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ABSTRACT

State-of-the-art video deblurring methods use deep network architectures to re-
cover sharpened video frames. Blurring especially degrades high-frequency in-
formation yet this aspect is often overlooked by recent models that focus more on
enhancing architectural design. The recovery of high frequency detailing can be
non-trivial, in part due to the spectral bias of neural networks. Neural networks are
biased towards learning low frequency functions, making it to prioritize learning
low frequency components. To enhance the learning of latent high frequencies,
it is necessary to enforce explicit structures to capture the fine details or edges.
This work merges the principles of the classic unsharp masking with a deep learn-
ing framework to emphasize the essential role of high-frequency information in
deblurring. We generate an adaptive kernel, constructed from a convex combi-
nation of dynamic coefficients and predefined high-pass filtering kernels. This
kernel is then employed in a spatio-temporal 3D convolution process to extract
high-frequency components from the data. This method significantly improves
video deblurring, achieving a noteworthy enhancement with an increase of up to
0.61dB in PSNR over top models on GORPO dataset. Additionally, it outpaces
the majority of them in inference time.

1 INTRODUCTION

Video deblurring sharpens video frames from blurry input sequences. Deblurring is ill-posed as it
aims to recover information lost during blurring. Classical sharpening techniques include unsharp
masking and high-pass filtering to enhance the edges and detailing. Other methods (Xu et al. (2013);
Krishnan et al. (2011); Pan et al. (2016a)) try to estimate the underlying blur kernels to reverse the
effects. In the case of multi-image deblurring (Zhang et al. (2013); Cai et al. (2009)), the missing
information can be approximated by observations over multiple frames. However, these classical
methods are usually based on degradation models that are too simple to capture real-world scenes.

Recent advancements in video deblurring methods rely on deep neural networks trained end-to-end.
These methods use advanced alignment techniques (Wang et al. (2022); Pan et al. (2020); Lin et al.
(2022)) and deformable convolutions (Wang et al. (2019); Jiang et al. (2022)) which are effective but
also computationally expensive and non-ideal for optimized hardware. Another hurdle confronting
these models is the effective learning of high frequencies. Neural networks are prone to spectral
bias - a preference for learning more towards low frequency component (Rahaman et al. (2019)).
As a result, this inclination can hinder their ability to discern intricate textures or patterns. The bias
against learning high frequencies poses a significant obstacle in video deblurring, where the recovery
of these lost high-frequency elements is crucial. Recent works mitigate the spectral bias with the
high-dimensional Fourier feature space (Tancik et al. (2020); Mildenhall et al. (2021)). Partially
inspired by these efforts, our work utilizes simple high-pass filtering kernels, discovering they alone
can yield substantial improvement.

Unsharp masking (Deng (2010); Ye & Ma (2018)) is a classical image sharpening technique which
emphasizes high-frequency information by enhancing the image gradients. Inspired by the formula-
tion of unsharp masking, we extend it to incorporate into a deep learning framework and customise
it towards video deblurring. Central to unsharp masking is the explicit extraction of high-frequency
components from the image. Integrating similar components (spatial and temporal gradients) into
a neural network for video deblurring leads to a marked improvement (0.39dB), highlighting the
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benefits of explicit high-pass filtering operations for deblurring. Inspired by these results, and to
mitigate spectral bias, we propose to use a set of predefined high-pass filtering kernels for video
deblurring. These kernels act as building blocks to learn high-frequency extraction kernels for our
adaptive high-frequency extraction network (AHFNet). AHFNet attains state-of-the-art performance
on video deblurring datasets while limiting computation complexity.

Our contributions are as follows:

• We reformulate video deblurring by extending unsharp masking. Explicitly extracting high-
frequency information is critical and including spatial and temporal gradients greatly en-
hances video deblurring.

• We present a new high-frequency extraction operation, designed to adaptively extract
high frequencies. The integration of operation into the network effectively captures high-
frequency components, allowing neural networks to utilize the detailed information in the
input video fully for the restoration of lost details.

• We have conducted both quantitative and qualitative evaluations of our proposed AHFNet
on GOPRO and DVD datasets. AHFNet delivers state-of-the-art performance in terms of
accuracy. Efficiency metrics (GMACs and runtime) further underline the model’s efficacy.
Notably, our model achieves a maximum speedup of 35x compared to other models while
maintaining superior PSNR and SSIM scores.

2 RELATED WORK

Classic deblurring algorithms. Classic deblurring algorithms often leverage image structures or
priors, e.g. sparse gradient priors (Xu et al. (2013); Krishnan et al. (2011)), intensity priors (Pan et al.
(2016a)), and edges (Cho & Lee (2009); Xu & Jia (2010); Yang & Ji (2019); Sun et al. (2013); Xu
et al. (2013)). Unsharp masking (Ye & Ma (2018); Deng (2010); Polesel et al. (2000)) counteracts
blurring in an image by reintroducing a scaled version of the image’s high-frequency components.
This emphasizes the fine details or edges and enhances the image’s overall sharpness. Other methods
iteratively estimate the blur kernel and sharpened outputs (Cho & Lee (2009); Zhang et al. (2022b);
Pan et al. (2016b); Shan et al. (2008)). Multi-image blind deconvolution algorithms restore the target
image from multiple blurred or relevant images (Cai et al. (2009); Rav-Acha & Peleg (2005); Zhu
et al. (2012); Zhang et al. (2013); He et al. (2012)).

Classic deblurring algorithms have difficulty in generalizing well to diverse and unseen types of blur.
In our work, we extend unsharp masking to the realm of deep learning. By doing so, we combine the
advantages of utilizing high-frequency information with the substantial capacity of neural networks
to enhance video deblurring.

Deep learning methods. Deep learning methods for video deblurring restore sharp videos with
deep neural networks (Su et al. (2017); Wang et al. (2019); Pan et al. (2020); Zhong et al. (2020)).
Recent works have focused on improving the information retrieval from neighboring frames using
optical flow (Wang et al. (2022); Lin et al. (2022)), deformable convolution (Wang et al. (2019);
Jiang et al. (2022)), and feature matching (Ji & Yao (2022); Li et al. (2021)). For example, de-
formable convolution requires increased memory access, irregular data structuring, and dynamic
computational graphs , all adding to the complexity and resource demands (Guan et al. (2022)).

Existing works differ primarily in their architectural approaches to deblurring. Our work takes a
distinct direction as we place a greater emphasis on the significance of high frequencies to mitigate
the effects of spectral bias (Rahaman et al. (2019)) and improve deblurring outcomes.

Kernel prediction networks. Kernel prediction networks determine convolution weights dynam-
ically during inference (Chen et al. (2020); Ma et al. (2020); Zhou et al. (2019); Jia et al. (2016)).
The kernel prediction network (Xia et al. (2020); Zhang et al. (2023)) synthesizes kernel bases and
coefficients to derive an adaptive filter. Nonetheless, the optimization of kernel prediction modules
presents a significant challenge, requiring extensive data and extended training time to accurately
predict a blur kernel. In our proposed method, we incorporate specific high-pass filtering kernels.
This not only emphasizes the extraction of high-frequency components but also eases the computa-
tional load by solely concentrating on the prediction of coefficients.
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3 APPROACH

3.1 FORMULATION

Our formulation is inspired by the relationship between unsharp masking and the residual learning.
In one specific formulation of unsharp masking, the restored image ŷ is the sum of input x (pre-
sumably blurry) and some high-frequency components of x extracted by convolving with high-pass
filter kernel K:

ŷ = x+ λ(K ∗ x), (1)
where ∗ denotes a convolution operation and λ is a scaling factor that controls the amount of high-
frequency contents to be added back. K can be any high-pass filter, e.g. a Laplacian. In more general
forms of unsharp masking, λ can also be spatially varying and depend on the local information
contained in x, i.e. λ(x) (Ye & Ma (2018)). Eq. 1 has the same form as residual learning in deep
neural networks, where λ(K ∗ x) serves as a residual term.

Assume a latent sharp image y is blurred with a low-pass kernel K̃, resulting in a blurred image
x = K̃ ∗ y. The actual residual is y − x = (1 − K̃) ∗ y. Here, (1 − K̃) acts as a high-pass filter.
Hence, the residual (1− K̃) ∗ y is effectively the high-pass filtered result, or high frequencies, of y.

Given the importance of high-frequency information for deblurring, we extend the formulation of
unsharp masking to video deblurring for a deep neural network. Specifically, we generalize K and
∗ as a spatio-temporal 3D kernel and the corresponding convolution operator. The λ scaling can be
viewed as an adaptive transformation operator based on the characteristic of x. This generalization
turns the Eq 1 into:

ŷt = xt + F(xt,M({xi}t+l
i=t−l)), (2)

where t denotes the frame index in the video, F is general transformation replacing λ, M is the
spatio-temporal 3D high-frequency extraction operation and {xi}t+l

i=t−l denotes the local temporal
window around xi with span of l. This generalization includes traditional unsharp masking as a
special case. Specifically, when M acts as high-pass filtering and F operates as scalar multiplication
independent of input x, Eq 2 reduces to Eq 1.

Computing high-frequency features from a local temporal window is essential because blurring often
involves inter-frame effects. Consider the GOPRO dataset as an example. A blurry frame is formed
by accumulating sampled sharp frames, expressed as:

x ≈ g(
1

T

T∑
i=1

si), (3)

where g is the nonlinear camera response function (CRF), T is the number of sampled frames and si
is the original frame captured during the exposure time. If we ignore the CRF, Eq 3 can be viewed as
the convolution of consecutive frames with an averaging kernel. Therefore, the neighboring frames
are required in video unsharp masking. We show the effects of the spatio-temporal high-frequency
extraction in Section 4.3.

Our formulation is more flexible and expressive in terms of both high-frequency extraction and scal-
ing, which is shown to be important in traditional unsharp masking. In other words, we decompose
the deblurring operation into two stages: 1) extracting the high-frequency components; 2) transform-
ing the high frequencies into residual. Instead of blindly training a black box to restore the residual,
we emphasize the importance of extracting HF information from the video unsharp masking view.

3.2 ADAPTIVE HIGH-FREQUENCY EXTRACTION OPERATION

A key challenge of the high-frequency extraction module M is the learning bias of neural net-
works (Rahaman et al. (2019); Arpit et al. (2017)). Neural networks prioritize learning simpler
patterns, taking more time to adapt to complex textures or fine details. To address this, we propose
our adaptive high-frequency extraction operation, as presented in Figure 1b. Before delving into the
details, we establish a proposition as follows and give proof in Appendix A:
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Proposition 1. Given M spatial high-pass filters with impulse responses hi(x) and corresponding
frequency responses Hi(f) with cutoff frequencies fci (sorted such that fc1 ≤ fc2 ≤ · · · ≤ fcM ,
a linear combination of these filters with positive coefficients αi in the spatial domain, represented
as:

h(x) =

M∑
i=1

αihi(x), (4)

will itself act as a high-pass filter in the spatial domain, with a corresponding frequency response
H(f) and a cutoff frequency not greater than fc1.

This motivates us to train a kernel prediction module whose weights are the convex combination of
the predetermined kernels and the coefficients that are dynamically predicted. The main difference
from other kernel prediction modules is that we limit the space of the predicted kernels within high-
pass filtering kernels only. We consider a space that is formed by a group of 3D linearly independent
high-pass filter kernels {ki}Mi=1 = k1, . . . , kM . Each kernel is of size RTk×Hk×Wk where Tk, Hk

and Wk represent the temporal length, height and width of the kernel, respectively. To obtain the
high-frequency feature for xt, we use the coefficient generator G to compute a coefficient αt ∈ RM :

αt = G({xi}t+l
i=t−l), (5)

The concatenated input of Tk consecutive frames has a size of C × Tk × H × W , where C is the
input dimension. The synthesized kernel kt has a size of 1×Tk×Hk×Wk. The synthesized kernel
for the t-th frame is:

kt =

M∑
j=1

αtjkj (6)

Proposition 1 assures that kt continues to be high-pass filtering kernel. We perform spatio-temporal
3D convolution on the image xt and kt and obtain the feature rt.

To cover the orthogonal direction , we rotate the kernel bases by 90 degrees anticlockwise, forming a
new set of kernel bases aligned in an orthogonal direction, which we denote as K̃ = {k̃i}Mi=1. Next,
we apply the coefficients αt to K̃ as illustrated in equation 6, resulting in another feature, denoted
as q̃t. Finally, we amalgamate the data extracted from high frequencies in orthogonal directions by
summing the absolute values of the feature maps rt and r̃t. The output can be expressed as:

rt = {ki ∗ xt, k̃i ∗ xt, |ki ∗ xt|+ |k̃i ∗ xt|}, (7)

where ∗ represents 3D convolution. The incorporation of rotated kernels enhances the diversity of
frequency extraction in varying directions. By introducing magnitude, we facilitate a more compre-
hensive aggregation of information from the two directions.

By utilizing a set of predefined high-pass building kernels, we are able to extract various features
from the input images, all within a designated feature space designed specifically for high-frequency
features. Their convex combination works still as a high-frequency extraction. This approach alle-
viates the optimization workload in the early module as it only requires predicting M coefficients
for each building kernel. In contrast, predicting entire kernels would necessitate the prediction of
TkHkWk number of parameters. By adaptively predicting different coefficients for each frame, the
model can adjust its frequency extraction based on input characteristics. We handle color input by
applying the same kernel separately to each channel.

3.3 ARCHITECTURE

We present the overview of our entire model in Figure 1a. A total of N + 1 paths or extraction
modules are used to extract the N high-frequency features along with the original RGB feature.
They use the same building kernels, but each path operates with distinct trainable parameters. Each
path comprises preprocessing modules designated as P = {Pn}Nn=0, paired with a feature extractor,
labeled as R = {Rn}Nn=0. R0 is designated as an identity function. The subsequent N extraction
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(a) AHFNet (b) Adaptive high-frequency extraction operation

Figure 1: Overview of our model.

modules use the adaptive high-frequency extraction operation detailed in Section 3.2. Each extrac-
tion module takes the input sequence, X , and converts it into a unique type of high-frequency feature
set, {rnt }Nn=1 for the t-th frame. This output is then channeled through a respective preprocessing
module, Pn, to be combined with other features for further analysis. The result of the n-th path for
the t-th frame is:

pnt = Pn(Rn({xi}t+m
i=t−m)). (8)

The recurrent deblurring module D takes the feature set {pnt }Nn=0 and the feature from the previous
frame, denoted as hprev, as input. We fuse them using concatenation. We experimented other fusion
structures, but found that they are not critical to the performance. The warping module W warps
hprev with the optical flow computed between xprev and x for feature alignment (Chan et al. (2021)).
As a result, the process of the deblurring module can be formulated as:

ht = D({pnt }Nn=0,W(hprev, xprev, xt)). (9)

where hprev represents ht−1 and ht+1 during forward and backward pass, respectively. Our model is
a bidirectional method. In Figure 1, we make the warping connection a bit transparent to highlight
the main processing. Finally, the reconstruction module U takes the ht from the forward (superscript
f) and backward pass (superscript b) as input to reconstruct the final output:

ŷt = xt + U(hf
t, h

b
t) (10)

The predicted residual U(hf
t, h

b
t) is equivalent to the term F(xt,M({xi}t+l

i=t−l)) in Eq 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. We used the DVD dataset (Su et al. (2017)) and GOPRO dataset (Nah et al. (2017))
for evaluation. The DVD dataset comprises 61 training and 10 testing videos with 6708 blurry-
sharp image pairs. The GOPRO dataset has 22 training and 11 testing sequences, with 3214 image
pairs. Following (Pan et al. (2020)), we used the version without gamma correction. Each video is
1280× 720× 3 in size.

Evaluation metrics. We evaluated performance with the peak signal-to-noise (PSNR) and
SSIM (Wang et al. (2004)). The computational expense of each model was indicated with run-
times and number of giga multiply-accumulate operations (MAC) with respect to the frame size of
1280× 720× 3. Lower runtimes and GMACs denote greater efficiency.

Training Details. For training, we used a Charbonnier loss (Charbonnier et al. (1994)) and
the ADAM optimizer (Kingma & Ba (2014)) with default hyperparameters, i.e. β1 = 0.9 and
β2 = 0.999. The initial learning rate was set to 2 × 10−4 and decayed with a cosine restart strat-
egy (Loshchilov & Hutter (2016)) with a minimum learning rate of 1× 10−7; the number of epochs
between two warm starts was set to 300k. We trained our model for 600k iterations. For data aug-
mentation, we applied random rotations and flipping. The batch size was set to 8, and the length of
a training sequence was set to 10 frames. The size of the training patch was 256× 256.
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Table 1: Comparison with SOTA on GOPRO dataset.

Model PSNR SSIM GMACs Params Time(s)
EDVR (Wang et al. (2019)) 26.83 0,8426 468.25 20.04 0.246

DBN (Su et al. (2017)) 28.55 0.8595 784.75 15.31 0.063
IFIRNN (c2h3) (Nah et al. (2019)) 29.80 0.8900 217.89 1.64 0.053

SRN (Tao et al. (2018)) 29.94 0.8953 1527.01 10.25 0.244
ESTRNN (C90B10) (Zhong et al. (2020)) 31.02 0.9109 215.26 2.47 0.124

CDVD-TSP (Pan et al. (2020)) 31.67 0.9279 5122.25 16.19 1.763
MemDeblur (Ji & Yao (2022)) 31.76 0.9230 344.49 6.99 0.152

ERDN (Jiang et al. (2022)) 32.48 0.9329 29944.57 45.68 5.094
STDANet-Stack (Zhang et al. (2022a)) 32.62 0.9375 6000.00 13.84 2.827

MMP-RNN(A9B10C18F8) (Wang et al. (2022)) 32.64 0.9359 264.52 4.05 0.206
AHFNet 33.25 0.9439 461.35 6.75 0.144

Architecture Details. The preprocessing module P comprises of a one-layer convolution followed
by two residual dense blocks that downsample the input by a scale factor of 0.25. The preprocessing
module has a complexity of only 4.26% of the GMACs compared with the deblurring backbone. The
deblurring module D consists of a single convolution layer followed by 30 residual blocks without
batch normalization (Lim et al. (2017)). The output of the residual blocks is upsampled using pixel
shuffle modules (Shi et al. (2016)) to obtain the residual in U . We use SPyNet (Ranjan & Black
(2017)) as the warping module W .

Building kernels. In our implementation, high-frequency extraction operation uses only m = 4
building kernels, with the first two being normalized Sobel and the other two being

[
[0] , [−1] , [1]

]
and

[
[1] , [−1/2] , [−1/2]

]
. This configuration implies, for instance, that the first kernel will yield a

filtered output represented as 0 · xt−1 − xt + xt+1. Each kernel has a size of 3× 3× 3. We opt for
these four kernels as bases owing to their simplicity and comprehensiveness. Other building kernels
can also fulfill the same role as long as they function as linearly independent high-pass filtering
kernels.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

Table 2: Comparison with SOTA on DVD.

Model PSNR SSIM
SRN 30.53 0.8940

IFIRNN (c2h3) 30.80 0.8991
EDVR 31.82 0.9160

CDVD-TSP 32.13 0.9268
ARVo (Li et al. (2021)) 32.80 0.9352

STDANet-Stack 33.05 0.9374
AHFNet 33.19 0.9400

Tables 1 and 2 compare our model with the
state-of-the-art models on the GOPRO and
DVD datasets, respectively. For the GOPRO
dataset, we employ metrics of distortion per-
formance and efficiency for comparison. On
the DVD dataset, we ensure a fair comparison
by comparing our model with models of similar
complexity.

Our model achieves the state-of-the-art perfor-
mance with relatively fewer GMACs and run-
time. Compared with MMP-RNN, our PSNR is
0.61dB higher, and runtime is only 70%, even
though our GMACs is larger. Compared with
ERDN and STDANet, our model is superior in
terms of both performance and efficiency. Overall, the GOPRO data features stronger blurring;
this is shown indirectly since the same methods have higher PSNRs on the DVD than on GOPRO.
Comparing results across the datasets, our model is better on the GOPRO dataset than on the DVD
dataset, probably indicating that high frequency becomes more significant when the blurry artifacts
are severe.

We provide visual comparisons with state-of-the-art models in Figure 2 and 3. Figure 2 shows
that our model is superior in capturing the digits “55” compared to other models, and it produces
the sharpest curve of the car. In Figure 3, we provide examples of the challenging recovery of tree
details, which are difficult to achieve with high fidelity. While all models exhibit some degree of
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blurriness, our model has fewer artifacts than others. For instance, STDAN displays a diagonal strip
artifact that our model does not exhibit.

(a) Input (b) DBN (c) ESTRNN (d) CDVD-TSP (e) Ours (f) Ground-truth

Figure 2: Qualitative comparisons on the GOPRO dataset.

(a) Input (b) DBN (c) CDVD-TSP (d) STDAN (e) Ours (f) Ground-truth

Figure 3: Qualitative comparisons on the DVD dataset.

4.3 EFFECTS OF HIGH-FREQUENCY EXTRACTION

Table 3: Experiments on various high-pass filters.

Model PSNR SSIM GMACs
RGB(×1) 32.39 0.9346 387.25
RGB×2 32.47 0.9363 400.82
RGB×3 32.45 0.9356 414.39

RGB+∇x (Sobel) 32.53 0.9363 403.76
RGB+∇x (Prewitt) 32.54 0.9364 403.76
RGB+∇x (Kirsch) 32.51 0.9356 403.76

RGB+∇2x 32.37 0.9335 402.26
RGB+∇tx 32.41 0.9340 400.82

RGB+∇x + ∇tx 32.78 0.9394 417.28

In this section, we show the effects of in-
troducing the high-frequency extraction in
the formulation of Eq 2. In short, our find-
ings reveal a marked enhancement in per-
formance after integrating high-pass fil-
ters for video deblurring. Specifically,
we incorporated several popular high-pass
filtered kernels to an arbitrary baseline
model. Our model followed the same ar-
chitecture described in Section 3.3 but re-
placed the high-frequency extraction oper-
ation with simple high-pass filtering ker-
nels. Since we use convolution-based ker-
nel operation, we focused on the study
on high-pass filters rather than adopting a
Fourier transform perspective. Within the
realm of high-pass filters, we used first-order filters (∇x), including Sobel, Prewitt, and Kirsch,
second-order filters (∇2x) like the Laplacian, and the temporal gradient filter (∇tx). This selection
of simpler filters was intentional to restrain the growth in complexity. With a pre-processing module
in place, these filtered results would still contribute to a highly intricate feature map. The temporal
kernel used is [[1/2], [−1], [1/2]].

Results are shown in Table 3. The variant “RGB×k” repeated the early module (P ◦ R) k times
so that the complexity matches the others for fair comparison. It can be observed that a modest
increase in the complexity of the early modules enhances performance (from 32.39dB to 32.47dB),
yet a further complexity increase reverses this gain, causing a decline to 32.45dB. This highlights
that increasing complexity does not invariably improve performance.

The incorporation of the first-order filters enhances the PSNR across the various experimental vari-
ants, with improvement ranging from 0.04dB to 0.07dB. The second-order and temporal gradients
fail to yield expected performance boosts. The former is more noise-sensitive, despite blur effects
in the input theoretically suppressing noise, compared to the first-order gradient. The temporal gra-
dient is affected by misalignment issues. In alignment with the discussion regarding the frequency
calculation requirement of a temporal window in Section 3.1, merging the first-order and temporal
filters results in a substantial improvement of 0.39dB. This approach generates a significant impact,
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(a) Input (b) GT residual (c) ∇x (d) ∇2x (e) ∇tx

Figure 4: Visual examples for various image representations of the input.

Table 4: Comparison of the high-frequency extraction operation.

w/o R 3DConv Naive Kernels AHFNet
N - 6 6 0 2 4 6

PSNR 32.39 32.82 32.80 32.56 32.68 32.71 32.89
SSIM 0.9346 0.9384 0.9378 0.9366 0.9372 0.9371 0.9398

GMACs 387.25 462.71 461.35 410.73 427.66 444.51 461.35

boosting the PSNR by 0.39dB and SSIM by 0.0048 in comparison to the baseline model, and en-
hancing the PSNR by 0.33dB and SSIM by 0.0038 relative to a model of similar complexity. This
improvement surpasses the aggregate benefits of employing them separately, showing the potential
of temporal gradients to fine-tune high-frequency extraction from spatial gradients. The choice of
building kernels of AHFNet is also motivated by the first-order gradient filters and temporal kernels.

We visualize various image representations derived from different high-pass filtering kernels in Fig-
ure 4. Visually, the first-order gradient map adeptly captures more details compared to the second-
order gradient and proves more robust against the distortion apparent in the results of the temporal
gradient. However, the straight lines in the triangular roof that are captured by the spatial gradient
maps are not visible in the ground-truth residual map. This means that the spatial gradients contain
unimportant details. On the other hand, such straight lines are invisible in the temporal gradient,
indicating that it filters out of those sharp edges that do not receive significant blur.

4.4 HIGH FREQUENCY KERNEL OPERATION

We assess the effectiveness of the high-frequency extraction operation by comparing it with three
variants: (A) (w/o R) without M in Eq 2; (B) (3D Conv) using learnable 3D convolutions; and
(C) (Naive Kernels) substituting building kernels with TkHkWk number of kernels, each with a
unique non-zero entry. Each model is trained for 300k iterations. We compare with the latter two
variants because they are as complex as ours but not specially designed to extract high frequencies.
Additionally, we assess scenarios with varying numbers of paths for high-frequency extraction, i.e.
N . The variant without R exhibits differing complexity compared to AHFNet(N = 0) because of
adjustments made in the pre-processing module to enhance representation. Table 4 shows that our
proposed operation attains the highest PSNR and SSIM. Increasing the number of paths can further
improve the performance. However, as illustrated in Section 4.3, a mere increase in complexity does
not guarantee better results, especially when high-frequency extraction is not incorporated.

To evaluate the learning on different frequencies, we divide the Fourier coefficients into 10 fre-
quency sub-bands based on their frequencies and calculate the average MSE on each sub-band
on the GOPRO dataset. Specifically, consider an output image of size H × W .The discrete
Fourier transform calculates the frequencies at the coordinate (i, j), where i and j range from
[−H

2 ,
H
2 − 1] and [−W

2 , W
2 − 1], respectively. We define the length of each sub-band as d =

((H2 )
2 + (W2 )2)/10. For the z-th frequency sub-band, we select the Fourier coefficients where

zd ≤
√
(i− H

2 )
2 + (j − W

2 )2 < (z + 1)d. Each coefficient in the sub-band is then used to com-
pute the MSE, which is compared with the corresponding coefficients in the Fourier transform. To
make the difference obvious, we subtract the MSE values from those from the variant “w/o R”. The
results are shown in Figure 6. Even with slight performance reductions in the highest frequency ar-
eas, possibly attributed to training variance, high-frequency extraction operation consistently excels
in the majority of the sub-bands.
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(a) Input (b) r1 (c) r2 (d) r3

(e) Ground-truth (f) r4 (g) r5 (h) r6

Figure 5: Examples of learned kernels and feature.

4.5 VISUALIZATION

We provide visualizations of the learned kernels and features, namely {kn}Nn=1 and {rn}Nn=1, as
shown in Figure 5, for AHFNet. The figure displays six images (Figures 5b-5d and Figures 5f-5h),
each corresponding to a different path. The synthesized six kernels are displayed in the top-right
corner of the figure. Each kernel has dimensions 3 × 3 × 3, i.e. Tk = Hk = Wk = 3. We use
nearest-neighbor interpolation to scale the kernels up for better visualization. The top right part
of the figure shows the generated kernels, and from left to right, the figure depicts the kernels that
work on the previous, current, and next frames, respectively. Kernels are normalized to [−1, 1] for
visualization, where white, gray, and black signify 1, 0, and -1, respectively.

Our model’s capability to extract diverse high-frequency information is observable, with no two
synthesized kernel pairs being identical. All synthesized kernels emphasize the current frame, ev-
ident from the slightly gray color of all middle kernels which operates on the current frame. The
fifth kernel exclusively examines the current frame, resulting in a spatial gradient map. The first and
third kernels, differing in spatial domain orientations, underline our extended version’s adaptability
to various useful orientations for restoration.

5 CONCLUSION
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Figure 6: Comparison of learning in various fre-
quency sub-bands. Lower MSE values indicate
better performance.

We expand the unsharp masking algorithm for
video deblurring, tapping into the advantage
of utilizing high frequencies in unsharp mask-
ing coupled with the robust expressive capacity
of deep neural networks. Experimental results
underscore the significance of manual high-
frequency extraction. Notably, the combination
of first-order and temporal gradients substan-
tially enhances performance.

Progressing further, we introduce adaptability
in high-frequency extraction by generating the
coefficients of several high-pass filter kernels.
Initially, we show that using a linear combina-
tion with positive coefficients and high-pass fil-
ter kernels continues to function as a high-pass
filter. This assurance confirms our generated
kernel’s capacity to efficiently extract high fre-
quencies from the input image. By integrating this operation into our model, we attain the state-
of-the-art results in video deblurring datasets in terms of both performance and complexity. Visual
demonstrations further highlight the effectiveness of our proposed approach. Our approach shows
enhanced performance across various frequency sub-bands and improved filtered results in the spa-
tial domain.
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A HIGH-PASS FILTER KERNEL

The proof for Proposition 1 is presented below.

Proof. Consider h(x) =
∑M

i=1 αihi(x). By utilizing the linearity of the Fourier transform, it can
be expressed in the Fourier domain as:

H(f) =

M∑
i=1

αiHi(f) (11)

In this domain, Hi(f), representing a high-pass filtering function, is generally observed as a non-
decreasing function gi(f) ranging from 0 to 1. A value of gi(f) = 0 signifies complete attenuation
of the frequency component f , while gi(f) = 1 denotes no attenuation.

Given that the sum and scalar multiplication of non-decreasing functions remain non-decreasing,
H(f) is also non-decreasing. Therefore, h(x) is identified as a high-pass filter.

B THE KERNELS FOR HIGH-PASS FILTERING

We describe the kernels we used in Section 4.3. The Sobel filter is defined as follows:

Sobelx =

[
1 0 −1
2 0 −2
1 0 −1,

]
,Sobely =

[
1 2 1
0 0 0
−1 −2 −1

]
. (12)

The Prewitt filter is:

Prewittx =

[−1 0 1
−1 0 1
−1 0 1,

]
,Prewitty =

[−1 −1 −1
0 0 0
1 1 1

]
. (13)

The Kirsch filter is:

Kirschx =

[−3 −3 5
−3 0 5
−3 −3 5,

]
,Kirschy =

[
5 5 5
−3 0 −3
−3 −3 −3

]
. (14)

The Laplacian filter is:

Laplacian =

[
0 −1 0
−1 4 −1
0 −1 0,

]
(15)

C ARCHITECTURE

The detailed architecture of our model is presented in Tables 5 to 8. For the pre-process module,
Residual Dense Blocks (RDB) (Zhong et al. (2020)) are utilized as the foundational building blocks.
The architectures of P0 and Pn, where n = 1, . . . , N , differ. Greater computational resources are
allocated to P 0 due to its role in the final restoration in RGB format, prioritizing the direct RGB
input over other features.

Layer Output Coefficient Generator
conv1 T × H/4 × W/4 × 3 3 × 3 × 3, stride 1
conv2 T × H/4 × W/4 × 3 3 × 3 × 3, stride 1

AvgPool 1 × 1 × 1 × 3 -
Linear 1 × 1 × 1 × 3 3 × NM

Table 5: Coefficient generator G architecture.

D EXPERIMENTS

D.1 WEIGHTS IN THE FUSION MODULE
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Layer Output Pre-process Module
Conv1 H × W × 3 5 × 5, stride 1
RDB1 H × W × 3 [3 × 3, 16, dense conv] × 4
Conv2 H/2 × W/2 × 32 5 × 5, stride 2
RDB2 H/2 × W/2 × 32 [3 × 3, 24, dense conv] × 4
Conv3 H/4 × W/4 × 64 5 × 5, stride 2

Table 6: Pre-process module P0 architecture.

Layer Output Pre-process Module
Conv1 H × W × 3 5 × 5, stride 1
RDB1 H × W × 3 [3 × 3, 16, dense conv] × 2
Conv2 H/2 × W/2 × 16 5 × 5, stride 2
RDB2 H/2 × W/2 × 16 [3 × 3, 24, dense conv] × 2
Conv3 H/4 × W/4 × 16 5 × 5, stride 2

Table 7: Pre-process module Pn, n = 1, . . . , N architecture.

Layer Output Deblurring Module
Conv1 H/4 × W/4 × 64 3 × 3, stride 1

ResBlock1 H/4 × W/4 × 64

[
3 × 3, 64
3 × 3, 64

]
× 30

Transposed conv1 H/2 × W/2 × 32 3 × 3, stride 2
Transposed conv2 H × W × 16 3 × 3, stride 2

Conv1 H × W × 3 5 × 5, stride 1

Table 8: Deblurring module D architecture.
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Figure 7: Histogram of the weights in the fusion.

Figure 7 presents a visualization of the weight
of the first convolution in D, which takes the
concatenation of the inputs in Eq.9. The model
fuses 224 channels, with the first 64 channels
representing the RGB input, followed by 6×16
channels for 6 different features, and finally 64
channels for the warped output from the pre-
vious frame. The histogram values are scaled
with respect to the input scale to ensure that the
comparison is meaningful. The channel for p5
represents the spatial gradient (see Figure 5g).
The fusion convolution assigns more weight to
the input, the spatial gradient map, and the pre-
vious warped results, which further illustrates
the importance of the spatial gradient in deblur-
ring.

D.2 VISUAL COMPARISON

Additional visual comparisons are provided in Figures 8 to 11.
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(a) Input (b) ESTRNN (Zhong et al. (2020)) (c) CDVD-TSP (Pan et al. (2020))

(d) MemDeblur (Ji & Yao (2022)) (e) Ours (f) Ground-truth

Figure 8: Qualitative comparisons on the GOPRO dataset.

(a) Input (b) ESTRNN (Zhong et al. (2020)) (c) CDVD-TSP (Pan et al. (2020))

(d) MemDeblur (Ji & Yao (2022)) (e) Ours (f) Ground-truth

Figure 9: Qualitative comparisons on the GOPRO dataset.
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(a) Input (b) ESTRNN (Zhong et al. (2020)) (c) CDVD-TSP (Pan et al. (2020))

(d) MemDeblur (Ji & Yao (2022)) (e) Ours (f) Ground-truth

Figure 10: Qualitative comparisons on the GOPRO dataset.

(a) Input (b) ESTRNN (Zhong et al. (2020)) (c) CDVD-TSP (Pan et al. (2020))

(d) MemDeblur (Ji & Yao (2022)) (e) Ours (f) Ground-truth

Figure 11: Qualitative comparisons on the GOPRO dataset.
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