocket). We generated atom types using the repurposing model described in section 3.3.1. We
note a trade-off between QED and Binding Affinity of these models, but all of them are still better on
both of these criteria than the samples from the CrossDocked2020 dataset. We show this in Figure 3.

The model generalizes across molecular datasets In our experiments we have used the ZINC250k
dataset (Irwin et al., 2012) to train the scoring model (2), to sample unlabelled graphs (3) and to
sample atom types in the drug repurposing model (5). We now check whether the model generalizes
across datasets. To do that, we evaluate the FastSBDD–DR model with, but with the ChEMBL
dataset (Mendez et al., 2018; Davies et al., 2015) without retraining the scoring model. We found that
the model performs very similarly in terms of binding affinity. See Table 2 for details. We discuss
model’s generalization ability from a theoretical perspective in Section 5.2.

We now move on to studying the representational challenges and generalization of models for SBDD.

5 THEORETICAL ANALYSIS

We showed empirically that very simple representations of the unlabelled graph perform remarkably
well in terms of predicting binding affinity, and allow for significantly streamlined computation
compared to much larger and more sophisticated models. Here we bring attention to the representa-
tional issues concerning large models. We show that despite adding considerable complexity, such
models might have weaknesses in terms of what they can represent. While these limitations can
possibly be circumvented with even more complex models, the expense in terms of their weaker
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Table 2: The model generalizes to other molecular datasets. Comparison of the drug repurposing
model with different sets of molecular structures. Both use the scoring model trained on the ZINC250k
dataset (Irwin et al., 2012), but FastSBDD–DR (ZINC) uses ZINC250k also during sampling, while
FastSBDD–DR (ChEMBL) uses ChEMBL (Mendez et al., 2018; Davies et al., 2015).

Vina Score
(kcal/mol, ↓)

High
Affinity (↑)

QED (↑) SA (↑) Lipinski (↑) LogP

Test set -6.99 ± 2.16 - 0.48 ± 0.21 0.73 ± 0.14 4.34 ± 1.14 0.89 ± 2.73

FastSBDD–DR (ZINC) -7.82 ± 1.47 0.72 ± 0.36 0.66 ± 0.15 0.78 ± 0.08 4.99 ± 0.05 2.97 ± 1.37
FastSBDD–DR (ChEMBL) -8.03 ± 1.56 0.76 ± 0.33 0.56 ± 0.15 0.79 ± 0.08 4.99 ± 0.12 3.48 ± 0.95

Figure 4: Some ligand graphs cannot be distinguished by LU-GNNs even with additional protein
context Left: Construction for Lemma 1; Two non-isomorphic graphs differing in all properties
stated in Lemma 1, but for which LU-GNNs produce identical embeddings. Right: Complex graphs
constructed by joining the ligand graphs with the same protein graph remain identical whenever
ligand graphs cannot be differentiated.

generalization ability (as known from learning theory results) could be excessive. Simpler, and likely
less expressive, models like the ones considered in our work on the other hand might offer a better
expressivity-generalization tradeoff and thus might be preferable from a theoretical perspective.

5.1 REPRESENTATION LIMITS OF GNNS IN SBDD

It is known that there exist graphs representing distinct molecular structures that cannot be distin-
guished using message passing graph neural networks (MPGNNs) (Sato, 2020; Garg et al., 2020).
Following the notation in Garg et al. (2020), we consider Locally Unordered GNNs (LU-GNNs),
which we summarize as follows. The updated embedding h

(l)
v of node v at layer l is defined as

m(l−1)
u→v = ϕ(h(l−1)

u , euv); h̃
(l−1)
v = AGG{m(l−1)

u→v | u ∈ N(v)};h(l)
v = COMBINE{h(l−1)

v , h̃(l−1)
v },

where N(v) denotes the set of neighbours of v, euv are edge features and ϕ is any function. It is
known that there exist non-isomorphic graphs, for which LU-GNNs produce identical embeddings
to every node at each layer (Garg et al., 2020). We now note that this result also holds for graphs
embedded in 3D space. Let us introduce Locally Unordered 3D GNNs (LU3D-GNN) which aggregate
embeddings for each node based on the embeddings of the neighbours, as well as their distance to
these neighbours. Formally, in LU3D-GNNs, the messages are defined as:

m(l−1)
u→v = ϕ

(
h(l−1)
u , euv, ∥xu − xv∥

)
(7)

where xv is the 3D position of v. We have the following result.
Lemma 1. There exist connected non-isomorphic geometric graphs that differ in the number of
conjoined cycles, girth, size of the largest cycle and cut-edges that LU3D-GNNs cannot distinguish.

On the lefthand side of Figure 4, we show two graphs that are not isomorphic and differing in all
mentioned properties, but which cannot be distinguished by LU3D-GNNs. For clarity of presentation,
we presented the graphs in 2D, but any 3D configuration having all edges of equal length can be used.
We prove that they cannot be distinguished by LU3D-GNNs in Appendix E.

In the context of SBDD, we are interested in modelling pairs of graphs corresponding to protein-
ligand complexes. We now show that they also pose representational challenges for LU(3D)-GNNs.
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Let G1 = (V1, E1), G2 = (V2, E2) be any two graphs and C(G1, G2) denote a complex graph, i.e.
C(G1, G2) = (V,E), where

V = V1 ∪ V2 and E = E1 ∪ E2 ∪ V1 × V2 (8)

and, importantly, features for all added edged euv ∈ V1 × V2 only depend on the features of nodes at
their endpoints. We have the following results.
Proposition 1.

(i) If G1 and G2 are indistinguishable for LU-GNNs, then for any graph P, the complex graphs
C(P,G1), C(P,G2) are also indistinguishable for LU-GNNs.

(ii) There exist ligand graphs G1, G2 differing in graph properties listed in Lemma 1, such
that for any protein P , the complexes C(P,G1), C(P,G2) are indistinguishable for models
using LU3D-GNNs or LU-GNNs for intra-ligand and intra-protein message passing and
LU-GNNs for inter ligand-protein message passing.

The righthand side of Figure 4 visualizes the proposed statement. The proof can be found in Appendix
E. Proposition 1 shows that a scoring model defined in Equation (2) parametrized as a LU-GNN
would not differentiate between certain ligand graphs, no matter what the protein context would
be. This stems from the fact that we model unlabelled graphs without 3D coordinates and therefore
cannot use LU3D-GNNs for inter ligand-protein message passing. We provide a real-world example
of a pair of molecules that have different binding affinities to a specific protein pocket, but which are
identical from LU-GNN perspective.

5.2 GENERALIZATION OF THE SCORING MODEL

We now delve into the theoretical analysis of the generalization capabilities of our proposed scoring
model within FastSBDD. Understanding generalization is paramount, as it provides insight into how
well our model can perform on unseen data, which is a fundamental aspect of its practical utility
in structure-based drug design (SBDD). Our analysis is focused on deriving generalization bounds,
which give a theoretical measure of the model’s performance across different molecular structures
and protein targets. We begin with defining the generalization error.
Definition 1. (Generalization error). Let f : X → Y and L : Y × Y → R+ be a loss function.
Let S = {(x1, y1), . . . , (xm, ym)} ⊆ X × Y be a training sample. The generalization error of f is
defined as the difference between expected loss and the sample loss:

RS(f) = EL(f(x), y)− 1

m

m∑
i=1

L(f(xi), yi), (9)

where the expectation is taken over (x, y) sampled from the underlying data distribution.

ε-soft normalized EGNN As described in Section 3.2, our scoring model first computes an
embedding of the protein graph, then concatenates features of ligand’s unlabelled graph and passes
through an MLP. However, we use a slightly modified version of the EGNN model. As originally
introduced, a layer of the EGNN network can be summarized as follows:

m(l−1)
u→v = ϕe

(
h(l−1)
u ,h(l−1)

v , ∥x(l−1)
u − x(l−1)

v ∥, euv
)
;m(l−1)

v =
∑

u∈N (v)

m(l−1)
u→v (10)

x(l)
v = x(l−1)

v +
1

|N (v)|
∑

u∈N (v)

(
x(l−1)
v − x(l−1)

u

)
ϕx(m

(l−1)
u→v ) (11)

h(l)
v = ϕh(h

(l−1)
v ,m(l−1)

v ), (12)

where h
(0)
v and x

(0)
v are initialized with node’s features and coordinates respectively and ϕx, ϕe, ϕh

are learnable functions, typically MLPs. In our experiments, we replace (11) with

x(l)
v = x(l−1)

v +
1

|N (v)|
∑

u∈N (v)

x
(l−1)
v − x

(l−1)
u

∥x(l−1)
v − x

(l−1)
u ∥+ ε

ϕx(m
(l−1)
u→v ). (13)
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The authors include this version of the model in the official implementation1, but do not use it in the
experiments. With this formulation, we derive the following generalization bound:
Proposition 2 (Informal). Let f be the scoring model using ε-soft normalization in the EGNN
network. Then for the sample of size m, the following holds

RS(f) ≤ O

(
L2 + k√

m

√
log

(
m(L+ k)

ε

))
, (14)

where L is the number of layers of the EGNN and k is the number of layers in the MLP.

We note that we make no assumptions about ε other than ε > 0. If generalization is the primary
concern, one can set ε = 1.

Proof sketch. The key step is establishing that the model is Lipschitz continuous w.r.t. parameters and
determining the Lipschitz constant. We show it by first proving that Lipschitz continuity is preserved
under ε-soft normalization. We then use an inductive argument to derive recursive relationship for
the constants and determine their growth rate as a function of the depth of the network. Once the
Lipschitz constants are established, we leverage results from Learning theory relating the covering
number of a function class to the empirical Rademacher complexity, which can subsequently be used
to bound the geneneralization error. Please see Appendix F for a detailed formulation and proof.

Impact of ε-soft normalization Interestingly, when analyzing the generalization bounds of nor-
malized EGNN model vis-à-vis the original formulation, we observe an important difference. Our
derivations indicate that, in the absence of normalization, the original EGNN model would exhibit
significantly less favorable generalization bounds. Specifically, using the same proof technique, the
bound for the EGNN without normalization would be exponential in L as opposed to polynomial.
Please see Appendix F.5 for details. This discovery underscores the importance of the normalization
component, emphasizing its benefits in both numerical stability and theoretical generalizability.

6 CONCLUSION, BROADER IMPACT AND LIMITATIONS

Our research brings to the forefront efficient methodologies for Structure-Based Drug Design (SBDD),
advocating for a shift in focus from mere model expressivity to robust generalization. The successes
of FastSBDD serve as a testament to the significance of integrating metrics of interest into the
optimization process. The unprecedented efficiency and success of FastSBDD not only highlights the
potential to reshape the approach to SBDD but also paves the way for streamlining docking software,
especially when assessed with widely adopted tools like Vina and Gnina.

However, there are limitations to our findings. While we rely on Vina, the gold standard for
evaluation in the SBDD realm, the ideal validation would entail wet lab experiments or more
sophisticated molecular dynamics simulations. However, such methods are often prohibitively
expensive. Additionally, the very nature of FastSBDD as a generative model, especially with its
property optimization capabilities, brings with it risks. As SBDD models become increasingly adept
at designing molecules with specific properties, we must remain vigilant of the potential unintended
outcomes, since streamlining the design process could accelerate the design of harmful biochemicals.

Reproducibility statement All our experiments are reproducible. We will share our code as well
as the trained models under the MIT License on GitHub upon the acceptance of the paper.
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