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Abstract

3D scene reconstruction has seen significant advancements
through methods like Neural Radiance Fields (NeRF) and 3D
Gaussian Splatting (3DGS), and is increasingly using gener-
ative AI models to improve the quality of reconstruction and
novel view synthesis. However, existing datasets often lack
the scale and diversity in complex, real-world outdoor envi-
ronments. As a result, many of the state-of-the-art methods,
including the generative models used in them, may not work
well with real-world data. To further advance research in 3D
reconstruction, neural rendering, and generative models on
complex real-world data, we introduce the MWAG (Multi-
season Wide-area Air Ground) dataset. MWAG features over
9,000 high-resolution RGB images captured from ground
and aerial views across multiple seasons and differing envi-
ronmental conditions. Each image includes highly accurate
geodetic pose metadata, enabling tasks such as sparse-view
3D reconstruction, cross-view synthesis, and precise localiza-
tion. The dataset supports multiple challenges in neural ren-
dering, including handling environmental variations, training
efficiency over expansive areas, and integrating multi-modal
data for improved model completeness. We describe in de-
tail our steps in data acquisition, processing, and alignment,
to help the community create more diverse and challenging
datasets to develop better methods and models in the future.
Our dataset will be available at mwag.sri.com.

1 Introduction
Reconstructing accurate and detailed 3D representations of
expansive outdoor scenes from a set of unposed images re-
mains a challenging problem in computer vision and graph-
ics research, with significant implications for applications
such as autonomous navigation, urban planning, environ-
mental monitoring, and virtual tourism. Recent neural ren-
dering and 3D reconstruction techniques, such as Neural Ra-
diance Fields (NeRF) (Mildenhall et al. 2021) and 3D Gaus-
sian Splatting (3DGS) (Kerbl et al. 2023), have revolution-
ized 3D scene modeling by enabling high-quality novel view
synthesis. However, the effectiveness of these methods heav-
ily depends on the quality and density of input images, and
upon the range of illumination and environmental (seasonal,
weather) variation seen in the inputs.
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Existing benchmark datasets for 3D reconstruction pri-
marily focus on small-scale, localized, or object-centric
scenes with densely captured images, often from ground-
level cameras, and typically lack ground-truth geodetic
poses. While suitable for controlled experiments, these
datasets are insufficient for modeling in-the-wild environ-
ments characterized by complex geometries, sparse data,
diverse viewpoints, and environmental variations. Address-
ing such challenges requires datasets that incorporate multi-
altitude perspectives (e.g., aerial and ground views) and
capture seasonal variations. Moreover, precise ground-truth
geo-poses are essential not only for robust geo-localization
and accurate evaluation of 3D reconstruction methods but
also for enabling several real-world applications.

While NeRF and 3DGS perform well with dense inputs, it
remains a major challenge to achieve high-quality 3D recon-
struction and novel view synthesis with sparse-view inputs,
and the research community is increasingly using generative
AI models to improve the performance. One such success-
ful approach uses a latent diffusion model (LDM) (Rom-
bach et al. 2022) to create augmented views near input views
and incorporate them in NeRF training (Wu et al. 2024).
Others (Gao et al. 2024) directly synthesize novel views on
the ground from aerial images (synthetic data) using LDM
and ControlNet (Zhang, Rao, and Agrawala 2023). How-
ever, due to the limitation of datasets described earlier, these
methods may not work well with real-world wide-area data
which come with much higher diversity.

To bridge this gap, we introduce the MWAG (Multi-
season Wide-area Air Ground) dataset. MWAG offers a di-
verse collection of aerial and ground images of outdoor ar-
eas, captured across seasons, with highly accurate ground-
truth poses. It serves as a comprehensive testbed for bench-
marking state-of-the-art 3D modeling techniques in chal-
lenging real-world scenarios. With accurate ground-truth
poses, it is easy to create sparse-view test cases from sub-
sets of the dataset. MWAG also supports critical tasks such
as camera calibration under diverse conditions, a prerequi-
site for achieving precise 3D reconstructions.

2 Prior Work
There is a tight interplay between neural representation
based 3D reconstruction and the challenges existing datasets
provide. Challenging datasets are required to expose short-



Figure 1: Image grid showing few samples from MWAG, with top row showing ground images, and bottom row showing aerial
images from similar locations. Images on the left show data from autumn and the right show data from winter.

comings of current modeling methods in order to spur in-
novation. When NeRF (Mildenhall et al. 2021) was intro-
duced, work primarily focused on reconstructing indoor 3D
objects by having dense images from all angles around a sin-
gle object. Similar work (Barron et al. 2022) was also shown
to work on 3D objects outdoors, but outdoor objects were
small in size (bench, bicycle etc.). Block-NeRF (Tancik et al.
2022) first came out with a wide-area dataset and methodol-
ogy to build NeRFs of a city-wide scale but had a limita-
tion of using only ground images. The limitation of relying
on ground-only views is that gathering such a dataset is not
always feasible (or is very resource-consuming). Whereas
capturing aerial data is relatively more efficient where just
one fly-through with a drone can capture a vast amount of
area. Reconstructions created from air and ground views
must ingest multi-altitude data to create a unified model.
This can further be extended to render ground views with air
only images and can also aid work which enables 3D model
building from sparse views (Truong et al. 2023) using diffu-
sion (Zou, Zhang, and Liu 2024).

Several datasets are already available to test and evaluate
NeRF-based methods, as mentioned in (Yan et al. 2023), but
these datasets either provide ground only or air only data or
the datasets are simulated. Here are a few key datasets that
currently exist and are used in the field:

Mip-NeRF 360 dataset (Barron et al. 2022) encompasses
a collection of 9 scenes, featuring a mix of outdoor and in-
door environments. Each scene has a central object or area
of complexity, with a detailed background. The captured im-
ages offer variable resolutions. To minimize color harmo-
nization issues, outdoor scenes were captured under overcast
skies and a large diffuse light was used for indoor scenes to
avoid shadows. The dataset does not have ground truth pose.
UrbanScene3D (Lin et al. 2022) dataset contains 128,000
high-resolution images and is designed for research in ur-
ban scene perception and reconstruction. Images are sourced
from synthetic scenes generated by CAD and real urban
scenes captured using drones only. While ground truth pose
data is unavailable for the entire real scenes, ground-truth
meshes are provided for some buildings within those scenes.
OMMO (Lu et al. 2023) is a large outdoor multi-modal
dataset. It features various scenes containing calibrated im-

Table 1: Comparison of our dataset with several widely used
datasets for evaluating 3D reconstruction methods.

Dataset Air
Data

Ground
Data

GT
Pose

Wide
Area

Seasonal
Variation

Mip-NeRF360 x ✓ x x x

UrbanScene3D x ✓ x ✓ x

OMMO ✓ ✓ x ✓ ✓

Mill 19 ✓ x x ✓ x

Tanks & Temples x ✓ x ✓ x

Block-NeRF x ✓ ✓ ✓ x

NeRF-on-the-go x ✓ x x x

Photo Tourism x ✓ x ✓ ✓

Ours (MWAG) ✓ ✓ ✓ ✓ ✓

ages. The images are sourced from YouTube videos and
drone captures. Camera poses are provided using COLMAP,
and the dataset includes prompt annotations for multi-model
NeRF. The dataset does not have ground truth data.

The Mill 19 dataset (Turki, Ramanan, and Satya-
narayanan 2022) uses a drone to capture two big areas
around CMU. The first area is a 500 m x 250 m industrial
building. The other area is near a construction site with de-
bris. The first area has 1940 pictures, and the second area
has 1768 pictures with high resolution. PixSFM (Linden-
berger et al. 2021) was used to improve camera poses, but
there is no 3D ground truth available for this dataset as well.
Tanks and Temples (Knapitsch et al. 2017) offers a vari-
ety of ground-only indoor and outdoor scenes with differ-
ent complexities and sizes. Captured under real-world con-
ditions using high-resolution video sequences and also in-
cludes ground truth camera poses.

NeRF On-the-go dataset (Ren et al. 2024) is a collec-
tion of 12 outdoor and indoor sequences. These casually
recorded scenes focus on a very small region with varying
degrees of transients. The Photo Tourism dataset (Snavely,
Seitz, and Szeliski 2006) comprises several 3D scenes of fa-
mous landmarks. Each scene includes a diverse collection of
user-uploaded images taken at various dates, times of day,
and with different cameras and exposure settings.



Figure 2: Left-most image marks the path of data collection done using the drone in autumn (MWAG-01). Second from the left
shows the locations of the images captured from ground around the same time (MWAG-02). Notice we try to view the building
from various sides so a detailed 3D model can be built. Right two images show MWAG-03 and MWAG-04 which are air and
ground collects done in the winter. Notice these paths cover a much bigger area and the full campus of buildings.

3 Data Acquisition Framework
Our images are captured using a high-resolution Teledyne
FLIR Blackfly S camera (rgb images, global shutter 20 MP
imager). For this camera we used a wide field of view (180
degree FoV) lens to capture greater areas of the scene in each
image. In addition to video, we collected synchronized (via
hardware clock pulse) data from an Intel RealSense d435i
camera which has a stereo camera pair (black and white im-
ages, global shutter camera) and a Bosch IMU, and captured
highly accurate (centimeter precision) GPS RTK data. The
sensors were integrated into a rigid package that could be
carried by a person on a backpack for ground data collec-
tion, and flown on a drone for air collection. In addition to
intrinsics calibration for the camera lenses, we performed
extrinsic calibration between the IMU, FLIR camera, Re-
alSense stereo cameras, and GPS unit.

The collected data were processed using CamSLAM si-
multaneous localization and mapping framework (SLAM).
CamSLAM is composed of a powerful visual-inertial odom-
etry backbone using an error-state Extended Kalman Filter
for sensor fusion, and a very efficient and lightweight par-
allel mapping engine utilizing a keyframe-based pose graph
data structure and binary descriptors for feature matching
and indexing (Oskiper, Samarasekera, and Kumar 2017).
We ingested 200 Hz raw IMU data, 15 Hz stereo camera
pair data, and 10 Hz GPS RTK data into the CamSLAM
software which produced highly accurate poses for the Re-
alSense stereo pair. Poses for the FLIR images (collected at
1.5Hz, owing to the large image size and limited recording
bandwidth) are then computed using a rigid body transfor-
mation with the calibrated extrinsic parameters. Key points
to note here when collecting high speed very precise data
is to have a hardware synchronization between devices (the
two cameras, IMU and GPS in our case). Most data collec-
tion hardware rely on software synchronization of different
data streams which lead to inaccurate poses.

To address the challenges of data integrity and adaptabil-
ity for diverse 3D reconstruction tasks, we incorporated an
advanced pipeline for quality assessment and metadata val-
idation. This process leverages automated scripts for post-
capture calibration, ensuring consistency between ground

and aerial data sets. Furthermore, our acquisition framework
integrates various sensor data (e.g., GPS and IMU cross-
validation) to minimize errors in geodetic pose estimation.
We also developed custom data annotation protocols to la-
bel artifacts such as transient objects, extreme lighting con-
ditions and PII. This rigorous approach ensures the dataset
is robust for ablation studies and model-based data improve-
ment techniques, aligning directly with emerging needs in
data-driven research highlighted in this workshop’s themes.

4 The MWAG Dataset
The MWAG dataset consists of 9092 high-resolution im-
ages collected over 4 sequences. MWAG-01 and MWAG-02
contain 1086 aerial images and 1734 ground images respec-
tively. These were collected around a building surrounded by
trees and fields in autumn. These datasets were captured dur-
ing late afternoon early evening and has some images which
are under-exposed. The area covered by this data is 200m by
200m, where we cover a building from 3 sides. Figure 2 (left
two images) shows a map of the ground and aerial collection
and sample images are shown in Figure 1 (columns marked
as Autumn). The focus of this dataset is to capture a building
from all sides on the ground and air so that a 3D model of
the building can be made using neural rendering methods.

MWAG-03 and MWAG-04 are similar dataset but cover-
ing a much larger area during the winter (snow on ground).
These datasets have 2579 aerial and 3693 ground images re-
spectively. These sets cover an area of 350 meters by 250
meters and cover the whole campus of office buildings from
all 4 sides. These sets were collected right after snowfall
and white cover can be seen on all the vegetation surround-
ing the building. This could promote future work on em-
beddings based seasonal change generation for neural ren-
derings. These datasets were collected in bright and direct
sunlight which leads to some images having over-saturation.

Every image has a corresponding json-formatted meta-
data file, including: highly accurate pose data (latitude, lon-
gitude, height above ground, 3 camera angles); timestamps;
calibrated parameters for an OpenCV lens distortion model;
a label denoting whether the image is collected from the
ground or the air; and mask information for any transient



Figure 3: Image grid showing samples of real world effects such as shadows, over exposure, under exposure and transients in
the scene

object in the image. All Personally Identifiable Information
(PII) has been removed - namely faces and license plates are
blurred in all images.

5 Applications and Experiments
In this section we will propose possible vectors along which
sub-datasets can be created from our main dataset. We pro-
vide scripts to create many such sub-datasets from our main
dataset. Test metrics would include comparison of recon-
structed camera locations, and also measure image quality
metrics for rendered outputs against a hold-out set of posed
images from the main MWAG corpus.

The first example vector we propose tests reconstruction
with images at varying altitudes. Models can be tested on
sets with (i) ground only training images, (ii) air only train-
ing images, (iii) combinations of air and ground images.
Current methods struggle to integrate multi-altitude data into
a single cohesive model; the vector described would allow
researchers to establish single-altitude reconstruction perfor-
mance baselines for their methods in steps (i) and (ii), and
then to address the challenge of combined data, and mea-
sure its benefits in step (iii). If the test sets for this vector

include both air and ground render targets, then steps (i)
and (ii) in particular will push GS and NeRF methods to
address extrapolation across altitude changes. In Figure 4,
we show example renderings of ground only modeled using
Nerfacto (Tancik et al. 2023), Splatfacto (Kerbl et al. 2023)
and Splatfacto-W (Xu, Kerr, and Kanazawa 2024).

A second vector on which models can be tested is their ca-
pability to handle real-world environmental changes. In this
vector, same area images are rendered on (i) autumn only
images, (ii) autumn and winter images, (iii) autumn only im-
ages with over and under sun-exposure, and (iv) autumn and
winter images with over and under sun-exposure.

A third vector is to increase the area covered by training
data, which may also include disjoint ground subsets that
can only be joined using air data. We start off with an area
of 50 m by 50 m area going up to 350 m by 250 m area.
Models will be challenged here on their training efficiency
and model completeness.

Any of these vectors can also be made more challeng-
ing by obscuring or spoiling pose data before reconstruction
which be used to evaluate and enhance the performance of
3DGS methods which do not rely on pose priors (Smith et al.
2024). Additionally, an image feature based cross-view lo-

Figure 4: Render results of a ground only dataset when tested three baseline: Nerfacto, Splatfacto and Splatfacto-W.



calization model (Mithun et al. 2023) can also be trained on
our data which can aid ground agents such as self-driving
cars to be localized with a high degree of precision by im-
proving on consumer grade GPS accuracy of 2m.
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