

000 001 002 003 004 005 BE TANGENTIAL TO MANIFOLD: DISCOVERING 006 RIEMANNIAN METRIC FOR DIFFUSION MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Diffusion models are powerful deep generative models (DGMs) that generate
025 high-fidelity, diverse content. However, unlike classical DGMs, they lack an ex-
026 plicit, tractable low-dimensional latent space that parameterizes the data manifold.
027 This absence limits manifold-aware analysis and operations, such as interpolation
028 and editing. Existing interpolation methods for diffusion models typically fol-
029 low paths through high-density regions, which are not necessarily aligned with
030 the data manifold and can yield perceptually unnatural transitions. To exploit the
031 data manifold learned by diffusion models, we propose a novel Riemannian met-
032 ric on the noise space, inspired by recent findings that the Jacobian of the score
033 function captures the tangent spaces to the local data manifold. This metric en-
034 courages geodesics in the noise space to stay within or run parallel to the learned
035 data manifold. Experiments on image interpolation show that our metric produces
036 perceptually more natural and faithful transitions than existing density-based and
037 naive baselines.
038

1 INTRODUCTION

039 Diffusion models are a class of deep generative models (DGMs) that have shown a remarkable
040 capability to generate high-fidelity, diverse content (Ho et al., 2020; Song et al., 2021a; Rombach
041 et al., 2022). They can be applied to various downstream tasks, including interpolation, inversion,
042 and editing (Hertz et al., 2023; Mokady et al., 2023; Danier et al., 2024). Theoretical investigation
043 can help the understanding of their mechanisms and enhance their applicability.
044

045 The *manifold hypothesis* has long played a central role in the theoretical analysis of DGMs, such
046 as variational autoencoders (VAEs) (Kingma & Welling, 2014) and generative adversarial networks
047 (GANs) (Goodfellow et al., 2014). This hypothesis states that real-world data (e.g., images) are con-
048 centrated around a low-dimensional manifold embedded in the high-dimensional data space (Bengio
049 et al., 2012; Fefferman et al., 2016). In this context, DGMs are understood to learn not only the data
050 distribution but also its underlying manifold, either explicitly or implicitly (Loaiza-Ganem et al.,
051 2024). In VAEs and GANs, the latent space is interpreted as a parameterization of this data mani-
052 fold (Arjovsky & Bottou, 2017). Various studies leverage this geometric perspective to analyze
053 the learned structure and improve generation quality (Gruffaz & Sassen, 2025). One example is
054 to introduce a Riemannian metric on the latent space by pulling back the metric on the data space
055 through the decoder. This enables geometrically meaningful operations within the latent space. For
056 example, traversing the latent space along geodesics yields interpolations that are faithful to the in-
057 trinsic geometric structure of the data (Shao et al., 2017; Arvanitidis et al., 2018; Chen et al., 2018;
058 Arvanitidis et al., 2021).

059 Unlike VAEs or GANs, diffusion models lack an explicit low-dimensional latent space, which com-
060 plicates the direct application of conventional pullback-based geometric approaches. Interpolations
061 are typically realized as paths that traverse linearly or through high-density regions of the learned
062 data distribution at an intermediate generation step (i.e., in the noise space) (Samuel et al., 2023;
063 Zheng et al., 2024; Yu et al., 2025). We provide a conceptual illustration in Fig. 1. These ap-
064 proaches, however, are not necessarily aligned with the intrinsic geometry of the data manifold and
065 often lead to visually unnatural and abrupt transitions (e.g., over-smoothed). This is because a linear
066 path may cut through low-density regions, and a high-density path may lose the characteristics of
067 endpoints (Karczewski et al., 2025a).
068

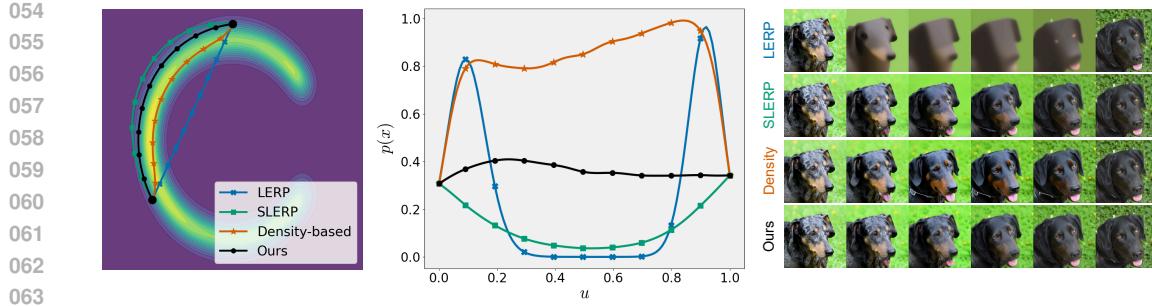


Figure 1: **A conceptual comparison of interpolation.** (left) Interpolation paths on a C-shaped distribution. (middle) A plot of the probability density transitions for their corresponding interpolation paths. (right) Examples of image interpolation on Animal Faces-HQ (AF) (Choi et al., 2020). **LERP** cuts through a low-density region, yielding unnatural transitions. **SLERP** deviates from the manifold, sometimes losing detail textures (see the background in the right panel). **Density-based interpolation** approaches and traverses a high-density region, not preserving the probabilities of the endpoints and sometimes producing over-smoothed images. **Ours** runs parallel to the manifold, preserving the probabilities of the endpoints and yielding natural transitions. See Section 5 for details.

To characterize the data geometry learned by diffusion models, we propose a novel Riemannian metric on the noise space derived from the Jacobian of the score function. The contribution of this work is threefold. **(i) Riemannian metric for the noise space.** With our metric, we can treat the noise space of a pre-trained diffusion model as a Riemannian manifold without any further training or architectural modifications. **(ii) Manifold-aware geodesics.** The construction of our metric is motivated by recent findings that degeneracy in the Jacobian of the score function captures the local structure of the data manifold (Stanczuk et al., 2024; Ventura et al., 2025). Our metric encourages geodesics to stay within or run parallel to the data manifold. **(iii) Empirical interpolation performance.** We validate our approach on synthetic data interpolation, image interpolation, and video frame interpolation. Results demonstrate that our metric yields perceptually more natural and faithful transitions than existing density-based methods and naive baselines.

2 RELATED WORK

Latent Space Manipulation in Deep Generative Models. The manifold hypothesis states that real-world data (e.g., images) lie on a low-dimensional manifold embedded in a high-dimensional data space (Bengio et al., 2012; Fefferman et al., 2016), where DGMs are understood to learn this data manifold (Loaiza-Ganem et al., 2024). In VAEs and GANs, the latent space parameterizes the data manifold, and the decoder (or generator) embeds this manifold in data space as the image of the latent space (Arjovsky & Bottou, 2017). This structure implies that manipulating latent variables traverses the data manifold and ensures generated outputs to remain semantically coherent (Ramesh et al., 2019). Indeed, linear traversals in latent space have become a common approach for editing the semantic attributes of generated images (Goetschalckx et al., 2019; Härkönen et al., 2020; Plumerault et al., 2020; Shen et al., 2020; Voynov & Babenko, 2020; Oldfield et al., 2021; Shen & Zhou, 2021; Spingarn et al., 2021; Zhuang et al., 2021; Haas et al., 2022). However, as real-world data distributions are skewed and heterogeneous, linear manipulations often encounter limitations in quality. While non-linear approaches improve editing quality, they often require training additional networks and can distort the learned manifold structure (Ramesh et al., 2019; Jahanian et al., 2020; Tewari et al., 2020; Abdal et al., 2021; Khrulkov et al., 2021; Liang et al., 2021; Tzelepis et al., 2021; Chen et al., 2022; Choi et al., 2022; Aoshima & Matsubara, 2023).

Riemannian Geometry of Deep Generative Models. Applying ideas from Riemannian geometry to the latent spaces of DGMs is an active area of research (Gruffaz & Sassen, 2025). Some methods require training additional networks (Yang et al., 2018; Arvanitidis et al., 2022; Lee et al., 2022; Sorrenson et al., 2025). Another common approach is to construct the pullback metric by pulling back the Euclidean metric from the data space through the decoder of a pre-trained model (Shao

108 et al., 2017; Chen et al., 2018; Arvanitidis et al., 2018; 2021). This enables leveraging the geometric
 109 structure learned by the model without additional training.
 110

111 **Interpolation in Diffusion Models.** Diffusion models learn a denoising function, which iteratively
 112 denoises noisy samples backward in time from $t = T$ to $t = 0$ and obtains clean sample at
 113 $t = 0$, thereby forming the data distribution (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
 114 2021a;b; Rombach et al., 2022). A space of noisy samples at $t > 0$ is often referred to as a *noise*
 115 *space*. Unlike VAEs or GANs, diffusion models lack an explicit low-dimensional latent space, yet
 116 empirical observations show that the noise space acts as a latent space (Ho et al., 2020). However,
 117 the iterative nature of the generation process makes it difficult to define a pullback metric.
 118

119 Earlier works employ linear interpolation (LERP), which interpolates noisy samples linearly in noise
 120 space (Ho et al., 2020). However, LERP often degrades perceptual quality in interpolated images,
 121 as shown in Fig. 1. Noisy samples at time $t = T$ are typically drawn from a standard Gaussian
 122 prior and therefore concentrate on a hypersphere with radius approximately \sqrt{D} , where D denotes
 123 the dimensionality. LERP between two noisy samples produces interpolated points with unnaturally
 124 small vector norms, losing detailed features. A similar trend holds for interpolations at intermediate
 125 timesteps $t < T$. Spherical linear interpolation (SLERP) addresses this issue by interpolating noisy
 126 samples along the surface of a hypersphere, preserving the norms of noisy samples (Shoemake,
 127 1985; Song et al., 2021a). Other approaches also leverage the norm density of the Gaussian prior
 128 at $t = T$ (Samuel et al., 2023) or attempt to preserve the variance of pixel intensity (Bodin et al.,
 129 2025). However, empirically, noised real samples do not follow a Gaussian distribution even at
 130 $t = T$, degrading the interpolation quality in practice (Zheng et al., 2024).

131 Some studies treat an intermediate layer of the neural networks used in diffusion models as a latent
 132 space, such as the bottleneck layer (Kwon et al., 2023; Park et al., 2023a;b) of U-Nets (Ronneberger
 133 et al., 2015) and the attention layer (He et al., 2024) of Vision Transformers (Dosovitskiy et al.,
 134 2020). However, these neural networks employ skip connections that allow information to bypass
 135 other layers, which hinders the models from generating new samples only from these surrogate
 136 latent spaces. Various studies have explored specialized architectures and additional training for
 137 image interpolation (Preechakul et al., 2022; Zhang et al., 2023; Wang & Golland, 2023; Guo et al.,
 138 2024; Lu et al., 2024; Shen et al., 2024; Yang et al., 2024; Kim et al., 2025; Lobashev et al., 2025),
 139 whereas we focus on investigating the geometric structure learned by a diffusion model itself without
 140 any further training or architectural modifications.

141 **Density-based Interpolation in Diffusion Models.** Other methods leverage the noisy-sample
 142 density at intermediate timesteps $t < T$. GeodesicDiffusion (Yu et al., 2025) defines a conformal
 143 metric by multiplying by the inverse density of noisy samples, guiding interpolated images to
 144 lie in high-density regions. This approach is also common in other DGMs (Rezende & Mohamed,
 145 2015; Du & Mordatch, 2019), such as normalizing flows (Sorrenson et al., 2025) and energy-based
 146 models (Béthune et al., 2025). Other studies have also proposed to prioritize high-density regions
 147 by designing metrics (Azeleglio & Bernardo, 2025). However, recent studies have shown that image
 148 likelihood is negatively correlated with perceptual detail: images in high-density regions are often
 149 over-smoothed and lose detailed features, whereas images in lower-density regions may contain
 150 richer textures and fine-grained details (Karczewski et al., 2025a). This observation shows the limitations
 151 of interpolations based on high-density paths. Although some studies draw inspiration from
 152 statistical manifolds, it remains unclear what structures their methods leverage (Karczewski et al.,
 153 2025b; Lobashev et al., 2025).

154 **Data Manifold in Diffusion Models.** Diffusion models have been shown to implicitly learn the
 155 data manifold (Pidstrigach, 2022; Wenliang & Moran, 2022; Tang & Yang, 2024; George et al.,
 156 2025; Potapchik et al., 2025). Methods based on high-density regions assume that such regions
 157 correspond to the data manifold. From a different perspective, several studies have attempted to
 158 estimate the local intrinsic dimension of the data manifold (Horvat & Pfister, 2024; Kamkari et al.,
 159 2024; Stanczuk et al., 2024; Humayun et al., 2025; Ventura et al., 2025). Their key insight is that
 160 the rank deficiency of the Jacobian of the score function (i.e., the Hessian of the log-density) equals
 161 the dimension of the data manifold (Stanczuk et al., 2024; Ventura et al., 2025). We build upon this
 162 insight to define a Riemannian metric on the noise space of a pre-trained diffusion model.

162 **3 PRELIMINARIES**
 163

164 **3.1 RIEMANNIAN GEOMETRY**
 165

166 **Riemannian metric.** We adopt the notions in Lee (2019). Let \mathcal{M} be a smooth manifold. A
 167 *Riemannian metric* g on \mathcal{M} is a smooth covariant 2-tensor field such that, at every point $p \in \mathcal{M}$,
 168 the tensor g_p defines an inner product on the tangent space $T_p\mathcal{M}$. A *Riemannian manifold* is the
 169 pair (\mathcal{M}, g) . Using local coordinates, the metric g_p can be expressed as a symmetric and positive
 170 definite matrix G_p at p . See Appendix A.1 for this connection. The inner product $\langle v, w \rangle_g$ of two
 171 tangent vectors $v, w \in T_p\mathcal{M}$ at p is given by

172
$$\langle v, w \rangle_g = g_p(v, w) = v^\top G_p w.$$

 173

174 **Geodesics.** The length of a tangent vector $v \in T_p\mathcal{M}$ is given by $|v|_g := \sqrt{\langle v, v \rangle_g}$. For a smooth
 175 curve $\gamma : [0, 1] \rightarrow \mathcal{M}$, $u \mapsto \gamma(u)$, its length is

176
$$L[\gamma] := \int_0^1 |\gamma'(u)|_g du = \int_0^1 \sqrt{\langle \gamma'(u), \gamma'(u) \rangle_g} du = \int_0^1 \sqrt{\gamma'(u)^\top G_{\gamma(u)} \gamma'(u)} du. \quad (1)$$

 177

178 A *geodesic* is a curve that locally minimizes length; intuitively, it is a locally shortest path between
 179 two points. It is often more convenient to work with the energy functional $E[\gamma]$:

180
$$E[\gamma] = \frac{1}{2} \int_0^1 |\gamma'(u)|_g^2 du = \frac{1}{2} \int_0^1 \langle \gamma'(u), \gamma'(u) \rangle_g du. \quad (2)$$

 181

182 Any constant-speed geodesic is a critical point of the energy functional.
 183

184 **3.2 DIFFUSION MODELS**
 185

186 **Forward Process.** Let $x_0 \in \mathbb{R}^D$ be a data sample. The forward process is defined as a Markov
 187 chain which adds Gaussian noise at each timestep $t = 1, \dots, T$ recursively:

188
$$q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I) = \mathcal{N}\left(\sqrt{\frac{\alpha_t}{\alpha_{t-1}}} x_{t-1}, \left(1 - \frac{\alpha_t}{\alpha_{t-1}}\right) I\right), \quad (3)$$

 189

190 where $\{\beta_t\}_{t=1}^T$ is a scheduled variance, I is the identity matrix in \mathbb{R}^D , and $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$.
 191 x_t becomes progressively more corrupted by noise as t increases, and x_T is nearly an isotropic
 192 Gaussian distribution.
 193

194 **Reverse Process.** The generation process of diffusion models is referred to as the reverse process,
 195 which inverts the forward process by iteratively denoising a noisy sample $x_T \sim \mathcal{N}(0, I)$ backward
 196 in time from $t = T$ to $t = 0$ and obtaining a clean sample x_0 . Namely, a reverse Markov chain
 197 $p_t(x_{t-1} | x_t; \theta)$ is constructed as

198
$$x_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(x_t, t) \right) + \sigma_t z_t, \quad (4)$$

 199

200 with a trainable noise predictor ϵ_θ , where $z_t \sim \mathcal{N}(0, I)$, and $\sigma_t^2 = \beta_t$ is a variance at timestep t .
 201 The noise predictor $\epsilon_\theta(x_t, t)$ is trained by minimizing the objective:
 202

203
$$\mathcal{L}(\theta) = \mathbb{E}_{x, \epsilon_t, t} [\|\epsilon_t - \epsilon_\theta(x_t, t)\|_2^2], \quad (5)$$

 204

205 where $\epsilon_t \sim \mathcal{N}(0, I)$ is the noise added during the forward process at timestep t .
 206

207 **Denoising Diffusion Implicit Models and Inversion.** Denoising diffusion implicit models
 208 (DDIMs) (Song et al., 2021a) modifies Eq. (3) to be a non-Markovian process $q(x_{t-1} | x_t, x_0) =$
 209 $\mathcal{N}(\sqrt{\alpha_{t-1}} x_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_\theta(x_t, t), \sigma_t^2 I)$. Then, the reverse process becomes

210
$$x_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_\theta(x_t, t) + \sigma_t z_t, \quad (6)$$

 211

212 where $\sigma_t = \eta \sqrt{(1 - \alpha_{t-1}) / (1 - \alpha_t)} \sqrt{1 - \alpha_t / \alpha_{t-1}}$. $\eta \in [0, 1]$ controls the stochasticity: $\eta = 1$
 213 recovers DDPM, while $\eta = 0$ yields a deterministic update. The forward process in Eq. (3) can also
 214 be modified accordingly. Then, we can deterministically map a clean sample x_0 to a noisy sample
 215 x_t , operate interpolations in the noise space at timestep t , and then map it back to a clean sample
 216 x_0 ; this procedure is often referred to as DDIM Inversion. See Appendix B.1 for details.

216 **Formulation as Stochastic Differential Equations.** As the timestep size approaches zero, the
 217 forward process can also be formulated as a stochastic differential equation (SDE) (Song et al.,
 218 2021b). The reverse process is the corresponding reverse-time SDE that depends on the score
 219 function $s_\theta(x_t, t) := \nabla_{x_t} \log p_t(x_t; \theta)$, where $p_t(x_t; \theta)$ denotes the density of x_t at time t . Notably, the
 220 noise predictor ϵ_θ is closely tied to the score function (Luo, 2022) as:

$$221 \quad s_\theta(x_t, t) = \nabla_{x_t} \log p_t(x_t; \theta) \approx -\epsilon_\theta(x_t, t) / \sqrt{1 - \alpha_t}. \quad (7)$$

223 Thus, learning the noise predictor ϵ_θ is essentially learning the score function s_θ . The following
 224 discussion about the score function s_θ applies to the noise predictor ϵ_θ as well, up to a known scale.
 225

226 **Conditioning and Guidance** We can condition the score function s_θ on a text prompt c , writing
 227 $s_\theta(x_t, t, c)$, to guide the generation process (Rombach et al., 2022). The actual implementation
 228 depends on the architecture of the score function s_θ . Classifier-Free Guidance (CFG) amplifies this
 229 guidance (Ho & Salimans, 2021), and a negative prompt c_{neg} suppresses certain concepts (Rombach
 230 et al., 2022). With these methods, the score function is replaced with

$$231 \quad \tilde{s}_\theta(x_t, t, c, c_{\text{neg}}) = (w + 1)s_\theta(x_t, t, c) - ws_\theta(x_t, t, \emptyset) - w_{\text{neg}}s_\theta(x_t, t, c_{\text{neg}}), \quad (8)$$

233 where $s_\theta(x_t, t, c)$, $s_\theta(x_t, t, \emptyset)$, and $s_\theta(x_t, t, c_{\text{neg}})$ are score functions conditioned on the prompt c ,
 234 on no prompts \emptyset , and on the negative prompt c_{neg} , respectively. $w \geq 0$ is the guidance scale that
 235 amplifies the effect of the condition c , and $w_{\text{neg}} \geq 0$ is the scale for the negative prompt c_{neg} .

236 4 METHOD

239 **Proposed Metric.** Let x_t be a point in the noise space \mathbb{R}^D at time t , and $v, w \in T_{x_t}\mathbb{R}^D$ be tangent
 240 vectors at x_t . We propose a Riemannian metric on the noise space of diffusion models at time t as

$$241 \quad g_{x_t}(v, w) := \langle J_{x_t}v, J_{x_t}w \rangle = v^\top G_{x_t}w, \quad (9)$$

243 where $J_{x_t} = \nabla_{x_t} s_\theta(x_t, t)$ is the Jacobian of the score function $s_\theta(\cdot, t)$ (or equivalently, of the noise
 244 predictor $\epsilon_\theta(\cdot, t)$ up to scaling), and $G_{x_t} = J_{x_t}^\top J_{x_t}$ is the matrix notion of the metric g_{x_t} at x_t .
 245 This construction ensures that G_{x_t} is symmetric and positive semidefinite, making it a (possibly
 246 degenerate) Riemannian metric. Indeed, the Jacobian J_{x_t} is degenerate on clean data lying a low-
 247 dimensional manifold. Moreover, the score function s_θ is typically not well trained outside the data
 248 manifold at time $t = 0$, making it difficult to define a meaningful metric off-manifold (Yu et al.,
 249 2025). Hence, we use this metric in the noise space for $t > 0$, where samples are corrupted by noise,
 250 the Jacobian J_{x_t} is typically full-rank, and the metric g_{x_t} is positive definite.

251 To ensure positive definiteness, we can also consider a regularized metric $G_{x_t} = J_{x_t}^\top J_{x_t} + \lambda I$ for a
 252 small $\lambda > 0$. However, preliminary experiments using Stable Diffusion v2.1-base (Rombach et al.,
 253 2022) showed that this modification does not significantly affect the results, so we use the simpler
 254 form in Eq. (9) in the following.

255 **Interpretation.** Stanczuk et al. (2024) found that as time t approaches zero, the score function
 256 $s_\theta(x_t, t)$ points orthogonally towards the data manifold containing the data point x_t . Hence, the
 257 inner product between the score function $s_\theta(x_t, t)$ and a vector v at x_t is small if v lies in the
 258 tangent space to the data manifold, while it is large if v points in the normal direction. Ventura
 259 et al. (2025) investigated the Jacobian J_{x_t} of the score function $s_\theta(x_t, t)$ and observed that its rank
 260 deficiency corresponds to the dimension of the data manifold when samples are clean and lie on
 261 a low-dimensional manifold; for real-world noisy samples, J_{x_t} is typically full-rank but exhibits
 262 a sharp spectral gap. Intuitively, the Jacobian J_{x_t} shrinks along tangent directions and remains
 263 large along normal directions. More precisely, let \mathcal{M}_t be the data manifold at time t learned by a
 264 diffusion model, and $x \in \mathcal{M}_t$ be a point on the manifold \mathcal{M}_t . Define the tangent space $T_x\mathcal{M}_t$ to
 265 the manifold \mathcal{M}_t as the d -dimensional subspace ($d \ll D$) spanned by the right singular vectors of
 266 J_x corresponding to small singular values; the normal space $\mathcal{N}_x\mathcal{M}_t$ is the orthogonal complement
 267 spanned by the right singular vectors corresponding to large singular values. Then, the tangent space
 268 $T_x\mathbb{R}^D$ to the noise space \mathbb{R}^D at x is decomposed as $T_x\mathbb{R}^D = T_x\mathcal{M}_t \oplus \mathcal{N}_x\mathcal{M}_t$, and we have:

269 **Proposition 1.** *Minimizing $\|J_{x_t}v\|_2^2$ with respect to a vector v of a fixed Euclidean norm encourages
 the vector v to lie in the tangent space $T_x\mathcal{M}_t$.*

270 See Appendix A.2 for detailed explanation. Therefore, our proposed metric yields geodesics to
 271 follow the tangent directions and stay within the data manifold. When a sample x_t does not lie
 272 exactly on the data manifold \mathcal{M}_t , the metric still encourages geodesics to run parallel to the data
 273 manifold \mathcal{M}_t . By contrast, density-based metrics encourage geodesics to approach high-density
 274 regions, which may lose fine-grained details and lead to unnatural transitions, as illustrated in Fig. 1.

275 From another viewpoint, our proposed metric can be interpreted as the pullback $s_\theta^* I$ of the Euclidean
 276 metric I on the score space \mathbb{R}^D through the score function s_θ , since $v^\top G_{x_t} w = (J_{x_t} v)^\top I J_{x_t} w$ and
 277 $J_{x_t} v, J_{x_t} w \in T_{s_\theta(x_t, t)} \mathbb{R}^D$. A curve γ is a geodesic in the noise space under our proposed metric
 278 if the score function s_θ is locally an immersion and maps the curve γ to a straight line $s_\theta(\cdot, t) \circ \gamma$.
 279 Geodesics under our proposed metric minimize the change in the score function s_θ along the paths.
 280 Earlier studies have shown that gradients of log-likelihoods (with respect to model parameters) can
 281 serve as robust, semantically meaningful representations of inputs (Yeh et al., 2018; Charpiat et al.,
 282 2019; Hanawa et al., 2021). In this light, our proposed metric can be viewed as a measure of
 283 the semantic closeness captured by the score function s_θ between infinitesimally different samples,
 284 providing transitions that preserve the underlying semantics.

285 **Geodesics for Interpolation.** An interpolation between two points $x_t^{(0)}$ and $x_t^{(1)}$ is considered to
 286 be realized as a geodesic path between them. A geodesic can be obtained by solving a second-
 287 order ordinary differential equation (ODE) called the geodesic equation (Lee, 2019), which requires
 288 computation of $O(D^3)$ in general, not feasible in high-dimensional spaces. Hence, we employ
 289 numerical methods to find a geodesic path between two points as a critical point of the energy
 290 functional in Eq. (2).

291 Let $u \in [0, 1]$ be the independent variable that parameterizes a curve $\gamma : u \mapsto \gamma(u)$. The energy
 292 functional $E[\gamma]$ in Eq. (2) with our proposed metric in Eq. (9) becomes:

$$294 E[\gamma] = \frac{1}{2} \int_0^1 \langle J_{\gamma(u)} \gamma'(u), J_{\gamma(u)} \gamma'(u) \rangle du = \frac{1}{2} \int_0^1 \|J_{\gamma(u)} \gamma'(u)\|_2^2 du = \frac{1}{2} \int_0^1 \|\frac{\partial}{\partial u} s_\theta(\gamma(u), t)\|_2^2 du, \quad (10)$$

295 where the last equality follows from the chain rule. We discretize the curve γ as a sequence of $N+1$
 296 points $x_t^{(0)}, \dots, x_t^{(1)}$, where $u_0 = 0$, $u_N = 1$, $\Delta u = u_{i+1} - u_i = 1/N$ for $i = 0, \dots, N-1$, and
 297 $x_t^{(u_i)} = \gamma(u_i)$ for $i = 0, \dots, N$. Then, the energy functional in Eq. (10) is approximated as:

$$298 E[\gamma] \approx \frac{1}{2} \sum_{i=0}^{N-1} \|(s_\theta(x_t^{(u_{i+1})}, t) - s_\theta(x_t^{(u_i)}, t))\|_2^2 / \Delta u. \quad (11)$$

301 Given two samples $x_t^{(0)}$ and $x_t^{(1)}$, the geodesic path between them is obtained by minimizing the
 302 discrete approximation to $E[\gamma]$ in Eq. (11) with respect to the intermediate points $x_t^{(u_1)}, \dots, x_t^{(u_{N-1})}$.
 303 Then, $x_t^{(u_1)}, \dots, x_t^{(u_{N-1})}$ serve as interpolated samples.

304 In practice, given a pair of clean samples $x_0^{(0)}$ and $x_0^{(1)}$, we first map them to noisy samples $x_t^{(0)}$ and
 305 $x_t^{(1)}$ using DDIM Inversion, then compute the geodesic path between them in the noise space at time
 306 t by minimizing Eq. (11), and finally map the interpolated noisy samples $x_t^{(u)}$ back to clean samples
 307 $x_0^{(u)}$ using the deterministic reverse process in Eq. (6).

309 **Limitations and Generalization.** At $t = 0$, the minimization of Eq. (11) may fail to converge
 310 properly. This is because the score function s_θ is not well trained outside the data manifold \mathcal{M}_0 ,
 311 and even when it is well trained, if the data manifold \mathcal{M}_0 is truly low dimensional, the Jacobian
 312 J_{x_t} can be degenerate, and the metric g_{x_t} becomes degenerate as well. Most importantly, since a
 313 geodesic is only a local minimizer, a reasonably good initialization of the path is required. For these
 314 reasons, we primarily use our proposed metric g_{x_t} in the noise space for $t > 0$. In this setting,
 315 samples x_t are corrupted by noise; the Jacobian J_{x_t} is typically full-rank, and our proposed metric
 316 g_{x_t} is positive definite. See also Appendix A for details.

317 Diffusion models learn the score function s_θ directly rather than the log-density $\log p_t$. Consequently,
 318 its Jacobian J_{x_t} need not be symmetric, and a clean decomposition into tangent and normal
 319 subspaces $T_{x_t} \mathcal{M}_t \oplus N_{x_t} \mathcal{M}_t$ is not guaranteed at a point $x_t \in \mathcal{M}_t$. Even then, the Jacobian J_{x_t}
 320 typically exhibits a sharp spectral gap, and Proposition 1 still holds approximately. Since diffusion
 321 models are often used with CFG or negative prompts, we replace the score function s_θ with the
 322 guided update in Eq. (8) when needed. The resulting metric then reflects the manifold of data gen-
 323 erated by the guided model. In all cases, the induced matrix $G_{x_t} = J_{x_t}^\top J_{x_t}$ remains symmetric and
 324 positive (semi-)definite.

324 Geodesics under our proposed metric are obtained by minimizing Eq. (11). The objective has a
 325 simple form and is numerically stable, but it is more computationally expensive than closed-form
 326 interpolations such as LERP or SLERP. Methods based on conformal metrics (e.g., Yu et al. (2025))
 327 also require solving an optimization problem (namely, a boundary-value problem) to interpolate
 328 between two points, and thus have comparable computational cost.
 329

330 5 EXPERIMENTS

331 5.1 SYNTHETIC 2D DATA

335 To illustrate the behavior of the geodesic under our proposed metric, we first conduct experiments
 336 on a synthetic 2D dataset, shown in Fig. 1 (left) and (middle) (see Appendix C.1 for details). We
 337 constructed a C-shaped distribution on a 2D space and trained a DDPM (Ho et al., 2020) on this
 338 dataset. Then, we obtained interpolations between two points using different methods at time $t =$
 339 $0.02T$ through DDIM Inversion. See Appendix B.2 for comparison methods.

340 LERP completely ignores the data manifold and traverses through low-density regions. SLERP
 341 follows the manifold to some extent but slightly deviates from it. Density-based interpolation is a
 342 geodesic under a conformal density-based metric proposed in Yu et al. (2025), which approaches
 343 and traverses a high-density region, not preserving the probabilities of the endpoints. A geodesic
 344 under our proposed metric runs parallel to the data manifold, preserving the probabilities of the
 345 endpoints and yielding natural transitions.

346 We randomly sampled 50 pairs of endpoints from the distribution and obtained
 347 interpolations using different methods. Then, we evaluated the standard deviation of the density $p(x)$ over each
 348 interpolation path and summarized the averages in Table 1. A smaller value indicates that the interpolation
 349 stays close to the data manifold, while a larger value indicates that the interpolation unnecessarily
 350 deviates from or approaches the data manifold. Geodesics under our proposed metric maintain a consistent
 351 distance from the data manifold, resulting in smoother and more coherent interpolations.
 352

354 5.2 IMAGE INTERPOLATION

356 **Experimental Setup.** To evaluate our proposed Riemannian metric g_{x_t} , we perform image
 357 interpolation, a common proxy for assessing the quality of learned data manifolds in DGMs. This
 358 requires computing the geodesic between two images, which serves as an interpolated image
 359 sequence. We denote the original pair of images by $x_0^{(0)}$ and $x_0^{(1)}$, and the interpolated image sequence
 360 by $\{\hat{x}_0^{(u)}\}$ for $u \in [0, 1]$. We use Stable Diffusion v2.1-base (Rombach et al., 2022) as the backbone,
 361 set the number of timesteps to $T = 50$, and set the number of discretization points to $N = 10$.

362 We evaluate methods on three benchmark datasets: the animation subset of MorphBench (MB(A))
 363 (Zhang et al., 2023), Animal Faces-HQ (AF) (Choi et al., 2020), and CelebA-HQ (CA) (Karras et al.,
 364 2018a). Because our goal is to capture the local geometry of the data manifold, we exclude the
 365 metamorphosis subset from MorphBench, which contains significant (i.e., global) shape changes.
 366 For each of Animal Faces-HQ and CelebA-HQ, we curate 50 image pairs with Low-Perceptual
 367 Image Patch Similarity (LPIPS) (Zhang et al., 2018) below 0.6 to ensure semantic similarity, closely
 368 following the procedure in Yu et al. (2025). Further details are provided in Appendix C.2.

369
 370 **Comparison Methods.** We used the following baseline methods for comparison: LERP (Ho et al.,
 371 2020), SLERP (Song et al., 2021a), NAO (Samuel et al., 2023), NoiseDiffusion (NoiseDiff) (Zheng
 372 et al., 2024) and GeodesicDiffusion (GeoDiff) (Yu et al., 2025). We use default settings for
 373 comparison methods (NAO, NoiseDiff, GeoDiff) based on their official codes. See Appendix B.2 for
 374 more details. For LERP, SLERP, and our proposed metric, we used the DDIM Scheduler (Song
 375 et al., 2021a) and operated in the noise space at $t = 0.6T$. For our proposed metric, each path was
 376 initialized with SLERP and updated for 500 iterations using Adam optimizer (Kingma & Ba, 2015)
 377 with a learning rate of 0.001, decayed with cosine annealing to 0.0001 (Loshchilov & Hutter, 2017).
 378 We also adopted the prompt adjustment of Yu et al. (2025); see Appendix B.3.

Table 1: Results on the synthetic 2D dataset.

Methods	Std. of Prob. ↓
LERP	0.1606
SLERP	0.0833
Density-based	0.1073
Ours	0.0701

378

379

Table 2: Image interpolation results (lower is better).

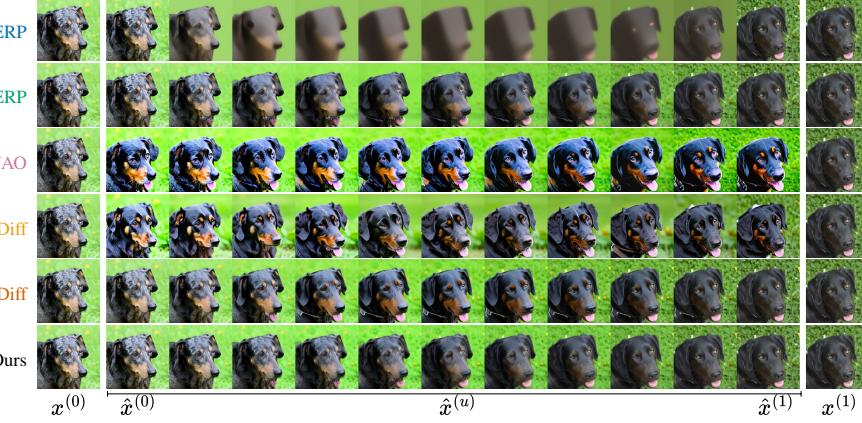
380

381

Method	FID \downarrow			PPL \downarrow			PDV \downarrow			RE $\downarrow (\times 10^{-3})$		
	MB(A)	CA	AF	MB(A)	CA	AF	MB(A)	CA	AF	MB(A)	CA	AF
LERP	84.20	95.68	119.58	0.848	1.420	1.859	0.055	0.091	0.154	0.401	1.010	2.049
SLERP	62.81	37.84	26.07	0.644	0.707	0.871	0.030	0.033	0.022	0.401	1.010	2.049
NAO	130.54	83.05	71.47	2.868	2.121	2.443	0.163	0.154	0.173	39.244	27.623	40.178
NoiseDiff	119.47	65.04	68.87	3.618	2.098	3.250	0.064	0.069	0.083	15.096	8.618	19.628
GeoDiff	<u>28.70</u>	<u>35.98</u>	<u>25.80</u>	<u>0.402</u>	<u>0.669</u>	<u>0.842</u>	<u>0.024</u>	<u>0.044</u>	<u>0.027</u>	<u>0.188</u>	<u>0.891</u>	<u>1.969</u>
Ours	27.44	32.54	21.01	0.380	0.633	0.767	0.021	0.036	0.023	0.177	0.888	1.962

386

387



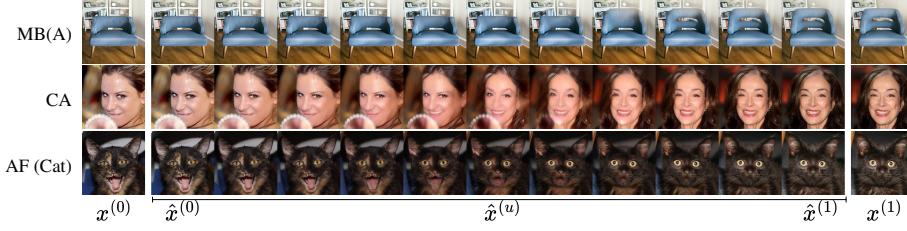
401

Figure 2: Qualitative examples of interpolated image sequences for AF (Dog). The images at both ends are the given endpoints $x_0^{(0)}$ and $x_0^{(1)}$, and the middle images are the interpolated results $\{\hat{x}_0^{(u)}\}$ for $u \in [0, 1]$. See also Fig. 5 in Appendix D.

402

403

404



413

414

415

Figure 3: Qualitative examples of interpolated image sequences by our method.

416

417

418

Metrics. We evaluated the quality of the interpolated image sequences by the following metrics: (1) Fréchet Inception Distance (FID) (Heusel et al., 2017) measures the similarity between the set of input images and the set of interpolated images using features extracted from a pre-trained Inception v3 network (Szegedy et al., 2015); (2) Perceptual Path Length (PPL) (Karras et al., 2018b) is the sum of LPIPS between adjacent images to assess the directness of the interpolated image sequence; (3) Perceptual Distance Variance (PDV) (Zhang et al., 2023) is the standard deviation of LPIPS between adjacent images to assess the consistency of transition rates over the interpolated image sequence; and (4) Reconstruction Error (RE) is the mean squared error between the input pair of images, $x_0^{(0)}$ and $x_0^{(1)}$, and the first and last samples of the interpolated image sequence, $\hat{x}_0^{(0)}$ and $\hat{x}_0^{(1)}$, to assess how well the endpoints are preserved.

425

426

427

428

429

430

431

Results. We summarize the quantitative results in Table 2. Using geodesics under our proposed metric, image interpolation achieves the best scores on all datasets for FID, PPL, and RE. It also records the best PDV on MB(A) and the second-best on the others. Figures 2 and 3 show qualitative results. See also Fig. 5 in Appendix D for comparisons. As reported previously, LERP yields blurry interpolations. Although NAO and NoiseDiff generate high-quality images, these methods generate glossy textures that are absent in the original images and exhibit extremely large reconstruction errors, failing a proper interpolation. This is because they adjust the norms of noisy samples $x_t^{(u)}$

Figure 4: Qualitative examples on video frame interpolations. See also Fig. 6 in Appendix D.

in the noise space to mitigate the feature loss observed with LERP, which also alters endpoints and causes large deviations from the originals. SLERP produces sharper results than LERP but still lags behind geodesic-based methods. GeoDiff ranks second in most cases after our proposed metric, but produces unusually glossy images that lack fine details. This trend is consistent with prior reports that sample density is negatively correlated with perceptual detail (Karczewski et al., 2025a). Our metric yields interpolations that are high-quality and preserve fine details of the input images.

5.3 VIDEO FRAME INTERPOLATION

Experimental setup. Image interpolation has no ground-truth images, which limits evaluation to indirect measures. To address this, we evaluate methods on video frame interpolation using Mean Squared Error (MSE) and LPIPS against the ground-truth middle frames. We employ three benchmarks curated by Zhu et al. (2024): 21 natural-scene clips from DAVIS (Perazzi et al., 2016), 56 human-pose clips from Pexels (Human), and 26 indoor/outdoor clips selected from RealEstate10K (RE10K) (Zhou et al., 2018). We use three consecutive frames from each video clip: we take frames 1 and 3 as $x_0^{(0)}$ and $x_0^{(1)}$ and estimate frame 2 as $\hat{x}_0^{(0.5)}$. This is because the interpolation between two frames that are far apart in time may not be unique, which is not suitable for comparison with ground-truth frames. Unless otherwise specified, all methods and hyperparameters are identical to those used for image interpolation. Each frame is resized to 512×512 pixels. We generate a text prompt from frame 1 for each clip using BLIP-2 (Li et al., 2022).

Results. Table 3 summarizes the quantitative results. Our method achieves the lowest MSE and LPIPS on all datasets. Figures 4 and 6 provide qualitative results. As shown in zoomed-in images, only ours and GeoDiff interpolate the arm movement well. LERP produces blurry outputs, which is consistent with its poor LPIPS score despite a relatively low MSE. NAO and NoiseDiff produce images with large deviations from the ground-truth frames. SLERP sometimes fails to preserve small objects and textures: a person’s arm and background objects on Human, water ripples and a bird’s neck on DAVIS, and small furniture on RE10K. GeoDiff yields relatively coherent results, but it increases color saturation and over-smooths textures (e.g., flattened water ripples), which indicates a loss of fine details. Overall, our method preserves edges, object shapes, and textures more faithfully than the others.

See Appendix D for more qualitative results, ablation study, and visualizations.

6 CONCLUSION

In this paper, we introduced a novel Riemannian metric, inspired by recently found link between the Jacobian of the score function and the local structure of the data manifold learned by diffusion models. Our proposed metric encourages geodesics to stay within or run parallel to the data manifold, yielding natural transitions that preserve the underlying semantics, as verified through experiments on synthetic 2D data, image interpolation, and video frame interpolation. Applications to other metric-related tasks, such as clustering, are left for future work.

Table 3: Video frame interpolation results.

Method	MSE \downarrow ($\times 10^{-3}$)			LPIPS \downarrow		
	DAVIS	Human	RE10K	DAVIS	Human	RE10K
LERP	12.135	4.566	6.299	0.590	0.379	0.377
SLERP	15.440	6.080	6.128	0.487	0.320	0.301
NAO	108.211	99.867	121.680	0.679	0.668	0.664
NoiseDiff	46.881	41.994	28.867	0.561	0.552	0.482
GeoDiff	13.253	3.363	5.941	0.334	0.184	0.229
Ours	8.777	2.018	2.771	0.318	0.170	0.178

486 ETHICS STATEMENT
487488 This study is purely focused on analysis of diffusion models, and it is not expected to have any direct
489 negative impact on society or individuals.
490491 REPRODUCIBILITY STATEMENT
492493 The environment, datasets, methods, evaluation metrics, and other experimental settings are given
494 in Section 5 and Appendices B and C. For full reproducibility, the source code is attached as sup-
495 plementary material.
496497 REFERENCES
498500 Rameen Abdal, Peihao Zhu, Niloy J. Mitra, and Peter Wonka. StyleFlow: Attribute-Conditioned
501 Exploration of StyleGAN-Generated Images Using Conditional Continuous Normalizing Flows.
502 *ACM Transactions on Graphics*, 2021.503 Takehiro Aoshima and Takashi Matsubara. Deep Curvilinear Editing: Commutative and Nonlin-
504 ear Image Manipulation for Pretrained Deep Generative Model. In *IEEE/CVF Conference on*
505 *Computer Vision and Pattern Recognition (CVPR)*, 2023.506 Martin Arjovsky and Leon Bottou. Towards Principled Methods for Training Generative Adversarial
507 Networks. In *International Conference on Learning Representations (ICLR)*, 2017.509 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent Space Oddity: on the Curvature
510 of Deep Generative Models. In *International Conference on Learning Representations (ICLR)*,
511 2018.513 Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically Enriched Latent
514 Spaces. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2021.515 Georgios Arvanitidis, Bogdan M. Georgiev, and Bernhard Schölkopf. A Prior-Based Approximate
516 Latent Riemannian Metric. In *International Conference on Artificial Intelligence and Statistics*
517 (*AISTATS*), 2022.519 Simone Azeglio and Arianna Di Bernardo. What's Inside Your Diffusion Model? A Score-Based
520 Riemannian Metric to Explore the Data Manifold. *arXiv*, 2025.522 Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation Learning: A Review and
523 New Perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2012.524 Erik Bodin, Alexandru I. Stere, Dragos D Margineantu, Carl Henrik Ek, and Henry Moss. Linear
525 Combinations of Latents in Generative Models: Subspaces and Beyond. In *International Confer-
526 ence on Learning Representations (ICLR)*, 2025.528 Louis Béthune, David Vigouroux, Yilun Du, Rufin VanRullen, Thomas Serre, and Victor Bouthin.
529 Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models. *arXiv*, 2025.531 Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input Similarity from the
532 Neural Network Perspective. In *Advances in Neural Information Processing Systems (NeurIPS)*,
533 2019.534 Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Met-
535 rics for Deep Generative Models. In *International Conference on Artificial Intelligence and Statis-
536 tics (AISTATS)*, 2018.538 Zikun Chen, Ruowei Jiang, Brendan Duke, Han Zhao, and Parham Aarabi. Exploring Gradient-
539 Based Multi-directional Controls in GANs. In *European Conference on Computer Vision (ECCV)*,
2022.

540 Jaewoong Choi, Junho Lee, Changyeon Yoon, Jung Ho Park, Geonho Hwang, and Myungjoo Kang.
 541 Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of
 542 GANs. In *International Conference on Learning Representations (ICLR)*, 2022.

543

544 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse Image Synthesis
 545 for Multiple Domains. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 546 2020.

547 Duolikun Danier, Fan Zhang, and David Bull. LDMVFI: video frame interpolation with latent
 548 diffusion models. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2024.

549

550 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 551 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 552 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
 553 Scale. In *International Conference on Learning Representations (ICLR)*, 2020.

554 Yilun Du and Igor Mordatch. Implicit Generation and Generalization in Energy-Based Models. In
 555 *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

556

557 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear Units for Neural Network
 558 Function Approximation in Reinforcement Learning. *arXiv*, 2017.

559

560 Charles Fefferman, Sanjoy K. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
 561 *Journal of the American Mathematical Society*, 2016.

562

563 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
 564 Daniel Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation using
 565 Textual Inversion. In *International Conference on Learning Representations (ICLR)*, 2023.

566

567 Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Analysis of Diffusion Models for Manifold
 568 Data. *arXiv*, 2025.

569

570 Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. GANalyze: Toward Visual
 571 Definitions of Cognitive Image Properties. In *IEEE/CVF International Conference on Computer
 572 Vision (ICCV)*, 2019.

573

574 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 575 Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In *Advances in Neural Infor-
 576 mation Processing Systems (NeurIPS)*, 2014.

577

578 Samuel Gruffaz and Josua Sassen. Riemannian Metric Learning: Closer to You than You Imagine,
 579 2025.

580

581 Jiayi Guo, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao
 582 Huang, and Humphrey Shi. Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion
 583 Models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

584

585 René Haas, Stella Graßhof, and Sami S. Brandt. Tensor-based Emotion Editing in the StyleGAN
 586 Latent Space. In *CVPR 2022 Workshop on AI for Content Creation Workshop*, 2022.

587

588 Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of Similarity-based Ex-
 589 planations. In *International Conference on Learning Representations (ICLR)*, 2021.

590

591 Qiyuan He, Jinghao Wang, Ziwei Liu, and Angela Yao. AID: Attention Interpolation of Text-to-
 592 Image Diffusion. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

593

594 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 595 Prompt-to-Prompt Image Editing with Cross-Attention Control. In *International Conference on
 596 Learning Representations (ICLR)*, 2023.

597

598 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 599 GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In *Advances
 600 in Neural Information Processing Systems (NeurIPS)*, 2017.

594 Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. In *NeurIPS 2021 Workshop on*
 595 *Deep Generative Models and Downstream Applications*, 2021.
 596

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Advances*
 598 *in Neural Information Processing Systems (NeurIPS)*, 2020.

599 Christian Horvat and Jean-Pascal Pfister. On Gauge Freedom, Conservativity and Intrinsic Dimen-
 600 *sionality Estimation in Diffusion models*. In *International Conference on Learning Representa-*
 601 *tions (ICLR)*, 2024.

602

603 Ahmed Imtiaz Humayun, Ibtihel Amara, Cristina Nader Vasconcelos, Deepak Ramachandran, Can-
 604 dice Schumann, Junfeng He, Katherine A Heller, Golnoosh Farnadi, Negar Rostamzadeh, and
 605 Mohammad Havaei. What Secrets Do Your Manifolds Hold? Understanding the Local Geometry
 606 of Generative Models. In *International Conference on Learning Representations (ICLR)*, 2025.

607 Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. GANSpace: Discovering
 608 Interpretable GAN Controls. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 609 2020.

610

611 Ali Jahanian, Lucy Chai, and Phillip Isola. On the "steerability" of generative adversarial networks.
 612 In *International Conference on Learning Representations, ICLR*, 2020.

613

614 Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C. Cresswell, and Gabriel
 615 Loaiza-Ganem. A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Esti-
 616 mation with Diffusion Models. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 617 2024.

618

619 Rafal Karczewski, Markus Heinonen, and Vikas K Garg. Devil is in the Details: Density Guid-
 620 ance for Detail-Aware Generation with Flow Models. In *International Conference on Machine*
 621 *Learning (ICML)*, 2025a.

622

623 Rafal Karczewski, Markus Heinonen, Alison Pouplin, Søren Hauberg, and Vikas Garg. Spacetime
 624 Geometry of Denoising in Diffusion Models. *arXiv*, 2025b.

625

626 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for Im-
 627 proved Quality, Stability, and Variation. In *International Conference on Learning Representations*
 628 *(ICLR)*, 2018a.

629

630 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 631 adversarial networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 632 *(CVPR)*, 2018b.

633

634 Valentin Khrulkov, Leyla Mirvakhabova, I. Oseledets, and Artem Babenko. Latent Transforma-
 635 tions via NeuralODEs for GAN-based Image Editing. In *IEEE/CVF International Conference on*
 636 *Computer Vision (ICCV)*, 2021.

637

638 Yeongmin Kim, Kwanghyeon Lee, Minsang Park, Byeonghu Na, and Il chul Moon. Diffusion
 639 Bridge AutoEncoders for Unsupervised Representation Learning. In *International Conference on*
 640 *Learning Representations (ICLR)*, 2025.

641

642 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In *International*
 643 *Conference on Learning Representations (ICLR)*, 2015.

644

645 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In *International Confer-*
 646 *ence on Learning Representations (ICLR)*, 2014.

647

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion Models Already Have A Semantic
 648 Latent Space. In *International Conference on Learning Representations (ICLR)*, 2023.

649

John M. Lee. *Introduction to Riemannian Manifolds*. Springer, 2019.

650

651 Yonghyeon Lee, Seungyeon Kim, Jinwon Choi, and Frank Park. A Statistical Manifold Framework
 652 for Point Cloud Data. In *International Conference on Machine Learning (ICML)*, 2022.

648 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping Language-Image Pre-
 649 training for Unified Vision-Language Understanding and Generation. In *International Conference*
 650 *on Machine Learning (ICML)*, 2022.

651 Hanbang Liang, Xianxu Hou, and Linlin Shen. SSFlow: Style-guided Neural Spline Flows for Face
 652 Image Manipulation. In *ACM International Conference on Multimedia*, 2021.

653 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, and Jesse C.
 654 Cresswell. Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and
 655 New Connections. *Transactions on Machine Learning Research*, 2024.

656 Alexander Lobashev, Dmitry Guskov, Maria Larchenko, and Mikhail Tamm. Hessian Geometry of
 657 Latent Space in Generative Models. In *International Conference on Machine Learning (ICML)*,
 658 2025.

659 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
 660 *International Conference on Learning Representations (ICLR)*, 2017.

661 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In *International Con-
 662 ference on Learning Representations (ICLR)*, 2019.

663 Zeyu Lu, Chengyue Wu, Xinyuan Chen, Yaohui Wang, Lei Bai, Yu Qiao, and Xihui Liu. Hier-
 664 archical Diffusion Autoencoders and Disentangled Image Manipulation. In *IEEE/CVF Winter
 665 Conference on Applications of Computer Vision (WACV)*, 2024.

666 Calvin Luo. Understanding Diffusion Models: A Unified Perspective. *arXiv*, 2022.

667 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text Inversion
 668 for Editing Real Images using Guided Diffusion Models. In *IEEE/CVF Conference on Computer
 669 Vision and Pattern Recognition, CVPR 2023*, 2023.

670 James Oldfield, Markos Georgopoulos, Yannis Panagakis, Mihalis A. Nicolaou, and Ioannis Patras.
 671 Tensor Component Analysis for Interpreting the Latent Space of GANs. In *British Machine Vision
 672 Conference*, 2021.

673 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding
 674 the Latent Space of Diffusion Models through the Lens of Riemannian Geometry. In *Advances
 675 in Neural Information Processing Systems (NeurIPS)*, 2023a.

676 Yong-Hyun Park, Mingi Kwon, Junghyo Jo, and Youngjung Uh. Unsupervised Discovery of Se-
 677 mantic Latent Directions in Diffusion Models. *arXiv*, 2023b.

678 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 679 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
 680 tation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

681 Jakub Pidstrigach. Score-Based Generative Models Detect Manifolds. In *Advances in Neural Infor-
 682 mation Processing Systems (NeurIPS)*, 2022.

683 Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Controlling generative models with con-
 684 tinuous factors of variations. In *International Conference on Learning Representations (ICLR)*,
 685 2020.

686 Peter Potaptchik, Iskander Azangulov, and George Deligiannidis. Linear Convergence of Diffusion
 687 Models Under the Manifold Hypothesis. *arXiv*, 2025.

688 Konpat Preechakul, Nattanan Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffu-
 689 sion Autoencoders: Toward a Meaningful and Decodable Representation. In *IEEE/CVF Confer-
 690 ence on Computer Vision and Pattern Recognition (CVPR)*, 2022.

691 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 692 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 693 models from natural language supervision. In *International Conference on Machine Learning
 694 (ICML)*, 2021.

702 Aditya Ramesh, Youngduck Choi, and Yann LeCun. A Spectral Regularizer for Unsupervised Dis-
 703 entanglement. *arXiv*, 2019.

704

705 Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
 706 *International Conference on Machine Learning (ICML)*, 2015.

707

708 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 709 resolution Image Synthesis with Latent Diffusion Models. In *IEEE/CVF Conference on Computer
 710 Vision and Pattern Recognition (CVPR)*, 2022.

711

712 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 713 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MIC-
 CAI)*, 2015.

714

715 Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, and Gal Chechik. Norm-guided Latent
 716 Space Exploration for Text-to-image Generation. In *Advances in Neural Information Processing
 717 Systems (NeurIPS)*, 2023.

718

719 Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The Riemannian Geometry of Deep Gener-
 720 ative Models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
 (CVPRW)*, 2017.

721

722 Liao Shen, Tianqi Liu, Huiqiang Sun, Xinyi Ye, Baopu Li, Jianming Zhang, and Zhiguo Cao.
 723 DreamMover: Leveraging the Prior of Diffusion Models for Image Interpolation with Large Mo-
 724 tion. In *European Conference on Computer Vision (ECCV)*, 2024.

725

726 Yujun Shen and Bolei Zhou. Closed-form Factorization of Latent Semantics in GANs. In *IEEE/CVF
 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

727

728 Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the Latent Space of GANs for
 729 Semantic Face Editing. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition
 (CVPR)*, 2020.

730

731 Ken Shoemake. Animating Rotation with Quaternion Curves. *Conference on Computer Graphics
 and Interactive Techniques (SIGGRAPH)*, 1985.

732

733 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
 734 Learning using Nonequilibrium Thermodynamics. In *International Conference on Learning Rep-
 735 resentations (ICLR)*, 2015.

736

737 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In *Inter-
 738 national Conference on Learning Representations (ICLR)*, 2021a.

739

740 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 741 Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In *Inter-
 742 national Conference on Learning Representations (ICLR)*, 2021b.

743

744 Peter Sorrenson, Daniel Behrend-Uriarte, Christoph Schnörr, and Ullrich Köthe. Learning distances
 745 from data with normalizing flows and score matching. In *International Conference on Machine
 746 Learning*, 2025.

747

Nurit Spingarn, Ron Banner, and Tomer Michaeli. GAN "steerability" without optimization. In
International Conference on Learning Representations (ICLR), 2021.

748

Jan Paweł Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Diffusion
 749 Models Encode the Intrinsic Dimension of Data Manifolds. In *International Conference on Ma-
 750 chine Learning (ICML)*, 2024.

751

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
 752 thinking the Inception Architecture for Computer Vision. In *IEEE/CVF Conference on Computer
 753 Vision and Pattern Recognition (CVPR)*, 2015.

754

Rong Tang and Yun Yang. Adaptivity of Diffusion Models to Manifold Structures. In *International
 755 Conference on Artificial Intelligence and Statistics (AISTATS)*, 2024.

756 Ayush Kumar Tewari, Mohamed A. Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter Seidel,
 757 Patrick Pérez, Michael Zollhöfer, and Christian Theobalt. StyleRig: Rigging StyleGAN for 3D
 758 Control Over Portrait Images. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 759 *nition (CVPR)*, 2020.

760 Christos Tzelepis, Georgios Tzimiropoulos, and Ioannis Patras. WarpedGANSpace: Finding non-
 761 linear RBF paths in GAN latent space. In *IEEE/CVF International Conference on Computer*
 762 *Vision (ICCV)*, 2021.

763 Enrico Ventura, Beatrice Achilli, Gianluigi Silvestri, Carlo Lucibello, and Luca Ambrogioni. Man-
 764 ifolds, Random Matrices and Spectral Gaps: The Geometric Phases of Generative Diffusion. In
 765 *International Conference on Learning Representations (ICLR)*, 2025.

766 Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the GAN
 767 latent space. In *International Conference on Machine Learning (ICML)*, 2020.

768 Clinton J. Wang and Polina Golland. Interpolating between Images with Diffusion Models. In *ICML*
 769 *2023 Workshop on Challenges of Deploying Generative AI*, 2023.

770 Li Kevin Wenliang and Ben Moran. Score-based generative model learn manifold-like structures
 771 with constrained mixing. In *NeurIPS 2022 Workshop on Score-Based Methods*, 2022.

772 Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg. Geodesic Cluster-
 773 ing in Deep Generative Models. *arXiv*, 2018.

774 Zhaoyuan Yang, Zhengyang Yu, Zhiwei Xu, Jaskirat Singh, Jing Zhang, Dylan Campbell, Peter
 775 Tu, and Richard Hartley. IMPUS: Image Morphing with Perceptually-Uniform Sampling Using
 776 Diffusion Models. In *International Conference on Learning Representations (ICLR)*, 2024.

777 Chih-Kuan Yeh, Joon Sik Kim, Ian E. H. Yen, and Pradeep Ravikumar. Representer Point Selection
 778 for Explaining Deep Neural Networks. In *Advances in Neural Information Processing Systems*
 779 (*NeurIPS*), 2018.

780 Qingtao Yu, Jaskirat Singh, Zhaoyuan Yang, Peter Henry Tu, Jing Zhang, Hongdong Li, Richard
 781 Hartley, and Dylan Campbell. Probability Density Geodesics in Image Diffusion Latent Space.
 782 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

783 Kaiwen Zhang, Yifan Zhou, Xudong Xu, Xingang Pan, and Bo Dai. DiffMorpher: Unleashing the
 784 Capability of Diffusion Models for Image Morphing. In *IEEE/CVF Conference on Computer*
 785 *Vision and Pattern Recognition (CVPR)*, 2023.

786 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
 787 Effectiveness of Deep Features as a Perceptual Metric. In *IEEE/CVF Conference on Computer*
 788 *Vision and Pattern Recognition (CVPR)*, 2018.

789 PengFei Zheng, Yonggang Zhang, Zhen Fang, Tongliang Liu, Defu Lian, and Bo Han. NoiseDiffu-
 790 sion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear
 791 Interpolation. In *International Conference on Learning Representations (ICLR)*, 2024.

792 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 793 Learning view synthesis using multiplane images. *ACM Transactions on Graphics (TOG)*, 2018.

794 Tianyi Zhu, Dongwei Ren, Qilong Wang, Xiaohe Wu, and Wangmeng Zuo. Generative inbetween-
 795 ing through frame-wise conditions-driven video generation. *arXiv*, 2024.

796 Peiye Zhuang, Oluwasanmi O Koyejo, and Alex Schwing. Enjoy Your Editing: Controllable GANs
 797 for image editing via latent space navigation. In *International Conference on Learning Represen-*
 798 *tations (ICLR)*, 2021.

799 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **A DETAILED EXPLANATIONS**
811812 **A.1 LOCAL COORDINATE EXPRESSION**
813814 A Riemannian metric g is symmetric and positive-definite; i.e., at $p \in \mathcal{M}$,

815
$$g_p(v, w) = g_p(w, v), \quad g_p(v, v) \geq 0 \text{ for all } v \in T_p \mathcal{M}, \quad g_p(v, v) = 0 \Leftrightarrow v = 0.$$

816

817 By identifying g_p with an inner product, we write

818
$$\langle v, w \rangle_g := g_p(v, w) \quad \text{for any } v, w \in T_p \mathcal{M}.$$

819

820 Let (x^1, \dots, x^D) be smooth local coordinates in a neighborhood of $p \in \mathcal{M}$. Then, the coordinate
821 basis for $T_p \mathcal{M}$ is $(\frac{\partial}{\partial x^1}|_p, \dots, \frac{\partial}{\partial x^D}|_p)$, where $\frac{\partial}{\partial x^i}$ is the i -th coordinate vector field. Tangent vectors
822 $v, w \in T_p \mathcal{M}$ can be expressed as $v = \sum_{i=1}^D v^i \frac{\partial}{\partial x^i}|_p$ and $w = \sum_{i=1}^D w^i \frac{\partial}{\partial x^i}|_p$, respectively. The
823 matrix notation G_p of g at p consists of (i, j) -elements

824
$$g_{ij}(p) = g_p\left(\frac{\partial}{\partial x^i}|_p, \frac{\partial}{\partial x^j}|_p\right) = \left\langle \frac{\partial}{\partial x^i}|_p, \frac{\partial}{\partial x^j}|_p \right\rangle_g \quad (12)$$

825

826 for $i, j = 1, 2, \dots, D$. The Euclidean metric is represented by the identity matrix I . The inner product
827 of v and w with respect to the Riemannian metric g_p is

828
$$g_p(v, w) = \sum_{i=1}^D \sum_{j=1}^D g_{ij}(p) v^i w^j = v^T G_p w. \quad (13)$$

829

830 **A.2 EXPLANATION OF PROPOSITION 1**
831832 When the score function s_θ is exact, it is the gradient $\nabla_{x_t} \log p_t(x_t; \theta)$ of the log-density
833 $\log p_t(x_t; \theta)$, and its Jacobian J_{x_t} equals the Hessian, $J_{x_t} = \nabla_{x_t} \nabla_{x_t} \log p_t(x_t; \theta)$, which is sym-
834 metric. In this idealized case, its eigenvectors form an orthonormal basis of the noise space \mathbb{R}^D . We
835 divide these eigenvectors into a basis for the tangent space $T_x \mathcal{M}_t$, $\{v_i\}_{i=1}^d$ (with small eigenvalues
836 λ_i), and a basis for the normal space $\mathcal{N}_x \mathcal{M}_t$, $\{v_j\}_{j=d+1}^D$ (with large eigenvalues λ_j). These spaces
837 are orthogonal complements of each other, and the tangent space $T_x \mathbb{R}^D$ to the noise space \mathbb{R}^D at x
838 can be decomposed into their direct sum, $T_x \mathbb{R}^D = T_x \mathcal{M}_t \oplus \mathcal{N}_x \mathcal{M}_t$. Any tangent vector $v \in T_x \mathbb{R}^D$
839 is uniquely decomposed as $v = v_{\mathcal{T}} + v_{\mathcal{N}}$, where $v_{\mathcal{T}} \in T_x \mathcal{M}_t$ and $v_{\mathcal{N}} \in \mathcal{N}_x \mathcal{M}_t$. The squared
840 Jacobian-vector product $\|J_{x_t} v\|_2^2$ can be expanded as:

841
$$\|J_{x_t} v\|_2^2 = \|J_{x_t}(v_{\mathcal{T}} + v_{\mathcal{N}})\|_2^2 = \|J_{x_t} v_{\mathcal{T}}\|_2^2 + \|J_{x_t} v_{\mathcal{N}}\|_2^2 + 2\langle J_{x_t} v_{\mathcal{T}}, J_{x_t} v_{\mathcal{N}} \rangle. \quad (14)$$

842

843 Due to the orthogonality of the eigenspaces, the cross term $\langle J_{x_t} v_{\mathcal{T}}, J_{x_t} v_{\mathcal{N}} \rangle$ vanishes, and we have

844
$$\begin{aligned} \|J_{x_t} v_{\mathcal{T}}\|_2^2 &= \sum_{i=1}^d \lambda_i^2 \langle v, v_i \rangle^2 \approx 0, \\ \|J_{x_t} v_{\mathcal{N}}\|_2^2 &= \sum_{j=d+1}^D \lambda_j^2 \langle v, v_j \rangle^2 \gg 0 \quad (\text{if } v_{\mathcal{N}} \neq 0). \end{aligned} \quad (15)$$

845

846 Hence, minimizing the squared Jacobian–vector product $\|J_{x_t} v\|_2^2$ (under a fixed Euclidean norm of
847 v) is dominated by minimizing the normal-space component $\|J_{x_t} v_{\mathcal{N}}\|_2^2$, and essentially encourages
848 the vector v to lie in the tangent space $T_x \mathcal{M}_t$.849 In practice, diffusion models learn the score function s_θ directly, its Jacobian J_{x_t} need not be sym-
850 metric, and the right singular vectors need not be exactly orthogonal to each other. Even then,
851 minimizing $\|J_{x_t} v\|_2^2$ still suppresses the component in the subspace spanned by the large right singu-
852 lar vectors and amplifies the component spanned by the small right singular vectors; Proposition 1
853 continues to hold in this generalized sense.854 **B EXPERIMENTAL SETUP**
855856 **B.1 DDIM INVERSION**
857858 Naive encoding of an original image is to add Gaussian noise as in the forward process $q(x_t | x_{t-1})$,
859 which is stochastic and often yields poor reconstructions. To accurately invert the reverse process
860 and recover the specific noise map associated with a given image, *DDIM Inversion* (Mokady et al.,
861

2023) is widely used. The deterministic version ($\eta = 0$) of DDIM can be regarded as an ordinary differential equation (ODE) solved by the Euler method (Song et al., 2021a;b). In the limit of infinitesimally small timesteps, the ODE is invertible.

Concretely, setting $\sigma_t = 0$ in Eq. (6) gives

$$x_{t-1} = a_t x_t + b_t \epsilon_\theta(x_t, t) = x_t + (a_t - 1)x_t + b_t \epsilon_\theta(x_t, t), \quad (16)$$

where $a_t = \sqrt{\alpha_{t-1}/\alpha_t}$ and $b_t = -\sqrt{\alpha_{t-1}(1 - \alpha_t)/\alpha_t} + \sqrt{1 - \alpha_{t-1}}$. This can be viewed as an ODE with the time derivative $(a_t - 1)x_t + b_t \epsilon_\theta(x_t, t)$ solved by the Euler method with the unit step size. With a sufficiently small timestep size,

$$x_t = \frac{x_{t-1} - b_t \epsilon_\theta(x_t, t)}{a_t} \approx \frac{x_{t-1} - b_t \epsilon_\theta(x_{t-1}, t)}{a_t}, \quad (17)$$

since $\epsilon_\theta(x_t, t) \approx \epsilon_\theta(x_{t-1}, t)$. The deterministic forward process iteratively applies the update rule in Eq. (17) to a sample x_0 from $t = 0$ to τ and obtains the noisy image x_τ , from which the deterministic reverse process reconstructs the original x_0 up to numerical errors. This inversion procedure substantially improves the fidelity of reconstructions and subsequent interpolations.

B.2 COMPARISON METHODS

Linear Interpolation. Once samples are noised via DDIM Inversion, one can perform straightforward linear interpolation (LERP) (Ho et al., 2020), by treating the noise space at fixed time $t = \tau > 0$ as a linear latent space. Given samples $x_0^{(0)}$ and $x_0^{(1)}$ in the data space, the deterministic forward process obtains their noised versions $x_\tau^{(0)}$ and $x_\tau^{(1)}$ at τ , respectively. A linear interpolation in that space is given by

$$x_\tau^{(u)} = (1 - u)x_\tau^{(0)} + ux_\tau^{(1)}, \quad (18)$$

where $u \in [0, 1]$ is the interpolation parameter. Then, one applies the deterministic reverse process from $t = \tau$ back to $t = 0$ to obtain a sequence of interpolated images $x_0^{(u)}$ in the data space.

Spherical Linear Interpolation. An alternative is spherical linear interpolation (SLERP) (Song et al., 2021a), which finds the shortest path on a sphere in the noise space:

$$x_\tau^{(u)} = \frac{\sin((1 - u)\theta)}{\sin(\theta)} x_\tau^{(0)} + \frac{\sin(u\theta)}{\sin(\theta)} x_\tau^{(1)} \quad (19)$$

where $\theta = \arccos\left(\frac{(x_\tau^{(0)})^\top x_\tau^{(1)}}{\|x_\tau^{(0)}\| \|x_\tau^{(1)}\|}\right)$. This procedure preserves the norms of the noisy samples $x_\tau^{(u)}$, yielding more natural interpolations than LERP. Note that SLERP assumes that $x_\tau^{(0)}$ and $x_\tau^{(1)}$ are drawn from a normal distribution, which holds only for a sufficiently large t (typically, $t = T$). Nonetheless, SLERP is often applied at moderate t .

B.3 PROMPT ADJUSTMENT

To improve the quality of interpolations, we adopt the prompt adjustment proposed by Yu et al. (2025). Internally in Stable Diffusion v2.1-base (Rombach et al., 2022), a text prompt c is first encoded into a text embedding z using CLIP (Radford et al., 2021). To better align the text embedding z with a given pair of images $x_0^{(0)}$ and $x_0^{(1)}$, we adjust the text embedding z in a similar way to textual inversion (Gal et al., 2023). Namely, the text embedding z is updated to minimize the DDPM loss in Eq. (5) for 500 iterations for image interpolation and 1,000 iterations for video frame interpolation. We use AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 0.005.

Also following Yu et al. (2025), we do not use CFG (i.e., set $w = 0$ in Eq. (8)) but use the following negative prompt c_{neg} with $w_{\text{neg}} = 1$: “A doubling image, unrealistic, artifacts, distortions, unnatural blending, ghosting effects, overlapping edges, harsh transitions, motion blur, poor resolution, low detail.”

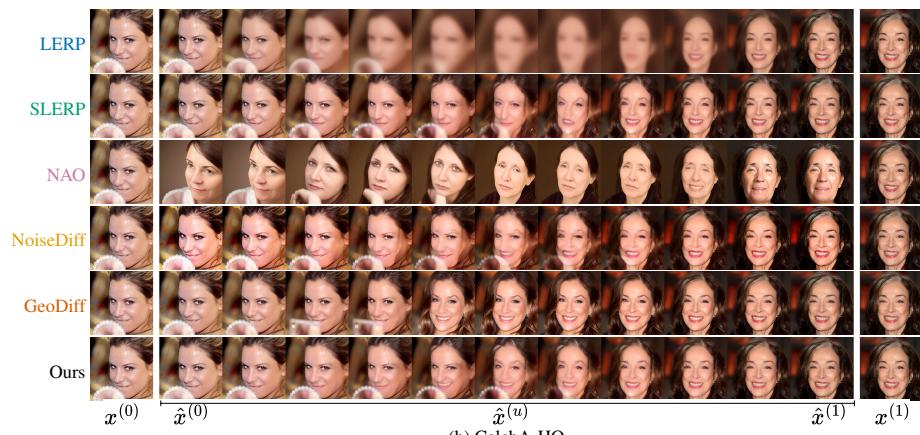
C DETAILS OF EXPERIMENTS

This section provides additional details of the experiments in Section 5. All experiments were conducted on a single NVIDIA A100 GPU.

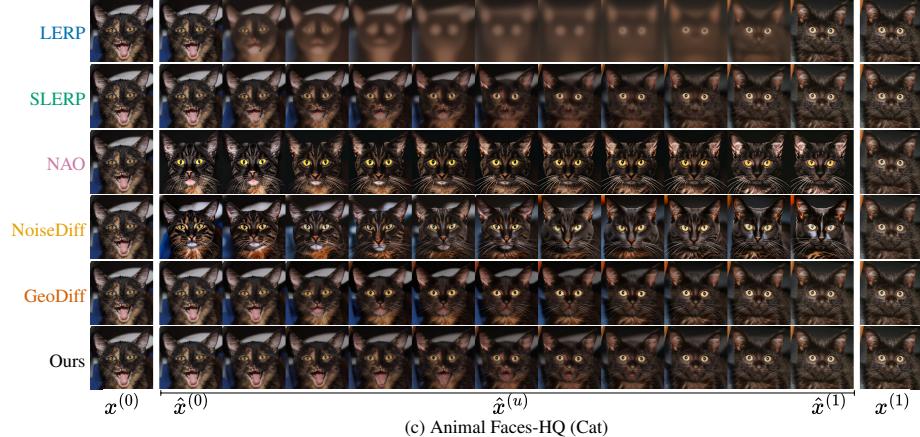
918 C.1 DETAILS OF SYNTHETIC 2D DATASET
919920 **Dataset.** We construct a two-dimensional C-shaped distribution as follows. We start with an axis-
921 aligned ellipse with semi-axes 1.0 (along x_1) and 1.2 (along x_2). To open the “C”, we remove all
922 points in a $\pm 30^\circ$ wedge centered on the positive x_1 -axis. We then add isotropic Gaussian pertur-
923 bations with standard deviation 0.001 per coordinate to each point. From the resulting distribution, we
924 draw 100,000 samples.
925926 **Network.** The noise predictor ϵ_θ is composed of three linear layers of hidden width 512 with
927 SiLU activation functions (Elfwing et al., 2017). The network takes a tuple of a data point x and
928 a normalized time t as input. We set the number of steps to $T = 1,000$. We trained this network
929 for 1,000 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 512.
930 The learning rate follows cosine annealing (Loshchilov & Hutter, 2017), decaying from 10^{-3} to 0
931 without restarts. For stability, we apply gradient-norm clipping with a threshold of 1.0.
932933 **Implementation Details.** In Fig. 1 (left), we visualize the interpolation between $x_0^{(0)} = (0.0, 1.15)$
934 and $x_0^{(1)} = (-0.8, -0.6)$ with $N = 100$ discretization points. Comparison methods include Linear
935 Interpolation (LERP) (Ho et al., 2020), Spherical Linear Interpolation (SLERP) (Song et al., 2021a),
936 and density-based interpolation based on the metric proposed in Yu et al. (2025). We used the DDIM
937 Scheduler (Song et al., 2021a) and operated in the noise space at $t = 0.02T$. For our method and the
938 density-based interpolation, we find the geodesic paths by minimizing the energy functional $E[\gamma]$.
939 Both paths are initialized using SLERP and updated using Adam optimizer (Kingma & Ba, 2015)
940 for 1,000 iterations with a learning rate of 10^{-4} .
941942 C.2 DATASETS FOR IMAGE INTERPOLATION
943944 The animation subset of MorphBench (Zhang et al., 2023) is a dataset of pairs of images obtained
945 via image editing. Each pair is associated with a text prompt; we used the provided prompts as the
946 condition c .
947948 Animal Faces-HQ (Choi et al., 2020) is a dataset of high-resolution images of animal faces. From
949 this dataset, we randomly selected 50 pairs of dog images and 50 pairs of cat images with LPIPS
950 below 0.6 to ensure semantic similarity. We used the text prompts “a photo of a dog” for dog images
951 and “a photo of a cat” for cat images.
952953 CelebA-HQ (Karras et al., 2018a) is a high-resolution dataset of celebrity faces. We randomly
954 sampled 50 male pairs and 50 female pairs, again with LPIPS less than 0.6, and condition on “a
955 photo of a man” and “a photo of a woman,” respectively.
956957 D ADDITIONAL RESULTS
958959 D.1 ADDITIONAL QUALITATIVE RESULTS FOR IMAGE AND VIDEO FRAME INTERPOLATION
960961 In this section, we provide additional qualitative results. Figures 5 and 6 provide more examples of
962 image interpolation and video frame interpolation, which complement Fig. 2 and Fig. 4 in the main
963 text, respectively.
964965 D.2 ABLATION STUDY
966967 We adopt the prompt adjustment of GeoDiff (Yu et al., 2025) to better align the text embedding with
968 the images. Table 4 reports an ablation on video frame interpolation. Because GeoDiff is designed
969 to operate with this adjustment enabled, we do not report a GeoDiff variant without it. With the
970 adjustment, both our metric and SLERP improve in MSE and LPIPS. The gains are larger for our
971 metric: the adjustment enables the guided diffusion model to better capture the local data manifold,
972 and our metric explicitly leverages such refined local information. By contrast, SLERP focuses on
973 the Gaussian prior and is less sensitive to refinements.
974

972
973
974
975
976

(a) MorphBench (Animation)

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

(b) CelebA-HQ

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

(c) Animal Faces-HQ (Cat)

1020 Figure 5: Examples of interpolated image sequences. The leftmost and rightmost images are the
1021 given endpoints $x_0^{(0)}$ and $x_0^{(1)}$, and the middle images are the interpolated results $\{\hat{x}_0^{(u)}\}$ for $u \in [0, 1]$.1022
1023
1024
1025

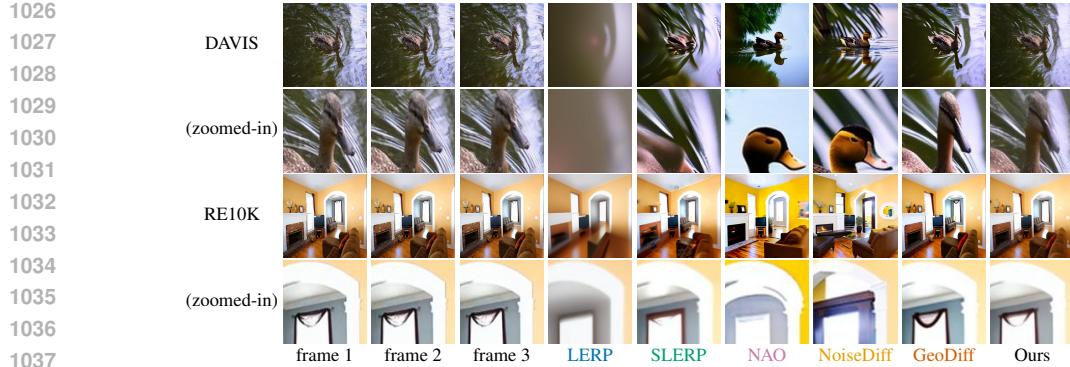


Figure 6: Qualitative examples on video frame interpolations

Table 4: Ablation study on prompt adjustment.

Method	Adj.	MSE \downarrow ($\times 10^{-3}$)			LPIPS \downarrow		
		DAVIS	Human	RE10K	DAVIS	Human	RE10K
SLERP		15.440	6.080	6.128	0.487	0.320	0.301
SLERP	✓	9.894	2.559	3.778	0.355	0.200	0.200
GeoDiff	✓	13.253	3.363	5.941	0.334	0.184	0.229
Ours		13.517	5.008	6.016	0.500	0.350	0.325
Ours	✓	8.777	2.018	2.771	0.318	0.170	0.178

D.3 INTERPOLATIONS AND SPECTRAL GAPS WITH VARYING τ

We visualize interpolations for varying time τ for the noise space in Fig. 7. At $\tau = 0$, intermediate samples exhibit artifacts. With no injected noise, the data manifold is extremely thin, and finding a geodesic under our metric becomes ill-conditioned. As τ increases, the interpolations become smoother and more globally coherent. At $\tau = T$, however, the interpolations are no longer semantically coherent: the noisy-sample distribution is close to Gaussian, the data manifold is not well defined, and meaningful geodesics cannot be recovered. Empirically, $\tau \in [0.4T, 0.6T]$ yields the best visual quality.

Figure 8 shows the singular values of the Jacobian J_{x_t} of the score function s_θ at the point $x_\tau^{(1)}$ obtained by DDIM inversion to the rightmost image $x_0^{(1)}$. Stable Diffusion v2.1-base (Rombach et al., 2022) operates VAE’s latent space of $64 \times 64 \times 4 = 16,384$ dimensions. Across timesteps, hundreds of singular values are near zero, suggesting a local intrinsic dimensionality on the order of a few hundred. As τ increases, more singular values approach 1.0 because the injected noise thickens the manifold and makes it isotropic.

USE OF LARGE LANGUAGE MODELS.

We used ChatGPT and GitHub Copilot as autocomplete tools in polishing the manuscript and implementing the experimental code. No large language models were used for research ideation.

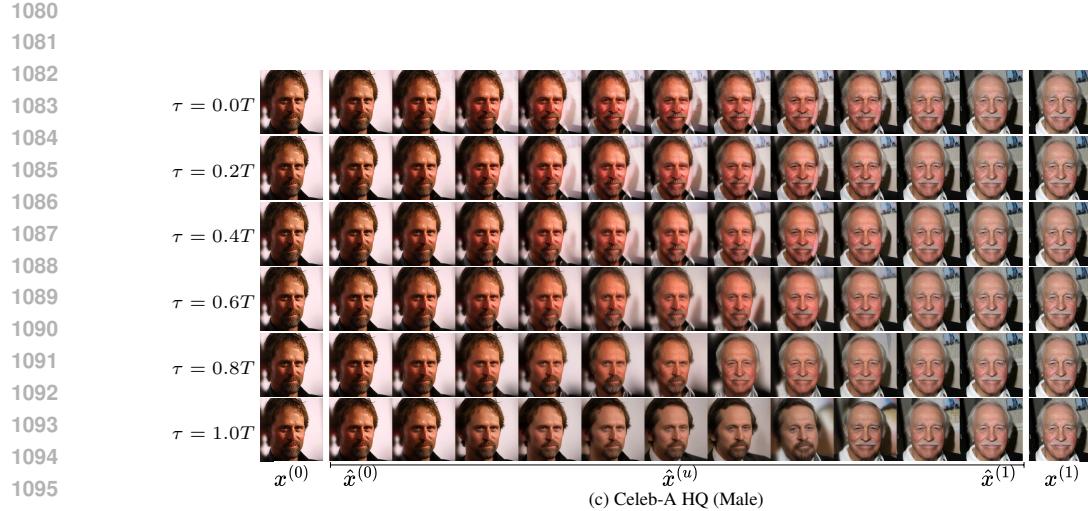


Figure 7: Qualitative examples of interpolated image sequences with different τ . The leftmost and rightmost images are the given endpoints $x_0^{(0)}$ and $x_0^{(1)}$, and the middle images are the interpolated results $\{\hat{x}_0^{(u)}\}$ for $u \in [0, 1]$.

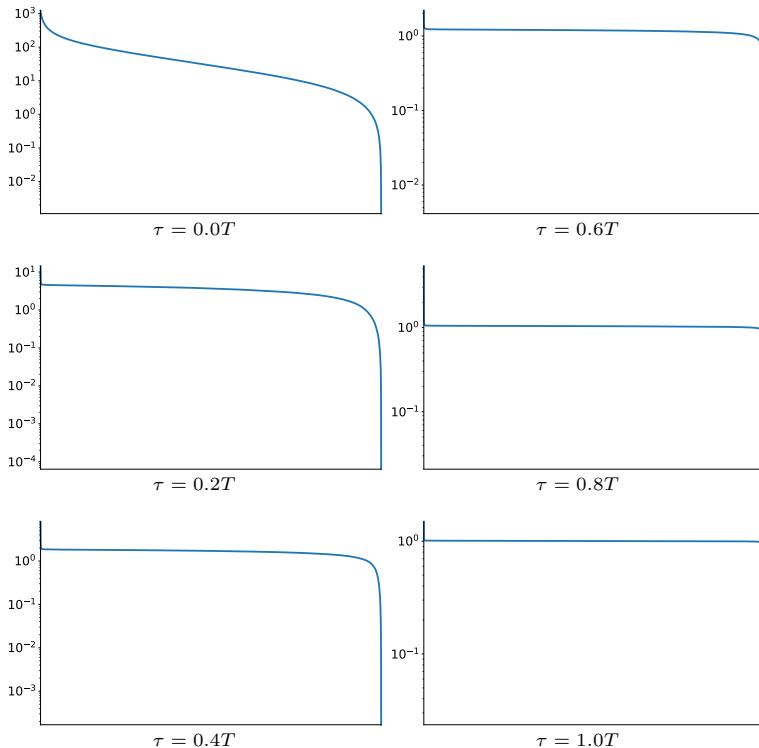


Figure 8: Examples of singular value spectra of the Jacobian J_{x_t} of the score function s_θ at the right endpoint $x_0^{(1)}$ of the interpolation shown in Fig. 7, with different τ . The horizontal and vertical axes represent the index and the singular value (in log scale), respectively.