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ABSTRACT

Diffusion models are powerful deep generative models (DGMs) that generate
high-fidelity, diverse content. However, unlike classical DGMs, they lack an ex-
plicit, tractable low-dimensional latent space that parameterizes the data manifold.
This absence limits manifold-aware analysis and operations, such as interpolation
and editing. Existing interpolation methods for diffusion models typically fol-
low paths through high-density regions, which are not necessarily aligned with
the data manifold and can yield perceptually unnatural transitions. To exploit the
data manifold learned by diffusion models, we propose a novel Riemannian met-
ric on the noise space, inspired by recent findings that the Jacobian of the score
function captures the tangent spaces to the local data manifold. This metric en-
courages geodesics in the noise space to stay within or run parallel to the learned
data manifold. Experiments on image interpolation show that our metric produces
perceptually more natural and faithful transitions than existing density-based and
naive baselines.

1 INTRODUCTION

Diffusion models are a class of deep generative models (DGMs) that have shown a remarkable
capability to generate high-fidelity, diverse content (Ho et al., 2020; Song et al., 2021a; Rombach
et al., 2022). They can be applied to various downstream tasks, including interpolation, inversion,
and editing (Hertz et al., 2023; Mokady et al., 2023; Danier et al., 2024). Theoretical investigation
can help the understanding of their mechanisms and enhance their applicability.

The manifold hypothesis has long played a central role in the theoretical analysis of DGMs, such
as variational autoencoders (VAEs) (Kingma & Welling, 2014) and generative adversarial networks
(GANs) (Goodfellow et al., 2014). This hypothesis states that real-world data (e.g., images) are con-
centrated around a low-dimensional manifold embedded in the high-dimensional data space (Bengio
et al., 2012; Fefferman et al., 2016). In this context, DGMs are understood to learn not only the data
distribution but also its underlying manifold, either explicitly or implicitly (Loaiza-Ganem et al.,
2024). In VAEs and GANs, the latent space is interpreted as a parameterization of this data man-
ifold (Arjovsky & Bottou, 2017). Various studies leverage this geometric perspective to analyze
the learned structure and improve generation quality (Gruffaz & Sassen, 2025). One example is
to introduce a Riemannian metric on the latent space by pulling back the metric on the data space
through the decoder. This enables geometrically meaningful operations within the latent space. For
example, traversing the latent space along geodesics yields interpolations that are faithful to the in-
trinsic geometric structure of the data (Shao et al., 2017; Arvanitidis et al., 2018; Chen et al., 2018;
Arvanitidis et al., 2021).

Unlike VAEs or GANs, diffusion models lack an explicit low-dimensional latent space, which com-
plicates the direct application of conventional pullback-based geometric approaches. Interpolations
are typically realized as paths that traverse linearly or through high-density regions of the learned
data distribution at an intermediate generation step (i.e., in the noise space) (Samuel et al., 2023;
Zheng et al., 2024; Yu et al., 2025). We provide a conceptual illustration in Fig. 1. These ap-
proaches, however, are not necessarily aligned with the intrinsic geometry of the data manifold and
often lead to visually unnatural and abrupt transitions (e.g., over-smoothed). This is because a linear
path may cut through low-density regions, and a high-density path may lose the characteristics of
endpoints (Karczewski et al., 2025a).
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Figure 1: A conceptual comparison of interpolation. (left) Interpolation paths on a C-shaped
distribution. (middle) A plot of the probability density transitions for their corresponding interpola-
tion paths. (right) Examples of image interpolation on Animal Faces-HQ (AF) (Choi et al., 2020).
LERP cuts through a low-density region, yielding unnatural transitions. SLERP deviates from the
manifold, sometimes losing detail textures (see the background in the right panel). Density-based
interpolation approaches and traverses a high-density region, not preserving the probabilities of the
endpoints and sometimes producing over-smoothed images. Ours runs parallel to the manifold, pre-
serving the probabilities of the endpoints and yielding natural transitions. See Section 5 for details.

To characterize the data geometry learned by diffusion models, we propose a novel Riemannian
metric on the noise space derived from the Jacobian of the score function. The contribution of this
work is threefold. (i) Riemannian metric for the noise space. With our metric, we can treat the
noise space of a pre-trained diffusion model as a Riemannian manifold without any further train-
ing or architectural modifications. (ii) Manifold-aware geodesics. The construction of our metric
is motivated by recent findings that degeneracy in the Jacobian of the score function captures the
local structure of the data manifold (Stanczuk et al., 2024; Ventura et al., 2025). Our metric en-
courages geodesics to stay within or run parallel to the data manifold. (iii) Empirical interpolation
performance. We validate our approach on synthetic data interpolation, image interpolation, and
video frame interpolation. Results demonstrate that our metric yields perceptually more natural and
faithful transitions than existing density-based methods and naive baselines.

2 RELATED WORK

Latent Space Manipulation in Deep Generative Models. The manifold hypothesis states that
real-world data (e.g., images) lie on a low-dimensional manifold embedded in a high-dimensional
data space (Bengio et al., 2012; Fefferman et al., 2016), where DGMs are understood to learn this
data manifold (Loaiza-Ganem et al., 2024). In VAEs and GANs, the latent space parameterizes the
data manifold, and the decoder (or generator) embeds this manifold in data space as the image of
the latent space (Arjovsky & Bottou, 2017). This structure implies that manipulating latent variables
traverses the data manifold and ensures generated outputs to remain semantically coherent (Ramesh
et al., 2019). Indeed, linear traversals in latent space have become a common approach for edit-
ing the semantic attributes of generated images (Goetschalckx et al., 2019; Härkönen et al., 2020;
Plumerault et al., 2020; Shen et al., 2020; Voynov & Babenko, 2020; Oldfield et al., 2021; Shen &
Zhou, 2021; Spingarn et al., 2021; Zhuang et al., 2021; Haas et al., 2022). However, as real-world
data distributions are skewed and heterogeneous, linear manipulations often encounter limitations in
quality. While non-linear approaches improve editing quality, they often require training additional
networks and can distort the learned manifold structure (Ramesh et al., 2019; Jahanian et al., 2020;
Tewari et al., 2020; Abdal et al., 2021; Khrulkov et al., 2021; Liang et al., 2021; Tzelepis et al.,
2021; Chen et al., 2022; Choi et al., 2022; Aoshima & Matsubara, 2023).

Riemannian Geometry of Deep Generative Models. Applying ideas from Riemannian geometry
to the latent spaces of DGMs is an active area of research (Gruffaz & Sassen, 2025). Some methods
require training additional networks (Yang et al., 2018; Arvanitidis et al., 2022; Lee et al., 2022;
Sorrenson et al., 2025). Another common approach is to construct the pullback metric by pulling
back the Euclidean metric from the data space through the decoder of a pre-trained model (Shao
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et al., 2017; Chen et al., 2018; Arvanitidis et al., 2018; 2021). This enables leveraging the geometric
structure learned by the model without additional training.

Interpolation in Diffusion Models. Diffusion models learn a denoising function, which itera-
tively denoises noisy samples backward in time from t = T to t = 0 and obtains clean sample at
t = 0, thereby forming the data distribution (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a;b; Rombach et al., 2022). A space of noisy samples at t > 0 is often referred to as a noise
space. Unlike VAEs or GANs, diffusion models lack an explicit low-dimensional latent space, yet
empirical observations show that the noise space acts as a latent space (Ho et al., 2020). However,
the iterative nature of the generation process makes it difficult to define a pullback metric.

Earlier works employ linear interpolation (LERP), which interpolates noisy samples linearly in noise
space (Ho et al., 2020). However, LERP often degrades perceptual quality in interpolated images,
as shown in Fig. 1. Noisy samples at time t = T are typically drawn from a standard Gaussian
prior and therefore concentrate on a hypersphere with radius approximately

√
D, where D denotes

the dimensionality. LERP between two noisy samples produces interpolated points with unnaturally
small vector norms, losing detailed features. A similar trend holds for interpolations at intermediate
timesteps t < T . Spherical linear interpolation (SLERP) addresses this issue by interpolating noisy
samples along the surface of a hypersphere, preserving the norms of noisy samples (Shoemake,
1985; Song et al., 2021a). Other approaches also leverage the norm density of the Gaussian prior
at t = T (Samuel et al., 2023) or attempt to preserve the variance of pixel intensity (Bodin et al.,
2025). However, empirically, noised real samples do not follow a Gaussian distribution even at
t = T , degrading the interpolation quality in practice (Zheng et al., 2024).

Some studies treat an intermediate layer of the neural networks used in diffusion models as a latent
space, such as the bottleneck layer (Kwon et al., 2023; Park et al., 2023a;b) of U-Nets (Ronneberger
et al., 2015) and the attention layer (He et al., 2024) of Vision Transformers (Dosovitskiy et al.,
2020). However, these neural networks employ skip connections that allow information to bypass
other layers, which hinders the models from generating new samples only from these surrogate
latent spaces. Various studies have explored specialized architectures and additional training for
image interpolation (Preechakul et al., 2022; Zhang et al., 2023; Wang & Golland, 2023; Guo et al.,
2024; Lu et al., 2024; Shen et al., 2024; Yang et al., 2024; Kim et al., 2025; Lobashev et al., 2025),
whereas we focus on investigating the geometric structure learned by a diffusion model itself without
any further training or architectural modifications.

Density-based Interpolation in Diffusion Models. Other methods leverage the noisy-sample
density at intermediate timesteps t < T . GeodesicDiffusion (Yu et al., 2025) defines a confor-
mal metric by multiplying by the inverse density of noisy samples, guiding interpolated images to
lie in high-density regions. This approach is also common in other DGMs (Rezende & Mohamed,
2015; Du & Mordatch, 2019), such as normalizing flows (Sorrenson et al., 2025) and energy-based
models (Béthune et al., 2025). Other studies have also proposed to prioritize high-density regions
by designing metrics (Azeglio & Bernardo, 2025). However, recent studies have shown that image
likelihood is negatively correlated with perceptual detail: images in high-density regions are of-
ten over-smoothed and lose detailed features, whereas images in lower-density regions may contain
richer textures and fine-grained details (Karczewski et al., 2025a). This observation shows the limi-
tations of interpolations based on high-density paths. Although some studies draw inspiration from
statistical manifolds, it remains unclear what structures their methods leverage (Karczewski et al.,
2025b; Lobashev et al., 2025).

Data Manifold in Diffusion Models. Diffusion models have been shown to implicitly learn the
data manifold (Pidstrigach, 2022; Wenliang & Moran, 2022; Tang & Yang, 2024; George et al.,
2025; Potaptchik et al., 2025). Methods based on high-density regions assume that such regions
correspond to the data manifold. From a different perspective, several studies have attempted to
estimate the local intrinsic dimension of the data manifold (Horvat & Pfister, 2024; Kamkari et al.,
2024; Stanczuk et al., 2024; Humayun et al., 2025; Ventura et al., 2025). Their key insight is that
the rank deficiency of the Jacobian of the score function (i.e., the Hessian of the log-density) equals
the dimension of the data manifold (Stanczuk et al., 2024; Ventura et al., 2025). We build upon this
insight to define a Riemannian metric on the noise space of a pre-trained diffusion model.
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3 PRELIMINARIES

3.1 RIEMANNIAN GEOMETRY

Riemannian metric. We adopt the notions in Lee (2019). Let M be a smooth manifold. A
Riemannian metric g on M is a smooth covariant 2-tensor field such that, at every point p ∈ M,
the tensor gp defines an inner product on the tangent space TpM. A Riemannian manifold is the
pair (M, g). Using local coordinates, the metric gp can be expressed as a symmetric and positive
definite matrix Gp at p. See Appendix A.1 for this connection. The inner product ⟨v, w⟩g of two
tangent vectors v, w ∈ TpM at p is given by

⟨v, w⟩g = gp(v, w) = v⊤Gpw.

Geodesics. The length of a tangent vector v ∈ TpM is given by |v|g :=
√
⟨v, v⟩g . For a smooth

curve γ : [0, 1] → M, u 7→ γ(u), its length is

L[γ] :=
∫ 1

0
|γ′(u)|gdu =

∫ 1

0

√
⟨γ′(u), γ′(u)⟩gdu =

∫ 1

0

√
γ′(u)⊤Gγ(u)γ′(u)du. (1)

A geodesic is a curve that locally minimizes length; intuitively, it is a locally shortest path between
two points. It is often more convenient to work with the energy functional E[γ]:

E[γ] = 1
2

∫ 1

0
|γ′(u)|2g du = 1

2

∫ 1

0
⟨γ′(u), γ′(u)⟩g du. (2)

Any constant-speed geodesic is a critical point of the energy functional.

3.2 DIFFUSION MODELS

Forward Process. Let x0 ∈ RD be a data sample. The forward process is defined as a Markov
chain which adds Gaussian noise at each timestep t = 1, . . . , T recursively:

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
= N

(√
αt

αt−1
xt−1,

(
1− αt

αt−1

)
I
)
, (3)

where {βt}Tt=1 is a scheduled variance, I is the identity matrix in RD, and αt =
∏t

s=1(1 − βs).
xt becomes progressively more corrupted by noise as t increases, and xT is nearly an isotropic
Gaussian distribution.

Reverse Process. The generation process of diffusion models is referred to as the reverse process,
which inverts the forward process by iteratively denoising a noisy sample xT ∼ N (0, I) backward
in time from t = T to t = 0 and obtaining a clean sample x0. Namely, a reverse Markov chain
pt(xt−1|xt; θ) is constructed as

xt−1 = 1√
1−βt

(
xt − βt√

1−αt
ϵθ(xt, t)

)
+ σtzt, (4)

with a trainable noise predictor ϵθ, where zt ∼ N (0, I), and σ2
t = βt is a variance at timestep t.

The noise predictor ϵθ(xt, t) is trained by minimizing the objective:

L(θ) = Ex,ϵt,t

[
∥ϵt − ϵθ(xt, t)∥22

]
, (5)

where ϵt ∼ N (0, I) is the noise added during the forward process at timestep t.

Denoising Diffusion Implicit Models and Inversion. Denoising diffusion implicit models
(DDIMs) (Song et al., 2021a) modifies Eq. (3) to be a non-Markovian process q(xt−1|xt, x0) =

N (
√
αt−1x0 +

√
1− αt−1 − σ2

t , σ
2
t I). Then, the reverse process becomes

xt−1 =
√
αt−1

(
xt−

√
1−αtϵθ(xt,t)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(xt, t) + σtzt, (6)

where σt = η
√
(1− αt−1)/(1− αt)

√
1− αt/αt−1. η ∈ [0, 1] controls the stochasticity: η = 1

recovers DDPM, while η = 0 yields a deterministic update. The forward process in Eq. (3) can also
be modified accordingly. Then, we can deterministically map a clean sample x0 to a noisy sample
xt, operate interpolations in the noise space at timestep t, and then map it back to a clean sample
x0; this procedure is often referred to as DDIM Inversion. See Appendix B.1 for details.
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Formulation as Stochastic Differential Equations. As the timestep size approaches zero, the
forward process can also be formulated as a stochastic differential equation (SDE) (Song et al.,
2021b). The reverse process is the corresponding reverse-time SDE that depends on the score func-
tion sθ(xt, t) := ∇xt

log pt(xt; θ), where pt(xt; θ) denotes the density of xt at time t. Notably, the
noise predictor ϵθ is closely tied to the score function (Luo, 2022) as:

sθ(xt, t) = ∇xt
log pt(xt; θ) ≈ −ϵθ(xt, t)/

√
1− αt. (7)

Thus, learning the noise predictor ϵθ is essentially learning the score function sθ. The following
discussion about the score function sθ applies to the noise predictor ϵθ as well, up to a known scale.

Conditioning and Guidance We can condition the score function sθ on a text prompt c, writing
sθ(xt, t, c), to guide the generation process (Rombach et al., 2022). The actual implementation
depends on the architecture of the score function sθ. Classifier-Free Guidance (CFG) amplifies this
guidance (Ho & Salimans, 2021), and a negative prompt cneg suppresses certain concepts (Rombach
et al., 2022). With these methods, the score function is replaced with

s̃θ(xt, t, c, cneg) = (w + 1)sθ(xt, t, c)− wsθ(xt, t,∅)− wnegsθ(xt, t, cneg), (8)

where sθ(xt, t, c), sθ(xt, t,∅), and sθ(xt, t, cneg) are score functions conditioned on the prompt c,
on no prompts ∅, and on the negative prompt cneg, respectively. w ≥ 0 is the guidance scale that
amplifies the effect of the condition c, and wneg ≥ 0 is the scale for the negative prompt cneg.

4 METHOD

Proposed Metric. Let xt be a point in the noise space RD at time t, and v, w ∈ Txt
RD be tangent

vectors at xt. We propose a Riemannian metric on the noise space of diffusion models at time t as

gxt
(v, w) := ⟨Jxt

v, Jxt
w⟩ = v⊤Gxt

w, (9)

where Jxt = ∇xtsθ(xt, t) is the Jacobian of the score function sθ(·, t) (or equivalently, of the noise
predictor ϵθ(·, t) up to scaling), and Gxt = J⊤

xt
Jxt is the matrix notion of the metric gxt at xt.

This construction ensures that Gxt is symmetric and positive semidefinite, making it a (possibly
degenerate) Riemannian metric. Indeed, the Jacobian Jxt is degenerate on clean data lying a low-
dimensional manifold. Moreover, the score function sθ is typically not well trained outside the data
manifold at time t = 0, making it difficult to define a meaningful metric off-manifold (Yu et al.,
2025). Hence, we use this metric in the noise space for t > 0, where samples are corrupted by noise,
the Jacobian Jxt

is typically full-rank, and the metric gxt
is positive definite.

To ensure positive definiteness, we can also consider a regularized metric Gxt = J⊤
xt
Jxt + λI for a

small λ > 0. However, preliminary experiments using Stable Diffusion v2.1-base (Rombach et al.,
2022) showed that this modification does not significantly affect the results, so we use the simpler
form in Eq. (9) in the following.

Interpretation. Stanczuk et al. (2024) found that as time t approaches zero, the score function
sθ(xt, t) points orthogonally towards the data manifold containing the data point xt. Hence, the
inner product between the score function sθ(xt, t) and a vector v at xt is small if v lies in the
tangent space to the data manifold, while it is large if v points in the normal direction. Ventura
et al. (2025) investigated the Jacobian Jxt

of the score function sθ(xt, t) and observed that its rank
deficiency corresponds to the dimension of the data manifold when samples are clean and lie on
a low-dimensional manifold; for real-world noisy samples, Jxt

is typically full-rank but exhibits
a sharp spectral gap. Intuitively, the Jacobian Jxt

shrinks along tangent directions and remains
large along normal directions. More precisely, let Mt be the data manifold at time t learned by a
diffusion model, and x ∈ Mt be a point on the manifold Mt. Define the tangent space TxMt to
the manifold Mt as the d-dimensional subspace (d ≪ D) spanned by the right singular vectors of
Jx corresponding to small singular values; the normal space NxMt is the orthogonal complement
spanned by the right singular vectors corresponding to large singular values. Then, the tangent space
TxRD to the noise space RD at x is decomposed as TxRD = TxMt ⊕NxMt, and we have:

Proposition 1. Minimizing ∥Jxt
v∥22 with respect to a vector v of a fixed Euclidean norm encourages

the vector v to lie in the tangent space TxMt.

5
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See Appendix A.2 for detailed explanation. Therefore, our proposed metric yields geodesics to
follow the tangent directions and stay within the data manifold. When a sample xt does not lie
exactly on the data manifold Mt, the metric still encourages geodesics to run parallel to the data
manifold Mt. By contrast, density-based metrics encourage geodesics to approach high-density
regions, which may lose fine-grained details and lead to unnatural transitions, as illustrated in Fig. 1.

From another viewpoint, our proposed metric can be interpreted as the pullback s∗θI of the Euclidean
metric I on the score space RD through the score function sθ, since v⊤Gxtw = (Jxtv)

⊤IJxtw and
Jxtv, Jxtw ∈ Tsθ(xt,t)RD. A curve γ is a geodesic in the noise space under our proposed metric
if the score function sθ is locally an immersion and maps the curve γ to a straight line sθ(·, t) ◦ γ.
Geodesics under our proposed metric minimize the change in the score function sθ along the paths.
Earlier studies have shown that gradients of log-likelihoods (with respect to model parameters) can
serve as robust, semantically meaningful representations of inputs (Yeh et al., 2018; Charpiat et al.,
2019; Hanawa et al., 2021). In this light, our proposed metric can be viewed as a measure of
the semantic closeness captured by the score function sθ between infinitesimally different samples,
providing transitions that preserve the underlying semantics.

Geodesics for Interpolation. An interpolation between two points x(0)

t and x(1)

t is considered to
be realized as a geodesic path between them. A geodesic can be obtained by solving a second-
order ordinary differential equation (ODE) called the geodesic equation (Lee, 2019), which requires
computation of O(D3) in general, not feasible in high-dimensional spaces. Hence, we employ
numerical methods to find a geodesic path between two points as a critical point of the energy
functional in Eq. (2).

Let u ∈ [0, 1] be the independent variable that parameterizes a curve γ : u 7→ γ(u). The energy
functional E[γ] in Eq. (2) with our proposed metric in Eq. (9) becomes:

E[γ] = 1
2

∫ 1

0
⟨Jγ(u)γ′(u), Jγ(u)γ

′(u)⟩du = 1
2

∫ 1

0
∥Jγ(u)γ′(u)∥22du = 1

2

∫ 1

0
∥ ∂
∂usθ(γ(u), t)∥

2
2du,

(10)
where the last equality follows from the chain rule. We discretize the curve γ as a sequence of N+1
points x(0)

t , . . . , x(1)

t , where u0 = 0, uN = 1, ∆u = ui+1 − ui = 1/N for i = 0, . . . , N − 1, and
x

(ui)

t = γ(ui) for i = 0, . . . , N . Then, the energy functional in Eq. (10) is approximated as:

E[γ] ≈ 1
2

∑N−1
i=0 ∥(sθ(x

(ui+1)

t , t)− sθ(x
(ui)

t , t))∥22/∆u. (11)

Given two samples x(0)

t and x(1)

t , the geodesic path between them is obtained by minimizing the
discrete approximation to E[γ] in Eq. (11) with respect to the intermediate points x(u1)

t , . . . , x
(uN−1)

t .
Then, x(u1)

t , .., x
(uN−1)

t serve as interpolated samples.

In practice, given a pair of clean samples x(0)

0 and x(1)

0 , we first map them to noisy samples x(0)

t and
x(1)

t using DDIM Inversion, then compute the geodesic path between them in the noise space at time
t by minimizing Eq. (11), and finally map the interpolated noisy samples x(u)

t back to clean samples
x(u)

0 using the deterministic reverse process in Eq. (6).

Limitations and Generalization. At t = 0, the minimization of Eq. (11) may fail to converge
properly. This is because the score function sθ is not well trained outside the data manifold M0,
and even when it is well trained, if the data manifold M0 is truly low dimensional, the Jacobian
Jxt can be degenerate, and the metric gxt becomes degenerate as well. Most importantly, since a
geodesic is only a local minimizer, a reasonably good initialization of the path is required. For these
reasons, we primarily use our proposed metric gxt

in the noise space for t > 0. In this setting,
samples xt are corrupted by noise; the Jacobian Jxt

is typically full-rank, and our proposed metric
gxt

is positive definite. See also Appendix A for details.

Diffusion models learn the score function sθ directly rather than the log-density log pt. Conse-
quently, its Jacobian Jxt need not be symmetric, and a clean decomposition into tangent and normal
subspaces Txt

Mt ⊕ Nxt
Mt is not guaranteed at a point xt ∈ Mt. Even then, the Jacobian Jxt

typically exhibits a sharp spectral gap, and Proposition 1 still holds approximately. Since diffusion
models are often used with CFG or negative prompts, we replace the score function sθ with the
guided update in Eq. (8) when needed. The resulting metric then reflects the manifold of data gen-
erated by the guided model. In all cases, the induced matrix Gxt

= J⊤
xt
Jxt

remains symmetric and
positive (semi-)definite.
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Geodesics under our proposed metric are obtained by minimizing Eq. (11). The objective has a
simple form and is numerically stable, but it is more computationally expensive than closed-form
interpolations such as LERP or SLERP. Methods based on conformal metrics (e.g., Yu et al. (2025))
also require solving an optimization problem (namely, a boundary-value problem) to interpolate
between two points, and thus have comparable computational cost.

5 EXPERIMENTS

5.1 SYNTHETIC 2D DATA

To illustrate the behavior of the geodesic under our proposed metric, we first conduct experiments
on a synthetic 2D dataset, shown in Fig. 1 (left) and (middle) (see Appendix C.1 for details). We
constructed a C-shaped distribution on a 2D space and trained a DDPM (Ho et al., 2020) on this
dataset. Then, we obtained interpolations between two points using different methods at time t =
0.02T through DDIM Inversion. See Appendix B.2 for comparison methods.

LERP completely ignores the data manifold and traverses through low-density regions. SLERP
follows the manifold to some extent but slightly deviates from it. Density-based interpolation is a
geodesic under a conformal density-based metric proposed in Yu et al. (2025), which approaches
and traverses a high-density region, not preserving the probabilities of the endpoints. A geodesic
under our proposed metric runs parallel to the data manifold, preserving the probabilities of the
endpoints and yielding natural transitions.

Table 1: Results on the
synthetic 2D dataset.
Methods Std. of Prob. ↓

LERP 0.1606
SLERP 0.0833
Density-based 0.1073

Ours 0.0701

We randomly sampled 50 pairs of endpoints from the distribution and ob-
tained interpolations using different methods. Then, we evaluated the stan-
dard deviation of the density p(x) over each interpolation path and summa-
rized the averages in Table 1. A smaller value indicates that the interpola-
tion stays close to the data manifold, while a larger value indicates that the
interpolation unnecessarily deviates from or approaches the data manifold.
Geodesics under our proposed metric maintain a consistent distance from
the data manifold, resulting in smoother and more coherent interpolations.

5.2 IMAGE INTERPOLATION

Experimental Setup. To evaluate our proposed Riemannian metric gxt , we perform image in-
terpolation, a common proxy for assessing the quality of learned data manifolds in DGMs. This
requires computing the geodesic between two images, which serves as an interpolated image se-
quence. We denote the original pair of images by x(0)

0 and x(1)

0 , and the interpolated image sequence
by {x̂(u)

0 } for u ∈ [0, 1]. We use Stable Diffusion v2.1-base (Rombach et al., 2022) as the backbone,
set the number of timesteps to T = 50, and set the number of discretization points to N = 10.

We evaluate methods on three benchmark datasets: the animation subset of MorphBench (MB(A))
(Zhang et al., 2023), Animal Faces-HQ (AF) (Choi et al., 2020), and CelebA-HQ (CA) (Karras et al.,
2018a). Because our goal is to capture the local geometry of the data manifold, we exclude the
metamorphosis subset from MorphBench, which contains significant (i.e., global) shape changes.
For each of Animal Faces-HQ and CelebA-HQ, we curate 50 image pairs with Low-Perceptual
Image Patch Similarity (LPIPS) (Zhang et al., 2018) below 0.6 to ensure semantic similarity, closely
following the procedure in Yu et al. (2025). Further details are provided in Appendix C.2.

Comparison Methods. We used the following baseline methods for comparison: LERP (Ho et al.,
2020), SLERP (Song et al., 2021a), NAO (Samuel et al., 2023), NoiseDiffusion (NoiseDiff) (Zheng
et al., 2024) and GeodesicDiffusion (GeoDiff) (Yu et al., 2025). We use default settings for com-
parison methods (NAO, NoiseDiff, GeoDiff) based on their official codes. See Appendix B.2 for
more details. For LERP, SLERP, and our proposed metric, we used the DDIM Scheduler (Song
et al., 2021a) and operated in the noise space at t = 0.6T . For our proposed metric, each path was
initialized with SLERP and updated for 500 iterations using Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.001, decayed with cosine annealing to 0.0001 (Loshchilov & Hutter, 2017).
We also adopted the prompt adjustment of Yu et al. (2025); see Appendix B.3.
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Table 2: Image interpolation results (lower is better).
FID ↓ PPL ↓ PDV ↓ RE ↓ (×10−3)

Method MB(A) CA AF MB(A) CA AF MB(A) CA AF MB(A) CA AF

LERP 84.20 95.68 119.58 0.848 1.420 1.859 0.055 0.091 0.154 0.401 1.010 2.049
SLERP 62.81 37.84 26.07 0.644 0.707 0.871 0.030 0.033 0.022 0.401 1.010 2.049
NAO 130.54 83.05 71.47 2.868 2.121 2.443 0.163 0.154 0.173 39.244 27.623 40.178
NoiseDiff 119.47 65.04 68.87 3.618 2.098 3.250 0.064 0.069 0.083 15.096 8.618 19.628
GeoDiff 28.70 35.98 25.80 0.402 0.669 0.842 0.024 0.044 0.027 0.188 0.891 1.969

Ours 27.44 32.54 21.01 0.380 0.633 0.767 0.021 0.036 0.023 0.177 0.888 1.962

LERP

SLERP

NAO

NoiseDiff

GeoDiff

Ours

        Figure 2: Qualitative examples of interpolated image sequences for AF (Dog). The images at both
ends are the given endpoints x(0)

0 and x(1)

0 , and the middle images are the interpolated results {x̂(u)

0 }
for u ∈ [0, 1]. See also Fig. 5 in Appendix D.

MB(A)

CA

AF (Cat)

        Figure 3: Qualitative examples of interpolated image sequences by our method.

Metrics. We evaluated the quality of the interpolated image sequences by the following metrics:
(1) Fréchet Inception Distance (FID) (Heusel et al., 2017) measures the similarity between the set of
input images and the set of interpolated images using features extracted from a pre-trained Inception
v3 network (Szegedy et al., 2015); (2) Perceptual Path Length (PPL) (Karras et al., 2018b) is the
sum of LPIPS between adjacent images to assess the directness of the interpolated image sequence;
(3) Perceptual Distance Variance (PDV) (Zhang et al., 2023) is the standard deviation of LPIPS
between adjacent images to assess the consistency of transition rates over the interpolated image
sequence; and (4) Reconstruction Error (RE) is the mean squared error between the input pair of
images, x(0)

0 and x(1)

0 , and the first and last samples of the interpolated image sequence, x̂(0)

0 and x̂(1)

0 ,
to assess how well the endpoints are preserved.

Results. We summarize the quantitative results in Table 2. Using geodesics under our proposed
metric, image interpolation achieves the best scores on all datasets for FID, PPL, and RE. It also
records the best PDV on MB(A) and the second-best on the others. Figures 2 and 3 show qualitative
results. See also Fig. 5 in Appendix D for comparisons. As reported previously, LERP yields blurry
interpolations. Although NAO and NoiseDiff generate high-quality images, these methods generate
glossy textures that are absent in the original images and exhibit extremely large reconstruction
errors, failing a proper interpolation. This is because they adjust the norms of noisy samples x(u)

t
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Human

(zoomed-in)

frame 1 frame 2 frame 3 LERP SLERP NAO NoiseDiff GeoDiff Ours

Figure 4: Qualitative examples on video frame interpolations. See also Fig. 6 in Appendix D.

in the noise space to mitigate the feature loss observed with LERP, which also alters endpoints and
causes large deviations from the originals. SLERP produces sharper results than LERP but still lags
behind geodesic-based methods. GeoDiff ranks second in most cases after our proposed metric, but
produces unusually glossy images that lack fine details. This trend is consistent with prior reports
that sample density is negatively correlated with perceptual detail (Karczewski et al., 2025a). Our
metric yields interpolations that are high-quality and preserve fine details of the input images.

5.3 VIDEO FRAME INTERPOLATION

Experimental setup. Image interpolation has no ground-truth images, which limits evaluation to
indirect measures. To address this, we evaluate methods on video frame interpolation using Mean
Squared Error (MSE) and LPIPS against the ground-truth middle frames. We employ three bench-
marks curated by Zhu et al. (2024): 21 natural-scene clips from DAVIS (Perazzi et al., 2016), 56
human-pose clips from Pexels (Human), and 26 indoor/outdoor clips selected from RealEstate10K
(RE10K) (Zhou et al., 2018). We use three consecutive frames from each video clip: we take frames
1 and 3 as x(0)

0 and x(1)

0 and estimate frame 2 as x̂(0.5)

0 . This is because the interpolation between
two frames that are far apart in time may not be unique, which is not suitable for comparison with
ground-truth frames. Unless otherwise specified, all methods and hyperparameters are identical to
those used for image interpolation. Each frame is resized to 512 × 512 pixels. We generate a text
prompt from frame 1 for each clip using BLIP-2 (Li et al., 2022).

Table 3: Video frame interpolation results.

MSE ↓ (×10−3) LPIPS ↓

Method DAVIS Human RE10K DAVIS Human RE10K

LERP 12.135 4.566 6.299 0.590 0.379 0.377
SLERP 15.440 6.080 6.128 0.487 0.320 0.301
NAO 108.211 99.867 121.680 0.679 0.668 0.664
NoiseDiff 46.881 41.994 28.867 0.561 0.552 0.482
GeoDiff 13.253 3.363 5.941 0.334 0.184 0.229

Ours 8.777 2.018 2.771 0.318 0.170 0.178

Results. Table 3 summarizes the quantitative re-
sults. Our method achieves the lowest MSE and
LPIPS on all datasets. Figures 4 and 6 provide
qualitative results. As shown in zoomed-in images,
only ours and GeoDiff interpolate the arm move-
ment well. LERP produces blurry outputs, which
is consistent with its poor LPIPS score despite a
relatively low MSE. NAO and NoiseDiff produce
images with large deviations from the ground-truth
frames. SLERP sometimes fails to preserve small
objects and textures: a person’s arm and back-
ground objects on Human, water ripples and a bird’s neck on DAVIS, and small furniture on RE10K.
GeoDiff yields relatively coherent results, but it increases color saturation and over-smooths textures
(e.g., flattened water ripples), which indicates a loss of fine details. Overall, our method preserves
edges, object shapes, and textures more faithfully than the others.

See Appendix D for more qualitative results, ablation study, and visualizations.

6 CONCLUSION

In this paper, we introduced a novel Riemannian metric, inspired by recently found link between the
Jacobian of the score function and the local structure of the data manifold learned by diffusion mod-
els. Our proposed metric encourages geodesics to stay within or run parallel to the data manifold,
yielding natural transitions that preserve the underlying semantics, as verified through experiments
on synthetic 2D data, image interpolation, and video frame interpolation. Applications to other
metric-related tasks, such as clustering, are left for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study is purely focused on analysis of diffusion models, and it is not expected to have any direct
negative impact on society or individuals.

REPRODUCIBILITY STATEMENT

The environment, datasets, methods, evaluation metrics, and other experimental settings are given
in Section 5 and Appendices B and C. For full reproducibility, the source code is attached as sup-
plementary material.
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Louis Béthune, David Vigouroux, Yilun Du, Rufin VanRullen, Thomas Serre, and Victor Boutin.
Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models. arXiv, 2025.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input Similarity from the
Neural Network Perspective. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick Smagt. Met-
rics for Deep Generative Models. In International Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2018.

Zikun Chen, Ruowei Jiang, Brendan Duke, Han Zhao, and Parham Aarabi. Exploring Gradient-
Based Multi-directional Controls in GANs. In European Conference on Computer Vision (ECCV),
2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jaewoong Choi, Junho Lee, Changyeon Yoon, Jung Ho Park, Geonho Hwang, and Myungjoo Kang.
Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of
GANs. In International Conference on Learning Representations (ICLR), 2022.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse Image Synthesis
for Multiple Domains. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

Duolikun Danier, Fan Zhang, and David Bull. LDMVFI: video frame interpolation with latent
diffusion models. In AAAI Conference on Artificial Intelligence (AAAI), 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations (ICLR), 2020.

Yilun Du and Igor Mordatch. Implicit Generation and Generalization in Energy-Based Models. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear Units for Neural Network
Function Approximation in Reinforcement Learning. arXiv, 2017.

Charles Fefferman, Sanjoy K. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 2016.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation using
Textual Inversion. In International Conference on Learning Representations (ICLR), 2023.

Anand Jerry George, Rodrigo Veiga, and Nicolas Macris. Analysis of Diffusion Models for Manifold
Data. arXiv, 2025.

Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. GANalyze: Toward Visual
Definitions of Cognitive Image Properties. In IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2014.

Samuel Gruffaz and Josua Sassen. Riemannian Metric Learning: Closer to You than You Imagine,
2025.

Jiayi Guo, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao
Huang, and Humphrey Shi. Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion
Models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
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A DETAILED EXPLANATIONS

A.1 LOCAL COORDINATE EXPRESSION

A Riemannian metric g is symmetric and positive-definite; i.e., at p ∈ M,

gp(v, w) = gp(w, v), gp(v, v) ≥ 0 for all v ∈ TpM, gp(v, v) = 0 ⇔ v = 0.

By identifying gp with an inner product, we write

⟨v, w⟩g := gp(v, w) for any v, w ∈ TpM.

Let (x1, . . . , xD) be smooth local coordinates in a neighborhood of p ∈ M. Then, the coordinate
basis for TpM is

(
∂

∂x1 |p, . . . , ∂
∂xD |p

)
, where ∂

∂xi is the i-th coordinate vector field. Tangent vectors
v, w ∈ TpM can be expressed as v =

∑D
i=1 v

i ∂
∂xi |p and w =

∑D
i=1 w

i ∂
∂xi |p, respectively. The

matrix notation Gp of g at p consists of (i, j)-elements

gij(p) = gp
(

∂
∂xi |p, ∂

∂xj |p
)
=

〈
∂

∂xi |p, ∂
∂xj |p

〉
g

(12)

for i, j = 1, 2, ..., D. The Euclidean metric is represented by the identity matrix I . The inner product
of v and w with respect to the Riemannian metric gp is

gp(v, w) =
∑D

i=1

∑D
j=1 gij(p)v

iwj = vTGpw. (13)

A.2 EXPLANATION OF PROPOSITION 1

When the score function sθ is exact, it is the gradient ∇xt
log pt(xt; θ) of the log-density

log pt(xt; θ), and its Jacobian Jxt
equals the Hessian, Jxt

= ∇xt
∇xt

log pt(xt; θ), which is sym-
metric. In this idealized case, its eigenvectors form an orthonormal basis of the noise space RD. We
divide these eigenvectors into a basis for the tangent space TxMt, {vi}di=1 (with small eigenvalues
λi), and a basis for the normal space NxMt, {vj}Dj=d+1 (with large eigenvalues λj). These spaces
are orthogonal complements of each other, and the tangent space TxRD to the noise space RD at x
can be decomposed into their direct sum, TxRD = TxMt ⊕NxMt. Any tangent vector v ∈ TxRD

is uniquely decomposed as v = vT + vN , where vT ∈ TxMt and vN ∈ NxMt. The squared
Jacobian-vector product ∥Jxtv∥22 can be expanded as:

∥Jxt
v∥22 = ∥Jxt

(vT + vN )∥22 = ∥Jxt
vT ∥22 + ∥Jxt

vN ∥22 + 2⟨Jxt
vT , Jxt

vN ⟩. (14)

Due to the orthogonality of the eigenspaces, the cross term ⟨Jxt
vT , Jxt

vN ⟩ vanishes, and we have

∥JxtvT ∥22 =
∑d

i=1 λ
2
i ⟨v, vi⟩2 ≈ 0,

∥Jxt
vN ∥22 =

∑D
j=d+1 λ

2
j ⟨v, vj⟩2 ≫ 0 (if vN ̸= 0).

(15)

Hence, minimizing the squared Jacobian–vector product ∥Jxt
v∥22 (under a fixed Euclidean norm of

v) is dominated by minimizing the normal-space component ∥Jxt
vN ∥22, and essentially encourages

the vector v to lie in the tangent space TxMt.

In practice, diffusion models learn the score function sθ directly, its Jacobian Jxt need not be sym-
metric, and the right singular vectors need not be exactly orthogonal to each other. Even then,
minimizing ∥Jxv∥22 still suppresses the component in the subspace spanned by the large right singu-
lar vectors and amplifies the component spanned by the small right singular vectors; Proposition 1
continues to hold in this generalized sense.

B EXPERIMENTAL SETUP

B.1 DDIM INVERSION

Naive encoding of an original image is to add Gaussian noise as in the forward process q(xt | xt−1),
which is stochastic and often yields poor reconstructions. To accurately invert the reverse process
and recover the specific noise map associated with a given image, DDIM Inversion (Mokady et al.,
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2023) is widely used. The deterministic version (η = 0) of DDIM can be regarded as an ordinary
differential equation (ODE) solved by the Euler method (Song et al., 2021a;b). In the limit of
infinitesimally small timesteps, the ODE is invertible.

Concretely, setting σt = 0 in Eq. (6) gives

xt−1 = atxt + btϵθ(xt, t) = xt + (at − 1)xt + btϵθ(xt, t), (16)

where at =
√
αt−1/αt and bt = −

√
αt−1(1− αt)/αt +

√
1− αt−1. This can be viewed as an

ODE with the time derivative (at − 1)xt + btϵθ(xt, t) solved by the Euler method with the unit step
size. With a sufficiently small timestep size,

xt =
xt−1 − btϵθ(xt, t)

at
≈ xt−1 − btϵθ(xt−1, t)

at
, (17)

since ϵθ(xt, t) ≈ ϵθ(xt−1, t). The deterministic forward process iteratively applies the update rule
in Eq. (17) to a sample x0 from t = 0 to τ and obtains the noisy image xτ , from which the determin-
istic reverse process reconstructs the original x0 up to numerical errors. This inversion procedure
substantially improves the fidelity of reconstructions and subsequent interpolations.

B.2 COMPARISON METHODS

Linear Interpolation. Once samples are noised via DDIM Inversion, one can perform straight-
forward linear interpolation (LERP) (Ho et al., 2020), by treating the noise space at fixed time
t = τ > 0 as a linear latent space. Given samples x(0)

0 and x(1)

0 in the data space, the deterministic
forward process obtains their noised versions x(0)

τ and x(1)
τ at τ , respectively. A linear interpolation

in that space is given by
x(u)

τ = (1− u)x(0)

τ + ux(1)

τ , (18)
where u ∈ [0, 1] is the interpolation parameter. Then, one applies the deterministic reverse process
from t = τ back to t = 0 to obtain a sequence of interpolated images x(u)

0 in the data space.

Spherical Linear Interpolation. An alternative is spherical linear interpolation (SLERP) (Song
et al., 2021a), which finds the shortest path on a sphere in the noise space:

x(u)

τ =
sin((1− u)θ)

sin (θ)
x(0)

τ +
sin(uθ)

sin (θ)
x(1)

τ (19)

where θ = arccos
(

(x(0)
τ )⊤x(1)

τ

∥x(0)
τ ∥∥x(1)

τ ∥

)
. This procedure preserves the norms of the noisy samples x(u)

τ ,

yielding more natural interpolations than LERP. Note that SLERP assumes that x(0)
τ and x(1)

τ are
drawn from a normal distribution, which holds only for a sufficiently large t (typically, t = T ).
Nonetheless, SLERP is often applied at moderate t.

B.3 PROMPT ADJUSTMENT

To improve the quality of interpolations, we adopt the prompt adjustment proposed by Yu et al.
(2025). Internally in Stable Diffusion v2.1-base (Rombach et al., 2022), a text prompt c is first en-
coded into a text embedding z using CLIP (Radford et al., 2021). To better align the text embedding
z with a given pair of images x(0)

0 and x(1)

0 , we adjust the text embedding z in a similar way to textual
inversion (Gal et al., 2023). Namely, the text embedding z is updated to minimize the DDPM loss in
Eq. (5) for 500 iterations for image interpolation and 1,000 iterations for video frame interpolation.
We use AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 0.005.

Also following Yu et al. (2025), we do not use CFG (i.e., set w = 0 in Eq. (8)) but use the following
negative prompt cneg with wneg = 1: “A doubling image, unrealistic, artifacts, distortions, unnatural
blending, ghosting effects, overlapping edges, harsh transitions, motion blur, poor resolution, low
detail.”

C DETAILS OF EXPERIMENTS

This section provides additional details of the experiments in Section 5. All experiments were
conducted on a single NVIDIA A100 GPU.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1 DETAILS OF SYNTHETIC 2D DATASET

Dataset. We construct a two-dimensional C-shaped distribution as follows. We start with an axis-
aligned ellipse with semi-axes 1.0 (along x1) and 1.2 (along x2). To open the “C”, we remove all
points in a ±30◦ wedge centered on the positive x1-axis. We then add isotropic Gaussian perturba-
tions with standard deviation 0.001 per coordinate to each point. From the resulting distribution, we
draw 100,000 samples.

Network. The noise predictor ϵθ is composed of three linear layers of hidden width 512 with
SiLU activation functions (Elfwing et al., 2017). The network takes a tuple of a data point x and
a normalized time t as input. We set the number of steps to T = 1, 000. We trained this network
for 1,000 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 512.
The learning rate follows cosine annealing (Loshchilov & Hutter, 2017), decaying from 10−3 to 0
without restarts. For stability, we apply gradient-norm clipping with a threshold of 1.0.

Implementation Details. In Fig. 1 (left), we visualize the interpolation between x(0)

0 = (0.0, 1.15)
and x(1)

0 = (−0.8,−0.6) with N = 100 discretization points. Comparison methods include Linear
Interpolation (LERP) (Ho et al., 2020), Spherical Linear Interpolation (SLERP) (Song et al., 2021a),
and density-based interpolation based on the metric proposed in Yu et al. (2025). We used the DDIM
Scheduler (Song et al., 2021a) and operated in the noise space at t = 0.02T . For our method and the
density-based interpolation, we find the geodesic paths by minimizing the energy functional E[γ].
Both paths are initialized using SLERP and updated using Adam optimizer (Kingma & Ba, 2015)
for 1,000 iterations with a learning rate of 10−4.

C.2 DATASETS FOR IMAGE INTERPOLATION

The animation subset of MorphBench (Zhang et al., 2023) is a dataset of pairs of images obtained
via image editing. Each pair is associated with a text prompt; we used the provided prompts as the
condition c.

Animal Faces-HQ (Choi et al., 2020) is a dataset of high-resolution images of animal faces. From
this dataset, we randomly selected 50 pairs of dog images and 50 pairs of cat images with LPIPS
below 0.6 to ensure semantic similarity. We used the text prompts “a photo of a dog” for dog images
and “a photo of a cat” for cat images.

CelebA-HQ (Karras et al., 2018a) is a high-resolution dataset of celebrity faces. We randomly
sampled 50 male pairs and 50 female pairs, again with LPIPS less than 0.6, and condition on “a
photo of a man” and “a photo of a woman,” respectively.

D ADDITIONAL RESULTS

D.1 ADDITIONAL QUALITATIVE RESULTS FOR IMAGE AND VIDEO FRAME INTERPOLATION

In this section, we provide additional qualitative results. Figures 5 and 6 provide more examples of
image interpolation and video frame interpolation, which complement Fig. 2 and Fig. 4 in the main
text, respectively.

D.2 ABLATION STUDY

We adopt the prompt adjustment of GeoDiff (Yu et al., 2025) to better align the text embedding with
the images. Table 4 reports an ablation on video frame interpolation. Because GeoDiff is designed
to operate with this adjustment enabled, we do not report a GeoDiff variant without it. With the
adjustment, both our metric and SLERP improve in MSE and LPIPS. The gains are larger for our
metric: the adjustment enables the guided diffusion model to better capture the local data manifold,
and our metric explicitly leverages such refined local information. By contrast, SLERP focuses on
the Gaussian prior and is less sensitive to refinements.
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LERP

SLERP

NAO

NoiseDiff

GeoDiff

Ours

        (a) MorphBench (Animation)

LERP

SLERP

NAO

NoiseDiff

GeoDiff

Ours

        (b) CelebA-HQ

LERP

SLERP

NAO

NoiseDiff

GeoDiff

Ours

        (c) Animal Faces-HQ (Cat)

Figure 5: Examples of interpolated image sequences. The leftmost and rightmost images are the
given endpoints x(0)

0 and x(1)

0 , and the middle images are the interpolated results {x̂(u)

0 } for u ∈ [0, 1].
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DAVIS

(zoomed-in)

RE10K

(zoomed-in)

frame 1 frame 2 frame 3 LERP SLERP NAO NoiseDiff GeoDiff Ours

Figure 6: Qualitative examples on video frame interpolations

Table 4: Ablation study on prompt adjustment.

MSE ↓ (×10−3) LPIPS ↓

Method Adj. DAVIS Human RE10K DAVIS Human RE10K

SLERP 15.440 6.080 6.128 0.487 0.320 0.301
SLERP ✓ 9.894 2.559 3.778 0.355 0.200 0.200
GeoDiff ✓ 13.253 3.363 5.941 0.334 0.184 0.229

Ours 13.517 5.008 6.016 0.500 0.350 0.325
Ours ✓ 8.777 2.018 2.771 0.318 0.170 0.178

D.3 INTERPOLATIONS AND SPECTRAL GAPS WITH VARYING τ

We visualize interpolations for varying time τ for the noise space in Fig. 7. At τ = 0, intermediate
samples exhibit artifacts. With no injected noise, the data manifold is extremely thin, and finding
a geodesic under our metric becomes ill-conditioned. As τ increases, the interpolations become
smoother and more globally coherent. At τ = T , however, the interpolations are no longer seman-
tically coherent: the noisy-sample distribution is close to Gaussian, the data manifold is not well
defined, and meaningful geodesics cannot be recovered. Empirically, τ ∈ [0.4T, 0.6T ] yields the
best visual quality.

Figure 8 shows the singular values of the Jacobian Jxt
of the score function sθ at the point x(1)

τ
obtained by DDIM inversion to the rightmost image x(1)

0 . Stable Diffusion v2.1-base (Rombach
et al., 2022) operates VAE’s latent space of 64 × 64 × 4 = 16, 384 dimensions. Across timesteps,
hundreds of singular values are near zero, suggesting a local intrinsic dimensionality on the order
of a few hundred. As τ increases, more singular values approach 1.0 because the injected noise
thickens the manifold and makes it isotropic.

USE OF LARGE LANGUAGE MODELS.

We used ChatGPT and GitHub Copilot as autocomplete tools in polishing the manuscript and im-
plementing the experimental code. No large language models were used for research ideation.
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τ = 0.0T

τ = 0.2T

τ = 0.4T

τ = 0.6T

τ = 0.8T

τ = 1.0T

        (c) Celeb-A HQ (Male)

Figure 7: Qualitative examples of interpolated image sequences with different τ . The leftmost and
rightmost images are the given endpoints x(0)

0 and x(1)

0 , and the middle images are the interpolated
results {x̂(u)

0 } for u ∈ [0, 1].
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Figure 8: Examples of singular value spectra of the Jacobian Jxt
of the score function sθ at the right

endpoint x(1)

0 of the interpolation shown in Fig. 7, with different τ . The horizontal and vertical axes
represent the index and the singular value (in log scale), respectively.
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