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Abstract— Humans form mental images of tasks being per-
formed and their expected outcomes to support how they act
in the world. We present a novel framework that generates
visual subgoals based on the goal image and the robot’s
current state. The generated visual subgoals are used to guide
the rollout of the policy. The subgoal generator is jointly
trained with a progress encoder to track the progress of a
task while constructing the next visual subgoals. At inference
time, the robot adaptively samples a new visual subgoal from
the generator once the current subgoal is achieved, or if the
maximum step limit is reached without achieving the subgoal.
We train our models and validate the proposed framework
using the CALVIN manipulation dataset, demonstrating the
improved success rate in various tasks.

I. INTRODUCTION

Teaching robots to plan a task usually involves breaking
down a task into incremental steps or solvable subtasks. This
requires an understanding of the initial state, the key steps for
completing a task, and the possible configurations of the key
steps. This decomposition is not only needed for complex
tasks but also for a single task “sliding the door”(Fig. 1). In
order to complete the task successfully, the robot needs to
reason about 1) moving closer to the handle of the sliding
window, 2) grasping the handle, and 3) moving it to the left.

Several hierarchical methods have been proposed to enable
robots to plan their actions effectively, e.g., task and motion
planning [1], options in reinforcement learning [2], and
learning hierarchical policies [3]. While this division of high-
level and low-level policies helps learn skills, designing
abstractions for hierarchical policies is still very challenging.
Prior work has been exploring using latent embeddings [4],
synthesized programs [5], or language [6] as abstractions
for the high-level policies. On the other hand, humans and
animals have demonstrated the ability to leverage mental
imagery for planning [7–9]. Mental imagery enables them
to plan efficiently by retrieving relevant memories from
previous experiences and building representations of envi-
ronments. In this paper, we propose to give this ability to
robots by generating visual subgoals that guide the robot to
follow a task specified in the goal image.

Taking the notion of using mental imagery as a method for
high-level planning, we propose a framework, as illustrated
in Fig. 2, which guides the rollout of the low-level policy
using the generated visual subgoals. We cotrain the subgoal
generator with the progress encoder to predict the image of
the next subgoal a robot needs to reach given the image goal,
current state, and the tracked progress. By leveraging the
recent advances in conditional diffusion models [10, 11], we
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Fig. 1. An illustration of the idea that a robot can generate the visual
subgoals incrementally (shown as the increasing numbers) for a task
specified by an image goal. The generated subgoals reveal that the robot
needs to understand the preconditions and steps, e.g., moving close to the
handle, grabbing the handle, and sliding the window to the left.

can generate realistic subgoal images to condition the low-
level policy. We train and test our models on the CALVIN
benchmark [12], a dataset with diverse tabletop manipula-
tion tasks. We show that the generated subgoals guide the
progression of tasks and can help with task completion.

This work makes the following contributions:
1) We present a novel framework that leverages the gen-

erated visual subgoals for goal-conditioned policies.
2) We show that the generated visual subgoals follow the

progress of tasks.
3) We demonstrate that the generated subgoals can guide

the rollout of the low-level policy and improve the
success rate of tasks.

II. RELATED WORK

Goal-Conditioned and Hierarchical Policy Learning
Goal-conditioned policies enable robots to carry out actions
that achieve a specified goal. One way to provide goal
descriptions is to use images showing the desired outcome.
They’ve aided in tasks like object placement [13] and
offline learning [14, 15]. To learn to follow these visual
goals effectively with unlabelled demonstrations, techniques
like relabeling [16] are usually used in learning a goal-
conditioned policy. It can combine with hierarchical methods
to structure policies in layers: a low-level policy handles
actions while a high-level one guides task-solving. [17–19]
Planning with Diffusion Models Diffusion models, partic-
ularly in image generation, have showcased their prowess
in approximating data distributions [10, 11]. In robotics and
reinforcement learning, they have been harnessed to view
policy formulation as a generative act [20–24]. Approaches
such as decision diffuser [21] and LCD [21] add layers of
complexity, catering to constraints or integrating language
cues. In contrast to these approaches, our method employs



diffusion models for proposing visual subgoals in a hierar-
chical policy structure. This facilitates an understanding and
enhancement of policies.

III. GOAL-CONDITIONED POLICY WITH
IMAGINED SUBGOALS
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Fig. 2. An overview of the goal-conditioned policy with generated visual
subgoals as its conditions to rollout the low-level policy.

A. Problem Formulation

Our aim is to develop a generative model G that generates
the next visual subgoal fgen for a task represented as an
image goal sg . For a sequence of generated images {fgen},
it needs to be a sequence of subgoals to reach the specified
image goal. The generative model is conditioned on the
subgoals the robot has reached so far s0 . . . st and the
corresponding image goal s∗. The objective is to learn a
generative model that minimizes the distances between the
generated visual subgoals and the corresponding ground-
truth subgoals τt sampled from the trajectory T0:T collected
from demonstrations:

min
θ

Eτt∼T0:T
[dist(Gθ(fgen | s0, . . . , st, s∗), τt)] (1)

Given the generated visual subgoal fgen, we aim to have
a low-level policy πψ(at|st, fgen) that generates actions to
achieve the subgoal fgen. This policy can be learned from
demonstrations.

B. Framework Overview

An overview of our proposed framework is depicted in
Fig. 2. It consists of two stages: 1) visual subgoal generation
and 2) a subgoal-conditioned policy. During the first stage,
we generate subgoals based on the image of the initial
observation and an embedding of the current progress from
the progress encoder. The progress encoder can be a recurrent
model that takes the subgoals observed so far as input to
generate an embedding that encapsulates the current task
progress (see Section III-C). These generated subgoals serve
as intermediate objectives for the robot to achieve. In the
second stage, the framework utilizes these generated sub-
goals to condition the low-level policy of the robot. Since we
generate visual subgoals autoregressively, we will roll out the
low-level policy until it reaches the current subgoal and use
this updated state to generate the next subgoal. Ideally, the
low-level policy πψ should predict the termination. However,

as the generated visual subgoals may not perfectly match
the ground-truth subgoals, it is hard to learn the termination
for the generated subgoal from offline demonstrations. To
accommodate this issue, we employ a progress evaluator to
determine if the generated subgoal is reached or the low-
level policy doesn’t make progress so we need to generate
the next visual subgoal for policy rollout (see Section III-D).
Once the progress evaluator decides to advance to the next
subgoal, the input of the subgoal generator is replaced with
the updated state st+i. This update initiates a new round of
subgoal generation, allowing the robot to proceed with a new
round of subgoal execution.

C. Visual Subgoal Generation

1) Subgoal Generator: The subgoal generator is a con-
ditional generative model. We implement this generator by
combining the 2D latent diffusion model [25] and ControlNet
as in [11] to ensure the generation follows the conditions:

• The current state st. This condition informs the genera-
tor to preserve the existing objects and the environment.

• The goal state s∗. This condition shows how an object
should be manipulated.

• The progress embedding ht. This condition adds time-
relevant constraints and provides task-specific informa-
tion to enable the generator to interpolate between the
current and the goal state.

The image of the current state st is input to the ControlNet
branch so the generated image includes objects in the current
state. The goal image is encoded by the visual encoder and
then an MLP. This embedding of the goal state is fused
with the progress embedding ht and the diffusion timestep to
condition on each level of the U-Net. Similar to the language
conditions in the original diffusion model, conditioning on
goal and progress on each level allows us to generate images
that match the next subgoal.

2) Progress Encoder: The progress encoder is a recurrent
network that takes the image of the current state st and
the last hidden state ht−1 of the progress encoder to update
its hidden state. The output hidden state ht is the progress
embedding used in the subgoal generator. This progress
encoder keeps track of the subgoals achieved so far and can
provide guidance on the next subgoal.

D. Subgoal Conditioned Policy

1) Policy Network: A policy network is used to predict
actions that achieve the generated subgoals. We parameterize
the policy as a discretized logistic mixture distribution [26].
The policy network takes the current state st and the gen-
erated subgoal fgen to decode into a mixture of logistic
distributions where each of these distributions has separate
means and scales and is weighted using a parameter α.

2) Progress Evaluator: The progress evaluator assesses
the updated current state by comparing its representation
with the generated visual subgoal. If the subgoal is nearly
achieved or if it remains unachieved after a significant
amount of time, the updated state is then fed into a new
round of subgoal generation. The evaluation of progress is



to extract features from the current frame and the goal frame,
si and s∗. We leverage a feature extraction model M such
as R3M [27] to get the feature and compute the distance
as ∥M(si) −M(sj)∥2. If the distance is smaller than δ or
the step for the current subgoal is larger than λ, it will move
forward to the next subgoal. This process ensures continuous
progress toward the achievement of the overall goal.

E. Training Pipeline

We train the subgoal generator and the goal-conditioned
policy separately.

1) Training the Subgoal Generator: We select a sequence
of ground-truth subgoals from demonstrations. To identify
ground-truth subgoals from a demonstration, we utilize the
R3M embedding [27] to compute the distances between
the start frame and all frames in the demonstration. We
observe that subgoals are more likely to be the frames whose
distances to the start frame are relatively stable. So we select
the frames where distance change is smaller than δ to be
subgoals. Once the ground-truth subgoals are identified, we
fine-tune the diffusion model with these ground-truth subgoal
images. This fine-tuning process allows us to generate images
that match the style of the environment. Finally, we initialize
ControlNet with the weights obtained from the fine-tuned
diffusion model and then co-train it with the progress en-
coder. This co-training process enables us to jointly learn the
task progress and accurately predict the next visual subgoal
in the sequence. To ensure the successful prediction of the
next subgoal, we adopt the MSE loss, Lgen, to compare the
generated subgoal, fgen and the ground-truth subgoal, fgt:

Lgen(fgen, fgt) =
∑

(fgen − fgt)
2 (2)

2) Training the Goal-conditioned Policy: To train the
goal-conditioned policy, we subsample trajectories of differ-
ent lengths from a demonstration dataset Dplay. The training
objective is to predict the actions at taken in the demonstra-
tion. We define the imitation learning loss LIL as follows:

LIL = E(τ,sg)∼Dplay [

|τ |∑
t=0

log πθ(at | st, s∗)] (3)

The loss function is calculated over trajectories τ and goal
states s∗ drawn from the dataset Dplay. It aggregates the log
probabilities of actions at taken by the policy πθ at each state
st in the trajectory τ , conditioned on the respective goal s∗.
The aim of this loss is to improve the alignment of the policy
with the observed behaviors, guiding πθ to better imitate the
actions in the dataset.

IV. EXPERIMENTS

A. Dataset

We train and test our proposed framework using the
CALVIN benchmark [12]. Similar to prior works [17, 28,
18], we select Task D for evaluation, which consists of 34
different tabletop manipulation tasks. The training set con-
tains more than 5,000 trajectories. In the validation dataset
of Task D, each task boasts approximately 30 rollouts.

B. Hyperparameters

We use the CLIP [29] image encoder as our visual encoder.
For the progress encoder, we use GRU [30] with two layers
and a feature size of 768, matching the output size of the
visual encoder.

In the progress evaluator, we use R3M to compute the
distance between the current observation and the generated
subgoals. If the distance is smaller than 0.3, we consider the
robot reaches the subgoal. For each subgoal, we set a max
step to 20 to avoid it stuck in a subgoal.

We used 4 40GB A100 GPUs to train the subgoal gener-
ator. We train with batch size 16 and at least 500k training
steps to get reasonable subgoal images.

C. Experiment Setup

1) Baselines and Goal-Conditioned Policy: We consider
two goal-conditioned policies for comparison.

• TACO-RL [19]: An offline reinforcement learning
method that uses visual goals to guide its policy.

• Image-HULC [18]: Originally HULC was a language-
goal-conditioned model learned from imitation learning.
We adapted HULC to learn an image-goal-conditioned
policy by replacing its language-goal encoder with a
visual-goal encoder.

• D-GCBC [31]: A diffusion model based goal-
conditioned policy. We follow the implementation in
[32] to stack the current observation and the goal
image, encode them by ResNet-50, and then use this
embedding to condition a diffusion process to generate
action distribution. Following [24], we predict four
action sequences for temporal consistency.

The baselines are TACO-RL, Image-HULC, and D-GCBC
conditioned on only the final image goal. While our method
also employs the same set of low-level policies, we will use
our generated visual subgoals to guide the policy rollout.
For both TACO-RL and Image-HULC, We directly use the
pretrained weights for CALVIN Task D released by the
original authors. For the D-GCBC model, we trained it on
the CALVIN Task D datasets, running 100,000 steps with a
batch size of 256.

2) Training Generative Model: During our experiments,
we found that initializing the model with pretrained weights
greatly improves training speed and quality. Without using
these pretrained weights, the model might not converge
at all. So, we first initial the diffusion model with the
weights from [33]. Once we train a diffusion model that
is able to generate reasonable images, we use its weights to
initialize the ControlNet. In the original ControlNet, only the
ControlNet part needs training while the diffusion model part
remains frozen. However, our training experience showed
that training both parts together produces better results in
the experiments.

D. Experimental Results

1) Impact of Generated Subgoals: Fig. 3 presents a com-
parison between using the ground-truth final goal only and
our generated subgoals in three different goal-conditioned



Task\Method TACO-RL Image-HULC D-GCBC
Final Goal only Ours Final Goal only Ours Final Goal only Ours

turn_on_led 57.14± 2.42 77.38± 8.33 92.85± 1.79 95.24± 2.38 96.43± 3.57 92.85± 7.15
move_slider_left 37.50± 0.00 71.88± 12.50 34.38± 3.13 46.88± 18.75 46.88± 0.00 96.88± 0.00

push_pink_block_right 11.54± 0.00 26.92± 4.60 57.69± 3.85 64.10± 10.25 61.54± 3.85 73.08± 3.84
unstack_block 31.03± 6.89 51.72± 6.89 72.41± 10.34 87.35± 4.60 86.20± 6.90 89.66± 3.45

...
...

...
...

...
...

...
Average of 34 Tasks 19.61± 0.17 26.51± 1.27 49.06± 0.83 53.32± 1.07 49.37± 1.20 75.56± 0.34

Fig. 3. Success rate (%) for TACO-RL, Image-HULC, and D-GCBC, w/ and w/o the generated subgoals. The results are based on three random seeds.
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Fig. 4. An example demonstrating how the generated subgoals guide the
robot to perform a task: sliding the window to the left. The first generated
subgoal, fgen,1, is to get close to the handle, and by time t = 30, this
subgoal is achieved. The next subgoal, fgen,2, is to grasp the handle, and
by time t = 34, the robot successfully grasps it. The final subgoal, fgen,3,
directs the robot to successfully slide the window to the left.
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Fig. 5. For the task “slide down the switch,” we find that the task fails
if we only use the final goal. This is because the robot’s gripper is not
raised high enough to push the switch down. However, with the generated
subgoals, the first goal is to raise the robot arm higher than the gripper, and
thus, lead to successfully turn off the switch.

policy networks. In the bottom row, we average performance
across 34 tasks. We show that our proposed framework
can apply to any goal-conditioned policies to improve their
performance. There is a noticeable boost in performance
for the runs with the generated subgoals. In addition to
the average performance, we additionally present 4 tasks as
examples to show that the improvement of some tasks can be

significant. For example, for task turn_on_led task, TACO-
RL can only achieve a 57.14% success rate when running
with a ground-truth final goal only. After using the generated
subgoals, the success rate raised to 77.38%. Even in Image-
HULC and D-GCBC, adding subgoals resulted in improved
performance, e.g., task move_slider_left moves from 34.38%
to 46.88% in Image-HULC and from 46.88% to 96.88% in
D-GCBC.

However, some tasks such as lift_blue_block_drawer have
0% success rate in TACO-RL no matter if we consider the
final goal only or generated subgoals. This is why the average
improvement is not as big as individual tasks. In these cases,
we find it necessary to improve the goal-conditioned policy
first so it is possible to leverage our generated subgoals to
improve task completion.

2) Qualitative Examples: Fig. 5 shows an example that
without the subgoal, the task fails. Fig. 4 shows an example
of how the generated subgoals guide the robot to achieve
the subgoals one by one and the final goal. These examples
follow the subgoal almost perfectly. However, we also have
some failure cases in Appendix C. Our analysis shows that
the failure cases are either issues in subgoal generation
or low-level policy. For instance, in Fig. 7, the task was
to “rotate blue block to the left,” but a generated subgoal
showed the block being dropped. However, more frequently,
the problem lies in the policy itself. For example, in Fig. 8,
the task is “rotate pink block left,” the generated subgoal is
correct, but the policy cannot guide the robot to reach the
specified correct subgoal image.

V. CONCLUSION & FUTURE WORK

We have demonstrated that it is possible to generate visual
subgoals to guide the rollout of policies. Instead of learning
a policy that needs to reason about steps and preconditions,
we lift this part of the reasoning to the subgoal generator
to break down a task into smaller steps. Our experiments
in simulated tabletop manipulation tasks showed promising
results. However, our analysis showed that the low-level
policy contributes to most failure cases. In the future, we
may consider how to leverage the generated subgoals or
cotrain subgoal generation and the policy network to improve
the low-level policy. Experiments with real robots and more
diverse tasks will help us understand how the proposed
method can be applied to more complex scenarios.
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APPENDIX

A. Ground-truth Subgoals Selection

In human cognition, we naturally visualize tasks and anticipate outcomes. For robots, an analogous mechanism is what we
want in the form of visual subgoals. However, when human-labeled ground-truth subgoals aren’t available – which would be
the ideal dataset – an algorithmic approach to selecting the ground-truth subgoals becomes crucial, that’s where our ground-
truth subgoals selection algorithm comes in. It aims to replicate the human process of selecting significant visual moments
in a sequence. The algorithm initiates with the video’s first frame and computes the ’difference’ between consecutive frames
employing a distance evaluation model. To extract features from two frames, si and sj , we leverage a feature extraction
model M such as R3M [27]. The l2 norm of the difference between si and sj is then calculated as ∥M(si) −M(sj)∥2.
Upon plotting this computed distance, the data is smoothed to recognize patterns more clearly. The algorithm then identifies
subgoals at points where the distance gradient lower than a threshold δ approaches zero. In this experiment, we choose
δ = 0.02 and minimal subgoals interval λ = 7. From the two examples in Fig. 6, it can be observed that the selected
ground-truth subgoals align with human intuition, demonstrating their validity.

Algorithm 1 Ground-truth Subgoals Selection Algorithm
Input: Frame sequence F = {f1, f2, . . . , fn}, Gradient threshold δ, Minimal keyframe interval λ, Distance evaluation

function Dist(·, ·)
Output: Keyframe sequence K

1: Set initial keyframe fkey = f1, key = 1
2: Initialize keyframe sequence K = {}
3: Initialize distance sequence D = {}
4: for each frame fi ∈ F do
5: Calculate frame distance: di = Dist(f1, fi)
6: D = D ∪ {di}
7: Smooth D to get D′ = {d′1, d′2, . . . , d′n}
8: for i = 1 → n and key ≤ n do
9: if gradient(d′i) < δ and i− key > λ and i+ λ <= n then

10: K = K ∪ {fi}
11: Update fkey = fi, key = i

return K

B. Example of Selected Subgoals

Example 2: slide the block into the drawer

Example 1: open the drawer

Initial State Selected Keyframes Goal State

Fig. 6. Selected subgoals and their initial and goal statuses for two different tasks: Example 1 illustrates the subgoals chosen for the task "open the
drawer," while Example 2 demonstrates the selected subgoals for the task "slide the block into the drawer."

C. More Running Cases
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Subgoals:

Robot 
Status: 

𝑓!"#	% 𝑓!"#	& 𝑓!"#	' 𝑓!"#	( 𝑓!"#	) 𝑓!"#	*

𝑠+# 𝑠% 𝑠& 𝑠( 𝑠) 𝑠* 𝑠,

Fig. 7. Success case of the rollout on the task "rotate the blue block left": although fgen4 is not precisely generated (dropped the blue block), it can still
provide valuable directional guidance for the robot’s subsequent movements toward achieving the final goal.

Generated 
Subgoals:

Robot 
State: 

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'
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Fig. 8. Failure case of the "rotate the pink block left" task rollout: The policy fails to adapt to the changes in the generated subgoals, resulting in a series
of failures.
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