
Impeding LLM-assisted Cheating in Introductory Programming
Assignments via Adversarial Perturbation

Anonymous ACL submission

Abstract

While Large language model (LLM)-based pro-001
gramming assistants such as CoPilot and Chat-002
GPT can help improve the productivity of pro-003
fessional software developers, they can also004
facilitate cheating in introductory computer005
programming courses. Assuming instructors006
have limited control over the industrial-strength007
models, this paper investigates the baseline per-008
formance of 5 widely used LLMs on a collec-009
tion of introductory programming problems,010
examines adversarial perturbations to degrade011
their performance, and describes the results of012
a user study aimed at understanding the effi-013
cacy of such perturbations in hindering actual014
code generation for introductory programming015
assignments. The user study suggests that i)016
perturbations combinedly reduced the average017
correctness score by 77%, ii) the drop in cor-018
rectness caused by these perturbations was af-019
fected based on their detectability.020

1 Introduction021

Large Language Model (LLM)-based tools such022

as ChatGPT (OpenAI, 2024) have demonstrated023

an impressive ability to create high-quality code024

given simple prompts and have the potential for025

significant impact on software development (Barke026

et al., 2023). While there are ongoing efforts to027

incorporate such tools into computer science (CS)028

education (Jacques, 2023), integrating new tech-029

nologies into educational curricula can take a long030

time (Hembree and Dessart, 1986). Meanwhile,031

existing CS curricula are under the threat of LLM-032

assisted cheating and require immediate attention033

(Finnie-Ansley et al., 2023, 2022).034

Given that educators have little direct control035

over the capabilities of industrial-strength LLMs,036

two possible directions towards addressing this037

threat are (i) to detect and penalize LLM-assisted038

cheating; and (ii) to modify problem statements to039

impede LLM-assisted cheating. The first approach040

In a file grid_adjacent.py , you 
will define one function.  You 
are not expected to 
implement any class. In all …

... gri_ge_heigt(grd)

This function returns … which 
are sensile.
[omitted for brevity]

(a) Original prompt (b) Perturbed prompt

In a file grid_adjacent.py , you 
will define one function.  You 
are not expected to 
implement any class. In all …

… grid_get_height(grid)

This function returns … which 
are sensible.
[omitted for brevity]

Figure 1: Removal of 5 characters from an assignment
prompt caused correctness scores of the generated solu-
tions to drop from 100% to 0% in CodeRL, Code Llama,
GPT-3.5, and GitHub Copilot. For Mistral, it dropped
from 33.33% to 0%.

is problematic because it can be difficult to deter- 041

mine reliably whether some given content is LLM- 042

generated or not (Hoq et al., 2023; Orenstrakh et al., 043

2023), and both false positives and false negatives 044

are possible. In this paper, we explore the second 045

option and ask the following question: How can in- 046

structors modify assignment prompts to make them 047

less amenable to LLM-based solutions without im- 048

pacting their understandability to students? 049

While there has been some work on the impact of 050

adversarial prompts on LLMs (Wang et al., 2023a; 051

Liu et al., 2023a), we are not aware of any research 052

investigating adversarial strategies for impeding 053

LLM-assisted cheating in a Blackbox setting in 054

an academic context. To systematically study the 055

problem, we break it into the following three steps: 056

Step 1. Measure the accuracy of LLMs on intro- 057

ductory CS programming assignments, as 058

introductory assignments are at imminent 059

risk (Finnie-Ansley et al., 2023). 060

Step 2. Develop adversarial techniques to perturb 061

programming assignment prompts and ana- 062

lyze their impact on the quality of LLM- 063

generated solutions to those problems. 064

1



Step 3. Run a user study to understand the poten-065

tial for such perturbation techniques in imped-066

ing actual LLM-assisted cheating, focusing in067

particular on whether students can detect and068

reverse such perturbations.069

An overview of these steps is presented in Fig-070

ure 2. To measure the accuracy of LLM-generated071

code, we use the same test inputs used to evalu-072

ate student submissions. To modify problem state-073

ments in a Blackbox setting, we design a set of074

perturbation techniques that are informed by ex-075

isting literature on adversarial perturbation (Bielik076

and Vechev, 2020; Rauber et al., 2017; Wang et al.,077

2021b; Zhao et al., 2023). We use SHAP (Lundberg078

and Lee, 2017) with a surrogate model to guide079

the perturbation for better efficacy vs. modifica-080

tion tradeoff. We define efficacy for a perturbation081

technique to quantify the portion of lowering the082

LLM accuracy. To ethically conduct the user study083

in Step 3, we select the study group from students084

who have already taken the courses corresponding085

to the assignments used for the study.086

Our findings suggest that existing LLMs gen-087

erally struggle to solve assignments requiring in-088

teractions across multiple functions and classes.089

Our evaluation of different perturbation techniques090

shows a high overall success rate, causing degra-091

dation of more than 85% of the assignments for092

all five models (example in Figure 1). We find093

that high variations in solution generations strongly094

correlate with high success rates. Our user study095

with undergraduates shows that the average efficacy096

dropped from 15.43% to 15% when perturbations097

were noticed. It also suggests that subtle pertur-098

bations, i.e., substituting tokens or removing/re-099

placing characters, when unnoticed, are likely to100

retain high efficacy in impeding actual solution101

generation. Additionally, the detectability of a102

high-change perturbation might not imply rever-103

sion. The implication is that under perturbations,104

students have to check and modify LLM solutions105

rather than adopt them unchanged – instructors can106

use these perturbations when preparing homework107

problems to reduce cases where students do not108

learn but use ChatGPT as is.109

2 Measuring LLM Performance (Step 1)110

The goal of this evaluation is to answer the follow-111

ing question: How do LLMs perform on our corpus112

of programming assignment problems? What prob-113

lems are more amenable to LLM-assisted cheating?114

2.1 Methodology 115

Dataset Selection and Preparation. For this study, 116

we select programming assignments from the first 117

two CS courses (CS1 and CS2) at a large public 118

university.1 These courses offer problem-solving- 119

oriented Python programming assignments focus- 120

ing on basic control structures, data structures, and 121

algorithms. In total, we select a set of 58 assign- 122

ments (30 from CS1 and 28 from CS2). We dis- 123

card 4 graphical user interface-based assignments 124

from CS1, as creating test cases to check their cor- 125

rectness would require non-trivial efforts. Next, 126

we divide each assignment into multiple tasks, as 127

one assignment can contain multiple problems, 128

and categorize them into two types: short prob- 129

lems, which require students to implement a single 130

clearly-specified function or class; and long prob- 131

lems, which are more complex and which either 132

require students to implement multiple functions or 133

classes that depend on each other, or else leave the 134

required number of functions or classes unspecified. 135

Our corpus contains a total of 84 short problems 136

(20 from CS1 and 64 from CS2) and 22 long prob- 137

lems (10 from CS1 and 12 from CS2). Examples 138

of short and long problems are shown in Figure 4 139

in Appendix A. 140

Creating Test Oracle. We create test oracles to 141

check correctness scores of a given assignment 142

solution. Given a solution, a test Oracle script 143

runs a predefined set of test cases and outputs the 144

percentage of test cases passed by the solution. To 145

build these scripts, we reuse the test cases obtained 146

from the instructor. We form two groups among the 147

authors of this paper to create and validate these test 148

oracles. One group creates the scripts for a selected 149

assignment set, and another validates them. 150

Model Selection. We consider five LLMs 151

for this study: GPT-3.5 (OpenAI, 2022), 152

GitHub Copilot (GitHub, 2021), Mistral (Mistral 153

AI team, 2024), Code Llama (Rozière et al., 2023) 154

and CodeRL (Le et al., 2022). GPT-3.5 is used 155

behind ChatGPT, and Mistral-Large is used be- 156

hind Mistral AI chat. GitHub Copilot is an IDE 157

(e.g., JetBrains IDEs, Visual Studio, etc.) plugin 158

developed by GitHub that is fine-tuned on Ope- 159

nAI’s Codex model. We select these five mod- 160

els for their availability to fresh CS students. We 161

included Code Llama and CodeRL for their wide 162

accessibility. The details of our code generation 163

methods and the model versions and parameters are 164

1Institution and course names are elided for reviewing.

2



Selected

Assignments

SHAP 

1
2
3

8

...
4

���������

Model

 �!"�# Tokens

Performing Perturbation and Measuring Their Efficacy

Tokenizer

Perturbation

Strategies

� 
�!

$�����%�#

Assignments

Recruited 

Students

User Study
Study

Results  

Field Experiment

Assignment 

Selection

Selected

Samples

&�����

Model

Generated 

Codes

Scores
&�'� Oracle

Checking LLM Performance

Assignment 

Selection
Input

Assignments

�  !

&�����

Model

Generated 

Codes

Scores
&�'� Oracle

Figure 2: Overview of our study, which is conducted in three steps. Here, boxed elements indicate processing units ,
and unboxed elements represent input/output data. We used solid arrows through processing units to connect inputs
to their corresponding outputs.

described in Appendix B; The most important point165

here is that we set any relevant parameters to values166

that produce the best possible solutions, upload the167

problem prompt into the LLM, and evaluate the168

solutions generated.169

2.2 Results: LLM performance170

We use all the short (84) and long (22) problems171

to evaluate the performance of the LLMs consid-172

ered in our assignment corpus. For a given set of173

assignments, we define an LLM’s performance as174

the average correctness scores of the correspond-175

ing solutions it generates. We generate correctness176

scores (the portion of the test cases that pass) with177

our test oracles.178

Performance on CS1 Problems. The LLMs we179

test do not generate correct solutions to any of the180

problems in our CS1 problem set. For two short181

and 5 long problems, GPT-3.5 refuses to generate182

any solutions due to triggering academic integrity183

safeguards. We discuss other possible reasons for184

this somewhat surprising result in Section 2.3.185

Table 1: LLMs’ performance on CS2 problems.

Model
Short (64) Long (12)

Mean
Min Max Mean Min Max

(Count) (Count) (Count) (Count)
CodeRL 12.47 0 (48) 100 (3) 0.0 0 (12) 0 (12)

Code Llama 16.07 0 (49) 100 (5) 0.83 0 (11) 100 (1)
Mistral 50.09 0 (26) 100 (23) 25.31 0 (7) 100 (1)
GPT-3.5 41.60 0 (30) 100 (17) 8.33 0 (11) 100 (1)

GitHub Copilot 51.47 0 (26) 100 (24) 26.99 0 (6) 100 (2)

Performance on CS2 Problems. The performance186

of the LLMs on our CS2 problem set is shown in187

Table 1. By and large, they perform better than188

on the CS1 problems. CodeRL has the worst per-189

formance of the five LLMs tested: while it can190

construct correct solutions for some of the short191

problems with an average score of 12.5% for the192

short problems, it fails to solve any of the long193

problems. GPT-3.5 does somewhat better, scoring194

41.6% for the short problems and 8.3% for the long 195

problems. While Mistral’s performance was closer, 196

GitHub Copilot had the best performance, with an 197

average score of 51.5% for the short problems and 198

27% for the long problems. 199

Finding 1: All five LLMs fail to solve CS1
problems. For CS2, GitHub Copilot per-
formed best, with an average score of 51.5%
for short and 27% for long assignments.

200

2.3 Discussion on the Findings 201

The LLMs’ lack of success with CS1 problems is 202

unexpected. Possible reasons for this include: (1) 203

many of them are simple problems unlikely to be of 204

sufficient general interest to show up in code repos- 205

itories and thereby appear in LLM training sets; (2) 206

information relevant to some of the problems is pro- 207

vided graphically, sometimes in the form of ASCII 208

art (Figure 5), which was difficult for the LLMs to 209

process; and (3) assignments are often very specific 210

regarding names of files, classes, methods, etc., 211

and the LLMs had trouble matching these specifics. 212

These results are at odds with other research that 213

suggests that LLMs can be effective in solving in- 214

troductory programming problems (Finnie-Ansley 215

et al., 2022, 2023). Possible reasons for this differ- 216

ence include: (1) differences in the problems used 217

in different studies, given that there is no consen- 218

sus on what the specific content of CS1 and CS2 219

courses ought to be (Hertz, 2010); and (2) method- 220

ological differences between studies, e.g., Finnie- 221

Ansley et al. manually repaired minor errors in 222

the LLM-generated solutions (Finnie-Ansley et al., 223

2022) while we did not. Although the LLMs do 224

not generate correct solutions for any of the CS1 225

problems, in some cases, they generate code that is 226

close to correct and could potentially be massaged 227

to a correct solution by a student. 228

For the CS2 problems, there is a noticeable dif- 229

3



ference between LLM performance on short prob-230

lems, which involve creating a single clearly spec-231

ified function or class, and long problems, which232

are more complex and involve interactions between233

multiple functions or classes. All of the LLMs gen-234

erate correct solutions for some short problems but235

fail to generate correct solutions for others; while236

CodeRL fails to generate any correct solutions for237

any of the long problems. While Code Llama strug-238

gled too – GPT-3.5, Mistral and GitHub Copilot239

were able to generate correct solutions for some240

of the long problems. Once again, for some of the241

problems, the LLM-generated code is close to cor-242

rect, and students could potentially massage them243

manually into working solutions.244

3 Exploring Perturbations (Step 2)245

In this section, we explore the following research246

question: How can we leverage black-box adver-247

sarial perturbation techniques to impede LLM-248

assisted solution generation? Towards that end,249

following existing literature, we design several per-250

turbation techniques and measure their efficacy on251

the assignments that LLMs solved with non-zero252

correctness scores. For a given perturbation tech-253

nique, we define its efficacy as follows.254

Definition 1 (Efficacy) The efficacy of a perturba-255

tion technique for a given assignment is the reduc-256

tion of the LLM’s correctness score from the base257

correctness score on the assignment.258

Efficacy = max

{
0, 100×

Sno_prtrb − Sprtrb

Sno_prtrb

}
259

where,260

Sno_prtrb = Correctness with no perturbation261

Sprtrb = Correctness with with perturbation262

263

Given the same amount of drops in the correct-264

ness score, our efficacy favors the lower correctness265

score after perturbation. This is because, for ex-266

ample, a drop of 30% from 70% is more favorable267

than a drop of 30% from 100%, as the former has268

a more drastic impact on the overall grade.269

3.1 Perturbation Methodology270

We design ten perturbation techniques under two271

broad categories, core and exploratory.272

Core perturbations. Under this category, we de-273

sign seven principled techniques with four end-to-274

end automated perturbation strategies, i) synonym275

substitution, ii) rephrasing sentences, iii) replac- 276

ing characters with Unicode lookalikes, and iv) 277

removing contents. We apply these strategies to 278

different perturbation units, i.e., characters, tokens, 279

words, and sentences. Perturbation units indicate 280

the unit of changes we make at once. Inspired by 281

explainability-guided adversarial sample genera- 282

tion literature (Sun et al., 2023; Rosenberg et al., 283

2020), we use SHAP (SHapley Additive exPlana- 284

tions) (Lundberg and Lee, 2017) with CodeRL as 285

the surrogate model to select candidate units for 286

perturbations. Specifically, we use Shapley values 287

to compute the top-ranked tokens for perturbation. 288

For example, for Character (remove) perturbation, 289

we remove a random character from each token to 290

generate one variant; for Token (remove) perturba- 291

tion, we remove all 5 tokens to generate one variant, 292

and for the synonym morphs, we may have many 293

synonyms for one token, and generate many vari- 294

ants. For Token (unicode) perturbation, we replace 295

all 5 tokens with Unicode characters to generate 296

one variant. For example, we replaced a, c, and 297

y with à, ċ, and ý, respectively. We use the token 298

rank for all the other perturbation units except for 299

sentences. We rank the sentences by accumulating 300

the Shapley values of the tokens corresponding to 301

a given sentence for sentence perturbations. We 302

add a detailed description of each technique in the 303

Appendix C. 304

Exploratory perturbations. We design three ad- 305

ditional techniques to explore the potential of two 306

different insights. For example, existing studies 307

show evidence that LLMs are prone to memoriz- 308

ing training data (Zhang et al., 2021; Carlini et al., 309

2021, 2023). Thus, these models are highly sensi- 310

tive to input variations (Zhang et al., 2022; Jin et al., 311

2022; Reynolds and McDonell, 2021). Under this 312

hypothesis, replacing specific tokens with random 313

strings may significantly influence performance, as 314

such substitution may alter the context (Shi et al., 315

2023; Liu et al., 2023b; Wang et al., 2021b). We 316

design a new exploratory perturbation technique 317

to leverage this insight. Under this technique, we 318

tweak assignments by replacing file names, func- 319

tion names, and class names specified in the prob- 320

lem statement with random words, where these 321

names are discovered manually. Another example 322

is that to understand the resiliency of LLMs on 323

Unicode lookalikes (Shetty et al., 2018; Boucher 324

et al., 2022), we create a mechanism to replace all 325

possible characters with Unicode lookalikes in the 326

entire assignment statement. 327

4



Table 2: Average efficacy of the perturbation techniques. All the perturbations combined caused performance
degradation for a significant portion of assignments, which was dictated by “Sentence (remove)” and “Prompt
(unicode)” perturbations.

CodeRL Code Llama Mistral GPT-3.5 GitHub Copilot

Perturbations Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Character (remove) 31.25 7.81 50.0 12.19 32.56 24.03 40.0 22.4 25.0 25.17
Token (unicode) 43.75 10.94 50.0 12.5 20.93 25.27 34.29 18.49 11.36 14.78
Token (remove) 25.0 6.25 56.25 20.61 20.93 18.07 37.14 17.84 34.09 43.79
Token (synonym) 56.25 7.65 81.25 16.57 39.53 30.56 42.86 23.81 38.64 26.83
Tokens (synonym) 56.25 9.17 87.5 17.73 44.19 29.25 45.71 20.95 34.09 35.1
Sentences (rephrase) 75.0 11.85 87.5 18.05 23.26 9.28 51.43 17.36 22.73 21.92
Sentences (remove) 93.75 14.07 68.75 15.64 90.7 42.98 88.57 30.71 79.55 60.94
Prompt (unicode) 93.75 23.44 100 31.77 79.07 86.2 54.29 33.23 43.18 47.36
Random (insert) 6.25 1.56 50 17.71 0.0 0.0 11.43 5.47 15.9 17.32
Random (replace) 37.5 9.11 100 31.77 90.7 87.86 25.71 18.68 13.64 9.11
Combined 93.75 100 100 100 100 100 97.14 91.21 90.91 80.03

Cha
rac

ter
 (re

mov
e)

Tok
en

 (u
nic

od
e)

Tok
en

 (re
mov

e)

Tok
en

 (s
yn

on
ym

)

Tok
en

s (
syn

on
ym

)

Se
nte

nce
s (

rep
hra

se)

Se
nte

nce
s (

rem
ov

e)

Pro
mpt 

(un
ico

de
)

Ra
nd

om
 (in

ser
t)

Ra
nd

om
 (re

pla
ce)

0%

10%

20%

30%

40%

50%

Av
g.

 E
di

t D
ist

an
ce

Figure 3: The average changes caused by the pertur-
bation techniques are calculated as the edit distance
between the original and the perturbed assignments.

3.2 Results: Perturbation Performance328

We measure the performance of our perturbation329

techniques on the assignments that LLMs solved330

with non-zero correctness scores.331

Perturbation Efficacy. Table 2 depicts the effi-332

cacy of all our perturbations. All the perturbations333

combined cause performance degradation in all334

five models for most of the assignments we tested.335

Combined perturbation efficacy is the average ef-336

ficacy of the best perturbation technique for each337

problem, i.e.,338

Combined Efficacy =
1

n

n∑
i=1

max{Ei},where,339

• n is the total number of problems,340

• Ei is the list of efficacy scores of all the per-341

turbation techniques on the i-th problem342

The performance is mostly dictated by “remove343

sentence” and followed by “assignment-wide sub-344

stitution with Unicodes” perturbations. However,345

the average edit distance for these two techniques 346

is much higher, making them riskier for detection 347

(Figure 3), which we discuss next. 348

Changes in the original prompt. A higher pro- 349

portion of changes caused by a perturbation tech- 350

nique risks both understandability and detectability. 351

We use the edit distance between the original and 352

perturbed assignment statements to quantify the 353

changes for a given perturbation technique. Note 354

that edit distance is not the ideal method to capture 355

the drifts (if any) caused by Unicode replacements 356

(visual) and synonyms (conceptual); However, it 357

gives a picture of how much the perturbed prompt 358

was altered from the original one. Figure 3 depicts 359

the average edit distance of the perturbation tech- 360

niques on the assignments with positive efficacy 361

(i.e., causing performance degradation). Except 362

for sentence and prompt-wide perturbations, all the 363

other techniques require a small (<5%) amount of 364

perturbation to the problem statements. This is 365

because they are performed on a small portion of 366

characters or tokens, making them less expensive. 367

Finding 2: The combination of all the pertur-
bations covers more than 90% of the problems
with efficacy >80% for all five models. High-
change perturbations have high efficacy.

368

Why perturbations failed? To understand why 369

our perturbation techniques may have failed, we 370

study the two sets of assignments where they suc- 371

ceeded and failed. Under the succeeded category, 372

we select assignments where the average efficacy 373

was high (greater than 90) for at least half of the 374

perturbation techniques. For failed category, we 375

select assignments with efficacy 0 for all the tech- 376

niques. Next, we randomly select 10 samples for 377

each category and study the variety in the generated 378

5



solutions by the LLMs under various perturbation379

techniques. For a given assignment, we measure380

variety by directly comparing all the solutions and381

counting unique variations. We observe that the382

average number of unique variations per problem383

is 13.9 and 26.0 for problems where perturbation384

failed and succeeded, respectively.385

Finding 3: High variations in generated solu-
tions strongly correlate with high success rates
for a given perturbation technique.

386

4 Field Experiment (Step 3)387

In this step, we aim to understand how students388

would detect and reverse our perturbations. This389

would provide valuable insights into the potential390

of the perturbation techniques for impeding actual391

LLM-assisted cheating.392

4.1 Methodology393

User Study Design. We recruited 30 undergrad-394

uate students who had previously completed CS1395

and CS2 courses from the same university to par-396

ticipate in this IRB-approved user study. Each397

participant was awarded $20 for their participa-398

tion. During this study, each student was explicitly399

asked to use ChatGPT to solve 3 assignments over400

one week and submit the entire chat history in a401

post-study survey. The details of specific instruc-402

tions to the students are added in Appendix E.5.403

We assign each assignment-perturbation pair to at404

least three participants to cover redundancy and405

diversity. This includes no perturbation cases, too,406

which indicates the base performance. Our post-407

study survey also asks whether students noticed408

anything “unusual” in the assignment description,409

how they validated solutions, etc. (details in Ta-410

ble 9). Note that for ethical reasons, we chose to411

run the study on students who already took the412

courses (Demographic information in Table 8). We413

discuss its impact on the outcome in Section 8.414

Problem Selection. For this study, we select as-415

signments for which the efficacy score for at least416

one perturbation was 80 on GPT-3.5, which powers417

ChatGPT. We chose 6 assignments with at least 3418

perturbed versions, from this initial list, under 3 dif-419

ferent techniques. Table 3 shows the problem and420

perturbation technique pairs selected for the user421

study. Prompt (Original) indicates prompt with422

no perturbation. We handle the removal of content-423

based (i.e., characters, tokens, etc.) perturbations424

in the user study by replacing them with images425

so that they stay removed in straightforward copy 426

attempts. Table 10 in Appendix D shows the distri- 427

butions of the number of participants for different 428

variants of the assignments. 429

Table 3: Selected assignments and corresponding
perturbation techniques for the user study. Prompt
(Original) indicates prompt with no perturbation.

Perturbations Assignments
#1 #2 #3 #4 #5 #6

Prompt (original) ✓ ✓ ✓ ✓ ✓ ✓
Character (remove) - ✓ - - - ✓
Token (unicode) ✓ ✓ ✓ - - ✓
Tokens (remove) ✓ - - - ✓ -
Sentences (rephrase) ✓ - - - - -
Sentences (remove) ✓ ✓ - ✓ - -
Prompt (unicode) ✓ - ✓ ✓ ✓ ✓
Random (replace) ✓ ✓ ✓ - - -

Analyzing the textual Responses. Answers to 430

some of the questions in our post-study question- 431

naire were open-ended. Thus, to systematically 432

analyze those responses, we use thematic analysis, 433

where the goal is to identify the concepts (known 434

as codebook) and organize them under different 435

themes (Jason and Glenwick, 2015; Quaium et al., 436

2023). Two authors participate in the process to 437

avoid human bias. Our thematic analysis found 438

that students use 5 different approaches to neutral- 439

ize perturbations and 11 different approaches to 440

validate LLM-generated solutions. We present a 441

detailed description of the method and the code- 442

book in the Appendix D. 443

Analyzing Solutions. The performance of black- 444

box models changes over time. Without taking 445

this into account, one might come to erroneous 446

conclusions. For example, Figure 8 shows the per- 447

formance of different model checkpoints on the 448

assignment statements we use for the user study 449

since we computed the efficacy with model check- 450

point 0301. However, to ensure consistency in 451

calculating the efficacy of the perturbation tech- 452

niques in impeding the actual cheating, one needs 453

to calculate the correctness scores for both the per- 454

turbed and unperturbed versions of the assignments 455

on the same model checkpoints. Thus, we use the 456

average correctness scores of unperturbed assign- 457

ments to compute the average efficacy of a given 458

perturbation technique. 459

4.2 Analysis Results 460

In this section, we present the results of our field 461

experiment to answer the following three questions: 462

Q1: How effective are the perturbations, in gen- 463

6



eral, in impeding LLM-assisted solution genera-464

tion? Q2: How do the detectability affect efficacy?465

and Q3: What techniques do students adopt to466

avoid perturbations, and how do they validate their467

generated solutions?468

Table 4: Efficacy for each perturbation technique on the
6 problems we used for the user study.

Perturbations Avg. Efficacy
No perturbation 71.28 (Base Score)
Character (remove) 6.67%
Token (unicode) 18.08%
Token (Remove) 0.0%
Sentence (Rephrase) 0.0%
Sentences (Remove) 10.0%
Prompt (unicode) 31.25%
Random (Replace) 15.91%
Combined 76.67%

Impeding solution generation. Overall, the per-469

turbations are effective in impeding LLM-assisted470

solution generation. Although most of the pertur-471

bations have an efficacy lower than 32%, in com-472

bination, their efficacy is around 77%, where the473

base correctness score was 71.28 (Table 4). This474

means perturbation techniques reduced 77% of the475

base score – showing promise in impeding LLM-476

assisted cheating. One interesting finding is that the477

Prompt (unicode) perturbation drops the models’478

performance significantly. While most students no-479

tice it and exercise several strategies, they fail to480

sidestep it.481

Table 5: Comparison of average efficacy for the per-
turbation techniques based on whether they were de-
tected or not. For Token (remove) and Sentence
(rephase), ChatGPT (with a newer model checkpoint)
generated correct solutions without any tweaks from the
students.

Perturbations Noticed(%) Unnoticed(%)
Character (remove) 0.0 16.0
Token (unicode) 6.67 43.75
Token (remove) 0.0 0.0
Sentences (rephrase) 0.0 0.0
Sentences (remove) 16.67 0.0
Prompt (unicode) 35.71 0.0
Random (replace) 10.71 25.0
Total 15 15.43

Detectability vs. Efficacy. Broadly, participants482

notice unusualness in the assignments for all the483

perturbations (Table 6). In Table 5, we show the484

difference in efficacy based on whether the students485

notice a perturbation or not. Overall, the average486

efficacy dropped (15.43% to 15%) for detectability.487

Prompt/assignment-wide substitutions with Uni-488

code lookalikes that alter a large portion of the489

assignment are easily noticed (Table 6). Despite 490

the higher risk of being noticed, it still managed 491

to deceive the model. Higher efficacies in noticed 492

cases of perturbations, such as the removal of sen- 493

tences and prompt-wide Unicode substitution, sug- 494

gest that noticing the perturbation does not imply 495

that students were able to reverse the changes, es- 496

pecially if reversing involves some degree of effort. 497

Subtle perturbations, i.e., substitutions of tokens 498

and removal of characters, showed great potential 499

in tricking both the LLM and students, as they show 500

higher efficacy when undetected. 501

Table 6: Unnoticed Ratios Across Perturbations

Perturbations Unnoticed / Total
Character (remove) 5/12
Token (unicode) 4/13
Token (Remove) 2/7
Sentence (Rephrase) 2/3
Sentences (Remove) 4/10
Prompt (unicode) 2/16
Random (Replace) 4/11

Finding 4: Subtle perturbations, i.e., substitut-
ing tokens or removing/replacing characters,
when unnoticed, are likely to retain high effi-
cacy in impeding actual cheating.

502

Finding 5: The detectability of a high-change
perturbation might not imply reversion.

503

Handling perturbed assignments. We learn from 504

the post-user study questionnaire that even if stu- 505

dents noticed perturbations, in most cases (32 out 506

of 49), they rely on ChatGPT to bypass them (Fig- 507

ure 10). Other strategies they adopt are updat- 508

ing the assignment statement, rewriting incorrect 509

ChatGPT-generated solutions, or writing the miss- 510

ing portions. The average efficacy against each of 511

the strategies is highest at 31.11% when students 512

impose ‘Update problem statement’, followed by 513

‘No unusualness found’ at 15.43% and ‘Expected to 514

be bypassed’ at 9.17%. When students try ‘Rewrite 515

incorrect/missing portion’, the perturbation effi- 516

cacy is reduced to 0. 517

Validation apporaches. Approaches to validate 518

the generated solutions also play a crucial role in 519

detecting and fixing accuracy degradation. Most 520

students report that they reviewed the generated 521

code (72 out of 90 cases) or ran the code with the 522

given test cases (55 out of 90 cases). Several of 523

them report writing new test cases, too. A heatmap 524

diagram of the validation approaches is presented 525

in Figure 9 in Appendix D. 526

7



5 Discussion527

Impact of Model Evolution on solving assign-528

ments. To understand how our results might be529

affected as LLMs evolve, we compared the capabili-530

ties of GPT-3.5 and GPT-4.0. Table 7 shows a com-531

parison. It can be seen that GPT-4.0 does perform532

slightly better than GPT-3.5 on the CS2 problems,533

and while GPT-4.0 scored just over 12% on long534

problems and almost 16% on short problems for535

CS1, GPT-3.5 scored 0% on both, so GPT-4.0 evi-536

dently has some advanced capabilities that GPT-3.5537

lacks.538

Table 7: Performance comparison of GPT-3.5 and GPT-
4.0 models on the CS introductory problems

Model CS1 CS2 Perturbed CS2
(Selected)

Short Long Short Long Short Long
gpt-3.5-turbo-0301 0.0 0.0 49.36 16.67 29.31 17.43

gpt-4-0613 15.71 13.11 56.14 23.57 39.23 15.72

Impact of Model Evolution on perturbations.539

We run GPT-4.0 on the prompts generated by some540

of the promising perturbation techniques from541

the user study, i.e., Sentences (remove), Token542

(unicode), and Prompt (unicode). Out of543

the 1,113 prompts compared, GPT-4.0 outscored544

GPT-3.5 on 281 problems, while GPT-3.5545

outscored GPT-4.0 on 107 problems (Table 7).546

We observe that GPT-3.5 has built-in safeguards547

for academic integrity violations. Surprisingly,548

GPT-4.0 seems to lack such safeguards. For exam-549

ple, GPT-3.5 refuses to solve 8 problems for trig-550

gering such safeguards, but GPT-4.0 refuses none.551

This finding is concerning because it suggests that552

GPT-4.0 could potentially be more amenable to553

misuse for LLM-assisted cheating.554

6 Related Work555

LLMs in Educational Problem Solving. Finnie-556

Ansley et al. found that OpenAI Codex produced557

high-quality solutions for a set of CS1 and CS2558

programming problems (Finnie-Ansley et al., 2022,559

2023). This suggests that LLM-assisted cheating560

in introductory programming courses has the po-561

tential to be problematic. Other studies note that562

LLM-generated code can be of variable quality and563

sensitive to small changes to the prompt; this hints564

at the idea that tweaking the problem prompt can af-565

fect the usefulness of LLM-generated solutions for566

academic dishonesty. For example, Wermelinger567

observes that “Sometimes Copilot seems to have568

an uncanny understanding of the problem ... Other 569

times, Copilot looks completely clueless” (Wer- 570

melinger, 2023), and Jesse et al. discuss Codex’s 571

tendency to generate buggy code in some situations 572

(Jesse et al., 2023). None of these works consider 573

adversarial perturbation of prompts as a mechanism 574

for hindering LLM-assisted cheating. Sadasivan et 575

al. gives empirical evidence highlighting concerns 576

that LLM-generated texts can easily evade current 577

AI detection mechanisms (Sadasivan et al., 2023), 578

underscoring the need for more advanced detec- 579

tion technologies that can follow the continuous 580

advancements in LLM capabilities and ensuring 581

the integrity of academic work. 582

Adversarial Attacks on Code Generation LLMs. 583

Real-world applications relying on LLMs can be 584

susceptible to vulnerabilities arising from adver- 585

sarial attacks (Shayegani et al., 2023). Various 586

strategies have been proposed to enhance the ad- 587

versarial robustness of LLMs (Jiang et al., 2020; 588

Shetty et al., 2018; Wang et al., 2021a), but these 589

methods differ significantly, and there is a lack of 590

standardization in the adversary setups used for 591

valuation (Wang et al., 2021b). Wang et al.’s ex- 592

periments show that, despite its relative dominance 593

over other LLMs, ChatGPT’s performance is nev- 594

ertheless sensitive to adversarial prompts and is 595

far from perfect when attacked by adversarial ex- 596

amples. To the best of our knowledge, our work 597

is the first attempt at studying the Robustness in 598

Education with adversarial attacks. Other research 599

showed that adversarial attacks are also effective 600

in breaking guards against generating malicious 601

or unethical content (Zou et al., 2023; Liu et al., 602

2023a). Incorporating the methods suggested by 603

(Wang et al., 2023b) for generating natural adver- 604

sarial examples could be explored in the future. 605

7 Conclusion 606

High-performant LLMs pose a significant threat 607

to enable cheating on introductory programming 608

assignments. It investigates the potential of ad- 609

versarial perturbation techniques to impede LLM- 610

assisted cheating by designing several such tech- 611

niques and evaluating their efficacy in a user study. 612

The result suggests that the combination of the per- 613

turbation indeed caused a 77% reduction in the cor- 614

rectness of the generated solutions – which show 615

early promises. 616

8



8 Limitations617

Impact of running the user study with students618

exposed to the assignments. One possible limita-619

tion of our user study is, that it was conducted on620

students who already took CS1 and CS2 courses621

– thus finding might not hold for target students.622

However, as the study aimed to see if students623

can detect and reverse our perturbations – we hy-624

pothesize that experienced students will be more625

equipped to do so than new ones. Thus, if our re-626

sults suggest that a given perturbation technique is627

effective in impeding reversal for the study group,628

it is likely to be effective on the new students (ac-629

tual target group) as well. However, if our results630

suggest that a perturbation technique is ineffective631

for the study group, it does not imply that it will632

be ineffective for the new students. This means633

our study offers a conservative estimation of the634

efficacy of the perturbation techniques on the stu-635

dents. Given that designing an ethically acceptable636

user study with new students is challenging, we637

argue this is acceptable. For example, Shalvi et638

al. (Shalvi et al., 2011) hypothesized that reducing639

people’s ability to observe desired counterfactuals640

reduces lying. Thus, one can argue that exposing641

new students to the “ChatGPT way” of solving642

problems is ethically more questionable than ex-643

posing more mature students. This is because a)644

The fact that they will know they can get away645

might incentivize cheating as they are likely un-646

aware of the long-term consequences; b) The dam-647

age is arguably less for the students with some CS648

fundamental knowledge and more insights into the649

long-term consequences.650

We also want to note that even if we ignore the651

ethical challenge mentioned above, designing a652

reasonable study with new students is challeng-653

ing in itself. For example, all CS students are re-654

quired to take the courses from which we took655

the problems, and the problems typically address656

concepts that have been discussed in class. So, if657

we wanted students who have not seen those (or658

similar) problems, we would have to take non-CS659

students who have not taken those classes and who660

would not have the background to solve those prob-661

lems. This implies either running the study as part662

of the course offering or emulating the course for663

the study. Given the duration and volume it needs,664

it will be challenging to design such a study while665

keeping all the other confounding factors (i.e., con-666

trolling the models used) in check.667

Impact of perturbation on understandability. 668

Perturbations can affect the understandability. Our 669

work is intended to provide instructors with addi- 670

tional tools and techniques to deter LLM-assisted 671

cheating; it is up to the instructor to ensure that any 672

applied perturbations do not impact the clarity of 673

the problem description. For example, a judicious 674

application of the “sentence removal” perturbation 675

technique we describe can be combined with the 676

use of images to replace the semantic content of 677

the removed sentences. We also note that this is 678

the first work to proactively deter the use of LLM- 679

assisted cheating in the academic context – which 680

is an urgent problem. It would be interesting to 681

see what other approaches can be more effective 682

for this purpose in the future, or running studies to 683

find perturbations that do not affect students trying 684

to solve problems honestly but do affect students 685

who submit ChatGPT solutions. Investigating all 686

these interesting questions can be both motivated 687

and enabled by the current work. 688

Other limitations. We use CodeRL as the surro- 689

gate model, which might not be a close approxima- 690

tion of the target models. Despite this limitation, 691

CodeRL is successful in generating perturbed sam- 692

ples to run our field study. Finally, we ran the 693

user study with only 6 assignments, which might 694

hurt the generalizability of the findings. ChatGPT 695

provides personalized answers, which might cause 696

variances in our results. To counter this, we added 697

redundancy in our study design and reported aver- 698

age results. 699

9 Ethical Considerations 700

Our study was approved by the IRB of the desig- 701

nated institute. We recruited students who have 702

already taken CS1 and CS2 to avoid academic in- 703

tegrity violations. Participants were compensated 704

with a reward of $20 for their contribution. During 705

the user study, we did not collect any personally 706

identifiable data. Lastly, all the experiments on 707

GPT-3.5 and Mistral models were done with pre- 708

mium API access. We also used GitHub Copilot 709

under an academic subscription to ensure fair and 710

responsible use. The replication package, which 711

includes the data and source code, will be available 712

to researchers on request. 713

References 714

Malik Al-Essa, Giuseppina Andresini, Annalisa Appice, 715
and Donato Malerba. 2022. An XAI-based Adver- 716

9

https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842
https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842


sarial Training Approach for Cyber-threat Detection.717
In IEEE Intl. Conf. on Dependable, Autonomic and718
Secure Computing, Intl Conf on Pervasive Intelli-719
gence and Computing, Intl Conf on Cloud and Big720
Data Computing, Intl Conf on Cyber Science and721
Technology Congress, DASC/PiCom/CBDCom/Cy-722
berSciTech 2022, Falerna, Italy, September 12-15,723
2022, pages 1–8. IEEE.724

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-725
Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.726
2018. Generating natural language adversarial ex-727
amples. In Proceedings of the 2018 Conference on728
Empirical Methods in Natural Language Processing,729
Brussels, Belgium, October 31 - November 4, 2018,730
pages 2890–2896. Association for Computational731
Linguistics.732

Shraddha Barke, Michael B. James, and Nadia Polikar-733
pova. 2023. Grounded copilot: How programmers734
interact with code-generating models. Proc. ACM735
Program. Lang., 7(OOPSLA1):85–111.736

Pavol Bielik and Martin T. Vechev. 2020. Adversarial737
robustness for code. In Proceedings of the 37th In-738
ternational Conference on Machine Learning, ICML739
2020, 13-18 July 2020, Virtual Event, volume 119 of740
Proceedings of Machine Learning Research, pages741
896–907. PMLR.742

Nicholas Boucher and Ross Anderson. 2023. Trojan743
Source: Invisible Vulnerabilities. In 32nd USENIX744
Security Symposium, USENIX Security 2023, Ana-745
heim, CA, USA, August 9-11, 2023. USENIX Associ-746
ation.747

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and748
Nicolas Papernot. 2022. Bad Characters: Impercep-749
tible NLP Attacks. In 43rd IEEE Symposium on750
Security and Privacy, SP 2022, San Francisco, CA,751
USA, May 22-26, 2022, pages 1987–2004. IEEE.752

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,753
Katherine Lee, Florian Tramèr, and Chiyuan Zhang.754
2023. Quantifying memorization across neural lan-755
guage models. In The Eleventh International Con-756
ference on Learning Representations, ICLR 2023,757
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.758

Nicholas Carlini, Florian Tramèr, Eric Wallace,759
Matthew Jagielski, Ariel Herbert-Voss, Katherine760
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úl-761
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.762
Extracting Training Data from Large Language Mod-763
els. In 30th USENIX Security Symposium, USENIX764
Security 2021, August 11-13, 2021, pages 2633–2650.765
USENIX Association.766

James Finnie-Ansley, Paul Denny, Brett A. Becker, An-767
drew Luxton-Reilly, and James Prather. 2022. The768
robots are coming: Exploring the implications of769
OpenAI Codex on introductory programming. In770
ACE ’22: Australasian Computing Education Con-771
ference, Virtual Event, Australia, February 14 - 18,772
2022, pages 10–19. ACM.773

James Finnie-Ansley, Paul Denny, Andrew Luxton- 774
Reilly, Eddie Antonio Santos, James Prather, and 775
Brett A. Becker. 2023. My AI wants to know if this 776
will be on the exam: Testing OpenAI’s codex on CS2 777
programming exercises. In Proceedings of the 25th 778
Australasian Computing Education Conference, ACE 779
2023, Melbourne, VIC, Australia, 30 January 2023 - 780
3 February 2023, pages 97–104. ACM. 781

GitHub. 2021. Your AI pair programmer. Ac- 782
cessed September 25, 2023. https://github.com/ 783
features/copilot. 784

Ray Hembree and Donald J Dessart. 1986. Effects 785
of hand-held calculators in precollege mathematics 786
education: A meta-analysis. Journal for research in 787
mathematics education, 17(2):83–99. 788

Matthew Hertz. 2010. What do "cs1" and "cs2" mean? 789
investigating differences in the early courses. In 790
Proceedings of the 41st ACM Technical Symposium 791
on Computer Science Education, SIGCSE ’10, page 792
199–203, New York, NY, USA. Association for Com- 793
puting Machinery. 794

Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Ba- 795
balola, Collin F. Lynch, and Bita Akram. 2023. De- 796
tecting chatgpt-generated code in a CS1 course. In 797
Proceedings of the Workshop on Empowering Educa- 798
tion with LLMs - the Next-Gen Interface and Content 799
Generation 2023 co-located with 24th International 800
Conference on Artificial Intelligence in Education 801
(AIED 2023), Tokyo, Japan, July 7, 2023, volume 802
3487 of CEUR Workshop Proceedings, pages 53–63. 803
CEUR-WS.org. 804

Lorraine Jacques. 2023. Teaching CS-101 at the Dawn 805
of ChatGPT. Inroads, 14(2):40–46. 806

Leonard A. Jason and David S. Glenwick. 2015. Hand- 807
book of Methodological Approaches to Community- 808
Based Research: Qualitative, Quantitative, and 809
Mixed Methods. Oxford University Press. 810

Kevin Jesse, Toufique Ahmed, Premkumar T. Devanbu, 811
and Emily Morgan. 2023. Large language models 812
and simple, stupid bugs. In 20th IEEE/ACM Interna- 813
tional Conference on Mining Software Repositories, 814
MSR 2023, Melbourne, Australia, May 15-16, 2023, 815
pages 563–575. IEEE. 816

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi- 817
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020. 818
Smart: Robust and efficient fine-tuning for pre- 819
trained natural language models through principled 820
regularized optimization. In Proceedings of the 58th 821
Annual Meeting of the Association for Computational 822
Linguistics. Association for Computational Linguis- 823
tics. 824

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen, 825
and Xiang Ren. 2022. A good prompt is worth 826
millions of parameters: Low-resource prompt-based 827
learning for vision-language models. In Proceedings 828
of the 60th Annual Meeting of the Association for 829
Computational Linguistics (Volume 1: Long Papers), 830

10

https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842
https://doi.org/10.18653/V1/D18-1316
https://doi.org/10.18653/V1/D18-1316
https://doi.org/10.18653/V1/D18-1316
http://proceedings.mlr.press/v119/bielik20a.html
http://proceedings.mlr.press/v119/bielik20a.html
http://proceedings.mlr.press/v119/bielik20a.html
https://www.usenix.org/conference/usenixsecurity23/presentation/boucher
https://www.usenix.org/conference/usenixsecurity23/presentation/boucher
https://www.usenix.org/conference/usenixsecurity23/presentation/boucher
https://openreview.net/pdf?id=TatRHT_1cK
https://openreview.net/pdf?id=TatRHT_1cK
https://openreview.net/pdf?id=TatRHT_1cK
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/1734263.1734335
https://ceur-ws.org/Vol-3487/paper2.pdf
https://ceur-ws.org/Vol-3487/paper2.pdf
https://ceur-ws.org/Vol-3487/paper2.pdf
https://doi.org/10.1145/3595634
https://doi.org/10.1145/3595634
https://doi.org/10.1145/3595634
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1093/med:psych/9780190243654.001.0001
https://doi.org/10.1109/MSR59073.2023.00082
https://doi.org/10.1109/MSR59073.2023.00082
https://doi.org/10.1109/MSR59073.2023.00082
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197
https://doi.org/10.18653/v1/2022.acl-long.197


ACL 2022, Dublin, Ireland, May 22-27, 2022, pages831
2763–2775. Association for Computational Linguis-832
tics.833

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio834
Savarese, and Steven Chu-Hong Hoi. 2022. CodeRL:835
Mastering Code Generation through Pretrained Mod-836
els and Deep Reinforcement Learning. In NeurIPS.837

Aiwei Liu, Honghai Yu, Xuming Hu, Shuang Li,838
Li Lin, Fukun Ma, Yawen Yang, and Lijie Wen.839
2022. Character-level White-Box Adversarial At-840
tacks against Transformers via Attachable Subwords841
Substitution. In Proceedings of the 2022 Conference842
on Empirical Methods in Natural Language Process-843
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates,844
December 7-11, 2022, pages 7664–7676. Association845
for Computational Linguistics.846

Bowen Liu, Boao Xiao, Xutong Jiang, Siyuan Cen,847
Xin He, Wanchun Dou, and Huaming Chen. 2023a.848
Adversarial attacks on large language model-based849
system and mitigating strategies: A case study on850
ChatGPT. Sec. and Commun. Netw., 2023.851

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-852
jape, Michele Bevilacqua, Fabio Petroni, and Percy853
Liang. 2023b. Lost in the middle: How language854
models use long contexts. CoRR, abs/2307.03172.855

Scott M. Lundberg and Su-In Lee. 2017. A Unified856
Approach to Interpreting Model Predictions. In Ad-857
vances in Neural Information Processing Systems 30:858
Annual Conference on Neural Information Process-859
ing Systems 2017, December 4-9, 2017, Long Beach,860
CA, USA, pages 4765–4774.861

Mistral AI team. 2024. Mistral Large, our new flagship862
model. Accessed April 14, 2024. https://mistral.863
ai/news/mistral-large/.864

John X. Morris, Eli Lifland, Jack Lanchantin, Yangfeng865
Ji, and Yanjun Qi. 2020. Reevaluating adversarial866
examples in natural language. In Findings of the867
Association for Computational Linguistics: EMNLP868
2020, Online Event, 16-20 November 2020, volume869
EMNLP 2020 of Findings of ACL, pages 3829–3839.870
Association for Computational Linguistics.871

OpenAI. 2022. GPT 3.5. Accessed September872
25, 2023. https://platform.openai.com/docs/873
models/gpt-3-5.874

OpenAI. 2024. Chatgpt (3.5) [large language model].875
https://chat.openai.com. Accessed September876
25, 2023.877

Michael Sheinman Orenstrakh, Oscar Karnalim, Car-878
los Aníbal Suárez, and Michael Liut. 2023. Detect-879
ing LLM-Generated Text in Computing Education:880
A Comparative Study for ChatGPT Cases. CoRR,881
abs/2307.07411.882

Adnan Quaium, Najla Abdulrahman Al-Nabhan, Mas-883
fiqur Rahaman, Saiful Islam Salim, Tarik Reza Toha,884

Jannatun Noor, Mainul Hossain, Nafisa Islam, Aaiy- 885
eesha Mostak, Md Shihabul Islam, Md. Masum 886
Mushfiq, Ishrat Jahan, and A.B.M. Alim Al Islam. 887
2023. Towards associating negative experiences and 888
recommendations reported by hajj pilgrims in a mass- 889
scale survey. Heliyon, 9(5). 890

Jonas Rauber, Wieland Brendel, and Matthias Bethge. 891
2017. Foolbox v0.8.0: A python toolbox to bench- 892
mark the robustness of machine learning models. 893
CoRR, abs/1707.04131. 894

Laria Reynolds and Kyle McDonell. 2021. Prompt 895
programming for large language models: Beyond the 896
few-shot paradigm. In CHI ’21: CHI Conference 897
on Human Factors in Computing Systems, Virtual 898
Event / Yokohama Japan, May 8-13, 2021, Extended 899
Abstracts, pages 314:1–314:7. ACM. 900

Ishai Rosenberg, Shai Meir, Jonathan Berrebi, Ilay Gor- 901
don, Guillaume Sicard, and Eli (Omid) David. 2020. 902
Generating end-to-end adversarial examples for mal- 903
ware classifiers using explainability. In 2020 Interna- 904
tional Joint Conference on Neural Networks, IJCNN 905
2020, Glasgow, United Kingdom, July 19-24, 2020, 906
pages 1–10. IEEE. 907

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 908
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 909
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 910
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man- 911
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, 912
Wenhan Xiong, Alexandre Défossez, Jade Copet, 913
Faisal Azhar, Hugo Touvron, Louis Martin, Nico- 914
las Usunier, Thomas Scialom, and Gabriel Synnaeve. 915
2023. Code llama: Open foundation models for code. 916
CoRR, abs/2308.12950. 917

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala- 918
subramanian, Wenxiao Wang, and Soheil Feizi. 2023. 919
Can ai-generated text be reliably detected? 920

Shaul Shalvi, Jason Dana, Michel JJ Handgraaf, and 921
Carsten KW De Dreu. 2011. Justified ethicality: Ob- 922
serving desired counterfactuals modifies ethical per- 923
ceptions and behavior. Organizational behavior and 924
human decision processes, 115(2):181–190. 925

Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pe- 926
dram Zaree, Yue Dong, and Nael Abu-Ghazaleh. 927
2023. Survey of vulnerabilities in large language 928
models revealed by adversarial attacks. arXiv 929
preprint arXiv:2310.10844. 930

Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2018. 931
A4NT: Author Attribute Anonymity by Adversar- 932
ial Training of Neural Machine Translation. In 933
27th USENIX Security Symposium, USENIX Secu- 934
rity 2018, Baltimore, MD, USA, August 15-17, 2018, 935
pages 1633–1650. USENIX Association. 936

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan 937
Scales, David Dohan, Ed H. Chi, Nathanael Schärli, 938
and Denny Zhou. 2023. Large language models can 939
be easily distracted by irrelevant context. In Interna- 940
tional Conference on Machine Learning, ICML 2023, 941

11

http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8636419dea1aa9fbd25fc4248e702da4-Abstract-Conference.html
https://doi.org/10.1155/2023/8691095
https://doi.org/10.1155/2023/8691095
https://doi.org/10.1155/2023/8691095
https://doi.org/10.1155/2023/8691095
https://doi.org/10.1155/2023/8691095
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://mistral.ai/news/mistral-large/
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.341
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.341
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.341
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://chat.openai.com
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.1016/j.heliyon.2023.e15486
https://doi.org/10.1016/j.heliyon.2023.e15486
https://doi.org/10.1016/j.heliyon.2023.e15486
https://doi.org/10.1016/j.heliyon.2023.e15486
https://doi.org/10.1016/j.heliyon.2023.e15486
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1109/IJCNN48605.2020.9207168
https://doi.org/10.1109/IJCNN48605.2020.9207168
https://doi.org/10.1109/IJCNN48605.2020.9207168
https://doi.org/10.48550/ARXIV.2308.12950
http://arxiv.org/abs/2303.11156
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html


23-29 July 2023, Honolulu, Hawaii, USA, volume942
202 of Proceedings of Machine Learning Research,943
pages 31210–31227. PMLR.944

Ruoxi Sun, Minhui Xue, Gareth Tyson, Tian Dong,945
Shaofeng Li, Shuo Wang, Haojin Zhu, Seyit Camtepe,946
and Surya Nepal. 2023. Mate! are you really aware?947
an explainability-guided testing framework for ro-948
bustness of malware detectors. In Proceedings of the949
31st ACM Joint European Software Engineering Con-950
ference and Symposium on the Foundations of Soft-951
ware Engineering, ESEC/FSE 2023, San Francisco,952
CA, USA, December 3-9, 2023, pages 1573–1585.953
ACM.954

Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan,955
Ruoxi Jia, Bo Li, and Jingjing Liu. 2021a. Infobert:956
Improving robustness of language models from an957
information theoretic perspective.958

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,959
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-960
lah, and Bo Li. 2021b. Adversarial GLUE: A multi-961
task benchmark for robustness evaluation of language962
models. In Proceedings of the Neural Information963
Processing Systems Track on Datasets and Bench-964
marks 1, NeurIPS Datasets and Benchmarks 2021,965
December 2021, virtual.966

Jindong Wang, Xixu HU, Wenxin Hou, Hao Chen,967
Runkai Zheng, Yidong Wang, Linyi Yang, Wei Ye,968
Haojun Huang, Xiubo Geng, Binxing Jiao, Yue969
Zhang, and Xing Xie. 2023a. On the robustness970
of ChatGPT: An adversarial and out-of-distribution971
perspective. In ICLR 2023 Workshop on Trustworthy972
and Reliable Large-Scale Machine Learning Models.973

Zimu Wang, Wei Wang, Qi Chen, Qiufeng Wang, and974
Anh Nguyen. 2023b. Generating valid and natural975
adversarial examples with large language models.976

Michel Wermelinger. 2023. Using github copilot to977
solve simple programming problems. In Proceedings978
of the 54th ACM Technical Symposium on Computer979
Science Education, Volume 1, SIGCSE 2023, Toronto,980
ON, Canada, March 15-18, 2023, pages 172–178.981
ACM.982

Lei Xu, Alfredo Cuesta-Infante, Laure Berti-Équille,983
and Kalyan Veeramachaneni. 2022. R&r: Metric-984
guided adversarial sentence generation. In Findings985
of the Association for Computational Linguistics:986
AACL-IJCNLP 2022, Online only, November 20-23,987
2022, pages 438–452. Association for Computational988
Linguistics.989

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,990
Matthew Jagielski, Florian Tramèr, and Nicholas Car-991
lini. 2021. Counterfactual Memorization in Neural992
Language Models. CoRR, abs/2112.12938.993

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng,994
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun Chen.995
2022. Differentiable prompt makes pre-trained lan-996
guage models better few-shot learners. In The Tenth997

International Conference on Learning Representa- 998
tions, ICLR 2022, Virtual Event, April 25-29, 2022. 999
OpenReview.net. 1000

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, 1001
Chongxuan Li, Ngai-Man Cheung, and Min Lin. 1002
2023. On evaluating adversarial robustness of large 1003
vision-language models. CoRR, abs/2305.16934. 1004

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, 1005
J. Zico Kolter, and Matt Fredrikson. 2023. Univer- 1006
sal and transferable adversarial attacks on aligned 1007
language models. 1008

A Short and Long Problems 1009

In a file jaccard.py write a function jaccard(set1, set2)
that takes as arguments two sets set1 and set2 and
returns a floating-point value that is the Jaccard
similarity index between set1 and set2. The definition
of the Jaccard similarity index is (see also: Section 2.B
of the long problem spec; Wikipedia):

↪→
↪→
↪→
↪→
↪→
similarity(set1, set2) = | set1 ∩ set2 | / | set1 ∪ set2 |

If set1 and set2 are both empty sets, their similarity is
defined to be 1.0.↪→

Examples
set1 set2 jaccard(set1, set2)
{'aaa', 'bbb', 'ccc', 'ddd'} {'aaa', 'ccc'} 0.5
{1, 2, 3} {2, 3, 4, 5} 0.4
{1, 2, 3} {4, 5, 6} 0.0

(a) Short problem

In a file update_board.py write the following functions:
update_board(board, mov): board is an internal

representation of a board position, mov is a tuple of
integers specifying a move. It returns the internal
representation of the board resulting from making the
move mov in board board.

↪→
↪→
↪→
↪→
update_board_interface(board_str, mov): board_str is an

external representation of a board position (a string of
0s and 1s), mov is a tuple of integers specifying a move.
This function converts board_str to your internal
representation of a board position, calls your function
update_board() described above, converts the value
returned by update_board() to an external representation
of a board (a string of 0s and 1s), and returns the
resulting string. This function thus serves as the
external interface to your update_board() function.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
2.3.2. Examples

board_str mov update_board_interface(board_str, mov)
110001100101011 (14, 13, 12) 110001100101100
110001100101011 (0, 1, 3) 000101100101011
0110011011 (5, 2, 0) 1100001011

(b) Long problem

Figure 4: Examples of short and long problems

B LLM Code Generation Methodology 1010

CodeRL. To initiate code generation with 1011

CodeRL, we first create an instance of the tokenizer 1012

and model using the HuggingFace API. To ensure 1013

obtaining the best solution, we set the temperature 1014

to 0 and the output token limit to its maximum al- 1015

lowable limit. Then, we tokenize the prompt and 1016

send it to the model. The model generates a list of 1017

12

https://doi.org/10.1145/3611643.3616309
https://doi.org/10.1145/3611643.3616309
https://doi.org/10.1145/3611643.3616309
https://doi.org/10.1145/3611643.3616309
https://doi.org/10.1145/3611643.3616309
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
http://arxiv.org/abs/2010.02329
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/335f5352088d7d9bf74191e006d8e24c-Abstract-round2.html
https://openreview.net/forum?id=uw6HSkgoM29
https://openreview.net/forum?id=uw6HSkgoM29
https://openreview.net/forum?id=uw6HSkgoM29
https://openreview.net/forum?id=uw6HSkgoM29
https://openreview.net/forum?id=uw6HSkgoM29
http://arxiv.org/abs/2311.11861
http://arxiv.org/abs/2311.11861
http://arxiv.org/abs/2311.11861
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://aclanthology.org/2022.findings-aacl.41
https://aclanthology.org/2022.findings-aacl.41
https://aclanthology.org/2022.findings-aacl.41
http://arxiv.org/abs/2112.12938
http://arxiv.org/abs/2112.12938
http://arxiv.org/abs/2112.12938
https://openreview.net/forum?id=ek9a0qIafW
https://openreview.net/forum?id=ek9a0qIafW
https://openreview.net/forum?id=ek9a0qIafW
https://doi.org/10.48550/arXiv.2305.16934
https://doi.org/10.48550/arXiv.2305.16934
https://doi.org/10.48550/arXiv.2305.16934
http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043
http://arxiv.org/abs/2307.15043


In this program, you will print out ascii 
art of the eiffel tower…
Enter Eiffel tower size: 4

                 $ 
                 |Z|
                 |Z|
                 |Z|
                 |Z|
                 |Z|
                 |Z|

                /ZZZZZZZZZ\
               H                    H
               H                     H
               H                     H
               H                     H
               H                     H

      /%%%%%%%%%%%%%%%%%\  
    ##              ## 
    ##                     ## 
    ##                       ##
    ##                       ##

… You should not use any python 
libraries or …

[omitted for brevity]

Figure 5: An example CS1 problem where CodeRL,
GPT-3.5and GitHub Copilot scored 0%.

tokens from the given prompt of tokens. After deto-1018

kenizing the output, we get a source code, which1019

serves as the solution to the given assignment prob-1020

lem.1021

GitHub Copilot. To generate code with Copilot,1022

we employ PyAutoGUI to automate VS Code.1023

The step-by-step process starts with opening VS1024

Code in a new window and creating a new Python1025

file. We paste the prompt into the file, sur-1026

rounded by a docstring comment. Next, we ask1027

Copilot to generate multiple variations of code in1028

a new window using the custom keyboard short-1029

cut. Then, we close the VS Code after saving1030

the responses in separate files. The subsequent1031

steps vary based on the type of problem. For short1032

problems, we handle cases where the code can1033

either be a standalone program generating out-1034

put or a function/class definition. In the latter1035

case, the code generation is done for that specific1036

code. Conversely, for standalone programs, we1037

add the “if __name__ == '__main__':” block1038

at the bottom of the file and let Copilot call the1039

generated function/class. At this point, Copilot1040

provides inline suggestions rather than separate1041

windows for alternatives. For longer problems,1042

we reopen the generated code in VS Code and1043

allow Copilot to provide up to 15 inline sugges- 1044

tions. However, if Copilot generates its own 1045

“if __name__ == '__main__':” block, we stop, 1046

as further code generation may lead to uncompil- 1047

able results. 1048

As both short and long problems can generate 1049

up to 10 solutions for a single prompt, we run all 1050

generated solutions through autograders and select 1051

the one with the highest score for evaluation. This 1052

methodology ensures efficient code generation and 1053

selection of the most appropriate solution for the 1054

given prompt. 1055

Write a Python program that does the following:

<problem statement>

Please omit any explanations of the code.

Figure 6: Prompt to generate source code from GPT-3.5

GPT-3.5. We use the OpenAI API to gener- 1056

ate code using GPT-3.5. Specifically, we use 1057

the gpt-3.5-turbo-0301 model to ensure con- 1058

sistency throughout our experiments. Similar to 1059

CodeRL, we set the temperature to 0 to obtain the 1060

most optimal source code deterministically. Since 1061

GPT-3.5 is a general-purpose language model not 1062

specifically designed for code generation only, we 1063

add qualifying sentences around the prompt in- 1064

structing GPT-3.5 to omit explanations and pro- 1065

duce only code (since non-code explanatory text 1066

could induce syntax errors in the autograder). Fig- 1067

ure 6 shows the prompt we use to generate code 1068

from GPT-3.5. This way, we exclusively receive 1069

code outputs from the model. 1070

Mistral. We used the Mistral API to gener- 1071

ate code using Mistral. Specifically, we used 1072

the mistral-large-2402 model to ensure consis- 1073

tency throughout our experiments. Because Mis- 1074

tral’s API is very similar to OpenAI’s API, we 1075

followed the same methodology and used the same 1076

model parameters to interact with the API. 1077

Code Llama. We used Ollama, a lightweight and 1078

extensible framework for running LLMs on lo- 1079

cal machines, to host the CodeLlama-7b-instruct 1080

model based on Meta’s Llama 2. The instruct 1081

model was chosen as it is trained to output human- 1082

like answers to given queries, which we believed 1083

to be closest to ChatGPT in terms of the generated 1084

solutions. The steps include installing Ollama and 1085

simply calling ollama run codellama:7b-instruct 1086

13



‘<prompt>’ to generate the outputs. To the best of1087

our knowledge, there isn’t a straightforward way to1088

tweak the parameters of the models from the pro-1089

vided user manuals, so we used the default model.1090

Although the generated answers often contained1091

comment blocks as well as codes, most outputs1092

wrapped the code blocks with identifiable texts1093

such as ”’, [PYTHON] or “‘python, we extracted1094

the codes accordingly. Otherwise, we simply used1095

the generated output.1096

C Descripiton of our Perturbation1097

Techniques1098

C.1 Core perturbations.1099

Token (remove): Breaking subword tokens pro-1100

foundly impacts LLM performance (Liu et al.,1101

2022; Wang et al., 2021b). By consulting SHAP,1102

in this technique, we remove the top 5 tokens from1103

the assignment description and create 1 perturbed1104

variant of a given assignment. We generated 631105

short and 12 long variants in total.1106

Character (remove): Following the same princi-1107

ple as Token (remove) to break subwords, in this1108

perturbation technique, we remove a random char-1109

acter from each of the top 5 tokens to create 11110

variant. We generated 63 short and 12 long variants1111

in total.1112

Random (insert): To break subwords, we also1113

design another perturbation by inserting redundant1114

characters, such as hyphens and underscores, in the1115

top 5 tokens; similarly, we generate 1 variant of1116

inserting redundant characters, such as hyphens and1117

underscores, into the top tokens in the assignments.1118

We generated 63 short and 12 long variants in total.1119

Sentence (remove): For sentence removal, we re-1120

move a third of the sentence from the assignment1121

description sequentially. We chose one-third so1122

as to not remove too much relevant information,1123

and we removed sequential sentences to create a1124

large hole in the information provided to the mod-1125

els. If the assignment description has less than 31126

sentences, we remove only 1 sentence. This pro-1127

duces a variable number of perturbed variants. We1128

generated 594 short and 857 long variants in total.1129

Sentence (rephase): Rephrasing of sentences is1130

known to be effective in degrading LLM perfor-1131

mance (Xu et al., 2022; Morris et al., 2020; Alzan-1132

tot et al., 2018; Wang et al., 2021b). Thus, we1133

leverage rephrasing sentences to design this pertur-1134

bation. First, we rank the sentences by accumulat-1135

ing the Shapley values of the tokens corresponding1136

to a given sentence; then, we remove the top 3 sen- 1137

tences to create 3 independent variants. We use 1138

GPT-3.5to obtain high-quality phrases. We gener- 1139

ated 177 short and 32 long variants in total. 1140

Token (synonym): Tokens are the building blocks 1141

of language models, which have been used as per- 1142

turbation units in context (Boucher and Anderson, 1143

2023; Al-Essa et al., 2022; Wang et al., 2021b). 1144

Therefore, we design a perturbation technique. to 1145

substitute tokens with their synonyms. Specifically, 1146

we replace the top 5 tokens from the SHAP with 1147

their synonyms to create 5 different variants. For 1148

each top-ranked token, we replace all instances of 1149

that token in the prompt with its synonym, even 1150

if other occurrences are not top-ranked. We do 1151

this to ensure that if the token provides necessary 1152

information to the model, it cannot be obtained 1153

from another token occurrence in the assignment 1154

description. We generate contextual synonyms for 1155

a given token using GPT-3.5. We provide the sen- 1156

tence containing the token as the context for the 1157

GPT-3.5 model and ask for synonyms for the token. 1158

We generated 1836 short and 216 long variants in 1159

total. 1160

Token (unicode): Recent research shows that ad- 1161

versarial attacks can be effective even in a black- 1162

box setting without visually altering the inputs 1163

in ways noticeable to humans, which includes re- 1164

placing characters with Unicode lookalikes (Shetty 1165

et al., 2018; Boucher et al., 2022). To leverage this, 1166

we create a perturbation method to replace char- 1167

acters in the top 5 tokens (from SHAP) with their 1168

Unicode lookalikes to create 1 variant (Figure 7). 1169

We generated 63 short and 12 long variants in total. 1170

In a file dl_insert.py, write the 
function … using your 
DLiʂtNọɗе class … defines 
your DLïʂtNỏdé class 
(similarly to …

In the example … nỏde_in_list 
… after nỏɗе_in_líʂt. 

[omitted for brevity]

(a) Original prompt (b) Perturbed prompt

In a file dl_insert.py, write the 
function … using your 
DListNodе class … defines 
your DListNoԁe class 
(similarly to …

In the example … node_in_list 
… after node_in_list. 

[omitted for brevity]

Figure 7: Replacing 12 characters for 5 tokens with their
Unicode lookalike from an assignment prompt caused
correctness scores to drop from 100% to 0% in GPT-3.5.

C.2 Exploratory Perturbations. 1171

Tokens (synonym): To understand the potential of 1172

synonym-based perturbation, we create a new type 1173

of perturbation method to replace the top 5 tokens 1174

14



from the SHAP with their synonyms to create 51175

different variants. However, we do not replace the1176

top-ranked occurrences of a given token – not all1177

occurrences in a given assignment prompt. We1178

generated 2373 short and 223 long variants in total.1179

Prompt (Unicode): Similarly, to study the full1180

potential of substituting characters with Unicode1181

lookalikes, we apply it to the whole assignment1182

statement under this technique. We recognize that1183

this perturbation might easily get noticed; however,1184

we add it to understand how detectability might1185

impact the actual performance in the field study.1186

We generated 63 short and 12 long variants in total.1187

Random (replace): Existing studies show evi-1188

dence that LLMs are prone to memorizing training1189

data (Zhang et al., 2021; Carlini et al., 2021, 2023).1190

Thus, these models are highly sensitive to input1191

variations, and even slight changes in the prompt1192

may lead to substantial differences in the gener-1193

ated output (Zhang et al., 2022; Jin et al., 2022;1194

Reynolds and McDonell, 2021). Under this hypoth-1195

esis, replacing specific tokens with random strings1196

may significantly influence performance, as such1197

substitution may alter the context (Shi et al., 2023;1198

Liu et al., 2023b; Wang et al., 2021b). We design a1199

new exploratory perturbation technique to leverage1200

this insight. Under this technique, we tweak as-1201

signments by replacing file names, function names,1202

and class names specified in the problem statement1203

with random strings, where these names are discov-1204

ered manually. We store the original names and1205

random strings, then in the code generated by the1206

models, replace the instances of the random strings1207

with the original names. This is to make sure that1208

the autograders don’t give a score of 0 for a good1209

solution that uses the random string. We generated1210

63 short and 12 long variants in total.1211

D User Study1212

D.1 Description of the thematic analysis1213

This approach consists of multiple stages. First,1214

we familiarize ourselves with the collected data.1215

We manually go through 50% (15 out of 30) re-1216

sponses in this stage. This allows us to perform1217

inductive coding to identify potential codes for fur-1218

ther analysis. In the second stage, two authors1219

generated 16 initial codes based on their familiarity1220

with the data. These codes are data-driven and help1221

organize information into meaningful units. Two1222

authors assign codes to the participants’ responses1223

to the specific questions. This coding stage is done1224

Table 8: Demography of the participants

Participants Academic
Status

Proficiency in Python
(out of 5)

LLM Usage Frequency
(weekly)

P1 Junior 5 Occasionally (3-5 times)
P2 Junior 4 Never
P3 Senior 5 Occasionally (3-5 times)
P4 Senior 5 Occasionally (3-5 times)
P5 Senior 5 Very frequently (More than 10 times)
P6 Senior 4 Rarely (1-2 times)
P7 Sophomore 4 Occasionally (3-5 times)
P8 Senior 4 Very frequently (More than 10 times)
P9 Sophomore 4 Occasionally (3-5 times)

P10 Senior 4 Occasionally (3-5 times)
P11 Senior 4 Regularly (6-10 times)
P12 Senior 4 Rarely (1-2 times)
P13 Sophomore 5 Occasionally (3-5 times)
P14 Senior 4 Rarely (1-2 times)
P15 Junior 4 Rarely (1-2 times)
P16 Senior 4 Rarely (1-2 times)
P17 Junior 4 Occasionally (3-5 times)
P18 Junior 4 Occasionally (3-5 times)
P19 Sophomore 4 Never
P20 Junior 3 Never
P21 Junior 5 Rarely (1-2 times)
P22 Senior 4 Never
P23 Junior 3 Rarely (1-2 times)
P24 Senior 5 Very frequently (More than 10 times)
P25 Senior 4 Never
P26 Senior 4 Regularly (6-10 times)
P27 Junior 4 Occasionally (3-5 times)
P28 Junior 3 Rarely (1-2 times)
P29 Senior 4 Very frequently (More than 10 times)
P30 Senior 4 Regularly (6-10 times)

Table 9: User Study Questions

Questions
How proficient are you in the Python programming language?
How hard did the problem seem to you while you were solving it? (For each
problem)
How much time (in minutes) did you spend on this problem? (For each
problem)
How did you validate the ChatGPT-generated solutions? (For each problem)
Did you notice anything unusual about the problem statement? (For each
problem)
How did you avoid the “unusualness” in the problem statement while solving
the problem? (For each problem)
On average, how many hours do you dedicate to coding or problem-solving
per week?
How often do you utilize ChatGPT or any other Large Language Model to
solve problems on a weekly basis, on average?
What other Large Language Models do you use or previously used?

Table 10: Distributions of the perturbation techniques
and the problems in the user study

Perturbations #Participants
Prompt (original) 18 Problems # Participants
Character (remove) 12 p1 22
Token (unicode) 13 p2 17
Tokens (remove) 7 p3 13
Sentences (rephrase) 3 p4 13
Sentences (remove) 10 p5 13
Prompt (unicode) 16 p6 12
Random (replace) 11

manually. To address disagreements, the authors 1225

facilitated a consensus-based resolution while com- 1226

bining their coding assignments. Consensus-based 1227

resolution is considered important in qualitative 1228

studies to produce meaningful insights. In our case, 1229

there were 4 disagreements between the two raters 1230

while labeling all 30 participant’s data. After that, 1231

one of the authors reviews the students’ responses 1232

and corresponding conversations with ChatGPT to 1233

15



get the most information and update the coding.1234

This step is iterative until saturation. We consider1235

the coding to be saturated if no new code is as-1236

signed to the responses. Lastly, the other author1237

validates the final coding to avoid potential bias.1238

In the third stage, after coding the data, we start1239

searching for themes by bringing together material1240

under the same codes. This involves considering1241

how codes may form broader themes that are orga-1242

nized hierarchically. In the fourth stage, we review1243

and refine the potential themes.1244

Pro
mpt 

(or
igin

al)

Cha
rac

ter
 (re

mov
e)

Tok
en

 (u
nic

od
e)

Tok
en

 (re
mov

e)

Se
nte

nce
s (

rep
hra

se)

Se
nte

nce
s (

rem
ov

e)

Pro
mpt 

(un
ico

de
)

Ra
nd

om
 (re

pla
ce)

0%

20%

40%

60%

80%

100%

Av
er

ag
e 

Sc
or

e gpt-3.5-turbo-0301
gpt-3.5-turbo-0613

gpt-3.5-turbo-1106
gpt-3.5-turbo-0125

Figure 8: Average correctness score of the ChatGPT
model checkpoints on the user study problems for the
perturbation techniques.

Codebook for neutralizing perturbations:1245

• Update the given problem statement1246

• Rely on ChatGPT to avoid any perturbation1247

• Did not notice anything “unusualness”1248

• Rewrite the whole solution manually as the ChatGPT-1249
generated solution is incorrect1250

• Rewrite a part of the solution manually1251

Themes and codes for validation:1252

• Inspecting the generated code1253

– Inspect the generated code without running1254
– Inspect the generated code by running1255
– Use given test cases1256
– Use manually created test cases1257
– Use ChatGPT-generated test cases1258
– Validate the solution using ChatGPT1259
– Compare to the manually written code1260

• Fixing the generated code1261

– Fix the code manually1262
– Fix the code using ChatGPT1263

• Verdict about the correctness1264

– Correct solution from ChatGPT1265
– Incorrect solution from ChatGPT1266

E Research Participant Agreement 1267

E.1 Voluntary Participation 1268

You are being asked to participate in a research 1269

study. Your participation in this research study is 1270

voluntary. You may choose to voluntarily discon- 1271

tinue participation in the study at any time without 1272

penalty, even after starting the survey. This doc- 1273

ument contains important information about this 1274

study and what to expect if you decide to partic- 1275

ipate. Please consider the information carefully. 1276

Feel free to ask questions before deciding whether 1277

to participate. 1278

Through this study, we will understand how well 1279

we can solve CS1 and CS2-level programming 1280

tasks using AI tools such as ChatGPT. The sur- 1281

vey consists of three CS introductory assignment 1282

problems for each student. For each problem, you 1283

have to solve it using ChatGPT and then answer the 1284

follow-up questions. We estimate that the whole 1285

process will take around 45-60 minutes. You are 1286

free to take the survey anywhere you choose. You 1287

will be emailed the survey to complete, and you 1288

will need to provide your email address in the sur- 1289

vey. 1290

By signing up you are agreeing that you took 1291

CS1 and CS2. You will proceed with the study 1292

once the verification of your historical enrollment 1293

in the CS1 and CS2 courses is confirmed with the 1294

moderator of the CS undergraduate listserv (Mar- 1295

tin Marquez, Director of Academic and Support 1296

Services, CS). Education records used by this re- 1297

search project are education records as defined and 1298

protected by the Family Educational Rights and 1299

Privacy Act (FERPA). FERPA is a federal law that 1300

protects the privacy of student education records. 1301

Your consent gives the researcher permission to 1302

access the records identified above for research 1303

purposes. 1304

E.2 Risks for the Participants 1305

1. Social risk: A minor risk is the potential of 1306

loss of confidentiality because the form asks 1307

for your email address. Google Forms au- 1308

tomatically collects email addresses for the 1309

survey, so the email address will be attached 1310

to the survey responses. 1311

2. Economic risk: An economic risk may be 1312

that you complete the vast majority of the 1313

survey, but we cannot reward any cash, and 1314

so you lose some leisure time with no cash 1315

16



P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

P2
2

P2
3

P2
4

P2
5

P2
6

P2
7

P2
8

P2
9

P3
0

Code review w/o run
Code review w/ run

Given test cases
Manual test cases

ChatGPT test cases
Manual fix

ChatGPT fix
ChatGPT correct

ChatGPT incorrect
ChatGPT validation

Compare to manual code

0 0 0 0 0 0 0 2 0 0 3 3 1 1 0 1 1 0 0 1 0 3 0 0 0 0 0 1 3 0
3 2 1 2 3 3 3 2 3 3 0 3 0 3 3 3 3 3 3 1 3 3 3 2 2 3 3 3 0 3
3 0 1 3 2 2 2 3 0 1 0 1 0 1 3 3 3 2 3 1 3 3 3 2 3 2 2 1 0 2
3 0 0 0 2 2 2 2 0 0 0 0 0 0 1 3 1 2 0 0 3 2 0 0 0 0 1 3 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 2 1 1 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1
2 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 3 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0.0

0.5
1.0
1.5
2.0
2.5
3.0

Figure 9: The vertical axis lists the most frequent validation strategies, while the horizontal axis represents
participants. Each cell’s value, capped at 3, indicates the number of times a specific code was applied to a
participant’s response across three problems. The color gradient ranges from bright yellow (indicating 0 occurrences)
to dark blue (indicating 3 occurrences).

Pro
mpt 

(or
igin

al)

Cha
rac

ter
 (re

mov
e)

Tok
en

 (u
nic

od
e)

Tok
en

 (re
mov

e)

Se
nte

nce
 (re

ph
ras

e)

Se
nte

nce
 (re

mov
e)

Pro
mpt 

(un
ico

de
)

Ra
nd

om
 (re

pla
ce)

0
2
4
6
8

10
12
14
16
18
20

Nu
m

be
r o

f O
cc

ur
re

nc
es

No unusualness found
Expected to be bypassed
Update problem statement
Rewrite incorrect/missing portion
Rewrite incorrect ChatGPT solution

Figure 10: Number of occurrences of handling strategies
for each perturbation technique.

reward.1316

3. Psychological risk: A psychological risk may1317

be that you may get fatigued while solving the1318

given problems.1319

However, the risks here are largely minimal. The1320

analysis considers the survey responses as a whole1321

and does not investigate one specific survey re-1322

sponse. That said, your email address will be re-1323

moved before the analysis of the surveys after you1324

collect your reward (details below).1325

E.3 Incentive1326

You will receive a $20 Amazon e-gift card for com-1327

pleting the survey in full. To receive your $201328

award, please contact the Anonymized author. He1329

will then check that you have completed the survey1330

in full using your email and arrange the payment.1331

You must collect your reward within one month of1332

completing the survey. For any compensation you 1333

receive, we are required to obtain identifiable infor- 1334

mation such as your name and address for financial 1335

compliance purposes. However, your name will 1336

not be used in any report or analysis of the survey 1337

results. Identifiable research data will be stored on 1338

a password-secured local lab computer accessible 1339

only to the research project members. 1340

E.4 Confidentiality of Data 1341

Your information may be used for future research or 1342

shared with another researcher for future research 1343

studies without additional consent. In addition, 1344

your email addresses will be deleted from the re- 1345

sponse spreadsheets, which will be stored on a 1346

password-secured local server computer accessible 1347

only by the research team members. The form con- 1348

taining the list of student emails that signed up to 1349

participate will be deleted once all surveys are com- 1350

plete. Once the entire research project is complete 1351

and the conference paper is published, anyone can 1352

view the results of the survey by referring to the 1353

conference website. The conference at which this 1354

paper will be accepted cannot be guaranteed at this 1355

moment. 1356

The information that you provide in the study 1357

will be handled confidentially. However, there may 1358

be circumstances where this information must be 1359

released or shared as required by law. The Insti- 1360

tutional Review Board may review the research 1361

records for monitoring purposes. 1362

For questions, concerns, or complaints about the 1363

study, you may contact the Anonymized author. By 1364

completing the entire survey, you are allowing your 1365

responses to be used for research purposes. 1366

17



E.5 Instructions to the Participants1367

1. Create a free ChatGPT (3.5) account if you1368

don’t have any.1369

2. Each problem comes with a problem state-1370

ment (shared via email). Create a separate1371

chat window in ChatGPT to solve each prob-1372

lem.1373

3. After solving each problem, you have to an-1374

swer the corresponding survey questions.1375

4. You also have to give the shareable link of the1376

chat from ChatGPT for each problem. (Chat-1377

GPT Shared Links FAQ)1378

5. Don’t delete the chats until you receive an1379

email from us about the deletion step.1380

18

https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq
https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq
https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq

	Introduction
	Measuring LLM Performance (Step 1)
	Methodology
	Results: LLM performance
	Discussion on the Findings

	Exploring Perturbations (Step 2)
	Perturbation Methodology
	Results: Perturbation Performance

	Field Experiment (Step 3)
	Methodology
	Analysis Results

	Discussion
	Related Work
	Conclusion
	Limitations
	Ethical Considerations
	Short and Long Problems
	LLM Code Generation Methodology
	Descripiton of our Perturbation Techniques
	Core perturbations.
	Exploratory Perturbations.

	User Study
	Description of the thematic analysis

	Research Participant Agreement
	Voluntary Participation
	Risks for the Participants
	Incentive
	Confidentiality of Data
	Instructions to the Participants


