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Abstract

Pearson’s r, the most widely-used correlation coefficient, is traditionally regarded
as exclusively capturing linear dependence, leading to its discouragement in con-
texts involving nonlinear relationships. However, recent research challenges this
notion, suggesting that Pearson’s r should not be ruled out a priori for measuring
nonlinear monotone relationships. Pearson’s r is essentially a scaled covariance,
rooted in the renowned Cauchy-Schwarz Inequality. Our findings reveal that differ-
ent scaling bounds yield coefficients with different capture ranges, and interestingly,
tighter bounds actually expand these ranges. We derive a tighter inequality than
Cauchy-Schwarz Inequality, leverage it to refine Pearson’s r, and propose a new
correlation coefficient, i.e., rearrangement correlation. This coefficient is able to
capture arbitrary monotone relationships, both linear and nonlinear ones. It reverts
to Pearson’s r in linear scenarios. Simulation experiments and real-life investi-
gations show that the rearrangement correlation is more accurate in measuring
nonlinear monotone dependence than the three classical correlation coefficients,
and other recently proposed dependence measures.

1 Introduction

Proposed in the late 19th century, Pearson’s r (Pearson, 1896) has been one of the main tools for
scientists and engineers to study bivariate dependence during the 20th century. It is remarkably
unaffected by the passage of time (Lee Rodgers and Alan Nice Wander, 1988) and still goes strong
in the 21st century (Puccetti, 2022). It has been, and probably still is, the most used measure for
statistical associations, and generally accepted as the measure of dependence, not only in statistics,
but also in most applications of natural and social sciences (Tjøstheim, Otneim, and Støve, 2022).

Despite its popularity, Pearson’s r has a number of shortcomings, and the most serious issue might
be that it can only capture linear dependence, as stated in classical textbooks (Wasserman, 2004)
and contemporary literatures (Armstrong, 2019; Tjøstheim, Otneim, and Støve, 2022). The use of
Pearson’s r has been strongly discouraged for forms of associations other than linear ones (Speed,
2011).

Numerous nonlinear alternative coefficients have been proposed to address this deficiency, such
as Spearman’s ρ (Spearman, 1904), Kendall’s τ (Kendall, 1938), Hilbert-Schmidt Independence
Criterion(HSIC) (Gretton et al., 2005), distance correlation(dCor) (Székely, Rizzo, and Bakirov,
2007), Maximal Information Coefficient(MIC) (Reshef et al., 2011), and Chatterjee’s ξ (Chatterjee,
2021). Their capture ranges are extending from linear dependence to monotone dependence, and
then to non-monotone dependence. Without exception, all these coefficients adopt radically different
approaches for nonlinear dependence, rather than following the original way of Pearson’s r for a
breakthrough.
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In their recent paper titled “Myths About Linear and Monotonic Associations: Pearson’s r, Spear-
man’s ρ, and Kendall’s τ”, van den Heuvel and Zhan (2022) challenged the widespread belief that
Pearson’s r is only a measure for linear dependence, proving this notion to be false. Their findings
indicate that Pearson’s r should not be ruled out a priori for measuring nonlinear monotone depen-
dence. Although this potential has been recognized, the specific approach to using Pearson’s r for
accurate measurement of nonlinear monotone dependence remains unresolved.

Pearson’s r is essentially a scaled covariance, with the renowned Cauchy-Schwarz Inequality as
its mathematical foundation. We find that different scaling bounds yield coefficients with different
capture ranges, and interestingly, tighter bounds actually expand these ranges. We derive a tighter
inequality than Cauchy-Schwarz Inequality, leverage it to adjust Pearson’s r to measure nonlinear
monotone dependence. The adjusted version of Pearson’s r is more accurate in measuring nonlinear
monotone dependence than the three classical correlation coefficients, and other recently proposed
dependence measures.

2 Methods

2.1 Definitions and notations

Consider real-valued random variables X and Y with cdf’s (cumulative distribution functions) F
and G respectively. We denote the covariance of X and Y as cov (X,Y ); the variance of X as
var (X), and the variance of Y as var (Y ). We assume that 0 < var (X) < ∞, 0 < var (Y ) <
∞. We define X↑ = F−1 (U), X↓ = F−1 (1− U). Here, U is a random variable with the
uniform distribution on (0, 1), and F−1 is the inverse cdf or quantile function defined as F−1 (u) =
inf {x ∈ R : F (x) ⩾ u} , u ∈ (0, 1). Similarly, Y ↑ = G−1 (U), Y ↓ = G−1 (1− U).

Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be samples of X and Y , each with n elements. Neither
x nor y is constant. We denote the sample covariance of x and y as sx,y; the sample variance of x
as s2x; the sample variance of y as s2y. We define the increasing and decreasing rearrangement of x
as x↑ =

(
x(1), x(2), · · · , x(n)

)
and x↓ =

(
x(n), x(n−1), · · · , x(1)

)
respectively, with x(1) ⩽ x(2) ⩽

· · · ⩽ x(n). Similarly, we define y↑ =
(
y(1), y(2), · · · , y(n)

)
, y↓ =

(
y(n), y(n−1), · · · , y(1)

)
.

Definition 1. A subset S of R2 is non-decreasing (resp. non-increasing) if and only if for all (x1, y1),
(x2, y2) in S, x1 < x2 implies y1 ⩽ y2 (resp. x1 < x2 implies y1 ⩾ y2). Random variables X and
Y are called increasing (resp. decreasing) monotone dependent if (X,Y ) lies almost surely in a
non-decreasing (resp. non-increasing) subset of R2. Samples x and y are called increasing (resp.
decreasing) monotone dependent if {(x, y)} is a non-decreasing (resp. non-increasing) subset of R2.

Definition 1 is sourced from (Mikusinski, Sherwood, and Taylor, 1991). Clearly Definition 1 is
symmetrical with respect to X and Y . The monotone dependence outlined here encompasses a
broader scope than definitions like the one in (Kimeldorf and Sampson, 1978), where “each of X and
Y is almost surely a monotone function of the other”. This is primarily because it doesn’t necessitate
a one-to-one mapping. Also, linear dependence, i.e., P (Y = αX + β) = 1 at the population level
or y = ax + b at the sample level, is special case of monotone dependence, and we will refer to
dependence which is monotone but not linear as “nonlinear monotone dependence”.

2.2 Different bounds lead to different capture ranges

With Cauchy-Schwarz Inequality, the well-known covariance inequality can be directly derived as

|cov (X,Y )| ⩽
√

var (X) var (Y ),

thus the geometric mean of var (X) and var (Y ), i.e.,
√

var (X) var (Y ), mathematically provides a
bound for covariance cov (X,Y ), which ensures that Pearson’s Correlation Coefficient

r (X,Y ) =
cov (X,Y )√

var (X) var (Y )

always falls into the range [−1,+1]. Scaled by
√

var (X) var (Y ), Pearson’s r turns into a normalized
covariance, which is dimensionless and bounded. It possesses significant advantage over the original
covariance in the sense that its value will not be affected by the change in the units of X and Y .
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A crucial issue that has been neglected so far is that boundedness doesn’t ensure optimum. Scaling
cov (X,Y ) to the range [−1,+1] is not the only thing that matters. In fact, different bounds can be
utilized to scale covariance to be bounded coefficients, as reported in previous works (Lin, 1989;
Zegers, 1986).

For example, with the Mean Inequality Series (Hardy, Littlewood, and Polya, 1952), it is immediate
that

|cov (X,Y )| ⩽
√

var (X) var (Y ) ⩽
1

2
(var (X) + var (Y ))

in the sense that geometric mean
√

var (X) var (Y ) is always less than or equal to arithmetic mean
1
2 (var (X) + var (Y )) for nonnegative values var (X) and var (Y ). Then we get a looser bound for
covariance, i.e., 1

2 (var (X) + var (Y )), with which another measure can be defined as follows(Zegers,
1986):

r+ (X,Y ) =
cov (X,Y )

1
2 (var (X) + var (Y ))

r+ (X,Y ) is named early as Additivity Coefficient (Zegers, 1986) and later as Standardized Covari-
ance (Andraszewicz and Rieskamp, 2014). It is proved that the capture range of r+ (X,Y ) is limited
to additive relationships, i.e., Y = ±X + β, which are special cases of linear relationships, i.e.,
Y = αX + β, with α being fixed to ±1 (Zegers, 1986).

Further, we can find an even looser bound for covariance, in the sense that

1

2
(var (X) + var (Y )) ⩽

1

2

(
var (X) + var (Y ) +

∣∣X̄ − Ȳ
∣∣2) ,

and define a new measure as follows:

r= (X,Y ) =
cov (X,Y )

1
2

(
var (X) + var (Y ) +

∣∣X̄ − Ȳ
∣∣2)

r= is named as Concordance Correlation Coefficient (Lin, 1989), and it is designed to measure
identical relationship, i.e., Y = ±X . When X and Y are both positive, it can be utilized to evaluate
their agreement by measuring the variation from the 45° line through the origin (Lin, 1989).

As for the abovementioned three measures, r, r+, and r=, they share the same numerator, cov (X,Y ),
the differences lie in their denominators. These denominators serve as bounds for cov (X,Y ).
Different bounds lead to different capture ranges. With the bounds being looser, their capture ranges
are shrinking from linear (Y = αX + β) towards additive (Y = ±X + β) and ultimately to identical
(Y = ±X) relationships. The looser the bound, the narrower the capture range.

Up until now, all the efforts have only led to looser bounds and measures with narrower capture
ranges. Could we possibly explore breakthroughs by approaching the problem from the opposite
direction, aiming to achieve a tighter bound and consequently, devise a new measure with a broader
capture range?

The bound in Pearson’s r is intrinsically provided by Cauchy-Schwarz Inequality, which is one of the
most widespread and useful inequalities in mathematics. Cauchy-Schwartz Inequality is so classic
and reliable that one seldom tries to improve it. Both bounds in r+ and r= are looser than that
provided by Cauchy-Schwartz Inequality. To loosen Cauchy-Schwartz Inequality might be easy
while to tighten such a classic inequality might be relatively difficult. However, we find that it is
not impossible to improve the tightness of Cauchy-Schwarz Inequality. In other words, there exists
sharper bound for covariance, which will be depicted in the next section.

2.3 New inequality tighter than Cauchy-Schwarz Inequality

Before deriving the new inequality, we will briefly review the classic Cauchy-Schwarz inequality,
which is common in textbooks. The Cauchy–Schwarz inequality states that for x and y, we have

|⟨x, y⟩| ⩽ ∥x∥ ∥y∥ ,

where ⟨·, ·⟩ is the inner product. and ∥·∥ is the norm. The equality holds if and only if x and y are
linearly dependent, i.e., y = ax for some constant a.
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After defining an inner product on the set of random variables using the expectation of their product,
i.e., ⟨X,Y ⟩ = EXY , the Cauchy–Schwarz inequality becomes

|EXY | ⩽
√
EX2EY 2.

Now, we will sharpen the Cauchy–Schwarz inequality. On the basis of the rearrangement theorems
(Hardy, Littlewood, and Polya, 1952), we derive 6 theorems(corollaries/propositions) as follows.
Theorem 1. For random variables X and Y , we have

|EXY | ⩽
∣∣∣EX↑Y ↕

∣∣∣ ⩽ √
EX2EY 2.

The equality on the left holds if and only if X and Y are monotone dependent, and the equality on

the right holds if and only if Y
d
=αX , with sgn (EXY ) = sgn (α).

Here,
d
= denotes equality in distribution, and EX↑Y ↕ is defined as:

EX↑Y ↕ =

{
EX↑Y ↑, if EXY ⩾ 0
EX↑Y ↓, if EXY < 0

For the sake of conciseness, the proofs of Theorem 1 and theorems undermentioned are all included
in Appendix A.1.
Theorem 2. For samples x and y we have

|⟨x, y⟩| ⩽
∣∣∣〈x↑, y↕〉∣∣∣ ⩽ ∥x∥ ∥y∥ .

The equality on the left holds if and only if x and y are monotone dependent, and the equality on the
right holds if and only if y is arbitrary permutation of ax, with sgn (⟨x, y⟩) = sgn (a).

Here,
〈
x↑, y↕

〉
is defined as:〈

x↑, y↕
〉
=

{ 〈
x↑, y↑

〉
, if ⟨x, y⟩ ⩾ 0〈

x↑, y↓
〉
, if ⟨x, y⟩ < 0

Corollary 1. For random variables X and Y , we have covariance equality series as:

|cov (X,Y )| ⩽
∣∣∣cov (X↑, Y ↕

)∣∣∣ ⩽ √
var (X) var (Y )

⩽ 1
2 (var (X) + var (Y ))

⩽ 1
2

(
var (X) + var (Y ) +

∣∣X̄ − Ȳ
∣∣2)

The first equality holds if and only if X and Y are monotone dependent, and the second equality

holds if and only if Y
d
=αX + β, with sgn (cov (X,Y )) = sgn (α).

Here, cov
(
X↑, Y ↕) is defined as:

cov
(
X↑, Y ↕

)
=

{
cov

(
X↑, Y ↑) , if cov (X,Y ) ⩾ 0

cov
(
X↑, Y ↓) if cov (X,Y ) < 0

Corollary 2. For samples x and y, we have covariance inequality series as

|sx,y| ⩽
∣∣sx↑,y↕

∣∣ ⩽ √
s2xs

2
y

⩽
1

2

(
s2x + s2y

)
⩽

1

2

(
s2x + s2y + |x̄− ȳ|2

)
The first equality holds if and only if x and y are monotone dependent, and the second equality holds
if and only if y is arbitrary permutation of ax+ b, with sgn (sx,y) = sgn (a).

Here, sx↑,y↕ is defined as:

sx↑,y↕ =

{
sx↑,y↑ , if sx,y ⩾ 0
sx↑,y↓ , if sx,y < 0
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2.4 The proposed Rearrangement Correlation

The inequality series in Corollary 1 and Corollary 2 provides sharper bounds for covariance at the
population level and the sample level respectively. We will leverage them to define the so-called
Rearrangement Correlation, which is the adjusted version of Pearson’s r proposed here.
Definition 2. The Rearrangement Correlation of random variables X and Y is defined as:

r# (X,Y ) =
cov (X,Y )∣∣cov (X↑, Y ↕

)∣∣
Definition 3. The Rearrangement Correlation of samples x and y is defined as:

r# (x, y) =
sx,y∣∣sx↑,y↕

∣∣
The new measure is named “Rearrangement Correlation” because its theoretical foundation is the
rearrangement inequality, as shown in Theorem 1 and Theorem 2. We adopt the musical sharp symbol
# to denote rearrangement correlation, signifying that this measure has sharp values because of its
sharp bounds. Analogous to how C# is pronounced as C-sharp, r# is pronounced as r-sharp.

As for the relationship between r# (x, y) and r# (X,Y ), it is clear that r# (x, y) converges to
r# (X,Y ) when n→ ∞ according to their definitions.

The capture range of rearrangement correlation is no longer limited to linear dependence but monotone
dependence, which is revealed by the next proposition.
Proposition 1. For random variables X , Y , and samples x, y, the following hold:

•
∣∣r# (X,Y )

∣∣ ⩽ 1 and the equality holds if and only if X and Y are monotone dependent.

•
∣∣r# (x, y)

∣∣ ⩽ 1 and the equality holds if and only if x and y are monotone dependent.

An interesting question might arise in one’s mind: how can the simple adjustment, replacing√
var (X) var (Y ) with

∣∣cov (X↑, Y ↕)∣∣, leads to the capture range expanding from linear depen-
dence to (nonlinear) monotone dependence? The capture range is inherited from covariance itself.
The capture range of covariance is limited neither to identical dependence as that of Concordance
Correlation Coefficient, additive dependence as that of Additivity Coefficient, nor to linear dependence
as that of Pearson’s r. In fact, it can potentially detect and measure arbitrary monotone dependence,
if scaled properly. In other words, Pearson’s r is also measuring nonlinear monotone dependence to
some extent. The adjustment is nothing more than compensating for underestimation.

The relationships among the above-mentioned Concordance Correlation Coefficient (r=), Additivity
Coefficient (r+), Pearson’s r, and the new proposed Rearrangement Correlation (r#) are depicted in
Figure 1.

Figure 1: Covariance inequality series, correlation coefficients and their capture ranges
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The following proposition reveals the relationship between Pearson’s r and its adjusted version, i.e.,
Rearrangement Correlation:
Proposition 2. For random variables X , Y , and samples x, y, the following hold:

•
∣∣r# (X,Y )

∣∣ ⩾ |r (X,Y )| and the equality holds if and only if Y
d
=αX + β, with

sgn (r (X,Y )) = sgn (α).

•
∣∣r# (x, y)

∣∣ ⩾ |r (x, y)| and the equality holds if and only if y is arbitrary permutation of
ax+ b, with sgn (r (x, y)) = sgn (a).

Proposition 2 shows that r# (X,Y ) will revert to r (X,Y ) if and only if Y
d
=αX + β,

sgn (r (X,Y )) = sgn (α), and r# (x, y) to r (x, y) if and only if y is arbitrary permutation of
ax + b, with sgn (r (x, y)) = sgn (a). It is clear that linear dependence is special case of these
conditions. Thus, r# reverts to r in linear scenarios.

Another question to be asked is, do we need a new monotone measure given that rank-based measures
such as Spearman’s ρ can already measure monotone dependence? The answer is twofold:

On the one hand, r# has a higher resolution and is more accurate. Without exception, all measures
designed for monotone dependence are utilizing the order information. However, what we utilize
here is the original information, rather than the ranks. Mapping numerical values to their ranks does
of course produce a certain loss of information. A small difference between two values may no longer
be distinguished from a large difference. With sample size n, there are totally n3−n

6 possible ρ values
between −1 and +1, whatever raw values are and however correlated patterns differ. The resolution
of Spearman’s ρ might be inadequate. To take a simple example, let x = (4, 3, 2, 1) and

• y1 = (5, 4, 3, 2.00)

• y2 = (5, 4, 3, 3.25)

• y3 = (5, 4, 3, 3.50)

• y4 = (5, 4, 3, 3.75)

• y5 = (5, 4, 3, 4.50)

Obviously, y1 and x behaves exactly in the same way, with their values getting small and small step
by step. The behavior of y2, y3, y4, and y5 are becoming more and more different from that of x.
However, the ρ values are all the same for y2, y3 and y4. In contrast, the r# values can reveal all
these differences exactly.

• r# (x, y1) = 1.00, ρ (x, y1) = 1.00

• r# (x, y2) = 0.93, ρ (x, y2) = 0.80

• r# (x, y3) = 0.85, ρ (x, y3) = 0.80

• r# (x, y4) = 0.76, ρ (x, y4) = 0.80

• r# (x, y5) = 0.38, ρ (x, y5) = 0.40

On the other hand, r# is comparable with Pearson’s r, while the latter is not. For nonlinear monotone
dependence, the value of Spearman’s ρ might be remarkably greater than the value of Pearson’s r.
One may attempt to search for nonlinear relationships in data by checking whether the value of ρ far
exceeds that of r. However, it might be meaningless and even impossible to compare their values
directly. In cases, ρ can be either greater or less than r, and their sign can even be different. Thus the
difference |ρ|− |r| is confusing. On the contrary, the signs of r# and r are always the same, and

∣∣r#∣∣
is always greater than or equal to |r|.

∣∣r#∣∣− |r| equals to 0 if and only if y is arbitrary permutation
of ax+ b. Its value increases with the degree of nonlinearity.

However, Spearman’s ρ can also be superior to r# in the sense that the former is robust to outliers
while the latter is not. Rearrangement correlation is a scaled covariance, and the limitation of being
non-robust to outliers is inherited from covariance itself. In fact, concordance correlation coefficient,
additivity coefficient, and Pearson’s r are also scaled covariance measures, and none of them are
robust to outliers.
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To be more robust, we can also transform the raw data into their ranks before calculating r#.
Interestingly, r# becomes equivalent to Spearman’s ρ when calculated on ranks. Let P and Q be
the ranks of x and y respectively. Then, in the sense that sd (P,Q) = sd

(
P ↑, Q↕) = n(n+1)

12 ,
r# (P,Q) = ρ (P,Q). This explains why ρ can measure nonlinear monotone relationships while r
only measures linear ones, despite them sharing a similar formula. The key is not just the ranking but
achieving a sharp bound. Since ρ and r# are equivalent when applied to ranks, and r# can measure
arbitrary monotone dependence (as proven in our manuscript), ρ can do the same.

3 Experiments

3.1 Performance metrics

The main purpose of proposing Rearrangement Correlation is to provide a measure of dependence
strength for nonlinear monotone relationships, rather than to simply serve as a test statistic for testing
independence. Thus, our performance metrics focus on strength measurement.

The basic question to be asked when measuring any attribute is how accurate is this measurement,
and there should be no exception for dependence measurement. ISO 5725 uses two terms “trueness”
and “precision” to describe the accuracy of a measurement method. Trueness refers to the closeness
of agreement between the mean or median of measured results and the true or accepted reference
value. Precision refers to the closeness of agreement between measured values (ISO, 1994). The
comprehensive performance of trueness and precision can be represented as the mean absolute error
(MAE for short), and calculated as the mean of the absolute values of the difference between the
measured value and the conventional true value. On the whole, a measure with lower MAE value is
better.

We evaluate the performance of different measures in a supervised way. We employ the coefficient
of determination, R2, which is defined as the proportion of variance for one variable explained by
the other variable, as the ground truth of strength of dependence, which is common in practices
(Reshef et al., 2011). Further, we take its square root, R, as the conventional true value of the
relationship strength. A simple evidence is that Pearson’s r, as the golden standard for measuring
linear dependence, is equivalent to R, as long as the relationship is linear. Thus, it is reasonable to
adopt R as the reference value.

3.2 Simulation procedure

We investigate the accuracy performance of r#, along with r+, Pearson’s r, Spearman’s ρ, Kendall’s
τ and four other leading dependence measures, i.e., HSIC, dCor, MIC and Chatterjee’s ξ in the
following way: for each scenario y = f (x), we generated 512 pairs of (x, y) from the regression
model y = f (x) + ε, and computed the values of different measures between x and y at different R
levels. In the regression model, the x sample is uniformly distributed on the unit interval (0, 1), and
the noise is normally distributed as ε ∼ N (0, σ), with σ controlling R to a certain level.

R =

√
1− σ2

var (Y )

For the sake of robustness, the computation process is repeated 10 times for each measure at each R
level, and the mean value is adopted.

Simulation procedure is implemented in the recor R package, which is available in supplemental
materials. The workflow is to call accuracy_db() firstly, accuracy_results_frm_db() secondly and
accuracy_plot_lite() finally. To reproduce the results, just keep all the parameters as default. More
details are available in the package help files.

3.3 Performance in simulated scenarios

The simulation is conducted in up to 50 types of different monotone scenarios, including all basic
elementary functions, lots of composite functions and several special functions. To our knowledge,
our research explores the most extensive and representative range of scenarios. Detailed descriptions
of these scenarios can be found in Appendix A.3, and the results are shown in Figure 2.
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Figure 2: Performance of different measures in 50 simulated scenarios

Figure 2 shows the scatter plots of conventional true value versus measured values in different
scenarios. The nine investigated measures are located in nine panels respectively. In each panel,
there are totally 50 transparent green lines, representing the measured value (Y -axis) with respect
to conventional true value (X-axis) for 50 scenarios. The prefixes I- and H- refer to Inverse and
Hyperbolic respectively. For example, I-H-Tangent stands for Inverse Hyperbolic Tangent function.
In all these panels, the dashed diagonal lines represent an ideal measure, the score of which is exactly
the same as the conventional true value. Apparently, the closeness to this reference line reflects the
performance of a measure for a certain scenario. The median values of each measure among scenarios
at different R levels are also calculated and denoted by the non-transparent red line.

We first look at the extreme values on both sides. It is expected that a measure will score nearly zero
when X and Y are randomly generated, i.e., R ≈ 0, and score one when there is perfect monotone
relationship, i.e., R = 1. Only Spearman’s ρ, Kendall’s τ and the adjusted r# meet this requirement.
MIC also scores +1 when R = 1, however, it tends to overestimate the strength when R is near zero,
as also reported in other literature before (Chatterjee, 2021). The remaining five measures, i.e., r+, r,
HSIC, dCor and ξ, underestimate the strength of nonlinear relationships, and never converge to +1
even when R approaches to 1.

Now let’s take a close look at the intermediate values. It can be seen in Figure 2 that the non-
transparent red line of r# is the closest one to the dashed line, which means the measured values
by r# possess the minimum error. To further quantify the accuracy, we add four boxplots at four
representative R levels (approximately, 0.25, 0.50, 0.75, and 1.00) for each measure. r# has the
highest trueness in all these representative levels. As for precision, the r# also outperforms all other
measures except HSIC and MIC. Although HSIC and MIC possesses the best precision, they suffer
from lower trueness. HSIC tends to underestimate the strength severely, and MIC is also a biased
measure, tending to overestimate the strength when the signal is weak, and underestimate it when the
signal is strong, as shown in Figure 2.

The overall performance in terms of MAE is ordered as r# (0.060) ≻ ρ (0.102) ≻ dCor (0.127) ≻
r (0.150) ≻ τ (0.157) ≻MIC (0.196) ≻ ξ (0.206) ≻ r+ (0.263) ≻ HSIC (0.518). r# possesses
significant accuracy advantage over all other measures.

3.4 Performance in real-life scenarios

In addition to simulated scenarios, we also investigate the performance of these measures on real life
scenarios provided by NIST (National Institute of Standards and Technology, 2003). There are five
available monotone scenarios: Chwirut1, Hahn1, Rat43, Roszman1, and Thurber. Details for these
scenarios are available in Appendix A.4.

The performance of nine measures in these five scenarios are depicted in Figure 3. Bar plots illustrate
the measured values, the conventional true value verified by NIST is annotated on the top of each
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Figure 3: Performance of Different Measures in 5 Real-life Scenarios

scenario group. And the differences between the measured value and the true value are mapped as
error bars.

It can be seen from Figure 3 that r# possesses minimum error, or best accuracy performance among
all these five scenarios, with its MAE value as 0.00141, followed by ρ(0.0159), MIC(0.0249),
dCor(0.0575), τ (0.0779), r(0.0916), ξ(0.166), HSIC(0.891) and r+(0.956).

3.5 Performance in non-monotone scenarios

It’s worth noting that the aforementioned scenarios only cover monotone cases. To evaluate perfor-
mance in typical non-monotone contexts, we conducted experiments in 16 scenarios, encompassing
those outlined in (Reshef et al., 2011) and (Simon and Tibshirani, 2014). Details for these scenarios
are available in Appendix A.5.

As anticipated, the MAE value of r# reaches a significant 0.418, notably inferior to those of ξ(0.141),
MIC (0.157) and dCor (0.364). In essence, r# struggles to accurately measure non-monotone
dependence. This limitation stems from its reliance on covariance, which inherently fails to detect
non-monotone relationships. To illustrate, consider a standard introductory text book example, i.e.,
cov (X,Y ) = 0 despite Y being totally dependent on X via Y = X2. Attempts to tighten its bound
proves futile.

However, the performance of r# is also superior to those of Spearman’s ρ(0.431), Pearson’s r(0.437)
and Kendall’s τ (0.461). As for accuracy performance, r# outperforms the three classical correlation
coefficients in not only monotone, but also non-monotone scenarios.

4 Conclusion and discussion

We proposed here an adjusted version of Pearson’s r, i.e., rearrangement correlation, which can be
treated as counterpart of Pearson’s r for nonlinear monotone dependence.

The basic idea of rearrangement correlation is simple and straightforward. Its mathematical foundation
is a sharpened version of the famous Cauchy-Schwarz Inequality. Tighter bound leads to wider capture
range. With the adjustment, the capture range of Pearson’s r is extended from linear dependence
to (nonlinear) monotone dependence. Simulated and real-life investigations demonstrate that the
rearrangement correlation is more accurate in measuring nonlinear monotone dependence than the
three classical correlation coefficients and other more recently proposed dependence measures.

We may draw the conclusion that: Pearson’s r is undoubtedly the gold measure for linear dependence.
Now, it might be the gold measure also for nonlinear monotone dependence, if adjusted.
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A Appendix

A.1 Proofs of theorems, corollaries and propositions

Theorem 1. For random variables X and Y , we have

|EXY | ⩽
∣∣∣EX↑Y ↕

∣∣∣ ⩽ √
EX2EY 2.

The equality on the left holds if and only if X and Y are monotone dependent, and the equality on

the right holds if and only if Y
d
=αX , with sgn (EXY ) = sgn (α).

Here,
d
= denotes equality in distribution, and EX↑Y ↕ is defined as:

EX↑Y ↕ =

{
EX↑Y ↑, if EXY ⩾ 0
EX↑Y ↓, if EXY < 0

Proof. The proof will be completed in two parts.

• The proof of |EXY | ⩽
∣∣EX↑Y ↕

∣∣ is mainly based on the rearrangement theorem for
functions, i.e., Theorem 378 on page 278 of (Hardy, Littlewood, and Polya, 1952): Let f↑,
g↑ denote increasing rearrangements and f↓, g↓ decreasing rearrangements of f and g on
[0, 1] as defined on page 276 of (Hardy, Littlewood, and Polya, 1952). Then we have∫ 1

0

f↑ (u) g↓ (u)du ⩽
∫ 1

0

f (u) g (u)du ⩽
∫ 1

0

f↑ (u) g↑ (u)du.

Let
∏

(F,G) be the set of all joint cdf’s on R2 having F and G as marginal cdf’s. For
arbitrary cdf H ∈

∏
there exists (X,Y ): [0, 1] → R2 such that [X (U) , Y (U)] has cdf

H . We can let f (u) = X (u) and g (u) = Y (u) so that EXY =
∫ 1

0
f (u) g (u)du.

The increasing and decreasing rearrangements of f and g are just f↑ (u) = F−1 (u),
f↓ (u) = F−1 (1− u), g↑ (u) = G−1 (u), and g↓ (u) = G−1 (1− u), as stated in (Whitt,
1976). Thus, we have

EX↑Y ↓ ⩽ EXY ⩽ EX↑Y ↑.

The right-hand (resp. left-hand) equality holds if and only if (X,Y )
d
=
(
F−1 (U) , G−1 (U)

)
(resp. (X,Y )

d
=
(
F−1 (U) , G−1 (1− U)

)
). The equality conditions can be equivalently

expressed as X and Y are increasing (resp. decreasing) monotone dependent (Mikusinski,
Sherwood, and Taylor, 1991).

If EXY ⩾ 0, we have EX↑Y ↕ = EX↑Y ↑ ⩾ EXY ⩾ 0, which implies that
∣∣EX↑Y ↕

∣∣ =
EX↑Y ↑ ⩾ EXY = |EXY |, and the equality holds if and only if X and Y are increasing
monotone dependent. If EXY < 0, we have EX↑Y ↕ = EX↑Y ↓ ⩽ EXY < 0, which
implies that

∣∣EX↑Y ↕
∣∣ = −EX↑Y ↓ ⩾ −EXY = |EXY |, and the equality holds if and

only if X and Y are decreasing monotone dependent. Either way, we have
∣∣EX↑Y ↕

∣∣ ⩾
|EXY |, and the equality holds if and only if X and Y are monotone dependent.

• The proof of
∣∣EX↑Y ↕

∣∣ ≤ √
EX2EY 2 is mainly based on Cauchy-Schwarz Inequality:

If EXY ⩾ 0,
∣∣EX↑Y ↕

∣∣ = ∣∣EX↑Y ↑
∣∣ ⩽ √

E(X↑)
2
E(Y ↑)

2
=

√
EX2EY 2 in the sense

that X↑ d
=X , and Y ↑ d

=Y . And the equality holds if and only if Y ↑ = αX↑, equivalently,

Y
d
=αX , for some constant α ≥ 0. Similarly, If E (XY ) < 0,

∣∣EX↑Y ↕
∣∣ = ∣∣EX↑Y ↓

∣∣ ⩽√
E(X↑)

2
E(Y ↓)

2
=

√
EX2EY 2 in the sense thatX↑ d

=X , and Y ↓ d
=Y . And the equality

holds if and only if Y ↓ = αX↑, equivalently, Y
d
=αX , for some constant α < 0. Either

way, we have
∣∣EX↑Y ↕

∣∣ ⩽ √
EX2EY 2 and the equality holds if and only if Y

d
=αX , with

sgn (EXY ) = sgn (α).
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Theorem 2. For samples x and y we have

|⟨x, y⟩| ⩽
∣∣∣〈x↑, y↕〉∣∣∣ ⩽ ∥x∥ ∥y∥ .

The equality on the left holds if and only if x and y are monotone dependent, and the equality on the
right holds if and only if y is arbitrary permutation of ax, with sgn (⟨x, y⟩) = sgn (a).

Here,
〈
x↑, y↕

〉
is defined as:〈

x↑, y↕
〉
=

{ 〈
x↑, y↑

〉
, if ⟨x, y⟩ ⩾ 0〈

x↑, y↓
〉
, if ⟨x, y⟩ < 0

Proof. The proof will also be completed in two parts.

• The proof of |⟨x, y⟩| ⩽
∣∣〈x↑, y↕〉∣∣ is mainly based on another rearrangement theorem for fi-

nite sets, i.e., Theorem 368 on page 261 of (Hardy, Littlewood, and Polya, 1952): With x↑ =(
x(1), x(2), · · · , x(n)

)
, y↑ =

(
y(1), y(2), · · · , y(n)

)
, and y↓ =

(
y(n), y(n−1), · · · , y(1)

)
, we

have
n∑

i=1

x(i)y(n−i+1) ⩽
n∑

i=1

xiyi ⩽
n∑

i=1

x(i)y(i).

That is, 〈
x↑, y↓

〉
⩽ ⟨x, y⟩ ⩽

〈
x↑, y↑

〉
,

and the right-hand (resp. left-hand) equality holds if and only if x and y are similarly(resp.
oppositely) ordered. According to the definitions of “similarly(resp. oppositely) ordered” on
page 43 in (Hardy, Littlewood, and Polya, 1952), the equality conditions can be equivalently
expressed as x and y are increasing(resp. decreasing) monotone dependent.

If ⟨x, y⟩ ⩾ 0, we have
〈
x↑, y↕

〉
=

〈
x↑, y↑

〉
⩾ ⟨x, y⟩ ⩾ 0, which implies

∣∣〈x↑, y↕〉∣∣ =〈
x↑, y↑

〉
⩾ ⟨x, y⟩ = |⟨x, y⟩|, and the equality holds if and only if x and y are increasing

monotone dependent.If ⟨x, y⟩ < 0, we have
〈
x↑, y↕

〉
=

〈
x↑, y↓

〉
⩽ ⟨x, y⟩ < 0, which

implies
∣∣〈x↑, y↕〉∣∣ = −

〈
x↑, y↓

〉
⩾ −⟨x, y⟩ = |⟨x, y⟩|, and the equality holds if and only if

x and y are decreasing monotone dependent. Either way, we have
∣∣〈x↑, y↕〉∣∣ ⩾ |⟨x, y⟩| and

the equality holds if and only if x and y are monotone dependent.

• The proof of
∣∣〈x↑, y↕〉∣∣ ⩽ ∥x∥ ∥y∥ is mainly based on Cauchy-Schwarz Inequality: in the

sense that norm ∥·∥ is permutation invariant, we have
∥∥x↑∥∥ = ∥x∥ and

∥∥y↑∥∥ =
∥∥y↓∥∥ = ∥y∥.

If ⟨x, y⟩ ⩾ 0, we have
∣∣〈x↑, y↕〉∣∣ = ∣∣〈x↑, y↑〉∣∣ ⩽ ∥∥x↑∥∥∥∥y↑∥∥ = ∥x∥ ∥y∥, and the equality

holds if and only if y↑ = ax↑, or equivalently, y is arbitrary permutation of ax for some
constant a ≥ 0. If ⟨x, y⟩ < 0, we have

∣∣〈x↑, y↕〉∣∣ = ∣∣〈x↑, y↓〉∣∣ ⩽ ∥∥x↑∥∥∥∥y↓∥∥ = ∥x∥ ∥y∥,
and the equality holds if and only if y↓ = ax↑, or equivalently, y is arbitrary permutation of
ax for some constant a < 0. Either way, we have

∣∣〈x↑, y↕〉∣∣ ⩽ ∥x∥ ∥y∥, and the equality
holds if and only if y is arbitrary permutation of ax, , with sgn (⟨x, y⟩) = sgn (a).

Corollary 1. For random variables X and Y , we have covariance equality series as:

|cov (X,Y )| ⩽
∣∣∣cov (X↑, Y ↕

)∣∣∣ ⩽ √
var (X) var (Y )

⩽ 1
2 (var (X) + var (Y ))

⩽ 1
2

(
var (X) + var (Y ) +

∣∣X̄ − Ȳ
∣∣2)

The first equality holds if and only if X and Y are monotone dependent, and the second equality

holds if and only if Y
d
=αX + β, with sgn (cov (X,Y )) = sgn (α).
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Here, cov
(
X↑, Y ↕) is defined as:

cov
(
X↑, Y ↕

)
:=

{
cov

(
X↑, Y ↑) , if cov (X,Y ) ⩾ 0

cov
(
X↑, Y ↓) if cov (X,Y ) < 0

Proof. |cov (X,Y )| ⩽
∣∣cov (X↑, Y ↕)∣∣ ⩽ √

var (X) var (Y ), and the equality conditions are imme-
diate from Theorem 1. The remaining parts of the inequality series are obvious.

Corollary 2. For samples x and y, we have covariance inequality series as

|sx,y| ⩽
∣∣sx↑,y↕

∣∣ ⩽ √
s2xs

2
y

⩽
1

2

(
s2x + s2y

)
⩽

1

2

(
s2x + s2y + |x̄− ȳ|2

)
The first equality holds if and only if x and y are monotone dependent, and the second equality holds
if and only if y is arbitrary permutation of ax+ b, with sgn (sx,y) = sgn (a).

Here, sx↑,y↕ is defined as:

sx↑,y↕ =

{
sx↑,y↑ , if sx,y ⩾ 0
sx↑,y↓ , if sx,y < 0

Proof. |sx,y| ⩽
∣∣sx↑,y↕

∣∣ ⩽ √
s2xs

2
y , and the equality conditions are immediate from Theorem 2. The

remaining parts of the inequality series are obvious.

Proposition 1. For random variables X , Y , and samples x, y, the following hold:

•
∣∣r# (X,Y )

∣∣ ⩽ 1 and the equality holds if and only if X and Y are monotone dependent.

•
∣∣r# (x, y)

∣∣ ⩽ 1 and the equality holds if and only if x and y are monotone dependent.

Proof. The proposition is immediate from Corollary 1 and Corollary 2.

Proposition 2. For random variables X , Y , and samples x, y, the following hold:

•
∣∣r# (X,Y )

∣∣ ⩾ |r (X,Y )| and the equality holds if and only if Y
d
=αX + β, with

sgn (r (X,Y )) = sgn (α).

•
∣∣r# (x, y)

∣∣ ⩾ |r (x, y)| and the equality holds if and only if y is arbitrary permutation of
ax+ b, with sgn (r (x, y)) = sgn (a).

Proof. The proposition is immediate from Corollary 1 and Corollary 2.

A.2 Experiments settings

All the experiments are implemented with the R language (R Core Team, 2024), along with several
add-on packages. The following are lists of packages and functions for the implementation of the
nine measures involved in our study:

• r+, recor::loose_pearson()
• r, stats::cor()
• r#, recor::sharp_pearson()
• ρ, stats::cor(), with the argument method set as “spearman”
• τ , stats::cor(), with the argument method set as “kendall”
• HSIC, dHSIC::dhsic()
• dCor, energy::dcor()
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• MIC, minerva::mine_stat()
• ξ, XICOR::calculateXI()

For convenience, we developed an R package recor, which encapsulates all these measures as
cor_XXX() functions. The recor package is available as recor_1.0.2.tar.gz in supplemental materials.
For a latest version, please visit https://github.com/byaxb/recor.

Hardware environment configuration for this study was: DELL OptiPlex 7070 Tower, equipped with
8-core CPU Core i7-9700 @ 3.00GHz, 24G DDR4 2666MHz RAM. Under this configuration, it took
about 5 days to complete all the experiments.

A.3 Simulated scenarios

We carry out our experiments on 50 simulated scenarios, including all basic elementary functions,
lots of composite functions and several typical special functions.

1. Linear: y = 2x+ 1, x ∈ [0, 1]

2. Quadratic [asymmetry]: y = x2, x ∈ [0, 1]

3. Square Root: y =
√
x, x ∈ [0, 1]

4. Cubic: y = x3, x ∈ [0, 1]

5. Reciprocal: y = 1
x , x ∈ [0, 1]

6. Exponential: y = ex, with x ∈ [0, 1]

7. Logarithm: y = lnx, x ∈ [0, 1]

8. Sine [quarter period]: y = sin (x) , x ∈
[
0, π2

]
9. Cosine [quarter period]: y = cos (x) , x ∈

[
0, π2

]
10. Tangent [half period]: y = tan (x) , x ∈

[
0, π2

]
11. Cotangent [half period]: y = cot (x) , x ∈

[
0, π2

]
12. Inverse Sine: y = arcsin (x) , x ∈ [0, 1]

13. Inverse Cosine: y = arccos (x) , x ∈ [0, 1]

14. Inverse Tangent: y = arctan (x) , x ∈ [0, 1]

15. Inverse Cotangent: y = arccot (x) , x ∈ [0, 1]

16. Secant [quarter period]: y = sec (x) , x ∈
[
0, π2

]
17. Cosecant [quarter period]: y = csc (x) , x ∈

[
0, π2

]
18. Hyperbolic Sine: y = sinhx = ex−e−x

2 , x ∈ [0, 1]

19. Hyperbolic Cosine: y = coshx = ex+e−x

2 , x ∈ [0, 1]

20. Hyperbolic Tangent: y = tanhx = e2x−1
e2x+1 , x ∈ [0, 1]

21. Hyperbolic Cotangent: y = cothx = e2x+1
e2x−1 , x ∈ [0, 1]

22. Hyperbolic Secant: y = sech (x) = 2
ex+e−x , x ∈ [0, 100]

23. Hyperbolic Cosecant: y = csch (x) = 2
ex−e−x , x ∈ [0, 100]

24. Inverse Hyperbolic Sine: y = arcsinh (x) = ln
(
x+

√
x2 + 1

)
, x ∈ [0, 1]

25. Inverse Hyperbolic Cosine: y = arccosh (x) = ln
(
x+

√
x2 − 1

)
, x ∈ [1, 2]

26. Inverse Hyperbolic Tangent: y = arctanh (x) = 1
2 ln

(
1+x
1−x

)
, x ∈ [0, 1]

27. Inverse Hyperbolic Cotangent: y = arccoth (x) = 1
2 ln

(
x+1
x−1

)
, x ∈ [1, 2]

28. Inverse Hyperbolic Secant: y = arcsech (x) = ln
(

1
x +

√
1
x2 − 1

)
, x ∈ [0, 1]
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29. Inverse Hyperbolic Cosecant: y = arccsch (x) = ln
(

1
x +

√
1
x2 + 1

)
, x ∈ [0, 1]

30. Hook: y = ax+ b
x , a = 1, b = 1, x ∈ [0, 1]

31. Rational: y = x+1
x−1 , x ∈ [0, 1]

32. Hoerl: y = xaex, a = −1, x ∈ [0, 1]

33. Sigmoid: y = 1
1+e−x , x ∈ [−0.5, 0.5]

34. Logit: y = ln x
1−x , x ∈ [0, 1]

35. Step: y =

{
0, if 0 ⩽ x < 1

2
1, if 1

2 ⩽ x ⩽ 1

36. Piecewise [Sigmoid]: y =

 0, if 0 ⩽ x ⩽ 49
100

50
(
x− 1

2

)
+ 1

2 , if
49
100 < x < 51

100
1, if 51

100 ⩽ x ⩽ 1

37. Linear + Periodic, High Freq: y = 1
10 sin (10.6 (2x− 1)) + 11

10 (2x− 1) , x ∈ [0, 1]

38. Sinc Function: Sk,h (x) =
sin(π(x−kh)/h)

π(x−kh)/h , k = 0, h = 1, x ∈ [0, 1]

39. Einstein Function: Einstein1 (x) = x2ex

(ex−1)2
, x ∈ [0, 1]

40. Exponential Integral: E1 (x) =
∫∞
x

e−t

t dt, x ∈ [0, 1]

41. Hyperbolic Sine Integral: Shi (x) =
∫ x

0
sinh t

t dt, x ∈ [0, 1]

42. Hyperbolic Cosine Integral: Chi (x) = γ + lnx +
∫ x

0
cosh t−1

t dt, x ∈ [0, 1]. Here γ is
Euler’s Constant

43. Error Function: erf (x) = 2√
π

∫ x

0
e−t2dt, x ∈ [0, 1]

44. Inverse Error Function: inverf (x) = t+ 1
3 t

3 + 7
30 t

5 + · · · , t = 1
2

√
πx, x ∈ [0, 1]

45. Gamma Function: Γ (x) =
∫∞
0
tx−1e−tdt, x ∈ [0, 1]

46. Psi Function: ψ (x) = dk+1

dxk+1 ln Γ (x) = Γ′(x)
Γ(x) , x ∈ [0, 1] , k = 0

47. Riemann Zeta Function: ζ (x) =
∞∑

n=1

1
nx , x ∈ [0, 1]

48. Bessel Function: Yv (x) = Jv(x) cos(vπ)−J−v(x)
sin(vπ) , Jv (x) =

(
1
2x

)v ∞∑
k=0

(−1)
k ( 1

4x
2)

k

k!Γ(v+k+1) ,

v = 0, x ∈ [0, 1]

49. Beta Function: B (x,w) = Γ(x)Γ(w)
Γ(x+w) , w = 1, x ∈ [0, 1]

50. Dirichlet Eta Function: η (x) =
∞∑

n=1

−1n−1

nx , x ∈ [0, 1]

A.4 Real-life scenarios

All the five real life scenarios are provided by NIST (National Institute of Standards and Technology,
2003) as follows:

• Chwirut1: ultrasonic calibration, with Y as ultrasonic response, and X as metal distance.

• Hahn1: thermal expansion of copper, with Y as the coefficient of thermal expansion, and X
as temperature in degrees kelvin.

• Rat43: sigmoid growth, with Y as dry weight of onion bulbs and tops, and X as growing
time.

• Roszman1: quantum defects in iodine atoms, with Y as the number of quantum defects, and
X as the excited energy state.
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• Thurber: semiconductor electron mobility, with Y as a measure of electron mobility, and X
as the natural log of the density.

Data and details about these scenarios are available publicly at:
https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

A.5 Non-monotone scenarios

We conducted our experiments on 16 non-monotone scenarios, comprehensively covering all the
scenarios from (Reshef et al., 2011) and (Simon and Tibshirani, 2014).

1. Quadratic [symmetry]: y = 4x2, x ∈
[
− 1

2 ,
1
2

]
2. Cubic 2: y = 128

(
x− 1

3

)3 − 48
(
x− 1

3

)2 − 12
(
x− 1

3

)
, x ∈ [0, 1]

3. Sine, High Freq: y = sin (16πx) , x ∈ [0, 1]

4. Cosine [High Freq]: y = cos (14πx) , x ∈ [0, 1]

5. Lopsided L-shaped: y =

 200x, if 0 ⩽ x < 1
200

−198x+ 199
100 , if

1
200 ⩽ x < 1

100
− x

99 + 1
99 , if

1
100 ⩽ x ⩽ 1

6. Circle: y =

√
1−(2x− 1)

2
, x ∈ [0, 1]

7. Linear + Periodic, Medium Freq: y = sin (10πx) + x, x ∈ [0, 1]

8. Cubic 3: y = 4x3 + x2 − 4x, x ∈ [−1.1, 1.3]

9. Cubic, Y-stretched: y = 41
(
4x3 + x2 − 4x

)
, x ∈ [−1.1, 1.3]

10. Sine [Two periods]: y = sin (4πx) , x ∈ [0, 1]

11. Sine [Low Freq]: y = sin (8πx) , x ∈ [0, 1]

12. Sine, Non-Fourier Freq [Low]: y = sin (9πx) , x ∈ [0, 1]

13. Cosine, Non-Fourier Freq [Low]: y = cos (7πx) , x ∈ [0, 1]

14. Sine, Varying Freq [Medium]: y = sin (6πx (1 + x)) , x ∈ [0, 1]

15. Cosine, Varying Freq [Medium]: y = cos (5πx (1 + x)) , x ∈ [0, 1]

16. Linear + Periodic, High Freq 2: y = 1
5 sin (10.6 (2x− 1)) + 11

10 (2x− 1) , x ∈ [0, 1]
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions are summarized in Abstract and the last paragraph of
Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The proposed r# measures linear and nonlinear monotone relationships
accurately. However, it may fail to measure non-monotone dependence. The limitations are
discussed in 3.5 Performance in non-monotone scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Full set of assumptions and complete and correct proofs are provided in 2.3
New inequality tighter than Cauchy-Schwarz Inequality, 2.4 The proposed Rearrangement
Correlation and A.1 Proofs of theorems, corollaries and propositions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclosed all the information needed to reproduce the experimental
results, as depicted in 3.2 Simulation procedure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are available as an attached zip file, Code and data.zip. We
developed an R package recor, which implemented all the experiments. The recor package
is available as recor_1.0.2.tar.gz, included in the zip file. Sufficient instructions to faithfully
reproduce the experiments are available in the package help files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are provided in 3 Experiments, and A.2 Experiments
Settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate the performance of proposed method and others according to ISO
5725. Please see 3 Experiments for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details about the hardware configuration and the time of execution are shown
in section “A.2 Experiments Settings”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics. And we confirm
that our research fully complies with all of its provisions.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

20

https://neurips.cc/public/EthicsGuidelines


Justification: What we proposed here is an adjusted version of Pearson’s r. This study
simply provides theoretical results for measuring dependence and does not involve societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Neither the proposed method nor the released data has risk for misuse. The ap-
plicability range of this method has undergone comprehensive discussion in 3.5 Performance
in non-monotone scenarios.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and data used in our paper are properly credited and explicitly
mentioned, as shown in A.2 Experiments Settings.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We developed an R package to reproduce the experiments. And all the
functions in this package are well documented, which can be accessed by the command
“?function_name” after installation. For more details, see A.2 Experiments Settings.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our research does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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