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ABSTRACT

A new influential task called imbalanced regression has received a great deal
of attention. Different from previous works, this task particularly aims to solve
the imbalanced problem in the regression world. The exploration of this task is
still at a preliminary stage, so more attempts are needed. In this paper, we first
discover that the benefit of Self-supervised Learning (SSL) can help reveal the
bias caused by the severe skewness in the training data. Therefore, we work on
a seamless marriage of imbalanced regression and SSL. But with this comes the
first question of how to measure the similarity and dissimilarity between raw and
augmented samples under the regression sense, for which the definition is clear in
the classification. To tackle this issue, we provide a formal definition of similarity
and dissimilarity in the regression task. In addition, a common practice in SSL
to produce augmented samples is to put noise onto the raw samples; the second
problem is, it is not guaranteed that the augmented samples are similar to original
samples when scaling to a deep network by directly adding random noise to the
input. To approach this problem, we specifically limit the volume of noise on the
output to get a meaningful augmented sample by back propagation. Experimental
results show that our approach achieves state-of-the-art performance.

1 INTRODUCTION

Regression is a fundamental task in machine learning and statistical analysis, which involves modeling
the relationship, between one or more independent and dependent variables. As distinct from the
discrete output values in classification, regression makes predictions for continuous values. The issue
of imbalanced recognition, arising from the conjunction of imbalance and classification, has been
drawing the attention of researchers recently (Shu et al., 2019; Cao et al., 2019; Ren et al., 2020;
Jamal et al., 2020; Kang et al., 2020; 2021). By analogy, it is natural to question whether long-tailed
regression exists (or one can also call it imbalanced regression, the equivalence of these two names in
the paper). Exactly what we expected, a fresh task, namely long-tailed regression, has recently been
proposed by Yang et al. (2021). Regardless of the newness of the task, there is no way to neglect its
immense significance in terms of application and research. For example, age estimation from facial
images; health indicators for various populations in healthcare (Soualhi et al., 2014), these quantities
usually exhibit a long-tailed distribution. Going further, in terms of performance, progress in the
long-tailed regression research is also far from satisfactory.

More recently, self-supervised learning (SSL) has emerged as a new rage in the research community,
owing to its straightforward learning paradigm yet excellent performance (Noroozi & Favaro, 2016;
Gidaris et al., 2018; Wu et al., 2018; He et al., 2020). The excellence of the approach has been
admired not only on classification with well-balanced datasets, but also surprisingly on long-tailed
classification by Kang et al. (2021); Wang et al. (2021); Cui et al. (2021); Samuel & Chechik (2021)
who found its benefits. It prompts some thoughts on the potential and practical applications, in
particular, applications to SSL for long-tailed regression (Yang et al., 2021). Mindful that the majority
of available techniques on SSL are in the context of classification (Oord et al., 2018; Hjelm et al.,
2018; Chen et al., 2020a; Henaff, 2020). Due to the difference between classification and regression
(no hard boundary existing between outputs in regression task as shown in Figure 1a) (Razi &
Athappilly, 2005; Breiman et al., 2017; Liaw et al., 2002; Yang et al., 2021), it is not guaranteed
that SSL can help address the imbalanced regression problem well, and it may be difficult to make a
straightforward migration from classification to regression task. Upon deeper pondering, there are
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Figure 1: (a) A more visual illustration of the difference between regression and classification with
regard to their sensitivity to noise. When noise is imposed, the left image suggests a greater change
with augmented data for regression model. The right image remains cat predicted under the same
slight perturbation. It reveals the discrepancy between the sensitivity of regression and classification
to noise (b) Concepts of similarity and dissimilarity in regression. The right images indicate that
after adding noise to the input image, the difference between the age predicted by the augmented
image and the original one is less than the threshold δ, so they are considered as similar samples, on
the contrary, the difference between the two images on the left is greater than δ, they are therefore
recognized as dissimilar samples.

obstacles and problems that we face: Can SSL really relieve the long-tailed regression problem? If so,
how might we solve the imbalanced regression problem by utilizing SSL?

Figure 1a illustrates the motivation, by adding noise to the image of the cat, it is very unlikely to
be misclassified into a class that differs significantly from it, such as a bird, since they are discrete
and the categories diverge greatly from each other. In the case of regression, however, it is not at all
feasible when a similar migration was made. We imagine that if noise is added to a face image, then
the network’s estimation of the person’s age may be significantly biased. In this regard, it becomes
essential to work out and comprehend the degree of noise that induces “similarity and dissimilarity”
amongst output values from a regression standpoint. On the foundation of this definition, questions
are raised about exploiting noise sensibly and effectively.

With this paper, we try for the first time to propose answers to these questions. And we summarize
our contributions as follows:

• To the best of our knowledge, we are the first to broaden the concept of similarity and dissim-
ilarity between augmented samples and original samples from classification to regression.
And we are also the first to reveal imbalanced regression problem with SSL.

• Having been convinced of the beneficial effect of applying SSL on a simple experiment,
we extend it to the neural network-based long-tailed regression task. To ensure that the
noise is manageable w.r.t. the similarity of the regression, we propose to generate noise on
regression values within a predefined threshold.

• We obtain an optimization problem on noise with an efficient approximate solution algorithm
based on a first-order Taylor expansion. The augmented input samples are obtained by
back-propagation.

• As a practical trial for the proposed method, the results reveal that we attained not only the
best results, but also the possibility to mix it freely with other training techniques.

2 PRELIMINARY

In this section, we cover the description of imbalanced regression, and then, with reference to the
concept of similarity and dissimilarity in classification, we broaden this concept to regression, and
provide a new definition of similarity and dissimilarity in regression.
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Notations. In this paper, lowercase typeface letters (e.g., x) represent scalar, lowercase bold typeface
letters (e.g., x) represent vectors, uppercase typeface letters (e.g., X) stand for random variable,
uppercase bold typeface letters (e.g.,X) represent matrix. diag(·) means diagonalising a vector into
a matrix.

2.1 PROBLEM STATEMENT

A collection of paired training data {(xsi , ysi )}Ns
i=1, validation samples {(xvi , yvi )}Nv

i=1 and testing
samples {(xti, yti)}Nt

i=1 are presumed to be available, where xoi ∈ Rd, o ∈ {s, v, t}, and yoi are
a continuous variables. We suppose that yoi is well-bounded and notate the maximum and mini-
mum values of yoi as yomax and yomin accordingly. Further, we are able to partition yoi into B bins
[yo0, y

o
1), [yo1, y

o
2), . . . , [yoB−1, y

o
B) with equal interval ∆y =

yomax−y
o
min

B . In so doing we could put
every yoi in the dataset into the corresponding bin fulfilling the condition yob < yoi ≤ yob+1, where
b ∈ {0, 1, . . . , B − 1}. With three splits (training, validation, testing), if we count the number of data
points that fall into each bin and form these into a vector mo = (mo

1, . . . ,m
o
B). The imbalanced

character of the normal regressions lies in the existence of ms
bi
,ms

bj
∈ms, allowing ms

bi
� ms

bj

to hold. It is the opposite of this that the values of the elements of the two vectorsmv andmt, are
approximately equal. A desire for imbalanced regression enables model f(xoi ;θ) produced on an
imbalanced training set to be potentially generalized to a balanced validation and testing set to the
maximum extent possible. Typically, f(xoi ;θ) may be a neural network with parameter θ because of
its impressive fitting ability. In what follows, for the sake of convenience, we will drop the superscript
o.

In the introduction section, we elaborate on the predicament that the lack of a clear definition of the
concepts of similarity and dissimilarity in the regression, as regression involves continuous targets,
where hard boundaries between classes do not exist. As a solution to this problem, we formally
propose the following definition:

Definition 1 There exists some threshold δ, regarding two data samples (xi, ŷi), (x̃i, ỹi), x̃i is
obtained by adding some noise r to xi, and ỹi and ŷi is inferred by the model f(;θ) from x̃i and
xi respectively. We remark that (xi, ŷi), (x̃i, ỹi) are similar samples of the model f(xi;θ) (no need
for well-trained model) if the distance between the two samples is less than δ under some distance
function D(·, ·), such as l1 or l2 distance. Mathematically, it can be phrased in this following:

I(xi, x̃i) =

{
1, if D(ŷi, ỹi) < δ

0, if D(ŷi, ỹi) ≥ δ,
(1)

where I(xi, x̃i) indicates the trueness of the condition whether two samples xi and x̃i are similar
samples. The parameter δ here is manually specified and task-dependent. We display a virtual
example of this definition as illustrated in Figure 1b. We select images from AgeDB-DIR and attach
noises to them, afterward we estimate the ages of the original images and their corresponding noisy
images with the network. Finally, we identify a pair of original image and noisy image as not similar
if their difference exceeds the threshold δ, and vice versa.

3 MOTIVATION

Herewith we illustrate, for simple shallow neural networks, that SSL facilitates long-tailed regression
in a positive way. Aside from this, we would characterize the difficulties involved in extending our
approach to deep neural networks, i.e. for controlling the level of noise to guarantee the creation of
similar samples under the sense of regression. We first describe the data generation, together with a
description of the specific experimental settings followed by an analysis. The network structure and
implementation details are available in the appendix.

Data generation. Consider two components of data following two different Gaussian distribution,
in particular, x1 ∼ N (µ1 · 1d, diag(σ1 · 1d)), x2 ∼ N (µ2 · 1d, diag(σ2 · 1d)). 1d denotes a vector
with all 1’s. The values of µ1(σ1) and µ2(σ2) are quite different. With linear mapping to x1

and x2 with parameter w ∈ Rd, it yields the output value y = wTx. As a result, we get two
collections of training data {xs1,i, ys1,i}

Ns
1

i=1, {xs2,j , ys2,j}
Ns

2
j=1. Suppose Ns

1 > Ns
2 , and we measure
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Figure 2: (a) Mean Square Error with different imbalanced coefficients. Very clearly it is observed that
under supervised learning, MSE grows as the imbalanced coefficient increases, contrary to the SSL
case where MSE is considerably smaller with the same imbalanced coefficient. (b) A demonstration
of the impact of noise generation on the regression values, when adding random noise to the original
image, the difference between the output value of noisy image versus such a component of the
original image will most likely exceed the threshold.

imbalance here in terms of R =
Ns

1

Ns
2

. We pick up the value of R in {1, 2, 4, 6, 8, 10, 100}. Despite

the training samples are imbalanced, the testing set {xt1,i, yt1,i}
Nt

1
i=1,{xt2,j , yt2,j}

Nt
2

j=1 we generate is
balanced. Additionally, we produce similar samples by controlling the noise so that the condition
min(y1,i, y2,j)� δ, ∀i ∈ {1, . . . , N1}, j ∈ {1, . . . , N2} is satisfied.

Experimental settings. We compare two training methods here: (i) Representation Learning: It is
trained in the first T1 epochs using a self-supervised approach, and the resulting network is treated
as an initialized network, and in the second T2 epochs it is trained in a standard supervised learning
manner.(ii) Supervised Learning: it is entirely trained using supervised learning in the T1 +T2 epochs.
As per the normal process, the model is trained on the training set and tested on the testing set. To
evaluate we use Mean Square Error (MSE) as a criterion. Here we use the vanilla mean squared loss
function.

Experimental findings. We plot the variation curve of MSE with the imbalance coefficient on the
testing set for the two training methods. As illustrated in Figure 2a, what has been clearly observed is
that the MSE for both methods grows with an increase in the imbalance coefficient. More importantly,
it is found that SSL could alleviate this problem to some degree. The experimental findings, thus,
lead us to mitigate the imbalance regression problem with SSL.

Remark It is true that the above experiments concede that SSL can be beneficial to long-tailed
regression, albeit with some restrictions that remain when we adapt it to neural networks. Well, yes,
we have imposed settings for noise, namely, the noise added is controllable in terms of its impact on
the regression values. Unfortunately, scaling the technique beyond shallow to deep networks, there is
a difficulty in keeping the difference between the output values of similar samples under regression
within a threshold, a concern that arises in the case of a sample augmented with random noise, where
the difference between the output values of the noisy sample and the original sample is more than the
threshold, as shown in Figure 2b, hence the challenge stems from finding valid noise to ensure the
generation of similar samples.

4 METHOD

Just as we showed before, it is not feasible to merely port the above method to regression tasks.
Instead, it will backfire if at all we do so. Hence, it is essential to control the noise r to limit the
gap between ŷi and ỹi in the length of a bin ∆y. We search for the most anisotropic noise causing
the generated samples to be similar or dissimilar to the original samples, which means that we have
to impose constraints on the output values. Rather than adding noise to the input, we blaze new a
trail, that is, we apply noise to the output value. Mathematically, it can be expressed by the following
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formula:

arg min
θ

arg max
ri

D(ŷi, ỹi;θ), (2)

s.t. ||ri|| < ε, (3)
where ŷi = f(xi;θ) and ỹi =ŷi + zi and ỹi = f(xi + ri;θ) (4)

where D denotes the distance loss function, and ỹi is the noisy output w.r.t. noises zi and ri.

Here zi is randomly sampled from [−∆y,∆y]. This allows us to assure that ỹi and ŷi are similar,
while simultaneously enhancing the local smoothness of the output. Normally it is not possible
to obtain r to find a closed-form solution. Since neural networks are highly dimensional and
nonlinear, the analytical solutions can not be derived for r . For the purpose of facilitating analysis
and simultaneously providing efficient training of the network, we approximate D(ŷi, ỹi;θ) by the
first-order Taylor expansion:

D(ŷi, ỹi;θ) ≈ ∇xi
D(ŷi, ỹi;θ)T (x̃i − xi) + a = ∇xi

D(ŷi, ỹi;θ)Tri + a (5)
s.t. ||ri|| < ε (6)

Where a = D(ŷi, ỹi;θ)|x=xi
is a constant term around xi. Based on this, the close-form solution of

ri can be calculated as

ri : = arg max
ri:||ri||≤ε

∇xi
D(ŷi, ỹi;θ)Tri + a (7)

=
∇xi
D(ŷi, ỹi;θ)

||∇xi
D(ŷi, ỹi;θ)|| ||ri||max (8)

s.t. ||ri|| ≤ ε (9)

Therefore, it is obviously that ri = ε
∇xi
D(ŷi,ỹi;θ)

||∇xi
D(ŷi,ỹi;θ)|| . Furthermore, as Eq. 4 presented, ỹi = ŷi + zi,

so ri can be further denoted as

ri = ε
∇xiD(ŷi, ŷi + zi;θ)

||∇xi
D(ŷi, ŷi + zi;θ)|| (10)

Algorithm 1: Self-Supervised Imbalanced Regression (SSIR)
Input: Mini-batchB with M samples, model f(·;θ) with its parameters θ, bin length ∆y,

limitation coefficient of noise ε, divergence distance function D, values range of input
samples (vmin, vmax), function clip(·, vmax, vmin) to clip values that out of range of
(vmin, vmax)

Result: Updated parameters of the model θ̂.
1 for xi inB do
2 Initial random noise zi, s.t. |zi| < ∆y;
3 ŷi = f(xi;θ), ỹi = ŷi + zi;
4 Calculate ri by taking the gradient of D(ŷi, ỹi;θ) w.r.t. xi :
5 gi = ∇xiD(ŷi, ỹi;θ) = ∇xiD(f(xi;θ), f(xi;θ) + zi)
6 ri ← ε× gi/||gi||2;
7 Update ỹi by taking xi + ri as the input of f :
8 x̃i = clip(xi + ri, vmax, vmin);
9 ỹi = f(x̃i;θ);

10 Update ri by by taking the gradient of D(ŷi, ỹi;θ)w.r.t. xi :
11 gi = ∇xi

D(ŷi, ỹi;θ)
12 ri ← ε× gi/||gi||2;
13 x̃i = clip(xi + ri,vmax, vmin)
14 ỹi = f(x̃i;θ)
15 end

16 return θ̂ ← θ −∇θ( 1
M

M∑
i=1

D(ŷi, ỹi,θ))
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x̃ = x + r obtained in this way, however, may exceed the boundary value of the feature (For
example, the range of image pixels is [0, 255]). To cope with such an accident, we constrain the
feature values to this range by clipping their values. On the other hand, considering that a single
back-propagation optimization may not be an accurate approximation, we therefore performed a two-
step optimization of r. In our experiments, one-step optimisation approach does not adequately yield
optimal performance, and more iterations will introduce more computational cost to training without
significant performance gain. Up to now, our proposed Self-Supervised Imbalanced Regression
(SSIR) algorithm is completely introduced. In order to show the SSIR more clearly. We give the
algorithm workflow in Algorithm 1.

Our training strategy includes normal regression training and self-supervised regression. For the
regression training, we directly apply supervised training to minimize the loss function between the
outputs of the model ŷ and the corresponding ground truth y. Besides, an additional coefficient λ is
introduced to the final loss. Our overall training function is shown below:

Ljoint = LR + λLSSIR (11)

=
1

N

N∑
i=1

[D(ŷi, yi;θ) + λD(ŷi, ỹi;θ)] (12)

=
1

N

N∑
i=1

[D(f(xi;θ), yi) + λD(f(xi;θ), f(xi + ri;θ))] (13)

5 EXPERIMENTS

In this section, we report the results on three datasets to demonstrate the superiority of our proposed
methods, when compared with state-of-the-art baselines. Specifically, we compare our method with
VANILLA, SMOTER (Torgo et al., 2013), SMOGN (Branco et al., 2017), RRT (Yang et al., 2021),
INV, SQINV, FOCAL-R (Yang et al., 2021), LDS (Yang et al., 2021), FDS (Yang et al., 2021)
and some of their combinations on three imbalanced regression datasets including IMDN-WIKI-
DIR, AgeDB-DIR and NYUD2-DIR. Note that, in all the experiments, the LDS is combined with
re-weighting methods i.e. SQINV or INV. In otherwise, our proposed SSIR can be combined with
various methods in training process that demonstrates the flexibility of SSIR. The evaluation metrics
used on IMDB-WIKI-DIR and AgeDB-DIR datasets are MAE and GM (Yang et al., 2021), besides,
RMSE and δ1 are also employed on NYUD2-DIR dataset. For the details of datasets, baselines,
evaluation metrics and implementation details, we put them in the appendix.

Table 1: Comparison on the MAE and GM with several competed baselines on IMDB-WIKI-DIR
dataset. The underlined part denotes the second-best result, and the bold part denotes the best result.

Method
MAE GM

All Many Med. Few All Many Med. Few

VANILLA (Yang et al., 2021) 8.06 7.23 15.12 26.33 4.57 4.17 10.59 20.46

SMOTER (Torgo et al., 2013) 8.14 7.42 14.15 25.28 4.64 4.30 9.05 19.46
SMOGN (Branco et al., 2017) 8.03 7.30 14.02 25.93 4.63 4.30 8.74 20.12
SMOGN + LDS + FDS (Yang et al., 2021) 7.97 7.38 13.22 22.95 4.59 4.39 7.84 14.94

RRT (Yang et al., 2021) 7.81 7.07 14.06 25.13 4.35 4.03 8.19 16.96
RRT + LDS + FDS (Yang et al., 2021) 7.65 7.06 12.41 23.51 4.31 4.07 7.17 15.44

INV (Yang et al., 2021) 8.17 7.64 12.46 22.83 4.70 4.51 6.94 13.78
SQINV (Yang et al., 2021) 7.87 7.24 12.44 22.76 4.47 4.22 7.25 15.10
SQINV + LDS + FDS (Yang et al., 2021) 7.78 7.20 12.61 22.19 4.37 4.12 7.39 12.61
SQINV + SSIR 7.63 7.06 12.17 23.10 4.26 4.02 6.82 14.93

FOCAL-R (Yang et al., 2021) 7.97 7.12 15.14 26.96 4.49 4.10 10.37 21.20
FOCAL-R + LDS + FDS (Yang et al., 2021) 7.88 7.10 14.08 25.75 4.47 4.11 9.32 18.67
FOCAL-R + SSIR 7.88 7.08 14.75 25.16 4.39 4.01 10.20 18.04
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5.1 MAIN RESULTS

In the experiments on IMDB-WIKI-DIR dataset, we combine our proposed SSIR with SQINV and
FOCAL-R respectively. As shown in Table 1, our method achieves the best performance with 7.63
and 4.26 on MAE and GM accordingly. Compared with the second-best method RRT + LDS +
FDS, there has improvements of 0.02 and 0.05 in MAE and GM with our approach. Besides, in
comparison with other FOCAL-R-based methods, greater performance can be achieved with the
combination of FOCAL-R and SSIR with a better GM score of 4.39 and the MAE score of 7.88.
For re-weighting-based methods, the combination of SQINV and SSIR outperforms the second-best
re-weighting-based method SQINV + LDS + FDS and improves 0.15 and 0.11 on MAE and GM
respectively.

Table 2: Comparison on the MAE and GM with several competed baselines on AgeDB-DIR dataset.
The underlined part denotes the second-best result, and the bold part denotes the best result.

Method
MAE GM

All Many Med. Few All Many Med. Few

VANILLA (Yang et al., 2021) 7.77 6.62 9.55 13.67 5.05 4.23 7.01 10.75

SMOTER (Torgo et al., 2013) 8.16 7.39 8.65 12.28 5.21 4.65 5.69 8.49
SMOGN (Branco et al., 2017) 8.26 7.64 9.01 12.09 5.36 4.90 6.19 8.44
SMOGN + LDS + FDS (Yang et al., 2021) 7.90 7.32 8.51 11.19 4.98 4.64 5.41 7.35

RRT (Yang et al., 2021) 7.74 6.98 8.79 11.99 5.00 4.50 5.88 8.63
RRT + LDS + FDS (Yang et al., 2021) 7.66 6.99 8.60 11.32 4.80 4.42 5.53 6.99

INV (Yang et al., 2021) 7.97 7.31 8.81 11.62 5.05 4.64 5.75 8.20
SQINV (Yang et al., 2021) 7.81 7.16 8.80 11.20 4.99 4.57 5.73 7.77
SQINV + LDS + FDS (Yang et al., 2021) 7.55 7.01 8.24 10.79 4.72 4.36 5.45 6.79
SQINV + SSIR 7.49 6.81 8.54 11.04 4.61 4.28 5.12 6.92

FOCAL-R (Yang et al., 2021) 7.64 6.68 9.22 13.00 4.90 4.26 6.39 9.52
FOCAL-R + LDS + FDS (Yang et al., 2021) 7.47 6.69 8.30 12.55 4.71 4.25 5.36 8.59
FOCAL-R + SSIR 7.35 6.53 8.51 11.81 4.62 4.09 5.64 8.46

In the experiments on AgeDB-DIR, with the same experimental settings on IMDB-WIKI-DIR, we
combine our proposed SSIR with SQINV and FOCAL-R respectively. Table 2 illustrates the main
results of our method and baselines on AgeDB-DIR dataset. Clearly our method achieves the best
performance on both MAE and GM with 7.35 and 4.61 respectively. As the combination of the re-
weighting method and SSIR, SQINV + SSIR performs better than the other four re-weighting-based
methods with 0.06 and 0.11 improvements on MAE and GM separately, compared to the second-best
re-weighting-based method SQINV + LDS + FDS. For FOCAL-R-based methods, the association
with SSIR can further decrease the testing error than FOCAL-R and FOCAL-R + LDS + FDS.

For NYUD2-DIR dataset, we combine SSIR with VANILLA and re-weighting method INV respec-
tively. As presented in Table 3, our method INV + SSIR achieves the best performance among other
methods. Specifically, INV + SSIR outperforms the second-best method INV + LDS + FDS on
RMSE with 0.047, and our method achieves the best performance on δ1 with 0.075. Compared
with VANILLA, the combination with SSIR can improve the performance significantly with 0.07 on
RMSE and 0.007 on δ1.

Table 3: Comparison on the RMSE and δ1 with several competed baselines on NYUD2-DIR dataset.
The underlined part denotes the second-best result, and the bold part denotes the best result.

Method
RMSE δ1

All Many Med. Few All Many Med. Few

VANILLA (Yang et al., 2021) 1.477 0.591 0.952 2.123 0.677 0.777 0.693 0.570
VANILLA + SSIR 1.407 0.580 0.883 2.022 0.684 0.772 0.704 0.590

INV + LDS + FDS (Yang et al., 2021) 1.338 0.670 0.851 1.880 0.705 0.730 0.764 0.655
INV + SSIR 1.291 0.766 0.894 1.756 0.705 0.669 0.763 0.718
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(a) (b)

Figure 3: (a) Parameter study of FOCAL-R + SSIR on AgeDB-DIR dataset, for a fixed value of λ,
we vary the value of ε. (b) Original outputs and noisy outputs of samples from AgeDB-DIR dataset.

5.2 PARAMETER AND CASE STUDY

Parameter Study. Figure 3a illustrates the results of parameter study of FOCAL-R + SSIR on
AgeDB-DIR dataset. As it shows, each line denotes the results of different λ when fixing ε, and we
conduct such experiments with the ε of 5e-3, 1e-3, 5e-4 and 1e-4. The overall results show that our
method achieves the best performance with ε = 1e− 3 and λ = 1.0.

Case Study. We also conduct case studies to visualize some results of selected examples. As
Figure 3b shows, the gaps between the outputs and their associated noisy outputs of all the chosen 6
examples do not exceed a bin length, which means our proposed method can successfully control the
noise to limit the noisy outputs within a reasonable range.

Visualization on Noisy Samples. Moreover, we also show three examples and their corresponding
noisy examples with ε of 0.05, 0.1, 0.3, 0.5 and 1.0 respectively in Figure 4. Obviously, with the ε
increasing, the noisy examples become unclearer that means the noise level is positively correlated
with ε.

Figure 4: Three groups of noisy samples generated from three samples chosen from AgeDB-DIR
dataset with different ε.
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6 RELATED WORK

Presented here are the literature on imbalance problems and SSL. Concerning imbalance problems,
the introduction focuses on classification and regression. For SSL, we review some of the advances
and applications.

6.1 IMBALANCED PROBLEM

From the object of imbalanced problems, it can be divided into two categories: imbalanced classifica-
tion and imbalanced regression.

Imbalanced classification. In the imbalanced classification task, existing methods mainly adopt
data-based or model-based solutions (Yang et al., 2021). The core idea of data-based methods is
reducing the gap of sampling numbers between many-shot classes and few-shot classes (Chawla
et al., 2002; He et al., 2008). For the model-based methods, several works have been proposed to
tackle such challenges based on lots of aspects. Jamal et al. (2020) proposed to solve long-tailed
classification through domain adaptation perspective. Kang et al. (2020) used a two-stage learning
strategy to learn representations for the classification layer using a long-tailed training set. Kang
et al. (2021) explored the impact of balanced feature spaces when dealing with imbalanced data,
and proposed a SSL-based method to better learn the representation for imbalanced classification.
Besides, SSL on unbalanced classification was similarly explored in Wang et al. (2021); Cui et al.
(2021); Samuel & Chechik (2021). Furthermore, there also has some methods addressing the problem
by well-designed loss functions (Zhang et al., 2017; Cao et al., 2019; Cui et al., 2019; Ren et al.,
2020) and other learning paradigms, i.e. meta learning (Shu et al., 2019; Wang et al., 2020).

Imbalanced regression. Imbalanced problem has also been explored in regression problems. Con-
ventional works mainly applied data-based methods to solve the imbalanced problem in regression
tasks. One of the first works to address this problem, is published by Torgo et al. (2013) using
SMOTE (Chawla et al., 2002). Branco et al. (2017) proposed a Gaussian noise-based synthetic case
generation method for imbalanced regression. After that, they further proposed a bagging-based
method to aggregate various data pre-processing strategies (Branco et al., 2018) for the same task.
Recently, Yang et al. (2021) further delved into such problem by analyzing the error distribution and
the statistic distribution of features, both w.r.t. labels, and proposed two distribution smoothing meth-
ods for labels and features. And they also proposed the Focal-R, a new loss function for imbalanced
regression, motivated by Focal loss (Lin et al., 2017).

6.2 SELF-SUPERVISED LEARNING

Recently, SSL has received extensive attention in the field of deep learning. Different from con-
ventional unsupervised learning and supervised learning, SSL can use the semantic or contexture
supervision information to learn robust and well-generalization representations without manual
annotations, include contrastive learning-based methods (Chen et al., 2020a;b;c; He et al., 2020)
and some other pretext tasks-based methods, such as image inpainting (Pathak et al., 2016; Jenni &
Favaro, 2018), context prediction (Doersch et al., 2015), rotation prediction (Gidaris et al., 2018) and
so on. Whereas we tackle the optimization problem in a very similar way, the difference concerns
the fact that we apply noise to the output directly rather than to the input, as well as the fact that the
problem we analyze varies from semi-supervised classification problems to imbalanced regression
problems.

7 CONCLUSION

In this paper, we explore the Self-Supervised Learning (SSL) in imbalanced regression scenario.
Specifically, we propose Self-Supervised Imbalanced Regression (SSIR) to better address the imbal-
anced problem in regression tasks. In SSIR, instead of adding noise to the inputs directly to generate
the noisy samples, we add noise, which is limited by the bin size, to the output of the model to
avoid the excessive dissimilarity between samples and noisy samples, followed by back propagation
steps to obtain the meaningful noisy samples. This work provides a new paradigm to tackle this
challenge. Further, extensive experiments have shown the superiority of our proposed SSIR over
existing state-of-the-art baselines.
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8 APPENDIX

In the appendix, we first offer two comparative experiments. Then we give the implementation
details in the motivation, as well as the details of the datasets and baseline methods included in the
experiments. Besides, we also present more detailed experimental results of parameter studies, and
loss curves within different settings. Finally, We investigate the beneficial impact of our approach on
feature imbalance.

8.1 COMPARISON WITH RANDOM NOISE METHOD

With the addition of random noise, the combined SSIR with FOCAL-R and SQINV approaches
can achieve the performance on MAE with 7.57 and 7.71 respectively on AgeDB-DIR dataset. In
contrast, the combined SSIR with FOCAL-R and SQINV approaches with noise generation proposed
in our paper can achieve MAE performance with 7.35 and 7.49 respectively. The experimental results
demonstrate the superiority of our noise generation approach.

8.2 COMPARISON WITH ONE-STEP OPTIMIZATION METHOD

To quantitatively compare the benefits of two-step approximation against one-step approximation,
we conducted a comparison experiment on the AgeDB-DIR dataset. The setup of the comparison
experiment is following: we perform a one-step optimization of r and provide results combined
with SQINV; except for this, we keep the other hyperparameters consistent with our experiments.
When performing one-step optimization, the combined SSIR with SQINV approach can achieve the
performance on MAE with 7.62. In contrast, the combined SSIR with SQINV approach with a two-
step approximation can achieve MAE performance with 7.49. The experimental results demonstrate
the superiority of two-step approximation. However, we have found in our experiments that there is
no significant increase in performance but an increase in computational overhead when the number of
optimization steps is greater than or equal to 3. Therefore, in order to balance accuracy and efficiency,
we have used two-step optimization in our paper.

8.3 EXPERIMENTS SETTINGS

Datasets We evaluate our proposed method on three large-scale deep imbalanced regression datasets,
the tasks of which are age estimation and depth estimation. For all the datasets used in our experiments,
we follow the settings in (Yang et al., 2021) and segment the target bins into three subsets: many-shot
which contains more than 100 training images, medium-shot in which the number of training samples
in each bin is in the range of 20 to 100, and few-shot that contains less than 20 training samples in
each bin. The details of the datasets are as following:

• IMDB-WIKI-DIR: IMDB-WIKI-DIR is an imbalanced age estimation dataset. This dataset
is created by Yang et al. (2021) based on the IMDB-WIKI dataset (Rothe et al., 2018). The
original IMDB-WIKI contains 523.0K face images with associated ages. In IMDB-WIKI-
DIR, the training set contains 191.5K images, and both validation and testing sets include
11.0K bin-balanced images separately. The length of a bin is set to 1 year with the range
from 0 to 186, and the density of each bin is from 1 to 7,149.

• AgeDB-DIR: AgeDB-DIR is also a imbalanced age estimation dataset proposed by Yang
et al. (2021) using AgeDB dataset (Moschoglou et al., 2017). In the dataset, the age range is
from 0 to 101 and the bin length is 1 year. The maximal and minimal numbers of images in
a bin are 353 and 1 respectively. The training set contains 12,208 images with imbalanced
densities among bins, while the validation and testing sets contain 2,140 bin-balanced
images respectively.

• NYUD2-DIR: The NYUD2-DIR is a dataset constructed by Yang et al. (2021) for im-
balanced indoor scenes depth estimation, which is an imbalanced version of NYU Depth
Dataset V2 (Silberman et al., 2012). The dataset contains images of different indoor scenes
and their corresponding depth maps. The bin length is set to 0.1 meters. The maximal
and minimal depth is 10 meters and 0.7 meters separately in the dataset. Following Yang
et al. (2021), there are 50K images in the training set and 654 images in the testing set.
In each bin, the number of pixels is in the range from 1.13× 106 to 1.46× 108. Besides,
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the number of testing pixels selected for each bin from testing images is set to 9,357 (the
minimal number of pixels in each bin in the testing set), which aims to make the testing set
balanced. The total number of pixels in the training set and testing set are 3.51× 109 and
8.70× 105 respectively.

Baselines We conduct experiments to compare our proposed method with the following baselines:

• Vanilla model: The pure backbone model that does not apply any techniques to improve
the performance is presented as VANILLA. Following (Yang et al., 2021), we use ResNet-
50 (He et al., 2016) as VANILLA for both IMDB-WIKI-DIR and AgeDB-DIR datasets,
and ResNet-50-based encoder-decoder method (Hu et al., 2019) for NYUD2-DIR dataset.

• Synthetic samples: We choose existing synthetic samples methods, which are used
for imbalanced regression, as baselines, including SMOTER (Torgo et al., 2013) and
SMOGN (Branco et al., 2017).

• Focal-R: FOCAL-R (Yang et al., 2021) is the regression version of Focal loss (Lin et al.,
2017), which uses a continuous function, e.g. Sigmoid function, to map the absolute error
into the range of 0 to 1 instead of the scaling factor in Focal loss.

• Regressor Re-Training (RRT): RRT (Yang et al., 2021) is a two-stage training strategy
inspired by Kang et al. (2020), in which the feature and classifier are decoupled.

• Re-weighting: We also select Re-weighting methods as baselines, including inverse-
frequency weighting (INV) and its square-root weighting variant (SQINV) (Yang et al.,
2021).

• Distribution Smoothing: Distribution Smoothing (Yang et al., 2021) includes Label Dis-
tribution Smoothing (LDS) and Feature Distribution Smoothing (FDS). Such methods are
designed to utilize the information from nearby bins by smoothing the distribution of labels
or features. Note that, LDS should be used with re-weighting methods, and we follow Yang
et al. (2021) to combine LDS with INV and SQINV.

Evaluation metrics Here, we will introduce the details of all the evaluation metrics used in our
experiments.

• Mean Absolute Error (MAE): MAE is a common evaluation metric in regression prob-
lems, which is used to measure the averaged absolute difference between ground truth and
prediction results. MAE can be denoted as 1

N

∑N
i=1 |ŷi − yi|, where N denotes the number

of total samples, ŷi and yi are the prediction result and ground truth of the i-th sample
respectively.

• Root Mean Squared Error (RMSE): Similar to MAE, RMSE is also a widely used
evaluation metric in regression tasks. Different from MAE, RMSE is used to measure the
rooted averaged squared difference between ground truth and prediction results, which can
be presented as 1

N

∑N
i=1(ŷi − yi)2, where N denotes the number of total samples, ŷi and

yi are the prediction result and ground truth of the i-th sample respectively.

• error Geometric Mean (GM): GM is a new evaluation metric proposed by Yang et al.
(2021). Instead of applying arithmetic mean, GM uses geometric mean over the prediction
errors, which is defined as (

∏N
i=1 ei)

1
N , where ei , |ŷi − yi| denotes the L1 error of the

i-th sample.

• Threshold Accuracy (δi): For NYUD2-DIR dataset, we follow Yang et al. (2021) and use
standard depth estimation evaluation metric δi which is defined as max(digi ,

gi
di

) = δi <

1.25i, where gi and di denote the ground truth value and the the prediction value of a pixel
respectively. Here, in our experiments on NYUD2-DIR, we set i to 1 as the settings in (Yang
et al., 2021).

8.4 IMPLEMENTATION DETAILS IN MAIN EXPERIMENTS

IMDB-WIKI-DIR: For IMDB-WIKI-DIR dataset, we use ResNet-50 (He et al., 2016) as backbone
and train it with our proposed SSIR method for 90 epochs using Adam optimizer (Kingma & Ba,
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2014) with L1 loss. The initial learning rate is set to 1e-3 and decayed to 1e-4 and 1e-5 at the 60-th
and 80-th epoch respectively. Besides, we set the batch size, λ and ε to 256, 0.1 and 1e-3 separately.

AgeDB-DIR: For AgeDB-DIR dataset, the settings of backbone, optimizer, learning rate, loss
function and batch size are the same with that of IMDB-WIKI-DIR. For the training of Focal-
R+SSIR, we set the λ and ε to 1.0 and 1e-3 respectively. Besides, they are set to 0.1 and 1e-3 for
SQINV+SSIR.

NYUD2-DIR: For the experiments on NYUD2-DIR, we apply a ResNet-50-based encoder-decoder
architecture (Hu et al., 2019). We train our method by Adam optimizer with 20 epochs. The initial
learning rate is set to 1e-4 and decayed by 0.1 every 5 epochs. We set the batch size and weight decay
to 32 and 1e-4 respectively. For λ and ε, we set them to 1.0 and 5e-4 for VANILLA+SSIR, and 2.5,
5e-4 for INVERSE+SSIR.

8.5 IMPLEMENTATION DETAILS IN MOTIVATION EXPERIMENTS

For the settings in the data generation of our motivation, we set the mean and variance of the two
Gaussian distribution µ1, σ1 and µ2, σ2 to 10, 25 and -10, 25 respectively, and the dimension of
the generated data d is set to 100. We apply a two-layer Multi-Layer Perception (MLP) with 128
hidden neurons as the prediction model in the experiments. For the settings of the training process in
the experiments, we set epochs T1 and T2 to 1000 and 500 respectively. The learning rates of the
two training methods: Representation Learning and Supervised Learning, are set to 1e-3 and 1e-2
respectively. Besides, we set the weight decay of the training process in the experiments to 5e-5.

8.6 PARAMETER STUDIES

Here, we study the different parameter settings of ε and λ on all three datasets and report all the
results of the experiments that we conducted.

Table 4 illustrates the experiments results of different settings of ε and λ. The top part of the table is
the results of different parameters settings of SQINV + SSIR, and the bottom part shows the results
of FOCAL-R + SSIR on different settings of ε and λ.

The results of the parameter study of our method on AgeDB-DIR dataset are presented in Table 5.
As the table shows, we present the results of different ε and λ settings of our approach. The top part
of the table is regarding with SQINV + SSIR, and the bottom part denotes the results of different
parameter settings of FOCAL-R + SSIR.

Table 4: Parameter study of our methods on IMDB-WIKI-DIR dataset.

ε λ re-weighting Loss
MAE GM

All Many Med. Few All Many Med. Few

1e-3 0.01 SQINV L1 7.74 7.15 12.61 22.94 4.38 4.13 7.35 15.04
1e-3 0.05 SQINV L1 7.74 7.13 12.67 23.34 4.33 4.08 7.35 14.72
1e-3 0.10 SQINV L1 7.63 7.06 12.17 23.10 4.26 4.02 6.82 14.93
1e-3 0.50 SQINV L1 7.83 7.20 12.91 23.86 4.50 4.24 7.63 16.27

1e-3 0.10 - FOCAL-R 7.88 7.08 14.75 25.16 4.39 4.01 10.20 18.04
1e-3 0.30 - FOCAL-R 7.95 7.16 14.79 24.78 4.46 4.08 10.36 18.26
1e-3 0.50 - FOCAL-R 8.11 7.25 15.44 26.76 4.61 4.20 11.04 19.46
1e-3 1.00 - FOCAL-R 8.17 7.35 15.26 25.11 4.65 4.25 10.98 17.27

Table 6 is the parameter study regards to ε and λ on NYUD2-DIR dataset. The top part of the table
illustrates the results of different parameters settings of VANILLA + SSIR while the bottom part
shows that of INVERSE + SSIR.

8.7 TRAINING AND VALIDATION LOSSES

We present the training and validation loss of our proposed approach on IMDB-WIKI-DIR and
AgeDB-DIR datasets. Figure 5a and 5b present the training and validation losses w.r.t. training
epochs of SQINV + SSIR and FOCAL-R + SSIR respectively on IMDB-WIKI-DIR dataset. Figure 5c
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Table 5: Parameter study of our method on AgeDB-DIR dataset.

ε λ re-weighting Loss
MAE GM

All Many Med. Few All Many Med. Few

5e-4 0.1 SQINV L1 7.56 7.06 8.32 10.26 4.90 4.52 5.67 7.00
5e-4 0.3 SQINV L1 7.67 6.98 8.86 10.95 4.88 4.44 5.84 7.27
5e-4 0.5 SQINV L1 7.63 7.02 8.59 10.69 4.84 4.41 5.81 7.12
5e-4 1.0 SQINV L1 7.65 7.01 8.47 11.49 4.96 4.58 5.67 7.22
1e-3 0.1 SQINV L1 7.49 6.81 8.54 11.04 4.61 4.28 5.12 6.92
1e-3 0.3 SQINV L1 7.73 7.05 8.74 11.34 4.86 4.38 5.97 7.33
1e-3 0.5 SQINV L1 7.61 6.94 8.74 10.80 4.93 4.53 5.81 7.00
1e-3 1.0 SQINV L1 7.70 7.02 8.69 11.37 4.83 4.37 5.90 7.34
5e-3 0.1 SQINV L1 7.62 6.84 8.75 11.87 4.86 4.41 5.84 7.36
5e-3 0.3 SQINV L1 7.65 6.86 8.83 11.80 4.88 4.34 6.05 8.12
5e-3 0.5 SQINV L1 7.61 6.97 8.35 11.57 4.81 4.36 5.56 8.27
5e-3 1.0 SQINV L1 8.04 7.15 9.56 12.20 5.13 4.50 6.68 8.37

1e-4 0.1 - FOCAL-R 7.62 6.75 8.85 12.43 4.94 4.41 5.97 8.67
1e-4 0.3 - FOCAL-R 7.38 6.59 8.26 12.39 4.79 4.32 5.46 8.90
1e-4 0.5 - FOCAL-R 7.62 6.81 8.54 12.73 4.91 4.37 5.89 8.92
1e-4 1.0 - FOCAL-R 7.53 6.66 8.59 12.73 4.76 4.14 5.98 9.46
1e-4 1.5 - FOCAL-R 7.60 6.71 8.79 12.62 4.92 4.28 6.25 9.33
5e-4 0.1 - FOCAL-R 7.69 6.66 9.30 13.04 4.90 4.23 6.26 9.96
5e-4 0.3 - FOCAL-R 7.51 6.49 9.05 12.95 4.65 3.97 6.11 9.74
5e-4 0.5 - FOCAL-R 7.46 6.59 8.51 12.83 4.69 4.13 5.73 9.13
5e-4 1.0 - FOCAL-R 7.61 6.64 9.14 12.64 4.91 4.24 6.36 9.53
5e-4 1.5 - FOCAL-R 7.37 6.47 8.74 12.13 4.72 4.16 5.87 8.43
1e-3 0.1 - FOCAL-R 7.44 6.50 8.83 12.44 4.73 4.11 6.13 8.62
1e-3 0.3 - FOCAL-R 7.39 6.45 8.81 12.37 4.69 4.11 5.74 9.26
1e-3 0.5 - FOCAL-R 7.39 6.47 8.81 12.09 4.68 4.09 6.06 8.22
1e-3 1.0 - FOCAL-R 7.35 6.53 8.51 11.81 4.62 4.09 5.64 8.46
1e-3 1.5 - FOCAL-R 7.52 6.60 8.61 13.15 4.77 4.19 5.79 9.46
5e-3 0.1 - FOCAL-R 7.48 6.54 8.99 12.10 4.81 4.21 5.98 9.06
5e-3 0.3 - FOCAL-R 7.42 6.50 8.56 12.97 4.76 4.11 5.98 10.28
5e-3 0.5 - FOCAL-R 7.60 6.53 8.98 13.84 4.89 4.14 6.40 11.28
5e-3 1.0 - FOCAL-R 8.13 6.87 9.75 15.51 5.23 4.37 7.05 12.72
5e-3 1.5 - FOCAL-R 9.00 7.33 11.54 17.79 5.85 4.68 8.66 16.16

Table 6: Parameter study of our method on NYUD2-DIR dataset.

ε λ re-weighting Loss
RMSE δ1

All Many Med. Few All Many Med. Few

5e-4 0.1 MSE 1.542 0.580 0.871 2.246 0.669 0.787 0.739 0.523
5e-4 0.3 MSE 1.531 0.536 0.878 2.238 0.663 0.796 0.690 0.519
5e-4 0.5 MSE 1.540 0.566 0.917 2.239 0.643 0.778 0.713 0.481
5e-4 1.0 MSE 1.407 0.580 0.883 2.022 0.684 0.772 0.704 0.590
5e-4 1.5 MSE 1.475 0.564 0.872 2.140 0.692 0.793 0.723 0.579
5e-4 2.0 MSE 1.402 0.601 0.893 2.005 0.692 0.755 0.704 0.625
5e-4 2.5 MSE 1.623 0.535 0.932 2.380 0.640 0.801 0.704 0.455
5e-4 3.0 MSE 1.476 0.560 0.899 2.137 0.686 0.789 0.723 0.570
1e-3 0.1 MSE 1.476 0.564 0.919 2.134 0.693 0.791 0.723 0.585
1e-3 0.3 MSE 1.540 0.560 0.932 2.238 0.680 0.792 0.724 0.550
1e-3 0.5 MSE 1.520 0.568 0.876 2.212 0.667 0.787 0.733 0.521
1e-3 1.0 MSE 1.537 0.557 0.898 2.239 0.658 0.787 0.716 0.507

5e-4 1.0 INVERSE MSE 1.365 0.667 0.930 1.915 0.685 0.711 0.717 0.647
5e-4 1.5 INVERSE MSE 1.391 0.679 0.849 1.968 0.670 0.713 0.734 0.602
5e-4 2.0 INVERSE MSE 1.313 0.749 0.919 1.795 0.700 0.702 0.742 0.682
5e-4 2.5 INVERSE MSE 1.291 0.766 0.894 1.756 0.705 0.669 0.763 0.718
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(a) (b)

(c) (d)

Figure 5: (a) Training and validation loss w.r.t training epochs of SQINV + SSIR on IMDB-WIKI-DIR
dataset. (b) Training and validation loss w.r.t training epochs of FOCAL-R + SSIR on IMDB-WIKI-
DIR dataset. (c) Training and validation loss w.r.t training epochs of SQINV + SSIR on AgeDB-DIR
dataset. (d) Training and validation loss w.r.t training epochs of FOCAL-R + SSIR on AgeDB-DIR
dataset.

and 5d illustrate the training and validation losses of SQINV + SSIR and FOCAL-R + SSIR on
AgeDB-DIR dataset.

8.8 FEATURE BALANCE UNDER REGRESSION SENSE

To qualitatively and quantitatively evaluate the balance of features under the regression sense, we
first attempt to offer a definition of feature balance, and then assess the impact of our approach and
the baseline approaches experimentally.

8.8.1 DEFINITION OF FEATURE BALANCE

As mentioned in (Kang et al., 2021), the feature space can be more balanced if the features from the
same class or bin are more similar, and the balanced feature space can handle the imbalanced problem
well. In this subsection, we give the definition of feature balance under regression sense. We assume
that z with size c(z) is a feature vector extracted from the neural network corresponding to the input x.
It is often the case that z is semantically rich. Each element in z signifies a different attribute. Without
loss of generality, it is also reasonable to expect that the elements in z are mutually independent.
And then, we assume that for data within a bin, its features all conform to a Gaussian distribution
N (µi, σ

2
i ),∀i = 1, 2, ..., c(z) for each dimension. The reasons for the Gaussian assumption are:

Gaussian distribution is the most commonly used, and it can fit deep learning features relatively
well (Wang et al., 2017; Sun et al., 2020; Louizos & Welling, 2016). Therefore, the variances of the
distributions of each dimension can be used as the evaluation metric, to evaluate the imbalanced ratio
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Figure 6: Visualization of variance values of deep learning features on the IMDB-WIKI-DIR testing
dataset for the VANILLA, SQINV and SQINV+SSIR methods. We compare the three methods on all
bins, many-shot bins, middle-shot bins and few-shot bins respectively. SQINV+SSIR owns a smaller
variance σ, which implies more balanced features are leaned.

of the feature space:

σ =
∑

σi (14)

s.t. i = 1, 2, ..., c(z) (15)

where smaller σ indicates more balanced feature space that can handle the imbalanced problem well.

8.8.2 EVALUATION OF FEATURE BALANCE ON IMDB-WIKI-DIR DATASET

We conduct experiments on IMDB-WIKI-DIR testing dataset, recall that previously we used f(x;θ)
to denote a neural network. Here f(x;θ) is implemented via ResNet-50. z is the feature extracted
from the penultimate layer in f(x;θ), which has a dimension of 2048. The methods we use for
evaluation are VANILLA, SQINV and our SQINV+SSIR. In Figure 6, we show the variance values
for the different methods on many-shot, middle-shot and few-shot classes, it is evident that our
method yields a much smaller variance σ, which means the feature space generated by our method is
more balanced. Figure 7 shows more variance values σ of the three methods within different bins.
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Figure 7: Visualization of variance values σ of deep learning features on the IMDB-WIKI-DIR testing
dataset for the VANILLA, SQINV and SQINV+SSIR methods on different bins. The three subfigures
from the top to bottom correspond in turn to VANILLA, SQINV and SQINV+SSIR methods.
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