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Abstract

Both industry and academia have made considerable progress in developing trust-
worthy and responsible machine learning (ML) systems. While critical concepts
like fairness and explainability are often addressed, the safety of systems is typically
not sufficiently taken into account. By viewing data-driven decision systems as
socio-technical systems, we draw on the uncertainty in ML literature to show how
fairML systems can also be safeML systems. We posit that a fair model needs to be
an uncertainty-aware model, e.g. by drawing on distributional regression. For fair
decisions, we argue that a safe fail option should be used for individuals with uncer-
tain categorization. We introduce semi-structured deep distributional regression as
a modeling framework which addresses multiple concerns brought against standard
ML models and show its use in a real-world example of algorithmic profiling of
job seekers.

1 Introduction

Technological developments have led to an automation of decision making processes in various
contexts, including employee recruitment [34], personalized medicine [45], jurisdiction [24], finance
[17], and disaster management [44]. Automated decision-making (ADM)1 systems aim to advance
timeliness, efficiency, quality, and transparency in the allocation of resources and interventions [36].
While research shows that this can lead to many positive developments [21], new issues arise as
well. The Panel for the Future of Science and Technology of the European Parliament, for example,
highlights that a “good” (data-driven) decision system needs to take ethical, political, legal, and
technical issues into account [8]. As such, fairness, transparency, explainability, and accountability
concerns need to be addressed next to algorithmic performance.

An additional aspect, which so far has not been discussed as much in this context, is safety. Any
technology which is to be implemented safely in a socio-technical system such as ADM needs to be
aware of its uncertainty [43]. While research on uncertainty in machine learning (ML) is progressing
[20], less attention has been paid to how uncertainty-aware prediction modeling can cater toward a
safe and fair deployment of ML in data-driven decision-making systems.

[5] highlight the importance of uncertainty for socially responsible decision systems. As fairness is un-
derstood in terms of social bias, consequences of uncertainty for measurement bias and representation
bias are discussed. Measurement bias can lead to serious issues for existing bias mitigation methods,

1We refer to ADM system as any not solely human-based decision system, while (non-)data-driven decision
system specifies explicitly if decisions are based on inference from data or not.
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while representation bias urges for collecting more data for certain groups. As representation bias
(alias differences in epistemic uncertainty) is sufficiently presented, we want to focus on the topic
of measurement bias (alias differences in aleatoric uncertainty), and particularly on methodological
approaches for uncertainty quantification for social groups. When it comes to decision making, [5]
highlight the “reject option” as a way to combine human and data-driven decision making. On this
basis, we focus on the implementation and consequences of the “reject option” for ADM systems.

Our contribution In this paper, we connect fairness and uncertainty considerations in the context
of data-driven decision-making. We argue that in order to advance towards fair ADM, uncertainty
needs to be taken into account both at the prediction step (building a prediction model) and the
decision step (acting based on predictions) of ADM systems. At the prediction step, fair models
need to be aware and transparent about uncertainty: Not only the predictions, but also the uncertainty
can vary across social groups as the training data may be differentially informative for different
subpopulations. At the decision step, individuals should not be fitted into an actionable category if
the uncertainty is too high to justify an action. We therefore put forward and implement the concept
of a safe fail option in ADM to progress toward fair data-driven decision-making under uncertainty.

We introduce how distributional regression, and in particular semi-structured deep distributional
regression (SSDDR, Rügamer et al. 38), can be used to acknowledge uncertainty at the prediction
and decision step of ADM systems. As SSDDR can be used to build performant models that are also
interpretable with respect to sensitive features, it allows to meet multiple concerns that have been
raised in ADM contexts within the same modeling framework. We demonstrate the use of SSDDR for
fair and uncertainty-aware ADM with an empirical example of algorithmic profiling of job seekers.

2 Data-driven decision systems

2.1 Background and setup

Data-driven decision systems can be framed as socio-technical systems [12], which use data either
to automate or to assist a decision process [36]. A prominent example are public profiling systems
[11]: Decisions are made about the allocation of public resources, while resources are scarce [28].
Profiling of the unemployed, for example, aims to efficiently allocate programs to job seekers in order
to maximize their reintegration chances into the job market [25, 28]. In this context, data-driven
decision systems are typically semi-automated systems as they are supposed to support (not replace)
caseworkers in selecting individuals who are eligible to participate in support programs [23]. In order
to assess such systems, humans, technology and their interplay need to be jointly investigated [12].

From a decision theoretic perspective, a data-driven decision system includes a prediction task and
a decision task [26]. The prediction task contains everything about handling the data, from data
generation to data modeling. The data used in this step can include sensitive attributes (such as gender,
ethnicity, or religion) that may be protected by anti-discrimination law (for the U.S., see [2, 30]).
The prediction model outputs one or multiple numbers (scores), which are then used as input in the
decision task and turned into a decision. In non-data driven decision-systems, on the other hand,
there is no prediction task: the decision task is solved solely by human experts or by predefined rules.

Prediction task Given model f : X × A → Y trained on data containing fairness relevant
attributesA and other features X , what is the prediction Ŷ of an outcome Y ∈ Y for a new individual
(X,A) ∈ X ×A?

Decision task Given some information Ŷ about the new individual (X,A), which discrete (and
often binary) decision d should the system output?

2.2 Fairness

Traditionally, fairness in ML is often framed in terms of (social) bias in order to find technical
solutions to mitigate bias and achieve fairness [4, 9, 30, 32]. However, as data-driven decision
systems are usually socio-technical systems, fairness needs to be seen from a broader perspective [7].
One way of connecting the technical and social perspectives is by mapping fairness considerations to
the data-driven prediction task and the not necessarily (only) data-driven decision task [26].
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Prediction task Fairness in the prediction task requires fairness on the level of the model: Tradi-
tionally in ML, a loss function is chosen using considerations about the data generating process. It is
optimized equally for all entities in the data [18]. Both the variables to be included and the model
to be used are chosen optimally given the loss. From a fair machine learning (fairML) perspective,
however, considerations about the social realities of the individuals have to be included in those
modeling choices [15]: Which variables are justified to influence the outcome? Which loss best
reflects social realities? How are the losses of the individuals weighted?

Decision task Fairness in the decision task questions (distributive) justice: Traditionally in ML,
decisions are computed directly by thresholding the predicted score of the model, usually using the
predicted probability for a class as the score in a classification setting [7]. However, considerations
about distributive justice principles are necessary to construct a system that aims to be fair [26]:
When and how is it justifiable to treat individuals differently? When and how is it justifiable to treat
social groups differently?

2.3 Uncertainty

In the ML literature, uncertainty is generally divided into aleatoric and epistemic uncertainty [20].
Aleatoric uncertainty deals with randomness inherent in the data generating process. Epistemic
uncertainty deals with the uncertainty that is reducible when increasing the data size. Hence, the
more data available, the better the model can reflect the true underlying process. In the ML process,
uncertainty can be considered by probabilistic methods, set-based methods, and combinations. [20].

Uncertainty in a predictive system can be acknowledged by outputting not only one statistic in the
prediction of ŷ, but a set of predictions, a fully specified distribution of y or a set of distributions [20].
In the regression setting, aleatoric uncertainty is expressed by the conditional probability distribution
of Y |(X,A) or by probabilistic sets of Y |(X,A). Distributional regression is the concept of modeling
all parameters of a parametric distribution of Y |(X,A) [37]. Therefore, the uncertainty quantification
is valid only given the assumed parametric assumption [10]. However, the parametrization in
distributional regression allows direct interpretability [42]. Quantile regression [31] and conformal
predictions [41] create probabilistic sets without distributional assumptions, but lack the possibility
of direct interpretability. Quantile regression and distributional regression directly change the model
loss, while conformal predictions can be seen as a post-hoc technique to quantify uncertainty for any
black-box models. Combinations of both approaches have been shown to create the best uncertainty
quantification [10]. Epistemic uncertainty, however, needs to be considered in other ways, e.g. by
dropout variational inference in Bayesian neural networks [14].

In the classification setting, the probabilistic predictions of a given class already denote the aleatoric
uncertainty. Quantification of aleatoric uncertainty therefore translates into the issue of model
calibration [20]. Hence, when the probability for all c classes equals 1

c , aleatoric uncertainty is
maximal, as we do not know more than random guessing [27]. Epistemic uncertainty can be modeled
by predicting sets of classes or sets/distributions of probabilities [20]: E.g., the set of all probabilities
reflects total epistemic uncertainty, while a single probability (a one-point set) reflects no epistemic
uncertainty.

3 Uncertainty and Fairness

Prediction task The fairML literature has paid considerable attention to questions on whether and
how to best include sensitive features in prediction modeling (e.g. in [35, 16]). Further, several
error metrics have been constructed that reasonably measure some idea of fairness [4, 7, 29, 32].
We, in addition, argue that fair predictive models need to be uncertainty-aware models: When
heteroscedasticity is not taken into account, a model cannot be fair, as predictions have different
meanings across individuals. In order to predict in a fair manner, the model needs to account for its
own ignorance. Dealing with aleatoric uncertainty, one example is to include the social reality of
heteroscedasticity by using a distributional regression [37]. The main advantage is the interpretability
property: Further parameters than the conditional mean, e.g. the conditional variance, can be modeled
and corresponding feature importances can be calculated. Such measures of uncertainty can be used
to investigate questions like: For which social groups is there more information in the data? Which
features are collected and engineered in an informative manner? How big is the uncertainty for a given
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individual? We note that although distributional regression offers good interpretability properties, it
depends heavily on its distributional assumption. Conformal quantile regressions, in contrast, do not
rely on such assumptions to lead to valid uncertainty quantifications but are less straight forward to
be interpreted [10]. Epistemic uncertainty poses other questions relevant to fairness: Has enough
data been collected for everyone? Are certain social groups underrepresented in the data?

Semi-structured deep distributional regression (SSDDR) as introduced in [38] combines structured
additive distributional regression and neural networks. Hence, it provides scalability and flexibility
through neural networks, direct interpretability through linear/smooth additive formula, and (aleatoric)
uncertainty quantification through a distributional assumption [39]. All parameters θk, k = 1, . . . ,K,
of the distribution of Y |(X,A), e.g., expectation and variance, can be modeled on their own. Typically
in ADM systems, for certain features A, fairness considerations are particularly important, while
other features X can be used to optimize performance. This could be reflected in the specifications of
SSDDR models:

θk(X,A) = hk(fA(A) + fX(X)) (1)
Here, fA could be modeled in a structural additive fashion in order to ensure interpretability and
control over the modeled effect structure. Regularization of the influence of A may be used to comply
with fairness metrics, when any indirect influence of A over X is also eliminated (e.g. by following
[40]). fX , in contrast, can be estimated in a more flexible manner, e.g. through a neural network, as
fairness considerations may not directly apply. hk connects the features with the modeled parameter,
e.g. hk(.) = exp(.) ensures positivity for a variance parameter [38].

Decision task In order to create a fair decision system, a safe fail option needs to be incorporated
[43]. We argue that this similarly applies to data-driven decision-making: If the model uncertainty is
too high, any data-driven decision would violate the basic human rights of the individuals [33]. This
aligns with fairness concerns that have been raised against the standard threshold decision function.
Two individuals who are arbitrarily close to the threshold but on the other side of it are not treated in
a similar way [3][p.96], which violates individual fairness [13]. One way to overcome this issue is to
randomize decisions in a certain area where model uncertainty is high [3]. Another possibility is to
define uncertainty regions and adjust classifications in the region using some fairness conceptions
[22]. However, such solutions do not take the socio-technical reality of ADM systems into account:
When data-driven decisions are associated with too high levels of uncertainty, decisions can still be
made by other components of the system, e.g., human caseworker. Classification with reject option
[19] offers the third option of non-data-driven classification: When the uncertainty is too high, instead
of selecting any class, no class at all is selected in a data-driven fashion. Formally, when using the
predicted probability of a certain event P (Y = 1|X) to create a decision, a decision function with
reject option can be written as [19]:

df (X) =


0, P (Y = 1|X) < δ

1, P (Y = 1|X) > 1− δ
2, else

(2)

with δ ≤ 0.5 as a threshold2 and decision 2 as reject option. This formulation can also be generalized
for non-symmetric uncertainty regions, as in [19]. In an ADM system with a reject option individuals
who are predicted to fall into the third category of “too uncertain to decide” [19] can be forwarded
to the next instance of the system. This is especially useful when the data-driven decisions are
considered cheaper but potentially less accurate, while the next decision instance, e.g. well-trained
caseworkers (human experts), are considered more expensive but also more accurate.

4 Uncertainty aware profiling of job seekers

We demonstrate the use of SSDDR with reject option with an example of algorithmic profiling of job
seekers. We use a large, anonymized sample of administrative labor market records provided by the
German Institute for Labour Market and Employment Research (IAB, [1]), which enables us to model
a realistic use case of public profiling. Decisions on the allocation of resources are made using either
the predicted duration of unemployment (T , measured in months) or long term unemployment (YLTU ),
a binary version of the duration using 12 months as a threshold. Social injustice in the labor market

2δ = 0.5 leads to the standard decision function.
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has been documented regarding multiple dimensions, e.g. with respect to gender [6] and ethnicity
[46]. Thus, in our example, A includes gender (male/female) and citizenship (German/Non-German),
while other features X measure (un)employment histories, further socio-demographic characteristics,
and other information captured in the administrative data (see Appendix A for details).

Prediction task In order to investigate predictors of severe unemployment and uncertainty, the
duration of unemployment was modeled using a two-parametric Γ distribution (via SSDDR; referred
to as GammaLIN). Long term unemployment was modeled using the one-parametric Bernoulli
distribution (which equals to logistic regression; referred to as BinLIN). Since model performance is
very similar for structured models and other ML approaches for the present task as suggested by [23],
we chose the most simple model structure for the SSDDR models: both fA and fX were assumed to
be additive and linear for all outcome parameters (µ, σ2) with an L1-penalization for the coefficients
of fX (see also Appendix A). In this way, we can achieve direct interpretability and compare feature
importances, as all features were standardized between 0 and 1.

Table 1 presents the coefficients for both expectation and variance of GammaLIN for the four levels
of A, given all other features are set to 0. Note that in this parametrization, expectation and variance
are not independent but σf = µ2

σ2 .

Social group A Expectation µ Variance σ2 Variance Factor σf
Male - German 0.87 0.76 1.00

Female - German 1.11 1.24 1.01
Male - Non-German 1.42 2.74 1.36

Female - Non-German 1.50 2.99 1.33
Table 1: Coefficients of the social groups based on SSDDR models for the duration of unemployment
(GammaLIN).

While no strong differences can be observed between the male and female categories, being a Non-
German citizen not only increases the duration of unemployment in expectation, but also in variance.
Hence, for Non-German citizens, longer unemployment durations are predicted, but the model is
also more uncertain about these predictions. However, note that effects on expectation and variance
do not necessarily need to be in line. Table 3 in the Appendix shows the top 5 predictors for the
expectation and variance of unemployment duration. Only one feature (the duration job seekers
previously received unemployment benefits) is included in both lists of the most important predictors.

Decision task In our example, interventions such as support programs are commonly assigned
based on the prediction of long-term unemployment (YLTU , see [11]). To classify job seekers, we
set up a decision function with a safe fail option. Different values of δ are used in the decision
function, indicating different proportions of individuals who are actually classified either as long-term
unemployed or non-long-term unemployed:

df (X) =


0, P (YLTU = 1|X,A) < δ

1, P (YLTU = 1|X,A) > 1− δ
2, else

When modeling the duration of unemployment, P (YLTU = 1|X,A) is calculated as P (YLTU =
1|X,A) = 1− F (T < 12|X,A), where T denotes the duration in months.

In Figure 1, we plot classification accuracy against the proportion of individuals who are not in the
reject option and therefore part of the automated decision process. Both overall accuracy and accuracy
per social group are shown. The overall accuracy curve resembles the curves for German (fe)males,
while for Non-Germans both the the minimal accuracy and the shape of the curves differ: For
Non-German females the models achieve lowest accuracy for full data-driven decisions; decreasing
the proportion of data-driven classification, however, leads to some convergence of accuracy across
groups. Figure 2 in the Appendix shows that Non-Germans males and females fall into the reject
option at different rates as the proportion of data-driven decisions decreases.

Clearly, the fewer people are actually classified, the higher the overall accuracy. Notably, both models
struggle to detect individuals who in fact become long-term unemployed. Instead, they work quite
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well in detecting non-long-term unemployment. In this case, classification with reject option can help
to detect individuals who are more likely to be misclassified (and not clearly at low risk of long-term
unemployment). These individuals could be transferred to experienced caseworkers in employment
agencies to determine the final decision. In the end, both ethical and economic criteria need to be
considered when setting the threshold for manual versus automated decision making.

Figure 1: Accuracy of the Gamma (GammaLIN) and Bernoulli (BinLIN) models given different
values of δ. The x-axis shows the proportion of individuals who are not in the reject option, the
dotted lines indicate baseline accuracy without a reject option. Left panel: Overall relationship; Right
panel: Relationship by social group (NonG/M: Non-German Male, G/M: German Male, NonG/F:
Non-German Female, G/F: German Female).

5 Discussion

In this paper, we argued that considering uncertainty is essential to build fair data-driven decision
systems. We put the focus on the (aleatoric) uncertainty inherent in the data and investigated fairness
implications at both the prediction and decision step. For the prediction task, uncertainty-aware
models are needed to acknowledge all information that is included in the data about the social reality
of individuals. For the decision task, we argue that the probabilistic information of the model output
needs to be taken seriously. Therefore, ADM systems could include a safe fail option for cases where
the ambiguity is too big.

We proposed SSDDR as a modeling framework for uncertainty-aware ADM. It allows to build
flexible models that are interpretable with respect to a predefined set of (sensitive) features. SSDDR
can account for both fairness considerations using a semi-structured predictor and uncertainty
considerations using a distributional regression approach. We exemplified the use of SSDDR in a
setting that closely mimicked a real-world application of algorithmic profiling with administrative
data. The application highlighted that we can learn more about the social reality reflected in the data by
considering the conditional variance of the distribution. Also, we proposed that an uncertainty-aware
system can combine caseworker and data-driven decisions by using a reject option.

Further, SSDDRs flexibility would permit including other data, e.g. unstructured data (images, text)
in the model using a suitable network architecture. This could, e.g., allow the inclusion of caseworker
knowledge in the decision process by accounting for unstructured text data from interviews. Ideally,
this could also lead to more fair data-driven systems assuming the case workers texts are fair.

As costs between decisions often vary, the proposed symmetric reject option might be limiting in
practice. However, as in [19], classification with reject option can be generalized to situations with
unequal costs using only one additional parameter. It results in a non-symmetric reject option which
is not centered around the maximum level of aleatoric uncertainty (0.5). This would give developers
and stakeholders even more control about the allocation of resources and the implicit distributive
justice principles. As costs can vary across the sensitive attributes A, the decision function can be
further customized using separate functions for different social groups.
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Unemployment
episodes

LTU
episodes Individuals

Individuals
experiencing
at least one

LTU episode
2015 (Train) 86,692 12,688 (14.6%) 76,187 12,688 (16.7%)
2016 (Test) 89,710 11,508 (12,8%) 78,373 11,508 (14.7%)

Table 2: LTU episodes and affected individuals

A Appendix

Administrative data We use a 2% random sample of German administrative labor market records,
called Sample of Integrated Employment Biographies (SIAB, [1]). The data combine information from
various sources such as employment information, unemployment information and unemployment ben-
efits receipt. Specifically, we use the factually anonymous version of the SIAB (SIAB-Regionalfile) –
Version 7517 v1. Data access was provided via a Scientific Use File supplied by the Research Data
Centre (FDZ) of the German Federal Employment Agency (BA) at the Institute for Employment
Research (IAB). The observation level of the data is the unemployment episode. We restrict the
SIAB data to unemployment episodes that occurred during the year 2015 for model training and used
episodes from 2016 as the test set. The task is to predict the risk of long term unemployment (LTU)
at the onset of a new unemployment episode, using information about the individuals’ labor market
history, the last job held, and socio-demographic characteristics (153 predictors in total, described in
[23]).

Model specification For both the Gamma and Bernoulli model, an equivalent model specification
was used. No deep networks are included in the SSDDR models. The social groups (A ∈ R4) are
included as unpenalized linear components, age (Xage ∈ R) using a penalized B-Spline. The other
features (Xother ∈ R153) are included linearly with L1-regularization. The additive predictor of the
model is therefore given as

θk = hk(Aβ4
0 + f(Xage) +Xotherβ

153
1 ),

with β4
0 ∈ R4, β153

1 ∈ R153, hk(.) = exp(.) for µ and σ2 of the Gamma model and hk(.) = exp(.)
1+exp(.)

for the Bernoulli model.

The regularization parameter was tuned for the train year 2015 (test year 2016): First, λ was
searched on a very coarse grid to determine a first search interval, and afterward tuned on a grid
λ ∈ {0.0001, . . . , 0.05} on the logarithmic scale. λ = 2.6 × 10−5 was found to be optimal. 60
epochs were used to optimize and train the models.

Additional results

Expectation Variance
Name Factor Name Factor

LHG total 14.4 LEH total 0.3
seeking tot dur by age 3.7 LHG total 1.6

emp total dur 2.6 almp aw total 1.5
tsince lm contact 2.4 industry tot dur 0.6

emp total dur by age 0.5 est total 1.5
Table 3: Top 5 most important predictors for expectation and variance of unemployment duration
(GammaLIN). LHG total: Duration receiving unemployment benefits (ALG2); seeking tot dur by age:
Duration of job seeking episodes by age; emp total dur: Duration in employment; tsince lm contact:
Days since last labour market contact; emp total dur by age: Duration in employment by age; LEH
total: Duration receiving unemployment benefits (ALG1); almp aw total: Number of participation in
active labour market programs; industry tot dur: Duration worked in industry; est total: Number of
different establishments worked in.
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Figure 2: Proportion of individuals in the reject option of the gamma (GammaLIN) and bernoulli
(BinLIN) models given different values of θ. The x-axis shows the proportion of individuals who are
not in the reject option. Results shown by social group (NonG/M: Non-German Male, G/M: German
Male, NonG/F: Non-German Female, G/F: German Female).
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