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Distributed Inertial Continuous and Discrete Time
Algorithms for Solving Resource

Allocation Problem
You Zhao, Xiaofeng Liao , Fellow, IEEE, and Xing He , Member, IEEE

Abstract— In this article, we investigate several distributed iner-
tial algorithms in continuous and discrete time for solving resource
allocation problem (RAP), where its objective function is convex
or strongly convex. First, the original RAP is equivalently trans-
formed into a distributed unconstrained optimization problem by
introducing an auxiliary variable. Then, two distributed inertial
continuous time algorithms and two discrete time algorithms are
proposed and the rates of their convergence based on the gap
between the objective function and their optimal function are
determined. Our first distributed damped inertial continuous time
algorithm is designed for RAP with a convex function, it achieves
convergence rate at O( 1

t2
) based on Lyapunov analysis method,

and then we design a rate-matching distributed damped inertial
discrete time algorithm by exploiting implicit and Nesterov’s dis-
cretization scheme. Our second distributed fixed inertial discrete
time algorithm is designed to deal with the RAP with a strongly
convex objective function. Noteworthy, the transformed distributed
problem is no longer strongly convex even though the original
objective function is strongly convex, but it satisfies the Polyak-
Łjasiewicz (PL) and quadratic growth (QG) conditions. Inspired
by the Heavy-Ball method, a distributed fixed inertial continuous
time algorithm is proposed, it has an explicit and accelerated
exponential convergence rate. Later, a rate-matching accelerated
distributed fixed inertial discrete time algorithm is also obtained by
applying explicit, semi-implicit Euler discretization and sufficient
decrease update schemes. Finally, the effectiveness of the proposed
distributed inertial algorithms is verified by simulation.

Index Terms—Distributed inertial algorithms, resource
allocation, rate-matching, accelerated convergence, linear conver-
gence rate.
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I. INTRODUCTION

R ESOURCE allocation problem (RAP) is one of the im-
portant problems of network optimization that has been

extensively studied in power systems [1], antenna wireless edge
computing [2], cloud computing [3], machine learning [4],
etc. Resource allocation means assigning available resources
to gain maximum benefit. This issue has been modeled as an
optimization problem with the objective function being the sum
of local cost functions and the constraints being coupled to
achieve supply and demand equilibrium in [5] and [6]. To solve
RAP, many centralized algorithms have been investigated, for
instance, the Newton-Raphson method [7] and particle swarm
algorithm [8]. The centralized algorithms require a central node
to process and transmit the global variable information. How-
ever, as the network scales up, this central node will endure
heavy communication and computational burdens, unexpected
single points of failure, weaker scalability and robustness, and
privacy issues.

A. Literature Review

Recently, many distributed algorithms have been proposed
for RAP, which can be divided into two categories: distributed
discrete time algorithms and distributed continuous time
algorithms.

For distributed discrete time algorithms: Yang et al. [9] pro-
posed an incremental cost consensus algorithm for RAP and
provided its global convergence analysis. Necoara [10] proposed
a series of random coordinate descent algorithms that had a con-
vergence rate O( 1k ) and a linear convergence rate for RAP with
convex and strongly convex objective functions, respectively.
Doan et al. [11] investigated a distributed algorithm for RAP over
time-varying networks, and it had a convergence rate O(LBn2

k )
for a convex objective function and a linear convergence rate
O((1− μ

4Ln2 )
k
B ) for the strongly convex objective function.

Based on the Lagrangian function and an ADMM-like method,
Aybat and Hamedani [12] proposed a class of distributed algo-
rithms to solve RAP with a convex objective function, and they
had a convergence rate at O( 1k ). Nedić et al. [13] investigated
a series of Mirror-EXTRA algorithms for RAP and derived an
improved convergence rate, that is, an o( 1k ) when the objective
function was convex. Lü et al. [14] developed a distributed
Lagrangian momentum algorithm for RAP under a directed
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graph. Liu et al. [15] studied a distributed algorithm to deal
with the combined economic environmental dispatch problem
of Microgrids. Liu et al. [48] presented a distributed optimization
algorithm for economic dispatch with region partitioning. Wang
et al. [16] presented a transactive energy sharing (TES) approach
in a distributed manner for a microgrid operator (MGO) and
multiple distributed energy resources (DER) aggregators to
minimize the total social cost. Li et al. [17] presented a dis-
tributed market clearing algorithm based on the alternating
direction method of multipliers (ADMM) and the best response
seeking is developed to solve the optimal bidding problem of
MW-level microgrids aggregator (MGAs) and the optimal dis-
patch problem of the subtransmission network operator (SNO).

For distributed continuous time algorithms: In [18], Cherukuri
and Cortés proposed Laplacian-gradient dynamics for RAP with
an exponential convergence rate when the objective function was
strongly convex. Later, under a strongly connected and weight-
balanced digraph, Cherukuri and Cortés [19] designed a dis-
tributed coordination algorithm (DAC+LMG) for RAP. Based
on a θ-logarithmic barrier function, a distributed incremental
cost consensus (first-order) algorithm [20] and a distributed
primal-dual algorithm [21] for RAP were investigated, they
had exponential convergence rates when the objective func-
tion was strongly convex. Based on the primal-dual dynamical
method and projection operators, Yi et al. [22] investigated
an initialization-free distributed continuous time algorithm for
RAP over an undirected network, and it had an exponential
convergence rate for the strongly convex objective function but
only provided the guarantee of convergence property when the
objective function was convex. Zeng et al. [23] investigated
a distributed derivative feedback algorithm for an extended
monotropic optimization problem (a generalized version of
RAP) with a convergence rate at O( 1t ) when the objective
function was convex. Bai et al. [24] presented distributed algo-
rithms based on dynamic average consensus, leader-following
consensus, and the saddle point dynamics to solve the economic
dispatch problem. Wang et al. [25] proposed distributed dy-
namical systems over state-dependent communication networks
to deal with the nonsmooth resource allocation problem with
a convergence rate of O( 1t ). Second-order continuous time
algorithms (based on the inertial method) for RAP have been
investigated in [26], [27], [28]. In [26] and [28], the authors only
provided the convergence property of the proposed distributed
algorithm. In [27], the proposed second-order continuous time
algorithm that had an exponential convergence rate for RAP with
a strongly convex function, while only the convergence property
was analyzed when the objective function was convex. Zhu
et al. [29] investigated distributed proximal gradient continuous
time algorithms for RAP with a nonsmooth objective function.
Guo et al. [30] proposed an adaptive distributed continuous time
algorithm with duplex control laws to deal with nonsmooth
resource allocation problems, and only provided convergence
analysis. Zeng et al. [31] investigated a distributed primal-dual
accelerated method based on the dynamical primal-dual method
and Nesterov’s accelerated scheme to solve the distributed ex-
tended monotropic optimization problem with a convergence
rate of O( 1

t2 ).

B. Motivations

As for the RAP, the most existing distributed continuous
and discrete time algorithms were studied independently. In
fact, continuous time and discrete time algorithms are closely
related, and the researches to build bridges between accelerated
continuous time algorithms and corresponding rate-matching
discrete time algorithms are in full swing in centralized opti-
mization [32], [33], [34], [35], [36], [37]. To the authors’ knowl-
edge, there are very little works to investigate the relationship be-
tween distributed continuous time algorithms and rate-matching
distributed discrete time algorithms, except for the following
recent works: Chen et al. [38] revealed the DIGing algorithm was
a discretization of a distributed second-order continuous time
algorithm. To solve RAP with strongly convex functions, Shi
et al. [39] first proposed a continuous time distributed algorithm
with an exponential convergence, then presented a rate-matching
distributed discrete time algorithm. In addition, the convergence
rates of distributed continuous time and discrete time algorithms
mentioned above for solving RAP with a convex objective
function are slower than the optimal convergence rates O( 1

t2 )
and O( 1

k2 ). In addition, solving RAP with a strongly convex
objective function, the distributed discrete time algorithm in [11]
had a convergence rate O(pk), p ≈ 1− C μ

L (C is a positive
constant, μ

L is the condition number) that is less than O(qk),
q ≈ 1− C

√
μ
L in [40]. Based on the above discussion, it is

of great significance to establish the relationship between dis-
tributed continuous time and distributed discrete time algorithms
for RAP, and to enable the proposed distributed algorithms with
faster convergence rates, i.e., for RAP with a convex objective
function, the distributed continuous and discrete time algorithms
respectively had convergence rates O( 1

t2 ) and O( 1
k2 ). For RAP

with a strongly convex objective function, the distributed contin-
uous time algorithms had faster exponential convergence rates,
and the distributed discrete time algorithms had a convergence
rate of O(qk), q ≈ 1− C

√
μ
L .

C. Statement of Contributions

The main interest of this article is to investigate distributed
inertial continuous time algorithms and their corresponding
rate-matching discrete time algorithms for RAP over an undi-
rected network, and the work of this article is motivated by the
centralized accelerated algorithms [33], [41], [42], [43], [44]
together with distributed continuous time algorithms [20], [26]
and [45]. To deal with this issue, the original RAP is first equiva-
lently transformed into a distributed unconstrained optimization
problem by introducing an auxiliary variable, then a distributed
damped inertial continuous time algorithm and its rate-matching
distributed discrete time algorithm are also studied for RAP
with a convex objective function. Moreover, a distributed fixed
inertial continuous time algorithm and its rate-matching discrete
time algorithm are also presented to address RAP with a strongly
convex function. We wish to extend the theory of distributed
accelerated continuous and discrete time optimization, and to
provide a new perspective for designing distributed continu-
ous time and discrete time algorithms. In summary, the main
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TABLE I
COMPARISONS OF DIFFERENT DISTRIBUTED CONTINUOUS AND DISCRETE TIME ALGORITHMS

contributions of our paper can be summarised in the following
(see Table I):
� For RAP with a convex objective function, a distributed

damped inertial continuous time algorithm (DDICA) is
designed. In contrast to works in [19], [20], [21], [22]
and [26], [27], [28], DDICA has an explicit and accelerated
convergence rate O( 1

t2 ), which is faster than the algorithm
in [23]. Specifically, the convergence rate of DDICA can
be obtained easily and straightforwardly by using the Lya-
punov method.

� By the Nesterov’s discretization scheme, a novel rate-
matching distributed damped inertial discrete time algo-
rithm (DDIDA) with fixed step size is proposed. Compared
with [10], [11], [12], [13], DDIDA has faster and optimal
convergence rate O( 1

k2 ), which is easily obtained by a
discrete Lyapunov method.

� For RAP with a strongly convex objective function, we
propose a distributed fixed inertial continuous time algo-
rithm (DFICA) that has an explicit exponential conver-
gence rate. Compared with the second-order distributed
continuous time algorithms [26], [27], [28] (based on
the inertial method), we present the optimal inertial
parameters of RAP with a strongly convex objective
function.

� On account of explicit discretization scheme and suffi-
cient decrease update scheme, a rate-matching distributed
fixed inertial discrete time algorithm (DFIDA) is de-
signed, and it has a faster linear convergence rate O(qk),
q ≈ 1− C

√
μ
L .

� In addition, we have found that the transformed distributed
unconstrained optimization problem satisfies Polyak-
Łojasiewicz (PL) and quadratic growth (QG) conditions
when the objective function in RAP is strongly convex.
In reality, some non-convex functions satisfy PL condi-
tion [44], so the results of DFICA and DFIDA can also be
extended to solve some distributed non-convex optimiza-
tion problems.

The remainder of this article is organized as follows. In
Section II, graph theory, the resource allocation problem, and
its equivalently transformed problem are introduced. Section
III, distributed damped inertial continuous and discrete time
algorithms for RAP with a convex function are provided. In
Section IV, distributed fixed inertial continuous and discrete
time algorithms for RAP with a strongly convex function are
discussed. Two examples are presented to illustrate the supe-
rior and effectiveness of our proposed distributed accelerated
algorithms in Section V. Finally, we conclude the paper in
Section VI. To better understand the structure of our manuscript
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Fig. 1. Overall block diagram of this article.

and the relationship between distributed inertial continuous and
discrete time algorithms, we present an overall block diagram in
Fig. 1.

Notations: Let column vectors x = (x1, x2, {. . . , xn)
T and

y = (y1, y2, {. . . , yn)T , xT y =
∑n

i=1 xiyi is the inner product
of x and y, xi is the i-th element of x. ‖x‖ = (

∑n
i=1 x

2
i )

1
2

denotes the Euclidean norm. Let li and μi be Lipschitz con-
stant and strongly convex constant of ∇fi, respectively, then
set l = max{l1, . . ., ln}, μ = max{μ1, . . ., μn}. L ∈ Rn×n is a
Laplacian matrix of an undirected graph, then λ2 and �max(L)
are the second largest and the largest eigenvalue of Laplacian
matrixL, respectively.L1 represents a set of Lebesgue integrable
functions. In addition, the symbols z, x, y denote the variables in
DDICA and DDIDA respectively, while z, x, y, w, v represent
the variables in algorithms DFICA and DFIDA, respectively.
The original optimization objective function in RAP is f(x) and
the modified objective function is f(z) = f(Lz + x0) by using
an auxiliary variable z. The functions Γ k, Γ (t) have conver-
gence rate O( 1

kρ ), O( 1
tρ ) with ρ = 1, 2 if lim

k→+∞
sup kρΓ k <

+∞, lim
t→+∞sup tρΓ (t) < +∞ hold respectively. In addi-

tion, it is said to have a convergence rate o( 1k ) if lim
k→+∞

sup kΓ k = 0.

II. GRAPH THEORY, RESOURCE ALLOCATION PROBLEM AND

ITS EQUIVALENT REFORMULATION

This section introduces the preliminaries of algebraic graph
theory. Subsequently, the resource allocation problem (RAP)
and its equivalent reformulation are presented.

A. Graph Theory

A weighted undirected communication topology among
agents is denoted by G = (V, E ,A) with the set of nodes
V = {1, 2, . . . , N} and E ⊆ V × V denoting the edge set of
pairs of agents, i.e., the communication links. The couples of
agents in an undirected graph are unordered, where the (i, j)
means that there exists an information exchange between both
agents i and agents j. A path in undirected graph between
agent i and agent j is a sequence of edges of the form (i, i1),
(i1, i2), . . . , (is, j), where the i1, · · · , is, j are distinct agents.
The weighted adjacency matrix is defined by A, where A is
a N ×N nonnegative matrix with aij = aji if (i, j) ∈ E and
aij = 0 otherwise. The Laplacian matrix of graph G is defined
as L with Lij =

∑N
j=1,j 	=i aij and Lij = −aij , which indicates∑N

j=1 aij = 0.
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Consider a RAP over an undirected network with n agents as
follows:

min f(x) =
n∑

i=1

fi (xi), (1a)

s.t.
n∑

i=1

xi =
n∑

i=1

di, (1b)

where fi is continuously differentiable and convex, xi, di are the
local decision variable and resource demand variable of agent
i respectively.

∑n
i=1 xi =

∑n
i=1 di represents the total demand

of loads.
Assumption 1: The undirected graph of the multi-agents net-

work is connected.
Assumption 2: Each function fi(xi), i = 1, . . ., n is con-

vex and li-smooth, that is, it satisfies fi(xi)− fi(xi) �
∇fi(xi)

T (xi − xi) ∀xi 	= xi, and ∇2fi(xi) � li.
Assumption 3: The function fi(xi), i = 1, . . ., n is

μi > 0-strongly convex and li-smooth such that fi(xi)−
fi(xi) � ∇fi(xi)

T (xi − xi) +
μi

2 ‖xi − xi‖2 ∀xi 	= xi and
li � ∇2fi(xi) � μi > 0.

It can be derived from Assumptions 1 and 2 that the strongly
convex assumption condition serves as a special case of the con-
vexity condition and is a stronger condition than the convexity
assumption.

B. Optimality and Reformulation

Lemma 1: Suppose Assumptions 1, 2 or 3 hold, x∗ =
(x∗

1, . . ., x
∗
n)

T ∈ Rn is an optimal solution to the problem (1)
if and only if it satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇f1 (x∗

1) = ∇f2 (x∗
2) = . . . = ∇fn (x∗

n) ,

n∑
i=1

x∗
i =

n∑
i=1

di.
(2)

Proof: From Karush-Kuhn-Tucker conditions, x∗
i ∈ R is an

optimal solution of problem (1) if there exists Υ ∗ such that
n∑

i=1

x∗
i =

n∑
i=1

di,∇fi (x
∗
i ) = Υ ∗, i = 1, . . ., n,

which implies ∇f1(x∗
1) = ∇f2(x∗

2) = . . . = ∇fn(x∗
n). Thus,

the proof is completed. �
If Assumption 1 and

∑n
i=1 xi,0 =

∑n
i=1 di are satisfied, then

the sum of xi, i = 1, . . ., n in problem (1) satisfies
n∑

i=1

xi =
n∑

i=1

∑
j∈Ni

aij (zi − zj) +
n∑

i=1

xi,0

=

n∑
i=1

di, (3)

where zi is an auxiliary variable. The global equality constraint is
satisfied since xi =

∑
j∈Ni

aij(zi − zj) + xi,0, (i = 1, . . ., n).
Thus, the problem (1) can be equivalently converted into the

following problem [45]:

min f(z) = f (Lz + x0)

=

n∑
i=1

⎛
⎝fi (zi) = fi

⎛
⎝∑

j∈Ni

aij (zi − zj) + xi,0

⎞
⎠
⎞
⎠,

s.t.
n∑

i=1

xi,0 =

n∑
i=1

di, (4)

where z = (z1, . . ., zn)
T ∈ Rn.

C. The Gradient and Hessian Matrix Properties of f(Z)

For problem (4), the derivative ofxi, i = 1, . . ., nwith respect
to zj , j = 1, . . ., n is given by

dxi

dzj
=

⎧⎨
⎩
∑
j∈Ni

aij , i = j,

−aij , i 	= j.

(5)

Thus, we obtain

dfi
dzj

=
dfi
dxi

dxi

dzj
=

⎧⎨
⎩
∑
j∈Ni

aij∇fi (xi) , i = j,

−aij∇fi (xi) , i 	= j.

(6)

Note that the gradient of function ∇f(x) is shown as ∇f(x) =
(∇f1(x1), . . .,∇fn(xn))

T . Applying (6) and the Laplacian ma-
trix L, one has

∇f(z) = L∇f(x). (7)

Furthermore, we get the Hessian matrix of f(z) as follows:

∇2f(z) = L∇2f(x)L. (8)

It follows from (7) that the function f(z) is Lipschitz contin-
uous, such that ‖∇f(z1)−∇f(z2)‖ � l�max(L)

2‖z1 −
z2‖, ∀z1, z2 ∈ Rn, since ‖∇f(x1)−∇f(x2)‖ � l‖x1 −
x2‖, ∀x1, x2 ∈ Rn. While, on the basis of (8), the Hessian
matrix ∇2f(z) is semi-positive definite even though function
f(x) is a μ-strongly convex function since the Laplacian matrix
L is semi-positive. It’s worth noting that if f(x) is a μ-strongly
convex function, f(z) satisfies the Polyak-Łjasiewicz (PL) and
quadratic growth (QG) conditions.

Lemma 2: The f(z) satisfies the following conditions

μλ2
2

4
(f(z)− f (z∗)) � 1

2
‖∇f(z)‖2, (PL)

f(z)− f (z∗) � μλ2
2

2
‖z(t)− z∗‖2, (QG) (9)

if f(x) is a μ-strongly convex function with μ =
min{μ1, . . ., μn}.

Proof: 1) For PL [45]: Let z∗ = (z∗1, . . ., z
∗
n)

T ∈ Rn be an
optimal solution to problem (4), such that it is a trivial solution if
z∗ ∈ Rn\b1 for any constant b. In this proof, we mainly focus on
the nontrivial case, i.e., the convex and compact set z∗ ∈ Rn\b1.
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It follows from the convex property that

f (z) = f(z) +∇f(z)T (z− z)

+
1

2
(z− z)T ∇2f (ẑ) (z− z) , (10)

where ẑ = z + η(z− z) with η ∈ (0, 1).
Since the undirected graph communication is connected,

then its Laplacian matrix has the following eigenvalues 0 =
λ1 < λ2 � λ3 � · · · � λn and their corresponding eigenvectors
1, ζ2, ζ3, . . ., ζn with ‖ζi‖ = 1, i = 2, . . ., n. Thus, z − z∗ can
be represented as follows

z − z∗ = a11+ a2ζ2 + · · ·+ anζn, (11)

where ai, (i = 1, . . ., n) are constants. Let ζ = a2ζ2 + · · ·+
anζn, then ‖ζ‖2 = a22 + · · ·+ a2n. From (10), one has

f (z∗) = f(z) +∇f(z)T (z∗ − z)

+

∫ 1

0

∫ τ

0

(z∗ − z)T ∇2f (z + η (z∗ − z)) (z∗ − z) dηdτ ,

(12)

and

f(z)− f (z∗) � ∇f(z)T (z − z∗) . (13)

From (11) and (13) one has

f(z)− f (z∗) � ∇f(z)T (a11+ ζ)

= ∇f(x)TLa11+∇f(z)T ζ

� ||∇f(z)||||ζ||, (14)

the last inequality holds due to a1L1 = 0.
Recalling again (12) and the strongly convex property of f(x),

we have

f(z)− f (z∗)

� μ

2
‖λ2a2ζ2 + · · ·+ λnanζn‖2

� μλ2
2

2

(
a22 + · · ·+ a2n

)
=

μλ2
2

2
‖ζ‖2, (15)

Combining (14) and (15), we have

μλ2
2

2
‖ζ‖2 (f(z)− f (z∗)) � ‖∇f(z)‖2‖ζ‖2. (16)

The vector ζ 	= 0 since the solution is nontrivial. Dividing (16)
by ‖ζ‖2 yields

μλ2
2

4
(f(z)− f (z∗)) � 1

2
‖∇f(z)‖2. (17)

2) For QG: The proof is inspired by the work in [49]. Define a
function h(z) =

√
f(z)− f(z∗). From (17) with z0 	= z∗, one

has ‖∇h(z)‖2 = ‖∇f(z)‖2
f(z)−f(z∗) =

μλ2
2

2 , i.e., ‖∇g(z)‖2 �
√

μλ2
2

2 .
Note that f(z) satisfies PL condition (17) and we have that
f(z) is an invex function (i.e., every equilibrium point of f is
the global minimiser of f ), thus, h(z) is a positive invex function
with a closed optimal solution set S∗ with h(ẑ) = 0, if z ∈ S∗.
By solving the following differential equation:

ż = −∇h (z(t)) , z0 /∈ S∗. (18)

Since∇g(z) is bounded from below, i.e., ‖∇g(z)‖2 �
√

μλ2
2

2

and h(z) is a positive invex function, we know that function
g(z) is bounded below. By running the trajectory of (18), the
function h(z) is sufficiently reduced to 0, and z(t) tends to the
optimal solution set S∗. Therefore, there exists a constant Te,
such that z(Te) ∈ S∗ (at this point the differential equation is
well-posed). To obtain the results above mentioned, we use the
following condition

h (z0)− h (z(t)) = −
∫ T

0

∇h (z(t))T ż(t)dt

=

∫ T

0

‖∇h (z(t)) ‖2dt � μλ2
2

2
T. (19)

The nonnegative property of h(z(t)) implies that there exists
a T � 2h(z0)

μλ2
2

, such that z(T) ∈ S∗.

Next, we will show that the length of orbit z(t) from initial
point z0 by L(z0), which is derived from the following inequal-
ity:

L (z0) =

∫ T

0

‖ż(t)‖dt =
∫ T

0

‖∇h (z(t)) ‖dt

� ‖z0 − z∗‖, (20)

where the above inequality holds since the orbit is a path from
z0 to an optimal solution in optimal set S∗.

Using (19) again, one has

h (z0)− h (z (Te)) =

∫ Te

0

‖∇h (z(t)) ‖2dt

�
√

μλ2
2

2

∫ Te

0

‖∇h (z(t)) ‖dt �
√

μλ2
2

2
‖z0 − z∗‖. (21)

Note that h(z(Te)) = 0, then, h(z0) �
√

μλ2
2

2 ‖z0 − z∗‖. In

addition, let z0 = z, we obtain h(z(t)) �
√

μλ2
2

2 ‖z(t)− z∗‖,

i.e., h(z(t))2 = f(z)− f(z∗) � μλ2
2

2 ‖z(t)− z∗‖2. Thus, the
proof is completed. �

III. DISTRIBUTED DAMPED INERTIAL ALGORITHMS FOR RAP
WITH CONVEX FUNCTIONS

A. Distributed Damped Inertial Continuous Time Algorithm
(DDICA)

In this section, to solve problem (4) with a convex objective
function and get an accelerated convergence rate O( 1

t2 ), we
propose a distributed damped inertial continuous time algorithm
(DDICA) of agent i as follows:{

z̈i(t) +
α
t żi(t) = −∑j∈Ni

(∇fi (xi(t))−∇fj (xj(t)))

xi(t) =
∑

j∈Ni
aij (zi − zj) + xi,0,

(22)
where α ≥ 3, t > 0. The compact form of DDICA (22) is{

z̈(t) + α
t ż(t) = −L∇f (x(t)) ,

x(t) = Lz(t) + x0.
(23)
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In what follows, we will demonstrate the existence and
uniqueness of the solution to DDICA (23). Firstly, the definition
of its strong global solution needs to be given.

Definition 1: We call z(t) : [t0,+∞) → Rn is a strong global
solution of DDICA (23) if it satisfies:

(i) : z(t), ż(t) : [t0,+∞) → Rn are locally absolutely con-
tinuous;
(ii) : z̈(t) + α

t ż(t) + L∇f(Lz + x0) = 0 for almost every
t ≥ t0;

(iii) : z(t0) = u0 and ż(t0) = v0.
In order to prove the existence and uniqueness of the trajec-

tories of DDICA (23), the following Lemma is needed.
Lemma 3: When f(x) is a convex and l-smooth function, i.e.,

it satisfies Assumption 2, then for any u0, v0 ∈ Rn, there exists
a unique strong global solution of DDICA (23).

Proof: The DDICA (23) can be equivalently reformulated
into a first order dynamical system:{

Ẏ (t) = F (t, Y (t)) ,

Y (t0) = (u0, v0) ,
(24)

where Y (t) = (y(t), ẏ(t)), F : [t0,+∞)×Rn ×Rn → Rn ×
Rn, F (t, u, v) = (v,−α

t v − L∇f(Lu+ x0)).
Applying the Cauchy-Lipschitz-Picard Theorem to the first-

order dynamics in (24) with the following (i) and (ii) conditions
to guarantee the existence and uniqueness of strong global
solution to (24).

i) For every t ∈ [t0,+∞), the mapping F (t, ·, ·) is l(t)-
Lipschitz continuous and l(t) ∈ L1

loc.
Proof: Let t ∈ [t0,+∞) be fixed and (u, v), (ū, v̄) ∈ Rn ×

Rn. Taking advantage of the Lipschitz continuity of f , and
DDICA (23), we have

‖F (t, u, v)− F (t, ū, v̄) ‖

=
(
‖v − v̄‖2 +

∥∥∥α
t
(v̄ − v)

+L (∇f (Lū+ x0)−∇f (Lu+ x0))‖2
) 1

2

�
((

1 +
2α2

t2

)
‖v − v̄‖2 +2

(
l�max(L)

2
)2 ‖u− ū‖2

) 1
2

�
(
1 +

√
2α

t
+
√
2l�max(L)

2

)
‖(u, v)− (ū, v̄) ‖.

�
Letting l(t) = 1 +

√
2α
t +

√
2l�max(L)

2, we have
‖F (t, u, v)− F (t, ū, v̄)‖ ≤ l(t)‖(u, v)− (ū, v̄)‖. Obviously
the function l(t) is integrable on [t0,+∞), hence l(t) ∈ L1

loc.
ii) For all u, v ∈ Rn, one has F (·, u, v) ∈

L1([t0,+∞), Rn ×Rn).
Proof:∫ T

t0

‖F (t, u, v)‖dt

=

∫ T

t0

(
‖v‖2 +

∥∥∥α
t
v + L∇f (Lu+ x0)

∥∥∥2)
1
2

dt

≤
∫ T

t0

((
1+ 2α2

t2

)
‖v‖2+2�max(L)

2 ‖∇f (Lu+x0)‖2
) 1

2

dt

≤
∫ T

t0

(
1+

√
2α
t +

√
2�max(L)

)
dt

√
‖v‖2+‖∇f (Lu+ x0)‖2,

and the conclusion to (ii) follows by the continuity of the
function t → (1 +

√
2α
t +

√
2�max(L)) on [t0,T]. �

In view of the statements (i) and (ii), the existence and unique-
ness of a strong global solution to first-order dynamical system
(24) are hold which comes from the Cauchy-Lipschitz-Picard
Theorem. Therefore, the same conclusions are also applicable
to the DDICA (23). �

Theorem 1: Suppose Assumptions 1 and 2, α � 3, and∑m
i=1 x0,i =

∑m
i=1 di hold, DDICA (23) has a convergence rate

at O( 1
t2 ), i.e.,

f (Lz(t) + x0)− f (Lz∗ + x0)

= f (x(t))− f (x∗) = O

(
1

t2

)
. (25)

Proof: See the Appendix A, which can be found on the
Computer Society Digital Library at https://doi.org/10.1109/
TNSE.2023.3248267. �

B. Distributed Damped Inertial Discrete Time Algorithm
(DDIDA)

In the following, we derive a ‘rate-matching’ distributed
discrete time algorithm of DDICA (23), named as distributed
damped inertial discrete time algorithm (DDIDA) with a con-
vergence rate ofO( 1

k2 )when selecting a fixed positive step-size.
Introducing an auxiliary function γk = k+α−1

k(l�max(L)2) ,

lim
k→+∞

γk = k+α−1
k(l�max(L)2) = 1 in f . Then, applying explicit

Euler discretization to f with an auxiliary variable ξ, and
semi-implicit Euler discretization with respect to the α

t with
step-size is 1 to (23), we obtain

zk+1 − 2zk + zk−1 +
α− 1

k

(
zk+1 − zk

)
+

1

k

(
zk − zk−1

)
+ γkL∇f

(
Lξk + x0

)
= 0, (26)

and setting ξk = yk by using the Nesterov’s discretization
scheme in Fig. 2, we obtain the DDIDA as follows:⎧⎪⎨

⎪⎩
yk = zk + k−1

k+α−1

(
zk − zk−1

)
,

zk+1 = yk − 1
l�max(L)2L∇f

(
Lyk + x0

)
,

xk = Lzk + x0,

(27)

Theorem 2: Under Assumptions 1–2,
∑m

i=1 x0,i =
∑m

i=1 di
and α � 3, the DDIDA (27) has a convergence rate O( 1

k2 ), i.e.,

f
(
Lzk + x0

)− f (Lz∗ + x0)

= f
(
xk
)− f (x∗) = O

(
1

k2

)
.

Proof: Please see the Appendix B, available in the online
supplemental material. �
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Fig. 2. Nesterov’s discretization scheme.

IV. DISTRIBUTED FIXED INERTIAL ALGORITHMS FOR RAP
WITH STRONGLY CONVEX FUNCTION

For strongly convex optimization problems, the centralized
fixed inertial algorithms [41], [42], [43], [44] have faster expo-
nential and linear convergence rates. In this section, we want
to design distributed fixed inertial algorithms for RAP with a
strongly convex function, which have faster exponential and
linear convergence rates. It is worth noting that f(z) does not
satisfy the strong convexity property, even if the original f(x) is
strongly convex, so it is necessary to introduce some new tech-
niques to design fixed inertial distributed algorithms to obtain
faster exponential convergence rate (or linear convergence rate
of distributed discrete time algorithms).

A. Distributed Fixed Inertial Continuous Time Algorithm
(DFICA)

Note that f(z), i.e., f(Lz + x0) is not a strongly convex
function even if f(x) is strongly convex, but f(z) satisfies a
quadratic growth (QG) condition from Lemma 2. Inspired by
the centralized fixed inertial algorithms [41], [42], [43], [44],
we propose the following distributed fixed inertial continuous
time algorithm (DFICA) of agent i:⎧⎪⎨

⎪⎩
z̈i(t) + θżi(t)

=
∑

j∈Ni
(∇fi (xi(t))−∇fj (xj(t))),

xi(t) =
∑

j∈Ni
zi(t) + xi,0,

(28)

where θ = (2−
√
2
2 )

√
μλ2, and μ = max

1�i�n
{μi} in

Assumption 3. The compact form of DFICA (28) yields:

{
z̈(t) + θż(t) = L∇f (x(t)) ,

x(t) = Lz(t) + x0,
(29)

Before proving the existence and uniqueness of the strong
global solution of DFICA (29), it is needed to provide the
definition of a strong global solution similar to Definition 1,
which is

Definition 2: A solution z(t) : [t0,+∞) → Rn is called a
strong global solution to DFICA (29) if the following conditions
hold.
(i) : z(t), ż(t) : [t0,+∞) → Rn are locally absolutely con-

tinuous, that is, they are absolutely continuous in every interval
[0, q], with 0 < q < +∞;
(ii) : z̈(t) + θż(t) + L∇f(Lz + x0) = 0, for almost every

t ≥ t0 > 0;
(iii) : z(t0) = u0 and ż(t0) = r0.
Lemma 4: If f(x) satisfies Assumption 3, i.e, f(x) is a μ-

strongly convex and l-smooth function, then, there exists a
unique strong global solution of DFICA (29) for any u0, r0 ∈
Rn.

Proof: The DDICA (23) can be equivalently reformulated
into a first order dynamical system:{

Ẏ(t) = F (t,Y(t)) ,

Y (t0) = (u0, r0) ,
(30)

where Y(t) = (y(t), ẏ(t)), F : [t0,+∞)×Rn ×Rn → Rn ×
Rn, F(t,u, r) = (r,−θr− L∇f(Lu + x0)).

According to Cauchy-Lipschitz-Picard Theorem, the exis-
tence and uniqueness of strong global solution to (30) can be
guaranteed if the following (i) and (ii) conditions hold.

i) For every t ∈ [t0,+∞), the mapping F (t, ·, ·) is ι -
Lipschitz continuous and ι ∈ L1

loc.
Proof: Let t ∈ [t0,+∞) be fixed and (u, v), (ū, v̄) ∈ Rn ×

Rn. Taking advantage of the Lipschitz continuity of f , and
DDICA (23), we have

‖F (t,u, r)− F (t, ū, r̄)‖

=
(
‖r− r̄‖2 + ‖θ (r− r̄)

+L (∇f (Lu + x0)−∇f (Lū + x0))‖2
) 1

2

�
((
1 + 2θ2

) ‖r− r̄‖ 2
+2
(
l�max(L)

2
)2 ‖u− ū‖2

) 1
2

�
(
1+

√
2θ+

√
2l�max(L)

2
)
‖(u, r)−(ū, r̄)‖.

�
Let ι = 1 +

√
2θ +

√
2l�max(L)

2, we have ‖F(t,u, r)−
F(t, ū, r̄)‖ ≤ ι‖(u, r)− (ū, r̄)‖. Since ι : (t0,+∞) → R is in-
tegrable and is continuous on [t0,+∞), hence ι ∈ L1

loc.
ii) For allu, r ∈ Rn, one hasF(·, u, r) ∈ L1([t0,+∞), Rn ×

Rn).
Proof:∫ T

t0

‖F (t,u, r)‖dt

=

∫ T

t0

(
‖r‖2 + ‖θr + L∇f (Lu + x0)‖2

) 1
2

dt

≤
∫ T

t0

((
1+2θ2

) ‖r‖2+2�max(L)
2 ‖∇f (Lu+x0)‖2

) 1
2
dt

≤
∫ T

t0

(
1+

√
2θ+

√
2�max(L)

)
dt

√
‖r‖2+‖∇f (Lu+x0)‖2,

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:28:14 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: DISTRIBUTED INERTIAL CONTINUOUS AND DISCRETE TIME ALGORITHMS 3139

Fig. 3. Trajectories of state x of DDICA (23) (left). The trajectories of supply demand balance (middle). Comparison of convergence rates among DDICA (23),
DDFA [23], incremental cost consensus (second-order) algorithm [26] and incremental cost consensus (first-order) algorithm [20] (right).

Fig. 4. Trajectories of state x of DDIDA (27) (left). The trajectories of supply demand balance (middle). Comparison of convergence rates among DDIDA (27),
DDTA [15], Mirror-EXTRA [13], Predicted O( 1

k2 ) rate (right).

and the conclusion to (ii) follows by the continuity of the function
t → (1 +

√
2θ +

√
2�max(L)). �

In view of the statements of (i) and (ii), the existence and
uniqueness of strong global solutions of the first-order dynami-
cal system (30) holds, which comes from the Cauchy-Lipschitz-
Picard Theorem. Therefore, the same conclusion is also applied
to DFICA (29). �

Theorem 3: Under Assumption 1 and 3 and
∑n

i=1 x0,i =∑n
i=1 di, the proposed DFICA (29) has a convergence rate of

O(e−(2−√
2)

√
μλ2t), i.e.,

f (z(t))− f (z∗) = f (x(t))− f (x∗) = O
(
e−(2−

√
2)

√
μλ2t

)
,

‖z(t)− z∗‖ = O

(
e
−
(
1−

√
2
2

)√
μλ2t

)
. (31)

Proof: The proof is given in the Appendix C, available in the
online supplemental material. �

B. Distributed Fixed Inertial Discrete Time Algorithm
(DFIDA)

Note that (29) can be rewritten as:

ż(t) = v(t), (32a)

v̇(t) = − θv(t)− L∇f (x(t)) , (32b)

x(t) = Lz(t) + x0. (32c)

According to the discretization schemes in works [43], [44],
i.e., applying explicit discretization scheme to variable z and
semi-implicit Euler discretization scheme to v and following by
a sufficient decrease update, one has

1) For (32a), let yk−zk

s = vk, zk+1 = yk − s2L∇f(Lyk +
x0) on account of explicit Euler discretization scheme
and a sufficient decrease update step with step-size s =

1√
l�max(L)

.

2) For (32b), using semi-implicit discretization scheme with
θ = (2−

√
2
2 )

√
μλ2, s = 1√

l�max(L)
, a =

√
μλ2 yields

vk+1−vk

s = − θvk

1+θs − 1−θas2

(1+θs)(1+as)L∇f
(
Lyk + x0

)
⇒ vk+1 =

vk−sL∇f(Lyk+x0)
1+θs + as2

(1+as)L∇f
(
Lyk + x0

)
.

3) For (32c), one has xk+1 = Lzk+1 + x0 by the explicit
discretization scheme.
To sum up, we get a distributed fixed inertial discrete time
algorithm (DFIDA) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yk = zk + svk,

wk = (1 + θs)−1 (vk − sL∇f
(
Lyk + x0

))
,

zk+1 = yk − s2L∇f
(
Lyk + x0

)
,

vk+1 = wk + (1 + as)−1 as2L∇f
(
Lyk + x0

)
,

xk+1 = Lzk+1 + x0,
(33)

where θ = (2−
√
2
2 )

√
μλ2, s = 1√

l�max(L)
, a =

√
μλ2.
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Theorem 4: Suppose Assumptions 1, 3 and
∑m

i=1 x0,i =∑m
i=1 di hold, the proposed DFIDA (33) has the following a

faster linear convergence rate

f
(
zk+1

)− f (z∗) = f
(
xk+1

)− f (x∗)

= O

((
1− (2−

√
2)

√
μλ2√

l�max(L)
+ o

( √
μλ2√

l�max(L)

))k+1
)
,

‖zk+1 − z∗‖

= O

⎛
⎝(1− (2−

√
2)

√
μλ2√

l�max(L)
+ o

( √
μλ2√

l�max(L)

))k+1
2

⎞
⎠ . (34)

Proof: The proof is given in Appendix D, available in the
online supplemental material. �

Remark 1: It should be noted that the parameters s, θ and
s of DDIDA (27), DFICA (29) and DFIDA (33) are related to
the Fiedler eigenvalue λ2, Lipschitz constant l, strongly convex
parameter μ and �max(L). For λ2 and �max(L), some valid
distributed results can be utilized. For instance, distributed com-
putational approach in [50]. Moreover, l,μ can be obtained in the
following distributed manner, i.e., each agent i communicates
with its neighbor to get l by using min{·} operation of li, lj ,
j ∈ Ni, and to obtain μ by applying max{·} operation of μi,
μj , j ∈ Ni.

Remark 2: For the supply-demand constraint (1b), there are
two ways to achieve it in a distributed manner. First, leader
election is one method. That is, the 1 token is passed in the
network. If any agent i gets a token and also knows d, then it
chooses xi =

∑n
i=1 di and stops passing the token. For those

who do not get a token, they choose xi = 0, j 	= i. Second, the
1 token is passed into the network. If any agent i gets a token and
also knows

∑n
i=1 di, then they choose 0 � xi �

∑n
i=1 di and

transfer the token and the remaining resource d− xi to the next
agent. In addition, if agent i has two or more outer neighbors, an
outer neighbor agent is randomly selected to transfer the above
information. Thus, the initial network-wide supply and demand
constrained distribution is completed.

V. NUMERICAL SIMULATIONS

Example 1: DDICA (23) and DDIDA (27) for log-sum-exp
functions

In this example, consider a resource dispatch problem:

min

n∑
i=1

fi (xi); s.t.
n∑

i=1

xi =

n∑
i=1

di. (35)

Its local function is a log-sum-exp function fi(xi) =

a log
[∑m

i=1 exp(
γT
i,jxi−βi,j

a )
]
, wheren = 10,m = 50, a = 20,

d = 30, xi, γi,j , βi,j ∈ R are random scalars generated from a
uniform distribution on the interval [0, 1]. In addition, its com-
munication graph of 10 agents is presented in Fig. 5. Simulation
results of DDICA (23) and DDIDA (27) are shown in Figs. 3
and 4. In Fig. 3, it displays that the variables x are globally
asymptotically stable in (left) and the supply demand balance
is satisfied in (middle). In addition, the results in Fig. 3 (right)

Fig. 5. The communication graph of 10 agents.

Fig. 6. IEEE-14 bus system and its communication topology.

shows that the DDICA (23) has a much faster performance than
DDFA [23], incremental cost consensus (second-order) [26]
and incremental cost consensus (first-order) algorithm [20].
In Fig. 4 (left) and (middle), the global convergence property
and supply demand balance constraint of DDIDA (27) can be
obtained. In addition, the results in Fig. 4 (right) shows that
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Fig. 7. Trajectories of state x of DFICA (29) (left). The trajectories of supply demand balance (middle). Comparison of convergence rates among DFICA (29),
DCTI [39], DAC+LMG [46], SOCA-DE [28], incremental cost consensus (second-order) algorithm [26] and incremental cost consensus (first-order) algorithm [20]
(right).

Fig. 8. Trajectories of state x of DFIDA (33) (left). The trajectories of supply demand balance (middle). Comparison of convergence rates among DFIDA (33),
D-DLM [14], DTDA [39] and DICC-BOA [47] (right).

TABLE II
COST FUNCTION PARAMETERS

the DDIDA (27) has a faster convergence rate than DDTA [15],
Mirror-EXTRA [13] and Predicted O( 1

k2 ) rate.
Example 2: DFICA (29) and DFIDA (33) for Economic

Dispatch in Smart Grid
In this example, a numerical simulation on smart grid is

proposed to illustrate the effectiveness and superiority of DFICA
(29) and DFIDA (33). The convergence rate comparisons are
also considered. The IEEE-14 bus system and its communication
topology are displayed in Fig. 6. The cost function parameters of
generators are given in Table II [39], in which the cost function
is fi(xi) = ai,1x

2
i + ai,2xi, i.e., it is a strongly convex function.

First, the continuous time case, i.e., DFICA (29) is con-
sidered. Let PD = 300MW and x0 = [66, 55, 57, 55, 67]T .
The trajectories of state x, supply-demand constraint, and
error of f(x(t))− f ∗ are shown as in Fig. 7. As can be
seen from the Fig. 7 (left) that the DFICA (29) is globally

asymptotically stable and converges to the optimal solution
x∗ = [259.85, 17.98, 1.1254, 1.313, 19.735]T . The supply de-
mand balance always holds from Fig. 7 (middle). In addition,
the convergence performance comparison of DFICA (29) is
carried out in Fig. 7 (right), where the error log10(f(x(t))− f ∗)
is applied as the comparison indicator. As is shown in Fig. 7
(right), the DFICA (29) has an exponential convergence rate
which is consistent with the conclusion of Theorem 5, which
performs slightly better than DCTI [39], DAC+LMG [46],
SOCA-DE [28], incremental cost consensus (second-order) al-
gorithm [26] and incremental cost consensus (first-order) algo-
rithm [20].

Next, the discrete time case of DFICA (29), i.e., the DFIDA
(33) is also considered. Similar to the above continuous time
case. Letting PD = 300MW and x0 = [66, 55, 57, 55, 67]T .
The results of DFIDA (33) are shown in Fig. 8. As can be
seen from the Fig. 8 (left) and (middle) that the trajectories of
Gens are globally asymptotically stable and the supply demand
equality constraint always holds when using the initial values
x0 = [66, 55, 57, 55, 67]T . Fig. 8 (right) shows the result of
the comparative test on convergence rates of DFIA (8) and
other distributed algorithms with error measure f(xk)− f ∗.
Fig. 8 (right) shows that DFIDA (33) has a linear conver-
gence rate, and it improves the convergence rate in comparison
with the distributed algorithms with inertial term D-DLM [14],
DTDA [39] and DICC-BOA [47] without inertial accelerated
item.
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VI. CONCLUSION

In this article, we have proposed two accelerated distributed
(damped and fixed) inertial continuous time and distributed
discrete time algorithms for solving RAP under an undirected
graph. For solving RAP with a convex function, a distributed
damped continuous time algorithm with convergence rateO( 1

t2 )
has been proposed. Then, by the special Nesterov’s discretiza-
tion scheme, we have proposed a novel rate-matching distributed
damped discrete time algorithm with a fixed step-size, which has
a convergence rate of O( 1

t2 ). To deal with RAP with a strongly
convex objective function, we have found that the transformed
distributed unconstrained problem (4) satisfies the PL and QG
conditions although the original objective function is strongly
convex. Further, we have proposed a distributed fixed inertial
continuous time algorithm with an explicit and accelerated
exponential convergence rate. Later, based on explicit Euler,
semi-implicit and sufficient decrease update schemes, we have
also proposed a rate-matching novel distributed fixed inertial
discrete time algorithm with a fixed step-size, which has a linear
convergence rate (like O(qk), q ≈ 1− C

√
μ
L ). Comparison ex-

periments with existing state-of-the-art distributed continuous
and discrete time algorithms further illustrate the effectiveness
and superiority of our proposed distributed inertial algorithms.
Considering that many resource allocation problems in practical
applications are nonsmooth, we further study accelerated inertial
algorithms to solve nonsmooth resource scheduling problems in
future work; in addition, only the coupling equality constraint
is considered in this article, we will further study resource
allocation problems with general constraints and design the
corresponding inertial algorithms.
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