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Abstract
Large language models (LLMs) have achieved re-
markable empirical successes, largely due to their
in-context learning capabilities. Inspired by this,
we explore training an autoregressive transformer
for in-context Reinforcement Learning (RL). In
this setting, we initially train a transformer on
an offline dataset consisting of trajectories col-
lected from various RL instances, and then fix
and use this transformer to create an action pol-
icy for new RL instances. We consider the setting
where the offline dataset contains trajectories sam-
pled from suboptimal behavioral policies. In this
case, standard autoregressive training corresponds
to imitation learning and results in suboptimal
performance. To address this, we propose the De-
cision Importance Transformer (DIT), which em-
ulates the actor-critic algorithm in an in-context
manner. DIT trains a transformer-based policy
using a weighted maximum likelihood estima-
tion (WMLE) loss, where the weights are based
on the observed rewards and act as importance
sampling ratios, guiding the suboptimal policy
toward the optimal policy. We conduct extensive
experiments to test the performance of DIT on
both bandit and Markov Decision Process prob-
lems. Our results show that DIT achieves superior
performance, particularly when the pretraining
dataset contains suboptimal action labels.

1. Introduction
Large Language Models (LLMs) have achieved remark-
able empirical successes (Radford et al., 2019; Brown et al.,
2020b; Touvron et al., 2023; Wu et al., 2023b; OpenAI et al.,
2024). In particular, colossal transformer models trained
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with copious data have shown astonishing in-context learn-
ing (ICL) capabilities (Akyürek et al., 2022; Dong et al.,
2022; Min et al., 2022), i.e., to solve new tasks with only a
few demonstrations (Brown et al., 2020a; Perez et al., 2021;
Alayrac et al., 2022). In the setting of ICL for supervised
learning, when presented with the context of a small batch
of paired inputs and labels from a new task, LLMs generate
the associated label for an unpaired input. This process
does not involve any parameter updates; instead, LLMs rely
solely on the provided demonstrations to determine the cor-
rect label. ICL has been successfully applied to a broad
range of supervised learning tasks (Brown et al., 2020b; Xie
et al., 2021; Min et al., 2022; Touvron et al., 2023). On
the other hand, Reinforcement Learning (RL) represents
a significantly more complex and greater challenge than
supervised learning (Kaelbling et al., 1996; François-Lavet
et al., 2018; Levine et al., 2020). In the online setting, RL
algorithms constantly balance exploration and exploitation:
choosing exploratory actions to gather more information at
the cost of high regret, or exploiting the currently known op-
timal action with the risk of overlooking a potentially better
one. In this case, RL algorithms act optimistically and ex-
plore with audacity (Garivier & Moulines, 2011; Kaufmann
et al., 2012). Conversely, in the offline setting where all
information comes from datasets collected by suboptimal
behavioral policies, RL algorithms act pessimistically (Ki-
dambi et al., 2020; Kumar et al., 2020; Rashidinejad et al.,
2021; Jin et al., 2021).

Despite these challenges, recent works have successfully
employed autoregressive LLMs for in-context RL (Laskin
et al., 2022; Lee et al., 2024). In this setting, the context is
an offline dataset consisting of transitions collected by un-
known and often suboptimal policies. When used as policies,
LLMs predict the optimal actions for current states condi-
tioning on the given context. In this case, LLMs infer opti-
mal policies from the environmental information provided
in the context. Two recent works, Algorithm Distillation
(AD) (Laskin et al., 2022) and Decision Pretrained Trans-
former (DPT) (Lee et al., 2024), have demonstrated impres-
sive in-context RL abilities. After pretraining on datasets
from a family of diverse RL instances, they generalize to un-
seen RL instances and infer near-optimal policies in context.
As a pioneering work, AD adopts a learning-to-learn (Vilalta
& Drissi, 2002) approach, training a transformer model to
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Figure 1. Supervised Pretraining (left): Presented with offline trajectories and optimal action labels, LLMs are pretrained to predict
the optimal actions for query states across RL tasks. In-Context RL (middle): When used as policies for unseen environments, the
pretrained LLMs generate actions conditioned on the current states and offline trajectories collected by (suboptimal) behavioral policies.
Pretraining without Optimal Action Labels (right): This work addresses the stringent requirement for optimal action labels by using
in-trajectory state-action pairs as query states and pseudo-optimal action labels. Additionally, it employs a weighted pretraining objective,
where the weights are based on the optimality of actions, estimated through the observed rewards.

emulate the learning process of RL algorithms. In particular,
AD requires the pretraining dataset to include the complete
learning history of RL algorithms—from episodes collected
by randomly initialized policies to those collected by nearly
optimal policies—across a diverse set of RL tasks. This
imposes a stringent demand on the pretraining dataset.

Our work is more closely related to DPT, a supervised pre-
training method. The pretraining dataset for DPT consists
of offline trajectories (contexts) from a diverse set of RL
tasks, randomly sampled query states from these tasks, and
their corresponding optimal actions. DPT trains the trans-
former to predict the optimal action given a query state
and the context (see Section 3 and Figure 1). Despite its
remarkable in-context RL ability, DPT requires access to
optimal policies to generate the optimal action labels for
a set of query states across diverse tasks. Although this
requirement is less demanding than that of AD, it remains a
stringent assumption. To address this limitation, we propose
the Decision Importance Transformer (DIT), a framework
to pretrain transformers for in-context RL without optimal
action labels. DIT is based on a simple principle: in the
absence of query states and optimal action labels, can we
use the observed state-action pairs in the offline dataset as
query states and pseudo-optimal action labels? Specifically,
given offline datasets from diverse RL tasks, DIT assigns a
value to each observed action in the datasets. The assigned
values are based on the observed rewards in trajectory, rep-
resenting the optimality of actions. The observed actions,
along with their assigned values, serve as noisy estimations
of the true optimal actions. A transformer is subsequently
trained with a weighted maximum likelihood estimation
(WMLE) loss, where the weights are based on the assigned
values. These weights essentially act as the importance sam-
pling ratio between the optimal trajectories and the offline
trajectories, selecting the in-trajectory state-action pairs that
can be reliably used as query states and optimal action labels

for supervised pretraining.

Through thorough experiments on various bandit and
Markov Decision Process (MDP) problems, we demonstrate
that pretrained DIT models also generalize to unseen deci-
sion making problems in context. On bandit problems, the
performance of DIT models matches that of the theoretically
optimal bandit algorithms (Upper Confidence Bound (Auer,
2002) and Thompson Sampling (Russo et al., 2018) for on-
line learning; Lower Confidence Bound (Xiao et al., 2021)
for offline learning). In the challenging MDP problem Dark
Room (Laskin et al., 2022), DIT models demonstrate com-
petitive performance to that of the DPT models in both on-
line and offline testings, despite being pretrained without op-
timal action labels. To corroborate that DIT has extracted the
maximum information from the pretraining dataset, we con-
duct experiments on Miniworld (Chevalier-Boisvert et al.,
2023) where the query states for DPT are only allowed to
be sampled from the observed states. In this case, even
pretrained with optimal action labels, the performance of
DPT models is only on par with that of DIT models.

In what follows, we briefly discuss related work on in-
context decision making in Section 2, followed by a prelim-
inary review of MDP and DPT in Section 3. In Sections 4,
we present DIT for bandit and MDP problems. Experimen-
tal results are highlighted in Section 5, followed by our
conclusions.

2. Related Work
Offline Reinforcement Learning. While online RL algo-
rithms (Kaelbling et al., 1996; François-Lavet et al., 2018)
learn optimal policies by interacting with the environments
through trial and error, offline RL (Levine et al., 2020; Mat-
sushima et al., 2020; Prudencio et al., 2023) aims to infer op-
timal policies from historical data collected by (suboptimal)
behavioral policies. One of the substantial challenges for
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offline RL is the distribution shift caused by the mismatch
between behavioral policies and optimal policies (Levine
et al., 2020; Kostrikov et al., 2021). To this end, offline
RL algorithms learn pessimistically by either policy regu-
larization or underestimating the policy returns (Wu et al.,
2019; Kidambi et al., 2020; Kumar et al., 2020; Rashidine-
jad et al., 2021; Yin & Wang, 2021; Jin et al., 2021; Dong
et al., 2023). While the goal of offline RL is solve the same
RL tasks from where the offline datasets are collected, the
goal of in-context RL is to efficiently generalize to unseen
tasks after pretraining with offline datasets from diverse RL
tasks. In particular, models with in-context RL capabilities
can solve new offline RL problems in context: they infer
near-optimal policies from a small offline dataset consist-
ing of transitions in the unseen environment collected by
suboptimal behavioral policies.

Large Language Models and Autoregressive Decision
Making. Large Language Models and autoregressive mod-
els (Radford et al., 2019; Brown et al., 2020b; Wu et al.,
2023b; Touvron et al., 2023; OpenAI et al., 2024) have
achieved astonishing empirical successes in a wide range of
application areas, including medicine (Singhal et al., 2023;
Thirunavukarasu et al., 2023), education (Kasneci et al.,
2023), finance (Wu et al., 2023a; Yang et al., 2023), etc. As
it is natural to use autoregressive models for sequential de-
cision making, transformer models have demonstrated supe-
rior performance in both bandit and MDP problems (Li et al.,
2023; Yuan et al., 2023). In particular, Decision Transformer
(DT) (Chen et al., 2021; Zheng et al., 2022; Liu et al., 2023;
Yamagata et al., 2023) uses return-conditioned supervised
learning to tackle offline RL. Although salable to multi-task
settings (i.e., one model for multiple RL problems), DT is
commonly criticised for its inability to improve upon the of-
fline datasets and provably sub-optimal in certain scenarios,
e.g., environment with high stochasticity (Brandfonbrener
et al., 2022; Yang et al., 2022; Yamagata et al., 2023). More
importantly, DT cannot generalize to unseen RL problems
in context. To this end, Algorithm Distillation (AD) (Laskin
et al., 2022) uses sequential modeling to emulate the learn-
ing process of RL algorithms, i.e., meta-learning (Vilalta &
Drissi, 2002). The work most closely related to ours is the
Decision Pretrained Transformer (DPT) (Lee et al., 2024),
a supervised pretraining approach for in-context decision
making. DPT trains transformers to predict the optimal
action given a query state and a set of transitions. As delin-
eated in Section 1, AD and DPT have stringent assumptions
on the pretraining datasets. Our work overcomes those draw-
backs and does not require query to optimal policies nor the
complete learning histories of RL algorithms (Laskin et al.,
2022; Lee et al., 2024).

3. Preliminary
Markov Decision Process. Sequential decision problems
can be formulated as Markov Decision Processes (MDPs).
An MDP is described by the tuple τ = (S,A, P,R,H, ρ)
where S is the set of all possible states, A is the set of
all possible actions, P : S × A → ∆(S) is the dynamic
function that describes the distribution of the next state
given the current state and action, R : S × A → ∆(R) is
the reward function, H ∈ N is the horizon, and ρ ∈ ∆(S)
is the initial state distribution. An agent (decision maker)
interacts with the environment as follows. At the initial
step h = 0, an initial state s0 ∈ S is sampled according to
distribution ρ. For all h such that 0 ≤ h ≤ H , the agent
chooses action ah ∈ A and receives reward rh ∼ R(sh, ah).
Then the next state sh+1 is generated following the dynamic
P (sh, ah). A policy π : S → ∆(A) maps the current state
to an action distribution. Let Vτ (π) = Eπ[

∑H
h=1 rh] denote

the expected cumulative reward of π in τ . The goal of
an agent is to learn the optimal policy π∗

τ that maximizes
Vτ (π).

Decision-Pretrained Transformer. DPT is a supervised
pretraining method for transformers to have in-context RL
capability. DPT assumes a set of tasks {τ i}mi=1 sampled
from a task distribution T . Here each τ i is an instance of
MDP. For each task τ i, a context dataset Di is next sampled,
consisting of interactions between a behavioral policy and
τ i, i.e., Di = {(sih, aih, sih+1, r

i
h)}h, where aih is chosen

by a behavioral policy. Additionally, for each task τ i, a
query state siquery ∈ S is sampled, and an associated label
a∗i is sampled from π∗

τ i(squery), where π∗
τ i is the optimal

policy for τ i. The complete pretraining dataset is Dpre =
{Di, siquery, a

∗
i }mi=1. Let Di,j = {(sih, aih, sih+1, r

i
h)}h≤j de-

note the partial dataset of Di up to time step j. Let Tθ de-
note a causal GPT-2 transformer with parameters θ (Radford
et al., 2019). The pretraining objective of DPT is defined as

min
θ

1

mH

m∑
i=1

H∑
h=1

− log Tθ

(
a∗i |siquery, D

i,h
)
. (1)

In-Context RL. After pretraining, the pretrained DPT
model Tθ can be deployed as both an online and offline
agent. During deployment (testing), a test task τ is sampled
from the testing task distribution T ′. Note that here the
testing distribution T ′ can be different from the training
distribution T . For offline deployment, a dataset Doff is first
sampled from τ , then DPT follows the policy Tθ(·|sh, Doff)
after observing the state sh at time step h . For online de-
ployment, DPT initiate with an empty dataset Don. In each
episode, DPT follows the policy Tθ(·|sh, Don) to collect
a trajectory {s1, a1, r1, . . . , sH , aH , rH} which will be ap-
pended into Don. This process repeats for a pre-defined
number of episodes. See Algorithm 3 (in Appendix) for de-
tailed pseudocodes and Figure 1 for a visual demonstration.
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4. Decision Importance Transformer
We present the Decision Importance Transformer (DIT), a
pretraining approach that enables LLMs for in-context RL
without requiring optimal action labels. As discussed in Sec-
tion 1, given an offline dataset Di consisting of transitions
{(sih, aih, sih+1, r

i
h)h} collected by a suboptimal behavioral

policy in the RL instance τ i, we aim to use the observed
state-action pairs in Di as query states and pseudo-optimal
action labels. The challenge here is to identify the important
pairs where the actions are near-optimal for the correspond-
ing states. To this end, DIT will assign a value Ci

opt(s
i
h, a

i
h)

to each state-action pair (sih, a
i
h) in the dataset, representing

the optimality of action aih given sih. A large value indicates
that aih is a good action. Intuitively, if aih is a good action,
then the agent should collect high rewards after time step h.
Thus, we propose to define the values as follows:

Ci
opt(s

i
h, a

i
h) =

H∑
h′=h

γh′−hrih′ , (2)

where 0 < γ < 1 is a discounting factor. The purpose
of γ is to encourage Ci

opt(s
i
h, a

i
h) to focus more on the im-

mediate rewards, as future rewards are influenced not only
by aih but also, and perhaps more significantly, by the sub-
sequent actions {aih′}h′>h. While our proposed approach
constructs values in a trajectory-independent manner, it is
feasible to employ supervised in-context learning for values
constructed using cross-trajectory information, as discussed
in Appendix B. However, since the primary goal of this
work is to demonstrate the effectiveness of weighted pre-
training and in-trajectory pseudo-optimal labels, we opted
for the simpler construction in (2).

When a pair (sih, a
i
h) is used as the query state and the

pseudo-optimal action label for pretraining, if aih is near-
optimal, i.e., Ci

opt(s
i
h, a

i
h) is high, we should assign it more

weight in the DPT pretraining objective in (1) because it is
more likely to be the true optimal action. Hence, we propose
the following Weighted Maximum Likelihood Estimation
(WMLE) loss as the supervised pretraining objective of DIT:

min
θ

L(θ) =
1

mH2

m∑
i=1

H∑
h′=1

M
(
Ci

opt

(
sih′ , aih′

))
Li(θ)

with Li(θ) =

H∑
h=1

− log Tθ

(
aih′ |sih′ , Di,h

)
,

(3)
whereM : R→ R is a monotone function for rescaling the
assigned values. Intuitively,M serves to control the relative
weight differences among the actions with large assigned
values and those with small ones. For example, consider
M(x) = exp(κx) where κ ≥ 0. As κ increases, actions
assigned larger values will receive significantly more weight
during pretraining. Compared with the pretraining objec-

tive of DPT in (1), DIT uses all observed state-action pairs
(sih, a

i
h) in the offline dataset as query states and optimal

action labels. For observed actions that are more likely to be
good actions, DIT increases their associated weights in the
pretraining objective. These weights effectively serve as the
importance sampling ratio between the optimal and offline
trajectories, guiding the suboptimal policy toward the opti-
mal policy. We present pseudocode for DIT in Algorithm 1.

Algorithm 1 Decision Importance Transformer for Markov
Decision Processes

1: Input: Pretraining Dataset D = {Di}, Di =
{(sih, aih, sih+1, r

i
h)}h; Scale Function M; Discount

Factor γ; Transformer Model Tθ.
2: // Calculating Importance Weights

3: for each context dataset Di do
4: for each state action pair (sih, a

i
h) do

5: Ci
opt(s

i
h, a

i
h) =

∑H
h′=h γ

h′−hrh′

6: end for
7: end for
8: // Weighted MLE

9: Randomly initialize Tθ.
10: while not converged do
11: Sample an context dataset Di from D and a step

index j. Compute the loss:

− 1

H

H∑
h=1

M
(
Ci

opt

(
sij , a

i
j

))
log Tθ

(
aij |sij , Di,h

)
12: Backpropagate to update θ
13: end while

DIT for Bandit Problems

Here, we provide a separate treatment for the bandit prob-
lems, which are special cases of MDP problems where the
state set S contains only a single member, and the horizon
of each episode is 1. For each action (bandit) a ∈ A, there
is an associated random reward r(a). The optimal action is
defined as a∗ ∈ argmaxa E[r(a)].

The i-th context dataset Di for the bandit problems is a
trajectory {ai1, ri1, . . . , aiH , riH} or as a set of transitions
{(aih, rih)}Hh=1 with rih ∼ ri(aih) where ri(a) denotes the
random reward associated with bandit a in the i-th ban-
dit problem. With knowledge of the optimal bandits, the
pretraining objective of DPT for bandit problems is

min
θ

1

mH

m∑
i=1

H∑
h=1

− log Tθ

(
a∗i |1, Di,h

)
, (4)

where without loss of generality the single member of S
is set to 1 (i.e., S = {1}) and a∗i is the optimal action for
the i-th bandit problem. After pretraining, DPT models can
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generalize to unseen bandit instances, demonstrating perfor-
mance matches that of the theoretically optimal algorithms
for bandit problems (Lee et al., 2024). However, without
information about the optimal bandits across different prob-
lems, this approach is not directly applicable. To this end,
given a trajectory {ai1, ri1, . . . , aiH , riH} without the optimal
bandit a∗i , DIT assigns a value Ci

opt(a) to each a ∈ A, that
represents the optimality of a. A larger value of Ci

opt(a)
indicates that a is a better action for the i-th bandit problem.
A natural choice for Ci

opt(a) is the expected reward of a, i.e.,
Ci

opt(a) = E[ri(a)]. In this case, the bandit with the highest
Ci

opt(a) is the optimal action. DIT first estimates Ci
opt(a)

with the context dataset: for any a ∈ A,

Ĉi
opt(a) =

∑H
h=1 r

i
h1{aih = a}∑H

h=1 1{aih = a}
. (5)

Next, DIT creates a pseudo-optimal bandit âi for the i-th
bandit problem with

âi = argmax
a∈A

Ĉi
opt(a).

For any bandit that is unobserved in the context dataset
Di, we assign a very small value to it, ensuring it will not
be selected. With âi’s as the estimations for the optimal
bandits, DIT employs the following pretraining objective:

min
θ

1

mH

m∑
i=1

H∑
h=1

−M
(
Ĉi

opt (âi)
)
· log Tθ

(
âi|1, Di,h

)
,

(6)
whereM : R → R is a monotone function for rescaling
the assigned values. Here, pseudo-optimal bandits that have
received more rewards (with larger Ĉi

opt) will be assigned
greater weights during pretraining, as they are more likely
to be the optimal bandits. We present pseudocode for the
proposed algorithm in Algorithm 2.

5. Empirical Studies
We empirically demonstrate the efficacy of DIT through ex-
periments on various bandit and MDP problems. In bandit
problem, DIT showcases matching performance to that of
the theoretically optimal bandit algorithms in both online
and offline settings. In MDP problems, we corroborate that
DIT can infer close-to-optimal policies from suboptimal
pretraining datasets. Notably, albeit without optimal action
labels during pretraining, DIT models demonstrate perfor-
mance as strong as that of DPT models, which have access
to optimal action labels during pretraining.

Implementation. To improve the stability and efficiency of
training, we normalize the assigned values so that, after nor-
malization, all values are positive (see Appendix D.1 for de-
tails). We set the discounting factor γ to 0.8. After normal-
ization, we apply the weight-scaling functionM(x) = λx2.

Algorithm 2 Decision Importance Transformer for Bandit
Problems

1: Input: Dataset D = {Di}, Di = {ai1, . . . , riH}; Scale
FunctionM; Transformer Model Tθ.

2: for each context dataset Di and each bandit a ∈ A do

3: Ĉi
opt(a) =

(∑H
h=1 rih1{a

i
h=a}

)(∑H
h=1 1{ai

h=a}
)

4: end for
5: Randomly initialize Tθ.
6: while not converged do
7: Sample an context dataset Di from D.
8: Build the pseudo-optimal bandit âi =

argmaxa∈A Ĉi
opt(a). Compute the loss:

1

H

H∑
h=1

−M
(
Ĉi

opt (âi)
)
· log Tθ

(
âi|1, Di,h

)
9: Backpropagate to update θ

10: end while

The choice of λ is critical: it should be larger for offline
datasets where optimal actions are observed less frequently
so that the important yet rare good actions receive more
weights during pretraining. In this work, we use a simple
scheme with the same λ value for all problems, setting λ
to 500 for all bandit and MDP problems. However, there is
potential for improved weight-scaling using more complex
schemes, such as varying values for different pretraining
tasks.

5.1. Bandit Problems

We consider linear bandit (LB) problems with an underlying
structure shared among tasks. Specifically, there exists a
bandit feature function ϕ : A → Rd that is fixed across
tasks where d denotes the dimension of the problems. The
reward of a bandit a ∈ A in task τ i is ri(a) ∼ N

(
µi
a, σ

2
)

where µi
a = E[r|a, τ i] = ⟨θi, ϕ(a)⟩ and σ2 = 0.3. Here,

θi is the task specific parameter that defines task τ i. We
conduct experiments on LB problems where K = 20 (total
number of bandits), d = 10 and H = 200. The pretraining
dataset for DIT are generated as follows.

Pretraining Dataset. For LB problems, we generate the
feature function ϕ : A → Rd by sampling bandit fea-
tures from independent Gaussian distributions, i.e., ϕ(a) ∼
Nd (0, Id/d) for all a ∈ A. To generate the pretraining tasks
{τ i}, we sample their parameters {θi} independently fol-
lowing θi ∼ Nd (0, Id/d). To generate context dataset Di,
we randomly generate a behavioral policy by mixing (i) a
probability distribution samples a Dirichlet distribution and
(ii) a point-mass distribution on one random arm. The mix-
ing weights are uniform sampled from [0.0, 0.1, . . . , 1.0].
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At every time step h, the behavioral policy samples an ac-
tion aih and receives rih. We do not enforce extra coverage
of the optimal actions for bandit problems. Following the
setting of DPT (Lee et al., 2024), we collect 100k context
datasets for LB problems.

Comparisons. We compare to the following baselines (see
Appendix C for more details ): Empirical Mean (EMP) se-
lects the bandit with the highest average reward; Upper Con-
fidence Bound (UCB) (Auer, 2002) builds upper confidence
bounds for all bandits and selects the bandit with the highest
upper bound; Lower Confidence Bound (LCB) (Xiao et al.,
2021) builds lower confidence bounds for all bandits and
selects the bandit with the highest lower bound; Thompson
Sampling (TS) (Russo et al., 2018) builds a posterior dis-
tribution for the rewards of all bandits. At each step, TS
samples means for all bandits from the posterior distribution
and selects the bandit with the highest sampled mean. In
term of metrics, for offline learning we follow the conven-
tion to use the suboptimality defined as (µa∗ − µâ) where
µa∗ is the mean reward of the optimal bandit and µâ is the
mean reward of the chosen bandit; for online learning we
use the cumulative regret defined as

∑
h(µa∗ − µah

) where
ah is the chosen action at time step h.

Empirical Results. As can be seen in Figure 2, in the on-
line setting, though pretrained without the optimal action
labels, DIT models demonstrate superior performance to
those of the theoretically optimal bandit algorithms, i.e.,
UCB and TS. Deployed for unseen bandit problems, DIT
models quickly identify the optimal bandits at the beginning
and maintain sub-linear regrets over the horizon. In the
offline setting, DIT models can infer near-optimal bandits
from trajectories collected by sub-optimal policies. In par-
ticular, when the behavioral policies (captioned ‘BEH’ in
Figure 2) are randomly generated policies, DIT significantly
outperforms both TS and LCB, the theoretically optimal
algorithm for offline bandit problems. When the context is
collected by expert policies, DIT models improve upon their
performance, achieving lower regrets through in-context
decisions.

5.2. MDP Problems

We conduct experiments on two MDP environments
widely used by works about in-context learning: Dark
Room (Laskin et al., 2022) and Miniworld (Chevalier-
Boisvert et al., 2023). In Dark Room, the agent is randomly
placed in a room of 10× 10 grids, and there is an unknown
goal location on one of the grid. The agent needs to move
to the goal location by choosing from 5 actions: to move
in one of the 4 directions (up, down, left, right) or stay still.
The agent receives a reward of 1 only when it is at the goal;
otherwise, it receives 0. The horizon for Dark Room is 100.
In Miniworld, the agent is placed in a room with four boxes

of different colors, one of which being the target box. The
agent receives a (25× 25× 3) color image and its direction
as input, and can choose from four possible actions: to turn
left/right, move straight forward, or stay still. Similar to
Dark Room, it receives a reward of 1 only when it is near the
target box while the horizon is 50. The optimal policies for
both MDP problems are known exactly. See Appendix C.3
for details of these environments.

Pretraining Datasets. To ensure coverage of optimal ac-
tions (so that optimal policies can be inferred), at every
step, with probability p (respectively 1− p) we use optimal
policy (respectively random policy) to choose action. We
choose p so that the average reward of the trajectories in
the pretraining dataset is less than 30% of that of the op-
timal trajectories, reflecting the challenging yet common
scenarios. For Dark Room, to test whether DIT models can
generalize to unseen RL problems in context, we collect
context datasets from only 80 out of the total 100 goals and
reserves the rest 20 for testing. For each training goal, we
follow the setting of DPT to collect 1k context datasets,
leading to a total of 80k context datasets in the pretraining
dataset (64k for training and 16k for validation). For Mini-
world, we collect 40k context datasets (32k for training and
8k for validation), 10k datasets for each of the four tasks
corresponding to four possible box colors.

Comparisons. We compare DIT to other in-context algo-
rithms as well as RL algorithms that train an agent from
scratch without pretraining. The baseline algorithms are
briefly described next (see their implementation details in
Appendix C).

• Proximal Policy Optimization (PPO) (Schulman et al.,
2017): PPO is an online algorithm that trains an agent
from scratch in every environment.

• Algorithm Distillation (AD) (Laskin et al., 2022): AD
is an in-context algorithm whose pretraining dataset
consists of learning histories of an RL algorithm in the
pretraining tasks. In this work we use PPO as the RL
algorithm for AD. AD can be both online and offline
algorithms.

• Decision Pretrained Transformer (DPT): DPT and DIT
use the same context datasets for pretraining. However,
DPT requires query states across different tasks and
their associated optimal action labels. We follow the
original setting of DPT to uniformly sample query
state from all possible states and obtain an associated
optimal action label.

• Behavioral Clone (BC) (Hussein et al., 2017): BC imi-
tates the behavioral policies of the pretraining dataset
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Figure 2. Results for Linear Bandits (lower values indicate better performance). Left: Online testing. Middle: Offline testing conditioned
on trajectories gathered by highly suboptimal, randomly generated policies. Right: Offline testing condtioned on trajectories gathered by
experts (Thompson Sampling policies).

by optimizing

min
θ

1

mH

m∑
i=1

H∑
h=1

− log Tθ

(
aih|sih, Di,h

)
.

• Weighted Behavioral Clone (WBC): WBC is the
weighted-version of BC. During pretraining, it opti-
mizes

min
θ

1

mH

m∑
i=1

H∑
h=1

−Ci,h log Tθ

(
aih|sih, Di,h

)
where Ci,h = M(Ci

opt(s
i
h, a

i
h)) is the same weight

used by DIT. This method functions as a baseline to
evaluate the effectiveness of the weight-by-optimality
principle employed by DIT.

In terms of metrics, we follow the convention to use the
episode cumulative return

∑H
h=1 rh.

In-Context Decision for Unseen Tasks. We explore how
our method generalizes to unseen RL tasks, using the Dark
Room environment (Laskin et al., 2022). Following the
approach of DPT (Lee et al., 2024), we use 80 goals for
training and evaluate on the remaining 20 unseen goals. For
PPO (Schulman et al., 2017), since it is an online learning
method, we directly train from scratch on the 20 goals to
benchmark the returns of in-context RL. Figure 3(a) shows
the online evaluation over 40 episodes. After 40 episodes,
PPO gains little in return, demonstrating the difficulty of
the RL tasks for testing. Restricted by their capability to
efficiently explore in new tasks, imitation learning meth-
ods (i.e., BC and WBC) also perform poorly. Although
our method (DIT) initially has lower returns than DPT and
AD, it quickly surpasses them and continues to improve.
Figures 3(b) and 3(c) show the results for offline evalu-
ations with expert (high-reward) trajectories and random
(low-reward) trajectories. Despite being pretrained without
the optimal action labels, DIT models demonstrate competi-
tive performance to that of DPT. Notably, WBC outperforms

BC in both scenarios, further indicating the effectiveness of
the proposed weighted-pretraining framework.

Comparison with Oracles. In this section, we conduct ex-
periments in the Miniworld (Chevalier-Boisvert et al., 2023)
environment to investigate whether DIT reaches the limits of
the pretraining datasets. To this end, we compare our model
to the DPT model that uses a pretraining dataset containing
only query states that belong to the set of observed states in
the pretraining dataset, along with their associated optimal
action labels. In this scenario, the total number of pretrain-
ing context datasets and optimal action labels remains the
same, but the query states are restricted. This restriction
makes the DPT model function as an oracle upper bound for
DIT, as all query states for DIT originate from the observed
states. It is worth noting that AD is trained with a differ-
ent pretraining dataset that has more stringent assumptions
(i.e., learning histories), while the other methods use the
same pretraining dataset, except that DPT also employs op-
timal action labels. Surprisingly, in the online setting, DPT
struggles to perform, while DIT models gradually improve
their returns, as shown in Figure 4(a). In the offline setting,
DIT again demonstrates competitive performance with DPT,
indicating that it has effectively leveraged the pretraining
dataset to a significant extent.

Ablation Studies. Here we investigate the effect of the
weights in WMLE loss during pretraining. We pretrain DIT
models on two pretraining datasets for Dark Room, one with
high average reward (30% average reward of the optimal
policies) and the other with low reward (10% of that of the
optimal policies). For each pretraining dataset, we train two
DIT models respectively with small and large weights for
the WMLE loss. Hence, we have 4 DIT models in total.
As can be seen from Figure 5, the scales of the weights are
crucial. During online testing, the model pretrained on the
low-reward dataset with a small weight cannot fully utilize
the dataset. Increasing the weight significantly improves its
performance (i.e., ‘L:2x’ outperforms ‘L:1x’). In contrast,
when pretraining on a high-reward dataset, using a too large
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Figure 3. Results on Dark Room (higher values indicate better performance). Left: change in return of policies with additional online
episodes for (in-context) learning. Middle and Right: offline evaluations with context trajectories sampled from random and expert
policies.
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Figure 4. Comparison of In-context RL Algorithms on Miniworld.

Figure 5. Models pretrained with high-reward (low-reward) datasets are labeled as ‘H’ (‘L’); models pretrained with large weights (small
weights) for the WMLE loss are labeled as ‘2x’ (‘1x’). Left: Online testing. Right: Offline testing with expert and random trajectories.

weight degrades performance. This empirically corroborates
that, given a pretraining dataset with lower rewards, the rarer
good actions should receive more weights during supervised
pretraining. We observe the same behavior for offline testing
with low-reward random trajectories. The performance for
offline testing with expert trajectories shows little variation.
We believe this is due to the simplicity of offline in-context
RL with optimal trajectories.

6. Discussion
We have proposed DIT for pretraining LLMs without opti-
mal action labels. DIT has demonstrated superior empirical

performance: it matches the performance of theoretically
optimal bandit algorithms and can infer near-optimal de-
cisions with highly sub-optimal offline datasets. Despite
these strengths, DIT still requires the optimal actions to be
observable in the pretraining dataset because it is unlikely,
if not entirely unfeasible, to infer optimal actions all from
random trajectories and without any information about opti-
mal policies. The appropriate weight scale for the weighted
MLE loss during pretraining is also an important question
to investigate. While we have established qualitative under-
standings through experimental results, there should exist
a theoretically optimal scale based on the quality of the
pretraining dataset. We will pursue this in future work.
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A. Pseudocodes

Algorithm 3 Deployment of In-Context RL Models
Input: Pretrained Transformer Model Tθ; Horizon of episodes H; Number of episodes N for online testing; Of-
fline dataset Doff = {(sh, ah, sh+1, rh)}h, consisting of transitions collected by a behavioral policy. // Offline

Testing every time step h ∈ {1, . . . ,H} Observe state sh Sample action with Tθ:

ah ∼ Tθ (·|sh, Doff)

Collect reward rh // Online Testing Initialize an empty online data buffer Don = {} every online trial n ∈
{1, . . . , N} every time step h ∈ {1, . . . ,H} Observe state sh Sample action with Tθ:

ah ∼ Tθ (·|sh, Don)

Collect reward rh Append the collected transitions {(sh, ah, sh+1, rh)}h into Don

B. In-Context Learning for Weights in Pretraining
Supervised ICL (Akyürek et al., 2022; Dong et al., 2022; Min et al., 2022) addresses the problem where, given a set of
datasets from diverse supervised learning tasks {Di}i where Di = {(xi

j , y
i
j)}j is generated by an underlying truth function

gi : X → Y as yij = gi(xi
j)+ ϵ with ϵ as a zero-mean noise. Here all the underlying functions {gi} belong to a task function

class F with structures, e.g., linear functions. Supervised ICL employs a transformer model to interpolate across the given
datasets by optimizing the objective

min
θ

LICL(θ) =
1

m

m∑
i=1

ni∑
j=1

ℓ(Tθ(D
i(−j), xj), yj), (7)

where ℓ : Y × Y → R is the loss function depending on the application (e.g., mean-squared-error for regression) and
Di(−j) is the dataset identical to Di but with (xi

j , y
i
j) removed.

The transformer models trained with (7) as their objective functions demonstrate strong performance on both instances from
the training tasks as well as those from unseen tasks in F . By interpolating across training tasks and extracting their shared
structure, supervised ICL can solve the given training tasks with only a small batch of training samples for each task. Of
course, it requires a significant number of training tasks so that the shared structure across tasks can be inferred.

In our work, the values assigned to observed state-action pairs can also be considered as a supervised ICL task. In particular,
the input is (sih, a

i
h) and the output is the value to assign, with Ci

opt defined in (2) functioning as noisy label for regression.
This approach has the potential to interpolate across tasks, leading to more consistent value assignments over tasks. Yet, since
the primary goal of this work is to demonstrate the effectiveness of weighted pretraining and in-trajectory pseudo-optimal
labels, we opted for the simpler construction in (2).

C. Baselines
C.1. Bandit Algorithms

Empirical Mean (EMP). We follow (Lee et al., 2024) to consider a strengthened version of EMP which, in the offline
setting, only chooses from actions that have been observed at least once in the offline dataset while, in the online setting, at
least choosing every action once. At every time step, EMP chooses actions as

â ∈ argmax
a∈A

{µ̂a},

where µ̂a is the average observed reward for action a.

Upper Confidence Bound (UCB). Motivated by the Hoeffding’s Inequality, at each time step, UCB chooses actions as

â ∈ argmax
a∈A

{
µ̂a + C ·

√
1/na

}
,
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where C is a hyperparameter and na is the number of times a has been chosen. For unseen actions, µ̂a is set to 0 and na is
set to 1. We follow (Lee et al., 2024) to set C to be 1 as it demonstrates the best empirical performance.

Lower Confidence Bound (LCB). LCB is on the contrary of UCB. In the offline setting, LCB only chooses from observed
actions in the offline dataset. Specifically, it chooses actions as

â ∈ argmax
a∈A

{
µ̂a − C ·

√
1/na

}
,

where C is a hyperparameter and na is the number of times a has been chosen. Similar to hyperparameter of UCB, the
hyperparameter C for LCB is also set to 1 due to its strong empirical performance.

Thompson Sampling (TS). We use Gaussian TS (Russo et al., 2018) with a Gaussian prior. The mean and variance of the
prior are set to the true mean and variance of the pretraining tasks: 0 for mean and 1 for variance.

C.2. RL Baselines

Proximal Policy Optimization (PPO). We use the Stable Baselines3 implementation(Raffin et al., 2021) for Proximal
Policy Optimization (PPO) and keep the default parameter settings. We train for 1,000 episodes per goal in the Dark Room
environment and 2,500 episodes for Miniworld. For both environments, the policy model is implemented as a multi-layer
perceptron with 2 layers of 64 units each. Additionally, we use a convolutional neural network with 2 convolutional layers,
each with 16 kernels of size 3 × 3, followed by a linear layer with an output dimension of 8.

Algorithm Distillation (AD). During PPO training, we collect the learning history for use in AD. According to the
algorithm (Laskin et al., 2022), the model takes a cross-episodic trajectory T of length H , representing the horizon. It is
trained to predict the action taken after K episodes following T . Here, we choose K = 100 as it helps to speed up the
training. In both environments, we use the same transformer architecture as in DPT and DIT. For Miniworld, we use the
same CNN architecture as in PPO works as the image encoder.

Decision-Pretrained Transformer (DPT). The Decision-Pretrained Transformer (DPT) uses supervised learning to
predict optimal actions. The model operates by considering the complete history of an episode and a specific query state
sampled from the environment to predict the next action. This setup allows DPT to leverage past experiences as context
for making decisions about future actions. To prepare training data for DPT, a complete episode is first generated by a
predefined policy. A query state is then sampled from the environment, and the corresponding optimal action serves as
the label. The model is trained to predict the optimal action given the episode as context based on the query state. The
transformer for DPT is the same as in AD.

Behavior Clone (BC) and Weighted Behavior Clone (WBC). In Behavior Clone (BC), given an episode, the model is
trained to predict the next action based on the current state and the past trajectory. We sample episodes based on a policy that,
with probability p, takes an action from the optimal policy, and with probability 1− p, takes an action from a random policy.
We set p = 0.2 in the Dark Room and p = 0.7 in Miniworld. For Weighted Behavior Clone (WBC), when calculating the
loss for each action taken from a state, we reweight it by the cumulative rewards from that action until the end of the episode.
This ensures the model learns actions that have a higher influence on the rest of the episode.

Training Parameters. For DIT, DPT, AD, BC, and WBC, we use the AdamW optimizer with a weight decay of 1e-4, a
learning rate of 1e-3, and a batch size of 64.

C.3. MDP Environments

Dark Room. The agent’s observation is its current position/grid in the room, i.e., S = [10]× [10]. The goal is in one of
the grids. Thus, there are 10x10 = 100 goals. It can choose from five actions: left, right, up, down, and stay. We follow (Lee
et al., 2024) to use the tasks on 80 out of the 100 goals for pretraining, and reserve the rest 20 goals for testing our models’
in-context RL capability for unseen tasks. The optimal actions are defined as: move up or down until the agent is on the
same vertical position as the goal; otherwise move left or right until the agent reaches the goal.
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Miniworld. In the Miniworld-Image, the agent’s observation is a (25× 25× 3) color image and a 2-D direction. The goal
is to reach a box of a specific color in the room. In both cases, the agent can choose actions from: turn left, turn right, move
forward, and stay. The optimal actions are defined as follows: turn left/right towards the correct box if the agent’s front is
not within 15 degrees of the correct box; otherwise move forward and stay if the agent is near the box.

D. Experimental Details
D.1. Value Normalization

For bandit problems, we normalize as follows: Ĉi
opt(a) ← max

(
Ĉi

opt(a)−Bi
bandit, 0

)
where Bi

bandit the average as-
signed value across all actions in the i-th pretraining dataset. The max operation ensures that below-average ac-
tions are not used as pseudo-optimal action labels. We use a similar formula to normalize for MDP problems:
Ci

opt(s, a) ← max
(
Ci

opt(s, a)−Bi
MDP

)
where Bi

MDP =
∑H

h=1 C
i
opt(s

i
h, a

i
h)/H is the average assigned value across all

state-action pairs.

D.2. Model Details

Transformer Models. For bandit problems and experiments on Dark Room, we follow the recommended settings of (Lee
et al., 2024) to use a causal GPT2 model (Radford et al., 2019) for DPT. The transformer models for DPT has an 4 attention
layers each with 4 attention heads and an embedding size of 32. The DIT models use the same transformer models.

D.3. Computation Requirements

Our experiments can be conducted on a single A6000 GPU. It typically takes less than one hour to generate the required
dataset for training in parallel. For PPO, training usually takes less than 10 minutes per task. For the other methods, we
observe that the transformer model converges within 50 epochs.
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